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Abstract

Decentralized control of cooperative systems captures the operation of a group of
decision-makers that share a single global objective. The difficulty in solving optimally
such problems arises when the agents lack full observability of the global state of the sys-
tem when they operate. The general problem has been shown to be NEXP-complete. In
this paper, we identify classes of decentralized control problems whose complexity ranges
between NEXP and P. In particular, we study problems characterized by independent tran-
sitions, independent observations, and goal-oriented objective functions. Two algorithms
are shown to solve optimally useful classes of goal-oriented decentralized processes in poly-
nomial time. This paper also studies information sharing among the decision-makers, which
can improve their performance. We distinguish between three ways in which agents can
exchange information: indirect communication, direct communication and sharing state
features that are not controlled by the agents. Our analysis shows that for every class
of problems we consider, introducing direct or indirect communication does not change
the worst-case complexity. The results provide a better understanding of the complexity
of decentralized control problems that arise in practice and facilitate the development of
planning algorithms for these problems.

1. Introduction

Markov decision processes have been widely studied as a mathematical framework for se-
quential decision-making in stochastic domains. In particular, single-agent planning prob-
lems in stochastic domains were modeled as partially observable Markov decision processes
(POMDPs) or fully-observable MDPs (Dean, Kaelbling, Kirman, & Nicholson, 1995; Kael-
bling, Littman, & Cassandra, 1998; Boutilier, Dearden, & Goldszmidt, 1995). Borrow-
ing from Operations Research techniques, optimal plans can be computed for these plan-
ning problems by solving the corresponding Markov decision problem. There has been a
vast amount of progress in solving individual MDPs by exploiting domain structure (e.g.,
Boutilier et al., 1995; Feng & Hansen, 2002). Approximations of MDPs have also been
studied, for example, by Guestrin et al. (2003), assuming that the reward function can be
decomposed into local reward functions each depending on only a small set of variables.

We are interested in a single Markov decision process that is collaboratively controlled by
multiple decision-makers. The group of agents cooperate in the sense that they all want to
maximize a single global objective (or minimize the cost of achieving it). Nevertheless, the
decision-makers do not have full observability of the whole system at the time of execution.
These processes can be found in many application domains such as multi-robot problems,
flexible manufacturing and information gathering. For example, consider a group of space
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exploration rovers, like those sent by NASA to Mars.1 These rovers could be assigned a
set of experiments to perform on the planet before they need to meet. They may have
a limited amount of time to perform these experiments. Then, the robots need to decide
what experiments to perform and how much time they should invest in each one given
the available battery power and remaining time. Decentralized cooperative problems also
include information gathering systems, where several software agents with access to different
servers may provide answers to a user’s query. These agents’ global objective is to give the
user the best answer as early as possible, given the load on their servers and the preferences
given by the user. Controlling the operation of the agents in such examples is not trivial
because they face uncertainty regarding the state of the environment (e.g., the load on
the communication link between the servers in the information gathering example may
vary), the outcome of their actions (e.g., the rovers on Mars may be uncertain about their
location and time needed to move from one target location to another), and the accuracy
of their observations. All these types of uncertainty are taken into account when solving
such decentralized problems.

The processes described above are examples of decentralized partially-observable Markov
decision processes (Dec-POMDPs) or decentralized Markov decision processes (Dec-MDPs).2

The complexity of solving these problems has been studied recently (Bernstein, Givan, Im-
merman, & Zilberstein, 2002; Pynadath & Tambe, 2002). Bernstein et al. have shown that
solving optimally a Dec-MDP is NEXP-complete by reducing the control problem to the
tiling problem. Rabinovich et al. (2003) have shown that even approximating the off-line
optimal solution of a Dec-MDP remains NEXP. Nair et al. (2003) have presented the Joint
Equilibrium-based Search for Policies (JESP) algorithm that finds a locally-optimal joint
solution. Researchers have attempted to approximate the coordination problem by propos-
ing on-line learning procedures. Peshkin et al. (2000) have studied how to approximate the
decentralized solution based on a gradient descent approach for on-line learning (when the
agents do not know the model). Schneider et al. (1999) assume that each decision-maker is
assigned a local optimization problem. Their analysis shows how to approximate the global
optimal value function when agents may exchange information about their local values at
no cost. Neither convergence nor bounds have been established for this approach. Wolpert
et al. (1999) assume that each agent runs a predetermined reinforcement learning algorithm
and transforms the coordination problem into updating the local reward function so as to
maximize the global reward function. Again, this is an approximation algorithm for on-
line learning that does not guarantee convergence. Agents in this model may communicate
freely. Guestrin et al. study off-line approximations (a centralized approach (Guestrin,
Koller, & Parr, 2001) and a distributed approach (Guestrin & Gordon, 2002)), where a
known structure of the agents’ action dependencies induces a message passing structure. In
this context, agents choose their actions in turns and communication is free. The solution is
based on the assumption that the value function of the system can be represented by a set
of compact basis functions, which are then approximated. The complexity of the algorithm
is exponential in the width of the coordination graph. The order of elimination is needed
beforehand because it has a great effect on the result.

1. mars.jpl.nasa.gov/mer/
2. These problems are defined in Definition 4 in Section 2.
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What is common to these approaches is the departure from the assumption that each
agent has a known local reward function. The questions that they attempt to answer, hence,
take the form of how to design or manipulate local reward functions so as to approximate
the actual system reward function.

In this work, we take a different approach. We aim at solving the decentralized control
problem off-line without making any particular assumptions about the reward functions of
each agent. The problem is therefore analyzed from a decentralized perspective. We have
developed a formal model for decentralized control, which extends current models based on
Markov decision processes. We refer to the most general problem where information sharing
between the agents can result from indirect communication (i.e., via observations), by direct
communication (i.e., via messages) or by sharing common uncontrollable features of the
environment (defined in Section 2.2). When direct communication is possible, we assume
that communication may incur a cost. Communication can assist the agents to better
control the process, but it may not be possible or desirable at every moment. Exchanging
information may incur a cost associated with the required bandwidth, the risk of revealing
information to competing agents or the complexity of solving an additional problem related
to the communication (e.g., computing the messages). Assuming that communication may
not be reliable adds another dimension of complexity to the problem.

Becker et al. (2003) presented the first algorithm for optimal off-line decentralized
control when a certain structure of the joint reward was assumed. Recently, Hansen et
al. (2004) showed how to generalize dynamic programming to solve optimally general de-
centralized problems. Nevertheless, no existing technique solves efficiently special classes of
Dec-POMDPs that we identify in this paper. Pynadath and Tambe (2002) studied a similar
model to ours, although they did not propose an algorithm for solving the decentralized
control problem. Claus and Boutilier (1998) studied a simple case of decentralized control
where agents share information about each other’s actions during the off-line planning stage.
The solution presented in their example includes a joint policy of a single action for each
agent to be followed in a stateless environment. The agents learn which equilibrium to play.
In our model, partial observability is assumed and the scenarios studied are more complex
and include multiple states. Centralized multi-agent systems (MAS) were also studied in
the framework of MDPs (e.g., Boutilier, 1999), where both the off-line planning stage and
the on-line stage are controlled by a central entity, or by all the agents in the system, who
have full observability.

Coordination and cooperation have been studied extensively by the distributed artificial
intelligence community (Durfee, 1988; Grosz & Kraus, 1996; Smith, 1988) assuming a
known and fixed language of communication. KQML (Finin, Labrou, & Mayfield, 1997) is
an example of one standard designed to specify the possible communication between the
agents. Balch and Arkin’s (1994) approach to communication between robots is inspired
by biological models and refers to specific tasks such as foraging, consumption and grazing.
Their empirical study was performed in the context of reactive systems and communication
was free. Our aim is to find optimal policies of communication and action off-line, taking
into account information that agents can acquire on-line. Game theory researchers (Luce
& Raiffa, 1957; Aumann & Hart, 1994) have also looked at communication, although the
approaches and questions are somewhat different from ours. For example, Wärneryd (1993),
and Blume and Sobel (1995) study how the receiver of a message may alter its actions in
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games where only one agent can send a single message at no cost. In contrast, we study
sequential decision-making problems where all the agents can send various types of messages,
which incur some cost. Our objective is to analyze the complexity of the problem and
formulate algorithms that can find optimal policies of behavior as well as communication.

Our work focuses on decentralized cooperative MAS. Agents in cooperative MAS typ-
ically have limited ability to share information during execution (due to the distributed
nature of the system). However, due to the cooperative nature of such systems, these con-
straints rarely apply to the pre-execution stage. Thus, we focus on cooperative agents that
can share information fully at the off-line planning stage. Unlike the centralized approach,
these agents will be acting in real-time in a decentralized manner. They must take this into
account while planning off-line.

Sub-classes of Dec-POMDPs can be characterized based on how the global states, tran-
sition function, observation function, and reward function relate to the partial view of
each of the controlling agents. In the simplest case, the global states can be factored,
the probability of transitions and observations are independent, the observations combined
determine the global state, and the reward function can be easily defined as the sum of
local reward functions. In this extreme case we can say that the Dec-POMDP is equivalent
to the combination of n independent MDPs. This simple case is solvable by combining
all the optimal solutions of the independent MDPs. We are interested in more complex
Dec-POMDPs, in which some or all of these assumptions are violated. In particular, we
characterize Dec-POMDPs, which may be jointly fully-observable, may have independent
transitions and observations and may result in goal-oriented behavior. We analyze the com-
plexity of solving these classes off-line and show that it ranges from NEXP to P. We also
identify different forms of information sharing and show that when direct communication is
possible, exchanging local observations is sufficient to attain optimal decentralized control.

The contributions of the paper are as follows: formalizing special classes of decentralized
control problems (Section 2), identifying classes of decentralized control that are critical in
decreasing the complexity of the problem (Section 3), designing algorithms for controlling
optimally a decentralized process with goal-oriented behavior (Section 4), and extending the
formal framework by introducing direct communication, considering the trade-off between
its cost and the value of the information acquired, and analyzing the complexity of solving
optimally such problems (Section 5).

2. The Dec-POMDP Model

We are interested in a stochastic process that is cooperatively controlled by a group of
decision-makers who lack a central view of the global state. Nevertheless, these agents
share a set of objectives and all of them are interested in maximizing the utility of the
system. The process is decentralized because none of the agents can control the whole
process and none of the agents has a full view of the global state. The formal framework
in which we study such decentrally controlled processes, called Dec-POMDPs, is presented
below (originally presented by Bernstein et al., 2002). For simplicity of exposition, the
formal model is presented for two agents, although it can be extended to any number.

M = < S,A1, A2, P,R,Ω1,Ω2, O, T > where:

• S is a finite set of world states with a distinguished initial state s0.
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• A1 and A2 are finite sets of control actions. ai denotes an action performed by agent
i.

• P is the transition probability function. P (s′|s, a1, a2) is the probability of moving
from state s ∈ S to state s′ ∈ S when agents 1 and 2 perform actions a1 and a2

respectively. We note that the transition model is stationary, i.e., it is independent of
time.

• R is the global reward function. R(s, a1, a2, s
′) represents the reward obtained by the

system as a whole, when agent 1 executes action a1 and agent 2 executes action a2 in
state s resulting in a transition to state s′.

• Ω1 and Ω2 are finite sets of observations.

• O is the observation function. O(o1, o2|s, a1, a2, s
′) is the probability of observing o1

and o2 (respectively by the two agents) when in state s agent 1 takes action a1 and
agent 2 takes action a2, resulting is state s′.

• If the Dec-POMDP has a finite horizon, it is represented by a positive integer T .

We will illustrate our definitions and results through the Meeting under Uncertainty
example. In this scenario, we assume for simplicity that there are two robots operating on
a two-dimensional grid. The state of the system is given by the locations of each one of
the robots, s = [(x1, y1)(x2, y2)]. In a more general example, this state may include other
features such as the topology of the terrain, which no rover may be able to sense (e.g., due
to lack of equipment). The robots cannot observe each other, and the movement actions
they can perform have uncertain outcomes (e.g., each robot will successfully move to the
next location with some probability, but it may remain at the same location where it took
the action). In a more uncertain case, the topology of the terrain, although hidden from
the agents’ observations may affect the resulting location of a moving action. The robots’
objective is to minimize the time to meet. The observation of robot i corresponds to i’s
x and y coordinates. Solving optimally such a decentralized problem means finding the
sequence of moves for each agent such that they meet as soon as possible.

Given the Dec-POMDP model, a local policy of action for a single agent is given by a
mapping from sequences of observations to actions. In our example, a robot’s local policy
instructs it to take a certain movement action given the sequence of locations it has observed
so far. A joint policy is a tuple composed of these local policies, one for each agent. To solve
a decentralized POMDP problem one must find the optimal joint policy that is, the one with
maximum value (for example given by the maximum expected accumulated global reward).
By associating a small negative reward with each action, maximizing reward coincides with
the objective of minimizing time to meet. Notice that the agents’ observations can be
dependent on each other, allowing the agents to know what other agents are observing
and in some sense enabling the agents to obtain full observability of the system state.
That is, even though the agents may not communicate directly, when the observations are
dependent, agents may be able to obtain information about the others without receiving
direct messages. For example, assume that in our scenario there are certain locations, which
can host only one robot at a time. If one robot observes that it is located at any one of
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these sites, then it knows that the other robot cannot be located there even though this
robot does not actually see the other nor receive any information from it.

In the next section, we characterize certain properties that a decentralized process may
have. These properties will play an important role when analyzing the complexity of solving
different classes of decentrally controlled cooperative problems.

2.1 Classes of Dec-POMDPs

It is known that solving optimally general decentralized problems is very hard. We are
interested in identifying interesting subclasses of the general problem and their characteris-
tics. As we show in Section 3, this classification reveals interesting complexity results and
facilitates the design of algorithms. The first two categories that we define involve indepen-
dence of the transitions or the observations of the agents. Figure 1 presents a snapshot of
the system at times t and t + 1 that illustrates these categories. We assume that the global
states are factored and we denote by si the features of the world that may be observed fully
by agent i.3 Specifically, agent i senses observation oi, which in some cases can be identical
to the local state of the agent. As a result of agent i performing action ai, when the system
is at local state si, the system transitions to state s′i, where the agent observes oi. The
resulting state s′i is not affected by the resulting state of the other agent s′j. Similarly, the
observations in these resulting states do not influence each other given the corresponding
local information.

a1

s1 s’1

o1

a2

s2 s’2

o2

Figure 1: Independent Transitions and Observations.

The formal definitions for decentralized processes with independent transitions and ob-
servations follow.

Definition 1 (Dec-POMDP with Independent Transitions) A Dec-POMDP has in-
dependent transitions if the set S of states can be factored into two components S1 and S2

such that:

∀s1, s
′
1∈S1,∀s2, s

′
2∈S2,∀a1∈A1,∀a2∈A2,

P r(s′1|(s1, s2), a1, a2, s
′
2) = Pr(s′1|s1, a1) ∧

Pr(s′2|(s1, s2), a1, a2, s
′
1) = Pr(s′2|s2, a2).

3. A partial view in general does not have to correspond to a partition of the global state, but we limit
ourselves to problems with factored representations.
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In other words, the transition probability P of the Dec-POMDP can be represented as
P = P1 × P2, where P1 = Pr(s′1|s1, a1) and P2 = Pr(s′2|s2, a2).

The Meeting under Uncertainty example can be modified to present a problem with
dependent transitions. For example, the scenario may include obstacles that can be moved
by the agents when performing a move-obstacle action. The outcome of this action is that
the rover’s location is updated based on the direction of the move. For example, assume
that one rover is located at (1,1) and finds an obstacle in location (1,2) which blocks its
movement towards some goal. The rover decides to perform a move-obstacle action on that
obstacle to the east. This action may have a stochastic outcome, for example with some
probability Pobstacle the rover succeeds and with probability 1 − Pobstacle it remains in the
same location (1,1). With this modification, the problem has dependent transitions. For
example, if both rovers decide to apply a move-obstacle action to the same obstacle, standing
each on different sides of the obstacle, then the resulting state of each rover depends on the
other rover also performing a move-obstacle action.

Moreover, the observations of the agents can be independent, i.e., each agent’s own
observations are independent of the other agents’ actions.

Definition 2 (Dec-POMDP with Independent Observations) A Dec-POMDP has
independent observations if the set S of states can be factored into two components S1

and S2 such that:

∀o1∈Ω1,∀o2∈Ω2,∀s=(s1, s2), s
′=(s′1, s

′
2) ∈ S,∀a1∈A1,∀a2∈A2,

P r(o1|(s1, s2), a1, a2, (s
′
1, s

′
2), o2) = Pr(o1|s1, a1, s

′
1)∧

Pr(o2|(s1, s2), a1, a2, (s
′
1, s

′
2), o1) = Pr(o2|s2, a2, s

′
2)

O(o1, o2|(s1, s2), a1, a2, (s
′
1, s

′
2)) =

Pr(o1|(s1, s2), a1, a2, (s
′
1, s

′
2), o2)× Pr(o2|(s1, s2), a1, a2, (s

′
1, s

′
2), o1).

In other words, the observation probability O of the Dec-POMDP can be decomposed into
two observation probabilities O1 and O2, such that O1 = Pr(o1|(s1, s2), a1, a2, (s

′
1, s

′
2), o2)

and O2 = Pr(o2|(s1, s2), a1, a2, (s
′
1, s

′
2), o1).

In the Meeting under Uncertainty example, if a robot’s observation of its current location
depends only on its transition from its previous location and on the action it performed,
then the observations are independent. But more complex problems can arise if each agent’s
observation depends also on the other agent’s location or action. For example, assume that
in addition to the move actions, the rovers can also turn a flashlight that they hold on or
off. In such cases, one rover’s observation may be affected by the light or the lack of light
in the area where the rover is observing. That is, the probability of a certain observation o
depends on both rovers’ actions and states.

Throughout the paper, when we refer to a Dec-POMDP with independent transitions
and observations, we assume the same decomposition of the global states into S1 and S2.
We refer to Si as the partial view of agent i.

There are cases where agents may observe some common features of the global state,
leading to dependent observations. When these common features have no impact on the
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transition model or reward, the problem can be reformulated to satisfy the property of
independent observations. Such reformulation is shown to reduce the complexity of the
problem in Section 3.

One of the main difficulties in solving Dec-POMDPs optimally results from the lack
of full observability of the complete global state. An agent has full observability if it can
determine with certainty the global state of the world from its local observation. For
example, each time a robot observes where it is located, it also observes the other robot’s
location. Knowing both locations enables both agents to make the optimal decision about
their next move in order to eventually meet sooner.

Definition 3 (Fully-observable Dec-POMDP) A Dec-POMDP is fully observable if
there exists a mapping for each agent i, Fi : Ωi → S such that whenever O(o1, o2|s, a1, a2, s

′)
is non-zero then Fi(oi) = s′.

This paper analyzes decentralized problems where full observability is not satisfied.
Instead, we distinguish between two classes of problems with restricted system observability:
(1) combining both agents’ partial views leads to the complete global state, and (2) each
agent’s own partial view si is fully observable.4 We say that Dec-POMDPs with property
(1) are jointly fully observable.

Definition 4 (Jointly Fully-observable Dec-POMDP) A Dec-POMDP is jointly fully
observable (also referred to as a Dec-MDP) if there exists a mapping J : Ω1×Ω2 → S such
that whenever O(o1, o2|s, a1, a2, s

′) is non-zero then J(o1, o2) = s′.

Notice that both Definitions 1 and 2 apply to Dec-MDPs as well as to Dec-POMDPs.
The Meeting under Uncertainty scenario presented in Section 2 when the state includes only
the rovers’ locations (and it does not include the terrain topology) is actually a Dec-MDP.
The global state is given by the two pairs of coordinates. There is no other feature in the
system state that is hidden from the agents. Notice that even though the combination of the
agents’ observations results in the global state, each agent may still be uncertain about its
own current partial view. Each agent may have a belief about its actual location. We define
another class of problems, locally fully-observable Dec-POMDPs, where each agent is certain
about its observations. General Dec-MDPs consider only the combination of the agents’
observations, but the definition does not say anything about each agent’s observation.

Definition 5 (Locally Fully-observable Dec-POMDP) A Dec-POMDP with indepen-
dent transitions is locally fully observable if there exists a mapping for each agent i,
Li : Ωi → Si such that whenever O(o1, o2|s, a1, a2, s

′) (where s = (s1, s2) and s′ = (s′1, s
′
2))

is non-zero then L1(o1) = s′1 and L2(o2) = s′2, where si, s
′
i ∈ Si are the partial views of

agent i.

The Meeting under Uncertainty example is locally fully observable because each robot
knows with certainty where it is located. We may think of more realistic robots, which may
be uncertain about their actual location due to hardware inaccuracies.

4. This case does not induce full observability as defined in Definition 3 since there may be information in
the global state that is hidden from the agents.
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Notice that a jointly fully-observable process, which is also locally fully observable is not
necessarily fully observable. In decentralized control problems we generally do not have full
observability of the system. In the problems we consider, at best, the observations of all
the agents combined determine with certainty the global state, and each such observation
determines with certainty the partial view of each agent. The Meeting scenario is jointly
fully observable and locally fully observable, but none of the agents know the complete state
of the system.

Our next lemmas show some interesting relations between the classes identified so far.
These lemmas will help us show in Section 3 that certain classes of Dec-POMDPs are easier
to solve. The classes identified so far correspond to practical real-world scenarios such as
multi-rover scenarios, multi-agent mapping and manufacturing where loosely-coupled robots
act to achieve a global objective.

Lemma 1 If a Dec-MDP has independent observations and transitions, then the Dec-MDP
is locally fully observable.

Proof. We use properties of conditional probabilities established by Pearl (1988). The
notation I(X,Y |Z) means that the set of variables X is independent of the set of variables
Y given the set of variables Z. The properties we use are:

• Symmetry — I(X,Y |Z)⇔ I(Y,X|Z).

• Weak Union — I(X,Y
⋃

W |Z)⇒ I(X,W |Z
⋃

Y ) ∧ I(X,Y |Z
⋃

W ).

• Contraction — I(X,W |Z
⋃

Y ) ∧ I(X,Y |Z)⇒ I(X,Y
⋃

W |Z).

• Decomposition — I(X,Y
⋃

W |Z)⇒ I(X,Y |Z) ∧ I(X,W |Z).

Using this notation, the property of independent transitions implies
I({s′1}, {s2, a2, s

′
2}|{s1, a1}). The property of independent observations can be stated as

I({o2}, {s1, a1, s
′
1, o1}|{s2, a2, s

′
2}).

From the independent observations and the weak union properties, we obtain

I({o2}, {s
′
1}|{s2, a2, s

′
2, s1, a1, o1}) (1)

(where X = {o2}, W = {s1, a1, o1}, Y = {s′1} and Z = {s2, a2, s
′
2}).

From the independent observations and decomposition property, we obtain:

I({o1}, {s2, a2, s
′
2}|{s1, a1, s

′
1}) (2)

(where X = {o1}, Y = {s2, a2, s
′
2}, W = {o2} and Z = {s1, a1, s

′
1}).

From the independent transitions, Equation 2 and the contraction properties, we obtain:

I({s2, a2, s
′
2}, {s

′
1, o1}|{s1, a1}) (3)

(where X = {s2, a2, s
′
2}, W = {o1}, Z = {s1, a1} and Y = {s′1}).

From Equation 3 and weak union we obtain:

I({s2, a2, s
′
2}, {s

′
1}|{s1, a1, o1}) (4)
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(where X = {s2, a2, s
′
2}, W = {s′1}, Y = {o1}, and Z = {s1, a1}).

Applying the symmetry property to Equation 4, we obtain

I({s′1}, {s2, a2, s
′
2}|{s1, a1, o1}). (5)

Applying the symmetry property to Equation 1 and contracting with Equation 5, we
obtain

I({s′1}, {s2, a2, s
′
2, o2}|{s1, a1, o1}). (6)

If we apply all of the above equations to the other agent (i.e., replace the index 2 with
the index 1 and vice versa), then the following equation holds:

I({s′2}, {s1, a1, s
′
1, o1}|{s2, a2, o2}). (7)

Applying the decomposition property to Equation 7, where X = {s′2}, W = {s′1},
Y = {s1, a1, o1} and Z = {s2, a2, o2} we obtain:

I({s′2}, {s1, a1, o1}|{s2, a2, o2}). (8)

The lemma assumes a Dec-MDP, that is: Pr(s′|o1, o2) = 1. Since this probability is one,
it is also true that Pr(s′|s, a1, a2, o1, o2) = 1. The lemma assumes independent transitions
and observations, therefore the set of states is factored. Following conditional probabilities
rules, we obtain:

1 = Pr(s′1, s
′
2|s1, a1, o1, s2, a2, o2) = Pr(s′1|s1, a1, o1, s2, a2, s

′
2, o2)Pr(s′2|s1, a1, o1, s2, a2, o2).

Equation 6 means that Pr(s′1|s1, a1, o1, s2, a2, s
′
2, o2) = Pr(s′1|s1, a1, o1).

Equation 8 is equivalent to Pr(s′2|s1, a1, o1, s2, a2, o2) = Pr(s′2|s2, a2, o2).
Therefore,

1 = Pr(s′1, s
′
2|s1, a1, o1, s2, a2, o2) = Pr(s′1|s1, a1, o1)Pr(s′2|s2, a2, o2).

So, each agent’s partial view is determined with certainty by its observation and own tran-
sition, i.e., the Dec-MDP is locally fully observable. 2

For the classes of problems studied in this lemma (Dec-MDPs with independent tran-
sitions and observations), a local policy for agent i in a locally fully-observable Dec-MDP
is a mapping from sequences of states in agent i’s partial view to actions. This differs from
the general Dec-MDP case, where local policies are mappings from sequences of observa-
tions to actions. Formally, δi : S∗

i → Ai where Si corresponds to the decomposition of
global states assumed in Definitions 1 and 2 for Dec-MDPs with independent transitions
and observations.

Moreover, we can show that an agent does not need to map a sequence of partial views
to actions, but rather that it is sufficient to remember only the current partial view. This
is shown in the next lemma.

Lemma 2 The current partial view of a state s observed by agent i (si) is a sufficient
statistic for the past history of observations (oi) of a locally fully-observable Dec-MDP with
independent transitions and observations.
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Proof. Without loss of generality we do all the computations for agent 1. We define
I1
t as all the information about the Dec-MDP process available to agent 1 at the end of

the control interval t. This is done similarly to Smallwood and Sondik’s original proof for
classical POMDPs (Smallwood & Sondik, 1973). I 1

t is given by the action a1t
that agent

1 chose to perform at time t, the current resulting state s1t
, which is fully observable by

agent 1 (s1t
= i1), and the previous information I1

t−1. We assume a certain policy for agent
2, π2 is known and fixed. π2(st) is the action taken by agent 2 at the end of control interval
t.

We compute the belief-state of agent 1, which is the probability that the system is at
global state j assuming only the information available to agent 1 (I 1

t ). This computation
allows us to build a belief-state MDP for agent 1. Agent 1’s optimal local policy is the
solution that obtains the highest value over all the solutions resulting from solving all the
belief-state MDPs built for each possible policy for agent 2.

We compute the probability that the system is in state st =j=(j1, j2) at time t, given the
information available to agent 1:Pr(st = j|I1

t ) = Pr(st = (j1, j2)| < a1t
, s1t

, π2(st), I
1
t−1 >).

Applying Bayes rule leads to the following result:

Pr(st = (j1, j2)| < a1t
, s1t

, π2(st), I
1
t−1 >) =

Pr(st = (j1, j2), s1t
= i1|a1t

, π2(st), I
1
t−1)

Pr(s1t
= i1|a1t

, π2(st), I
1
t−1)

.

Since the Dec-MDP is locally fully observable, the denominator is equal to one. We expand
the numerator by summing over all the possible states that could have lead to the current
state j.

Pr(st = (j1, j2), s1t
= i1|a1t

, π2(st), I
1
t−1) =

Σst−1
Pr(st−1|a1t

, π2(st), I
1
t−1)Pr(st =j|st−1, a1t

, π2(st), I
1
t−1)Pr(s1t

= i1|st =j, st−1, a1t
, π2(st), I

1
t−1)

The actions taken by the agents at time t do not affect the state of the system at time
t−1, therefore the first probability term is not conditioned on the values of the actions.
The second probability term is exactly the transition probability of the Dec-MDP. Since the
Dec-MDP has independent transitions, we can decompose the system transition probability
into two corresponding probabilities P1 and P2, following Definition 1. The last term is
equal to one because the Dec-MDP is locally fully observable. Therefore, we obtain:

Pr(st = j|I1
t ) = Σst−1

Pr(st−1|I
1
t−1)P (st = j|st−1, a1t

, π2(st)) =

Σst−1
Pr(st−1|I

1
t−1)P1(s1t

= j1|s1t−1
= k1, a1t

)P2(s2t
= j2|s2t−1

= k2, π2(st)).

Since agent 1 fully observes s1 = i1 at time t, then the probability that the system is at
state j and its first component j1 is not i1 is zero.

Pr(st = (j1 6= i1, j2)|I
1
t ) = 0.

P r(st = (i1, j2)|I
1
t ) =

Σst−1
Pr(st−1|I

1
t−1)P1(s1t

= i1|s1t−1
= k1, a1t

)P2(s2t
= j2|s2t−1

= k2, π2(st)).

Agent 1 can compute the last term for the fixed policy for agent 2. We conclude that
the probability of the system being at state j at time t depends on the belief-state at time
t−1. 2
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Following this lemma, si, the current partial view of agent i is a sufficient statistic for
the history of observations. Therefore, an agent does not need to remember sequences of
observations in order to decide which actions to perform.

Corollary 1 Agent i’s optimal local policy in a Dec-MDP with independent transitions and
observations can be expressed as a mapping from agent i’s current partial view and current
time to actions. For the finite horizon case:

δi : Si × T → Ai.

The Meeting under Uncertainty scenario as described corresponds to a Dec-MDP with
independent transitions and observations, therefore it is locally-fully observable. In such
a case, for every possible location, a robot’s decision about its next optimal move is not
affected by the previous locations where the robot moved through.

We continue our classification of decentralized problems considering two additional di-
mensions: one is whether agents can share information and the other is whether the agents’
behavior is goal-oriented. These classes are further described in the next two sections.

2.2 Information Sharing

We distinguish among three possible ways in which agents can share information: indirect
communication, direct communication, and common uncontrollable features.

1. Indirect Communication — In the most general view, an action (ai ∈ Ai) per-
formed by an agent can result in three different consequences, and thus it serves any
of the following three purposes: information gathering, changing the environment and
indirect communication. Agent i’s actions can affect the observations made by agent
j; these observations can serve as messages transmitted by agent i. Let’s assume, for
example, that a robot determines its location relative to the other robot’s location.
Then, the agents may have agreed on a meeting place based on their respective loca-
tions: If robot 1 sees robot 2 in location A, then they will meet at meeting place MA
otherwise they will meet at meeting place MB. Even though the agents do not com-
municate directly, the dependencies between the observations can carry information
that is shared by these agents.

It should be noted that when assuming dependencies between observations that result
in information sharing through indirect communication, the general decentralized con-
trol problem already includes the problem of what to communicate and when. That is,
indirect communication is established as a consequence of an action performed by an
agent and the observations sensed by the other agents as a result. Independent of the
policy, this type of communication is limited to transferring only information about
the features of the state. In a more general context, the meaning of the communica-
tion can be embedded in the policy. That is, each time that it makes an observation,
each agent can infer what was meant by the communication in the domain and in the
policy. This type of communication is assuming that the observations of the agents
are indeed dependent and this dependency is actually the means that enables each
agent to transmit information.
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2. Direct Communication — Information can be shared by the agents if they can
send messages directly to each other (e.g., robot 1 sends a message to robot 2: ”Bring
tool T to location (x,y)”). In this case, the observations can be either dependent or
independent. We analyze decentralized processes with direct communication further
in Section 5.

3. Common Uncontrollable Features — This is knowledge about environmental
features that can be acquired by both agents but are not affected by any of these
agents’ actions. This common knowledge exists when there are features in the system
state that are affected by the environment independent of the agents’ actions. An
example of such feature is the weather (assuming that neither of the agents can have
any effect on whether it rains or it shines). Then, information about the weather can
be made available to both agents if they share the same feature. Agents can then
act upon the conditions of the weather and thus coordinate their actions without
exchanging messages directly. They may have already decided that when the sun
shines they meet at location MA, and otherwise at location MB.

Given that the global set of states S is factored, a common feature Sk is a feature of
the global state that is included in the partial views of both agents.

Definition 6 (Common Uncontrollable Features) A common feature is uncon-
trollable if:

∀a, b∈A1, a 6=b, P r(Sk|a, S)=P (Sk|b, S) ∧ ∀c, d∈A2, c 6=d, Pr(Sk|c, S)=P (Sk|d, S).

It is important to note that the classes of problems that allow for uncontrollable
features present an open problem that may be different from the categories studied
in this paper due to the kind of dependencies that this knowledge may cause.

In this paper, we focus on either indirect communication or direct communication when
we allow information sharing. We exclude from the discussion uncontrollable state features
because this knowledge could provide a form of dependency between the agents that is
beyond the scope of this paper.

Assumption 1 We assume that every change in the system results necessarily from the
agents’ actions.5

Finally, the next section presents our last classification of decentralized problems that
have goal-oriented behavior. This classification is practical in many areas where the agents’
actions may incur some cost while trying to achieve a goal and may attain a global reward
only when the goal is reached. This is different from most of the studies done on single-agent
MDPs where a reward is obtained for every action performed.

5. Deterministic features that never change their values, or change their values in a deterministic way (such
as time that increases in each step) are allowed.
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2.3 Goal-oriented Behavior

We characterize decentralized processes in which the agents aim to reach specific global
goal states. The Meeting under Uncertainty problem satisfies this requirement since the
agents’ goal is to meet at some location. Other practical scenarios may include assembling
a machine, transferring objects from one location to a final destination, and answering to a
query.

Definition 7 (Finite-horizon Goal-oriented Dec-MDPs (GO-Dec-MDP)) A finite-
horizon Dec-MDP is goal-oriented if the following conditions hold:

1. There exists a special subset G of S of global goal states. At least one of the global
goal states g ∈ G is reachable by some joint policy.

2. The process ends at time T (the finite horizon of the problem).

3. All actions in A incur a cost, C(ai) < 0. For simplicity, we assume in this paper
that the cost of an action depends only on the action. In general, this cost may also
depend on the state.

4. The global reward is R(s, a1, a2, s
′)=C(a1)+C(a2).

5. If at time T , the system is in a state s ∈ G there is an additional reward JR(s) ∈ <
that is awarded to the system for reaching a global goal state.

A goal-oriented Dec-MDP has uniform cost when the costs of all actions are the same.
When a goal oriented Dec-MDP has independent transitions and observations, we assume
that there is a distinct action NOP with cost zero that has no effect on the local state and
can only be performed at a global goal state component gi. That is, NOP ∈ A such that
C(NOP) = 0 and P1(s

′
1|s1,NOP) is one when s′1 = s1 = gi

1 for some global goal gi.6 When
the GO-Dec-MDP has uniform cost and the set of actions include the NOP action, the
uniform cost refers to all the actions different from NOP, i.e., ∀ai, aj ∈ A \ NOP, C(ai) =
C(aj).

Solving a GO-Dec-MDP is the problem of finding a joint policy that maximizes the global
value. The definition is concerned with global goal-oriented behavior; it does not necessarily
imply that each agent separately must achieve certain goals. In the next section, we analyze
the complexity of various classes of Dec-POMDPs based on the above characterization.

3. A Taxonomy of Decentralized POMDPs: Complexity Results

We have distinguished between Dec-POMDPs and Dec-MDPs (where joint full observability
is assumed). In neither case do the agents have full observability of the global state (at most
they have joint full observability and local full observability, which are different from full
observability). Therefore, each one of the agents has a belief about the global state of the
system, represented as a probability distribution over global states. Table 1 presents the
information that each agent needs in order to update its belief about the global state of the

6. These NOP actions are necessary for agents that reach a component of a global goal state to “wait” for
the other agent to complete its task.
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Process Class Observations Needed by Agent i Reference

Dec-POMDP The local sequence of observations: oi (Bernstein et al., 2002)

IT, IO Dec-POMDP The local sequence of observations: oi Conjecture 1

IT Dec-MDP (no IO) The local sequence of observations: oi Conjecture 2

IT, IO Dec-MDP The last local observation: oi = si Lemma 2

Table 1: A summary of the information upon which an optimal local policy is conditioned.
IT stands for independent transitions and IO for independent observations.

system. Since each agent can solve its belief-state MDP assuming a fixed and known policy
for the other agent, the information required by an agent to update each belief-state reflects
the complexity of solving each class of corresponding decentralized control problems. All
the complexity results presented in this section apply to decentralized processes controlled
by n agents.

Conjecture 1 An optimal policy of a Dec-POMDP with independent transitions and ob-
servations depends on the entire sequence of observations.

Conjecture 2 An optimal policy of a Dec-MDP with independent transitions (but no in-
dependent observations) depends on the entire sequence of observations.

It is an open question whether any belief-update scheme must memorize all the obser-
vations, for example, when there is partial observability because the process is not jointly
fully observable or because the observations are dependent (see the first three cases in Ta-
ble 1). It should be noted that only for the last case in the table have we shown that si is
a sufficient statistic (see Lemma 2).

This section studies to what extent the classes characterized in the previous section
differ in complexity. In all the results shown below we refer to the complexity of finding
an optimal joint policy for the decentralized control problems handled in the lemmas. The
lemmas are stated for the corresponding decision problems (i.e., given the decentralized
process assumed in each one of the lemmas, the decision problem is to decide whether there
is a joint policy whose value is equal or larger than a given constant K). Nevertheless,
finding a solution cannot be easier than deciding the same problem.

All the results in this section correspond to problems given with a finite horizon T . It is
already known that deciding a finite-horizon decentralized MDP is NEXP-complete (Bern-
stein et al., 2002). In Section 2.2, we described indirect communication, i.e., situations in
which information can be shared when the observations are dependent. Therefore, the same
complexity result applies to the decentralized control problem with indirect-communication,
as stated in the next corollary.

Corollary 2 Deciding a Dec-MDP or a Dec-POMDP with indirect communication (i.e.,
allowing the agents to communicate by acting and observing, when the observations are
dependent) is NEXP-complete.
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We show in the next lemma that adding only goal-oriented behavior to a general de-
centralized process does not change the complexity of the problem. In other words, a
goal-oriented decentralized problem is not easier than the general problem.

Lemma 3 Deciding a goal-oriented Dec-MDP is NEXP-complete.

Proof. This case can be proved through the same reduction applied by Bernstein et
al. (2002). We can reduce the general goal-oriented Dec-MDP problem to the tiling problem
by adding a goal state to the last state of the Dec-MDP defined in the reduction. The agents
reach this new goal state and receive a reward of zero if the tiling is consistent. Otherwise
the agents obtain a reward of -1 and do not reach the goal state (but they do reach a
terminal state and the process ends).

The main reason for this complexity result relies on the fact that each agent needs to
remember a sequence of observations that it has sensed (see Table 1). Adding only goal
states to the decentralized process (without assuming any further assumptions) does not
make the control problem any easier. 2

Since a Dec-POMDP is more general than a Dec-MDP, the same lower bound for the
Dec-MDP is valid.

Corollary 3 Deciding a goal-oriented Dec-POMDP is NEXP-complete.

The next lemma shows that by assuming that the transitions and observations are
independent and that the agents have joint full observability, the problem of solving a
decentralized cooperative system becomes easier (the lemma does not assume goal-oriented
behavior).

Lemma 4 Deciding a Dec-MDP with independent transitions and observations is NP-
complete.

Proof. The Dec-MDP is locally fully observable because it has independent transitions
and observations (see Lemma 1). We have shown in Lemma 2 that for such Dec-MDPs,
the current partial view of an agent is a sufficient statistic. Therefore, a local policy of an
agent i is of size polynomial in |Si|T .7 There are |Ai|

|Si|T policies (mappings from Si and
time to Ai). Each agent i needs to build a belief-state MDP with a number of states that
is polynomial in |Si| (for a fixed and known policy for the other agent). Evaluating one
such local policy can be done in polynomial time (by running dynamic programming on
the belief-state MDP), but there is an exponential number of such policies for which this
should be done. Therefore, the upper bound for the decision problem stated in this lemma
is NP.

Figure 2 shows schematically the differences in the policies, which lead to the difference
in the complexity classes of the control problems when independent transitions and obser-
vations are assumed. When no assumptions are made (as in the leftmost figure), a local
policy is represented by a tree, where each node corresponds to a possible action and each

7. We proved that si is a sufficient statistic, i.e., the current local state summarizes all the observations seen
so far. However, since we are studying finite-horizon problems, a local policy of action is not stationary.
Therefore, the time is indeed needed to decide upon an action.
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edge corresponds to a possible observation (i.e., a possible transition). In each local policy,
the agent needs to remember a sequence of observations as opposed to just the last observa-
tion as in the rightmost figure. In the belief-state MDP that each agent builds, there is an
exponential number of states that correspond to all the possible sequences of observations
(this number is |Ωi|

T , T is the finite horizon). Each such policy (of exponential size) can be

evaluated with dynamic programming. There are a total of |Ai|
|Ωi|

T

local policies for which
such a belief-state MDP need to be built by a brute-force search algorithm.8
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Figure 2: Exponential vs. Polynomial Sized Policies.

It is already known that a simple decentralized decision-making problem for two agents is
NP-hard (where |Ai| ≥ 2 and |Aj | ≥ 3) (Papadimitriou & Tsitsiklis, 1982, 1986). Therefore,
the lower bound for the problem class stated in the lemma is also NP. 2

It is an open question whether a Dec-POMDP with independent transitions and obser-
vations (without joint full observability) results in a complexity class lower than NEXP.

Easier problems are obtained when the class of decentralized problems is restricted to
goal-oriented behavior and does not include any type of information sharing, while main-
taining the independence assumptions.

Lemma 5 Deciding a goal-oriented Dec-MDP with independent transitions and observa-
tions, with a single global goal state and with uniform cost is P-complete.

Proof. We argue that each agent should follow locally the policy that minimizes the cost
to gi by solving a single-agent MDP. Under the uniform cost assumption, this is equivalent
to minimizing the number of steps. Because computing these policies can be done with
dynamic programming, the problem is P-complete.

In a given local state, in general, agents could follow the shortest path to gi or abandon
it and do something more beneficial. Abandoning the goal is never beneficial because every
course of action is equally valuable (there are no intermediate rewards and all actions’ costs
are the same). 2

8. Assuming that T is similar in size to |S|, we obtain that the complexity of the brute-force search algorithm
is double exponential in |S|. If T << |S| the complexity can be NP.
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We extend this result to the case involving multiple global goal states. Unfortunately,
it is not possible to avoid the need to change local goal states even when no informa-
tion exchange is possible in GO-Dec-MDPs with independent transitions and observations.
However, we will provide a necessary and sufficient condition for agents so that the need to
change a goal never arises. Under this condition, the best strategy is to minimize the cost
of reaching the local components of the single most beneficial goal. The analysis that we
perform is only for the case of uniform cost of actions (i.e., all actions different from NOP
incur the same cost). Without this assumption, it is sometimes beneficial to “waste time”
and move away from goals because of the high cost/low likelihood to reach a goal.

Let δi
1 be the best local policy for agent 1 to reach gi

1 (computed as if gi is the only
goal). Similarly, we define δi

2 for agent 2 to reach its corresponding component of global
goal gi.

Let αs1

i/j be the probability of reaching gj
1 from some state s1, when executing the

policy δi
1. s1 is some state reachable by policy δi

1. Similarly, let βs2

i/j be the corresponding
probability for agent 2.

Let C(s1, δ
i
1) be the expected cost incurred by agent 1 when it executes policy δ i

1 starting
from state s1. Similarly, C(s2, δ

i
2) is defined for agent 2.

Property 1 (No Benefit to Change Local Goals) Let gi be a global goal state such
that the joint policy (δi

1, δ
i
2) has the highest value over all global goal states.

A GO-Dec-MDP satisfies the NBCLG property if and only if the following two conditions
hold:

1. ∀j 6= i, s1 reachable from s0
1 by δi

1,

Σkα
s1

i/kβ
s0

2

i/kJR(gk) + C(s1, δ
i
1) + C(s0

2, δ
i
2) ≥ Σkα

s1

j/kβ
s0

2

i/kJR(gk) + C(s1, δ
j
1) + C(s0

2, δ
i
2).

2. ∀j 6= i, s2 reachable from s0
2 by δi

2,

Σkα
s0

1

i/kβ
s2

i/kJR(gk) + C(s0
1, δ

i
1) + C(s2, δ

i
2) ≥ Σkα

s0

1

i/kβ
s2

j/kJR(gk) + C(s0
1, δ

i
1) + C(s2, δ

j
2).

Note that the property guarantees that whenever an agent is at an intermediate local
state, if the agent reevaluates the value of continuing to optimize its path to its goal i versus
switching to another goal j, the value of continuing the policy to the original goal always
remains the highest. Hence, it is never beneficial to change local goals. When the condition
is not met, however, it is beneficial to change a local goal despite the fact that there is no
information exchange between the agents.

Lemma 6 Deciding a goal-oriented Dec-MDP with independent transitions and observa-
tions with at least one global goal state and with uniform cost is P-complete when the NBCLG
property is satisfied.

Sketch of Proof. For each global goal state gk ∈ G, agent 1 can compute its optimal
local policy δk

1 to reach the local component gk
1 . Similarly, agent 2 can compute its optimal

local policy δk
2 for every goal gk. This is achieved by solving single agent MDPs, each aimed
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at reaching a local component of a global goal state: MDP k
1 =< S1, A1, P1, R

k
1 > and

MDP k
2 =< S2, A2, P2, R

k
2 >. S1 and S2 are given from the factored representation of the

global states of the system. P1 and P2 result from the independent transitions assumption.
The local reward Rk

1(s1, a1, s
′
1) is the sum of the cost of an action, C(a1) and an additional

arbitrary reward attained at time T if the state s′1 reached at T is gk
1 . R2 is defined similarly

for agent 2. We denote by gi the global goal state that attains the highest value when the
agents follow the joint policy (δi

1, δ
i
2).

The NBCLG property implies that when agent 1 executes its optimal local policy δ i
1,

it cannot reach a state in which it is beneficial to abandon g i
1 and pursue a different local

component gj
1. (Without the property, this situation may arise despite the fact that agent

2 may continue to pursue gi
2.) Note that this remains true even though the local policy δ i

1

may bring agent 1 eventually to a component of a goal that is different from the goal i.
Since this property includes the same condition for both agents, it is also true that agent
2 will have no incentive to switch from an optimal local policy to goal g i, δi

2, once it starts
executing it at the initial state. Therefore, the joint policy (δ i

1, δ
i
2) is the optimal solution to

the given GO-Dec-MDP. Since computing δi
1 and δi

2 respectively can be done with dynamic
programming, a GO-Dec-MDP with independent transitions and observations and with
uniform cost that satisfies the NBCLG is P-complete. 2

Assume that the Meeting scenario is given with a single meeting location (e.g., the lander
in the rovers’ case). Then, given the other independence assumptions, we can solve this
problem optimally by building single-agent MDPs, each designed to achieve its component
of the goal state (in the example, each robot needs to reach the lander). If there is a larger
set of global goal states (e.g., when there is a finite number of possible meeting sites such as
the lander, the space station on the planet and some other particular site) then following the
lemma, we can let each agent find its local optimal policy to its corresponding component
in these goal states. The optimal joint policy is the pair of local policies with the highest
value.

A summary of the complexity results presented in this section appears in Figure 3.

4. Algorithms for Decentralized Control with No Information Sharing

So far, the only known algorithms for solving optimally decentralized control problems are
the generalized version of dynamic programming for Dec-POMDPs (Hansen et al., 2004) and
the Coverage-set algorithm (Becker et al., 2003) for Dec-MDPs with independent transitions
and observations. The first algorithm solves optimally a general Dec-POMDP. Its practical-
ity is restricted by the complexity of these problems (NEXP-complete). The Coverage-set
algorithm assumes that the agents’ actions could result in super-additive or sub-additive
joint rewards as follows. In the first case, the reward obtained by the system from agents
doing certain actions is larger than the sum of each agent’s local reward for those actions.
In the second case, sub-additive joint rewards will be attained when the agents are penal-
ized for doing redundant actions. As an example, we can look at a modified version of the
Meeting scenario, where robots can move and also run experiments at different sites. Then,
a process may lead to sub-additive rewards if both agents run the same experiment, wast-
ing their resources instead of doing non-overlapping tasks. In other cases, the system may
benefit when both robots perform the same tasks. For example, both agents run the same

161



Goldman & Zilberstein

Dec-MDP Approx. 
NEXP-C

IO and IT
NP-C

[Bernstein et al.
2002] [Rabinovich et al.

2003]

[Lemma 4] [Lemma 3]

[Lemma 5] [Lemma 6]

[Lemma 9]

[Corollary 5]

|G|=1
P-C

NEXP-C

NEXP-C
Goal-

oriented

Goal-
oriented

NP-C With 
Information 

Sharing

P-C |G|>1 – No 
Information 

Sharing

Dec-POMDP Approx. 
NEXP-C

IO and IT
NEXP

[Bernstein et al.
2002] [Rabinovich et al.

2003]

[Section 3] [Corollary 3]

NEXP-C

NEXP-C
Goal-

oriented

Goal-
oriented

open With 
Information 

Sharing

open

Figure 3: A summary of the complexity analysis for classes of decentralized control pro-
cesses. We use the notation IT and IO for independent transitions and observa-
tions respectively.

experiment at different times in the day, collecting eventually results with better quality.
The class of problems handled by the Coverage-set algorithm does not include necessarily
goal-oriented decentralized processes. In this section, we present two tractable algorithms
for controlling optimally Dec-MDPs with independent transitions and observations, which
are also goal-oriented. A summary of the algorithms that are known to solve decentralized
control problems optimally is presented in Table 2.

4.1 Single-goal, Goal-oriented Dec-MDPs

Following Lemma 5, the optimal solution for a GO-Dec-MDP with a single global goal state
is computed by solving single agent MDPs aimed at the corresponding components of the
given global goal state. Algorithm Opt1Goal is shown in Figure 5. Each agent i’s MDP
finds the least cost path to gi. Because the cost of actions (different from NOP) is uniform
any value set to GR(gi) is suitable to solve the problems.

4.2 Many-goals, Goal-oriented Dec-MDPs

Due to the uncertainty about the outcomes of actions, an agent may decide to change
its intention with respect to the global goal state it is planning to reach. The algorithm
that optimally and decentrally solves a goal-oriented Dec-MDP problem with many global
goal states is OptNGoals, presented in Figure 5. Assuming the conditions of Lemma 6,
this algorithm is optimal because the lemma guarantees that changing local goals is not
beneficial.

9. No algorithm was proposed short of full search with complexity NP as shown in Lemma 9.
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Process Class Optimal Algorithm Reference

Dec-POMDP Gen. dynamic programming (Hansen et al., 2004)

IT, IO Dec-MDP, Coverage-set (Becker et al., 2003)
no information sharing

IT, IO Dec-MDP, Not Known Yet9 Section 5
with direct communication

IT, IO, GO-Dec-MDP (|G| = 1) Opt1Goal Section 4.1
no information sharing,
with uniform cost

IT, IO GO-Dec-MDP (|G| ≥ 1), OptNGoals Section 4.2
no information sharing
with uniform cost, NBCLG property

IT, IO GO-Dec-MDP (|G| ≥ 1), Not Known Yet9 Section 5
with direct communication Treated in

(Goldman & Zilberstein, 2004).

Table 2: A summary of the known algorithms for controlling decentralized MDPs optimally.

function Opt1Goal(Dec-MDP)
returns the optimal joint policy δ∗,
inputs: Dec-MDP=<S,A1, A2, P,R>

G /* the set of global goal states, |G|=1, g=(g1, g2)∈G⊆S*/
/ ∗ Transition independence⇒ S=S1×S2, P =P1×P2 */
/ ∗ R(s, a1, a2, s

′) = Cost(a1) + Cost(a2) + JR(s′) ∗ /
/*ComputeLocalR computes the local rewards as follows:*/
/ ∗ Ri(si, ai, s

′
i) = Cost(ai) + GR(s′i) ∗ /

/ ∗ GR(s′i)∈< if s′i =gi, else 0 ∗ /

R1 ← ComputeLocalR(S1, A1, P1, g1)
MDP1 =< S1, A1, P1, R1 >
R2 ← ComputeLocalR(S2, A2, P2, g2)
MDP2 =< S2, A2, P2, R2 >
δ∗1 ← SOLV E(MDP1)
δ∗2 ← SOLV E(MDP2)
δ∗ ← (δ∗1 , δ

∗
2)

return δ∗

Figure 4: The Opt1Goal Algorithm.

163



Goldman & Zilberstein

Following the OptNGoals algorithm, each agent solves iteratively its induced MDP
towards each one of the possible components of each one of the global goal states. Finally,
the optimal joint policy is the one with the highest value. This algorithm is described for
a situation where the global goal states are distinctive, that is

∀s1
1, s

2
1 ∈ S1, s

1
2, s

2
2 ∈ S2 : (s1

1, s
1
2), (s

2
1, s

2
2) ∈ G⇒ (s1

1 = s2
1 ⇔ s1

2 = s2
2).

It is possible to extend the algorithm to non-distinctive global goal states, by running the
algorithm over all possible subsets of goals G1, G2 such that ∀s1 ∈ G1, s2 ∈ G2 : (s1, s2) ∈ G.

function OptNGoals(Dec-MDP)
returns the optimal joint policy δ∗,
inputs: Dec-MDP=<S,A1, A2, P,R>

G /* the set of global goal states, |G| = N, gi = (gi
1, g

i
2) ∈ G, 1≤ i≤N ∗ /

/ ∗ Transition independence⇒ S=S1×S2, P =P1×P2*/
/ ∗ R(s, a1, a2, s

′) = Cost(a1) + Cost(a2) + JR(s′) ∗ /
/ ∗ Ri(si, ai, s

′
i) = Cost(ai) + GR(s′i) ∗ /

/ ∗ GR(s′i)∈< if s′i =gi, else 0 ∗ /

CurrOptJointδ← Opt1Goal(Dec-MDP, (g1
1 , g

1
2))

CurrMaxV al ← ComputeV (Dec-MDP, CurrOptJointδ, s0)
for i← 2 to N

δ∗i ← Opt1Goal(Dec-MDP, (gi
1, g

i
2))

CurrV al← ComputeV (Dec-MDP, δ∗i, s0)
if (CurrV al > CurrMaxV al) then

CurrOptJointδ← δ∗i

CurrMaxV al← CurrV al
return CurrOptJointδ

function ComputeV (Dec-MDP,δ, s0)
returns the value of state s0 following joint policy δ, Vδ(s

0)
inputs: Dec-MDP,

δ = (δ1, δ2), the joint policy found so far .
s0, the initial state of the Dec-MDP.

Run Value Iteration to compute V δ(s) for all s ∈ S:
V δ(s) = Σs′=(s′

1
,s′

2
)P1(s

′
1|δ1(s1), s1)P2(s

′
2|δ2(s2), s2)(R(s, δ1(s1), δ2(s2), s

′) + V δ(s′))
return V δ(s0)

Figure 5: The OptNGoals Algorithm.

5. Decentralized Control with Communication

Direct communication can be beneficial in decentralized control because the agents lack full
observability of the global state. That is, the value of the optimal joint policy that allows
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communication may be larger than the value of the optimal joint policy without commu-
nication. We are interested in solving a decentralized control problem off-line taking into
account direct communication. Agents will consider this expected information while com-
puting their optimal joint policy, thus deriving a policy for when and what to communicate.

If we assume that direct communication leads to full observability of the system state
that direct communication is free and that the observations are independent then obviously
the agents will benefit most by communicating constantly. This results in a fully observable
decentralized process, which is equivalent to an MMDP (Boutilier, 1999). This problem is
known to be P-complete (Papadimitriou & Tsitsiklis, 1987).

In real-world scenarios, it is reasonable to assume that direct communication has indeed
an additional cost associated with it; the cost may reflect the risk of revealing information
to competitive agents, the bandwidth necessary for the transmission or even the complexity
of computing the information to be transferred. Therefore, communication may not be
possible or even desirable at all times.

We extend the model of decentralized partially-observable Markov decision process to
include an explicit language of communication with an associated cost.10 We call this model
Dec-POMDP-Com. It is given by the following tuple: < S,A1, A2,Σ, CΣ, P,R,Ω1,Ω2, O, T >.

Σ denotes the alphabet of messages and σi ∈ Σ represents an atomic message sent by
agent i (i.e., σi is a letter in the language). σi denotes a sequence of atomic messages. A
special message that belongs to Σ is the null message, which is denoted by εσ. This message
is sent by an agent that does not want to transmit anything to the other agents.11 CΣ

is the cost of transmitting an atomic message: CΣ : Σ → <. The cost of transmitting a
null message is zero. Communication cost models determine the flow of the information
exchange and the cost of this communication. These models may include, for example,
one-way communication models, in which the cost CΣ is incurred by each agent that sends
information to another agent and two-way communication models, where agents exchange
messages when at least one of them initiates communication, and the cost is incurred only
once each time (we refer to these agents as jointly exchanging messages). Other models
may require additional messages like acknowledgments that may incur additional costs.

We restrict ourselves in this paper to communication cost models based on joint ex-
change of messages and to communication that leads to full observability of the global
state. The agents send messages by broadcasting, and only one message is sent at each
time. The agents in the system share the same language of communication. In a separate
line of research, we are addressing the question of agents controlling a decentralized process
where the agents develop a mutual understanding of the messages exchanged along the
process (Goldman, Allen, & Zilberstein, 2004). Direct communication is the only means
of achieving full observability when the observations are independent and when there is no
common uncontrollable features (Assumption 1).

We define a Dec-MDP-Com as a Dec-POMDP-Com with joint full observability, as we
did with Dec-POMDPs and Dec-MDPs in Section 2.1. The Dec-POMDP-Com model can
have independent transitions, independent observations, be locally fully observable, and
goal-oriented as the basic model presented in Section 2.

10. The model was presented by Goldman and Zilberstein (2003).
11. We omit in this paper the details of the communication network that may be necessary to implement

the transmission of the messages.
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We describe the interaction among the agents as a process in which agents perform an
action, then observe their environment, and then send a message that is instantaneously
received by the other agent.12 Then, we can define the local policies of the controlling
agents as well as the resulting joint policy whose value we are interested in optimizing. A
local policy δi is composed of two policies: δA

i that determines the actions of the agents and
δΣ
i that states the communication policy. Notice that δA

i allows indirect communication if
the observations of the agents are dependent and that δΣ

i allows direct communication even
when the observations are dependent.

Definition 8 (Local Policy for Action) A local policy for action for agent i, δA
i , is a

mapping from local histories of observations oi = oi1 , . . . , oit over Ωi and histories of mes-
sages σj = σj1 , . . . , σjt

,13 received (j 6= i) since the last time the agents exchanged informa-
tion to actions in Ai.

δA
i : S × Ω∗ × Σ∗ → Ai.

Definition 9 (Local Policy for Communication) A local policy for communication for
agent i, δΣ

i , is a mapping from local histories of observations oi = oi1 , . . . , oit and o, the last
observation perceived after performing the last local action, over Ωi and histories of messages
σj = σj1 , . . . , σjt

, received (j 6= i) since the last time the agents exchanged information to
messages in Σ.

δΣ
i : S × Ω∗o× Σ∗ → Σ.

More complex cases result if the agents could communicate partial information about
their partial views. This is left for future work.

Definition 10 (Joint Policy) A joint policy δ = (δ1, δ2) is defined as a pair of local poli-
cies, one for each agent, where each δi is composed of the communication and the action
policies for agent i.

The optimal joint policy that stipulates for each decision-maker how it should behave
and when it should communicate with other agents is the policy that maximizes the value
of the initial state of the Dec-POMDP-Com. We first study the general problem, when no
particular assumptions are made on the class of the Dec-POMDP-Com. We will then study
certain classes of this problem as we did with the case without communication.

Definition 11 (Transition Probability Over a Sequence of States) The probability
of transitioning from a state s to a state s’ following the joint policy δ=(δ1, δ2) while agent
1 sees observation sequence o1o1 and receives sequences of messages σ2, and agent 2 sees
o2o2 and receives σ1 of the same length, written
Pδ(s

′|s, o1o1, σ2, o2o2, σ1) can be defined recursively:

1. Pδ(s|s, ε, ε, ε, ε) = 1.

12. When agents exchange information there is a question whether information is obtained instantaneously
or there are delays. For simplicity of exposition we assume no delays in the system.

13. The notation o = o1, . . . , ot and oo represents the sequence o1, . . . , oto. Similarly, the notation for
sequences of messages: σiσ represents the sequence σi1

, . . . , σit
σ.
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2. Pδ(s
′|s, o1o1, σ2σ2, o2o2, σ1σ1) =

∑

q∈S

Pδ(q|s, o1, σ2, o2, σ1) ∗ P (s′|q, δA
1 (s, o1, σ2), δ

A
2 (s, o2, σ1))∗

O(o1, o2|q, δ
A
1 (s, o1, σ2), δ

A
2 (s, o2, σ1), s

′)

such that δΣ
1 (s, o1o1, σ2) = σ1 and δΣ

2 (s, o2o2, σ1) = σ2.

Then, the value of the initial state s0 of the Dec-POMDP-Com after following a joint
policy δ for T steps can be defined as follows:

Definition 12 (Value of an Initial State Given a Policy) The value V T
δ (s0) after fol-

lowing policy δ=(δ1, δ2) from state s0 for T steps is given by:

V T
δ (s0) =

∑

(o1o1,o2o2)

∑

q∈S

∑

s′∈S

Pδ(q|s
0, o1, σ2, o2, σ1) ∗ P (s′|q, δA

1 (s0, o1, σ2), δ
A
2 (s0, o2, σ1))∗

R(q, δA
1 (s0, o1, σ2), δ

Σ
1 (s0, o1o1, σ2), δ

A
2 (s0, o2, σ1), δ

Σ
2 (s0, o2o2, σ1), s

′)

where the observation and the message sequences are of length at most T −1, and both
sequences of observations are of the same length l. The sequences of messages are of length
l + 1 because they considered the last observation resulting from the control action prior to
communicating.

The problem of decentralized control with direct communication is to find an optimal
joint policy δ∗ for action and for communication such that δ∗ = argmaxδV

T
δ (s0).

5.1 Languages of Communication

We start showing that under some circumstances the language of observations is as good as
any other communication language. In the Meeting scenario, no matter what are the tasks
assigned to the system, agents that exchange their current coordinates are guaranteed to
find the optimal solution to the decentralized problem.

Theorem 1 Given a Dec-MDP-Com with constant message cost, the value of the optimal
joint policy δ∗ with respect to any Σ, V T

δ∗,Σ(s0) is not greater than the value of the optimal
joint policy with respect to the language of observations (Σ = Ω). That is:

∀Σ V T
δ∗,Σ(s0) ≤ V T

δ′∗,Σ=Ω
(s0).

Proof. The decentralized process is jointly fully observable. Therefore, it is not beneficial
for the agents to send any information in addition to their observations (we assume joint
exchange of messages). Thus, combining both agents’ observations results in the complete
global state. Moreover, the theorem assumes a constant cost for every message, i.e., all
non-null messages incur the same cost: there are not any messages that are either more
expensive or cheaper to transmit than others. Therefore, the agents cannot benefit from
exchanging information that is a strict subset of their partial views because the cost of
sending any message is equal. 2
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We note that the theorem does not hold when different messages may incur different
costs. In this case, sending less information might be cheaper, but equally valuable. For
example, when agents observe their respective x and y coordinates, they may benefit from
sending only one coordinate if it costs less than sending the complete location. Agents may
also benefit from sending functions of their observations if this incurs a smaller cost. For
example, agents may benefit from exchanging information about the Manhattan distance
between their current location and some mutually-known location.

In general, it seems reasonable to introduce a language of communication to reduce
complexity, but as the theorem shows, this cannot guarantee optimality when the language
is comprised of messages different from the agents’ observations. Examples of such messages
include: 1) commitments, which are constraints on the future behavior of the message
sender, 2) instructions, which are constraints on the future behavior of the message receiver,
and 3) feedback that is an encouraging or punishing signal that is sent to another agent.
The study of Dec-POMDP-Com problems with languages of communication different from
observations is left for future work. Similarly, certain protocols of communication can
restrict the optimal value of the policy of communication but may be easier to implement.

5.2 The Effect of Communicating on the Complexity Analysis

The complexity results we obtained in Section 3 apply also for the same classes of problems
when direct communication is possible. Although agents achieve full observability each
time they exchange information, the problem of finding the policy of communication off-
line (when there is a cost associated with each communication act) remains as hard as the
general problem with no communication. In the worst case, transmitting the messages can
be prohibitively expensive. Therefore, adding direct communication does not simplify the
problem. For all the cases shown to be in NEXP, adding direct communication cannot
make them more difficult. The complexity of deciding a Dec-MDP when observations
are independent and direct communication is allowed remains the same as when direct
communication is not assumed, as shown in Lemma 9. The impact of direct communication
on the classes of Dec-POMDPs with independent transitions and observations and with
possible goal-oriented behavior remains an open question.

It is interesting to note that the decentralized control problem with direct communica-
tion can be reduced to the same problem with indirect communication when the observations
are dependent. We assume that transmitting messages incur the same cost and that the
language of messages is the language of observations. If the language of communication is
different then the reduction does not apply.

Lemma 7 A Dec-MDP with direct communication is polynomially-reducible to a Dec-MDP
with indirect communication.

Proof. We denote the Dec-MDP with direct communication as Dec-D, and the Dec-MDP
with indirect communication as Dec-I. The reduction from Dec-D to Dec-I requires the
addition of a single bit b to the global states of Dec-I. When b takes the value 1, the agents
are in the communication mode. When b takes the value 0, the agents are performing control
actions. A communication action ac performed by agent i is agent i’s local observation oi.
The transition probability of Dec-I, PI is given as follows: PI([s, 1], o1, o2, [s, 0]) = 1, no
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change is caused to the global state of the system besides flipping the value of b back
to 0 each time the agents exchange information. The probability of observing o1 and o2

(respectively by the two agents) after performing communication acts when b equals 1 is
one as long as o1 is agent 2’s last observation, and o2 is agent 1’s last observation. This
probability is zero for any other action taken at [s, 1]. O(o2, o1|[s, 1], o1, o2, [s, 0]) = 1. 2

Theorem 1 showed that exchanging observations is sufficient to guarantee that the joint
policy computed will be optimal. The next lemma shows that the optimal policy of commu-
nication will instruct the agent to transmit only its current observation or the null message.

Lemma 8 Given a Dec-MDP-Com with constant message cost, there is an optimal policy
of communication such that whenever a non-null message is sent, it must be the agent’s last
observation.

Proof. This lemma results from Theorem 1. In a jointly-fully observable process, sending
a non-null message that is an observation different from the last one cannot provide more
information about the current state of the process than the last observation does. 2

Since the current global state becomes fully observable each time that the agents com-
municate, all the necessary information is stored in the synchronized state s; the agents
do not need to remember all the messages received so far when the decentralized process
is jointly fully observable. When the problem is framed as a Dec-MDP-Com with inde-
pendent transitions and observations, the current local state is fully observable. Thus, the
local policies of action and communication for such a Dec-MDP-Com can be formalized as
follows:

Corollary 4 An optimal local policy of action for this problem, δA
i , can be represented as

a mapping from synchronized states, current partial views, and time to actions.

δA
i : S × Si × T → Ai.

Similarly, an optimal local policy of communication δΣ
i can be represented as a mapping

from synchronized states, current partial views, and time to two possible messages: either
the current partial view or the null message.

δΣ
i : S × Si × T → Si ∪ {εσ}

such that if δΣ
i (s, si) 6= εσ then δΣ

i (s, si) = si.

Agents need to remember only their current partial view and the last synchronized
information to decide on their next action. This is a primary observation that affects the
complexity of deciding Dec-MDP-Com with independent transitions and observations as
shown in the next lemma.

Lemma 9 Deciding a Dec-MDP-Com with independent transitions and observations is NP-
complete.

Proof. Following Corollary 4, each agent’s policy is of size polynomial in |S|, and the
number of possible policies is 2|S|

2T × |A||S|
2T . In the worst case, a brute force algorithm

can go through all the possible policies for agent 1 and for each one of them compute the
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optimal policy for agent 2. Agent 2 builds its belief-state MDP, where each node is the
agent’s belief that the global state is a state s. There is an edge for any possible action and
message that the agents can choose. Agent 2 can choose any action a2 ∈ A2 and it can either
send a null message, or a message with its last observation (s2). For any possible policy
of action and communication of agent 1, agent 2 can build such a belief-state MDP and
solve it. This can also be done in time that is polynomial in the number of the belief-states.
Whenever an agent sends a non-null message, then the belief-state MDP has a transition to
a state that is fully observable with probability one. In any case, each agent needs only to
remember its last current partial view, so the complexity of solving a Dec-MDP-Com with
independent observations and transitions is in the NP class. In the worst case, the cost of
sending a message can be prohibitively large, therefore policies that do not send a message
need also to be evaluated. It is already known (Papadimitriou & Tsitsiklis, 1982, 1986) that
a simple decentralized decision-making problem for two agents is NP-hard (where |Ai| ≥ 2
and |Aj | ≥ 3). Therefore, the lower bound for the problem class stated in the lemma is also
NP. 2

The proof of this lemma is based on the number of policies that need to be evaluated
by a naive algorithm. Limiting ourselves to GO-Dec-MDP with direct communication does
not change the number of policies. Therefore, we obtain the same complexity for the goal-
oriented case with direct communication and independent transitions and observations:

Corollary 5 Deciding a GO-Dec-MDP-Com with independent transitions and observations
is NP-complete.

To address the complexity of decentralized control with communication, we propose a
practical approximation technique (Goldman & Zilberstein, 2004, 2003). This approach is
based on meta-level control of communication, motivated by a similar decision-theoretic
approach to meta-level reasoning that was developed by Russell and Wefald (1991). We
assume that the designer of the system also designs a mechanism for communication. This
mechanism stipulates how to decompose the global problem into local (single-agent) and
temporary problems that depend on the information held by the agents whenever they
exchange messages.

6. Discussion

Decentralized control problems are very intriguing from a theoretical point of view as well
as from a practical point of view. From a theoretical perspective, decentralized partially-
observable Markov decision processes serve as a formal framework to study the foundations
of multi-agent systems (e.g., Becker et al., 2003; Hansen et al., 2004; Guestrin & Gordon,
2002; Peshkin et al., 2000; Pynadath & Tambe, 2002; Claus & Boutilier, 1998). Our
study focuses on computing off-line decentralized policies of control for cooperative systems.
This paper analyzes the complexity of solving these problems optimally for certain classes
of decentralized control. We found critical transitions in complexity between classes of
problems that range from NEXP to P. The critical transition occurs when we assume that
the decentralized problems have independent transitions and observations. Adding only
goal-oriented behavior to a decentralized problem does not simplify it, unless the transitions
and observations are independent. We extended the decentralized process model to enable
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direct communication among the agents, taking into account that this communication incurs
a certain cost. Communication allows the agents to synchronize their knowledge and thus
eliminate the uncertainty about the global state of the world (at least at certain times).
We also analyzed the complexity of the decentralized problems with indirect and direct
communication.

From a practical perspective, decentralized control problems appear frequently in real-
world applications where the decision-makers may be robots placed at separate geograph-
ical locations or computational processes distributed in information space. The classes of
Dec-POMDPs that we identify seem to match many practical applications. Independent
transitions and observations arise in examples such as multi-agent mapping, flexible man-
ufacturing, and multiple-rovers working on data-collection in uncertain terrains, when the
agents’ actions are not strongly coupled. Goal-oriented behavior is relevant in these exam-
ples when the agents’ behavior is aimed at reaching specific states, for example the assembly
of a particular machine in a manufacturing process, or the retrieval of information.

We analyzed the notion of information sharing in decentralized systems by distinguishing
among three possible sources for information: indirect communication attained by agents
observing dependent observations, direct communication achieved by adding an external
language of communication, and common uncontrollable features. The typical distinction
previously made in the literature is between systems with no communication and systems
with a predefined language of communication, which typically does not incur any costs,
overlooking the fact that dependent observations offer yet another form of communica-
tion (Pynadath & Tambe, 2002; Decker & Lesser, 1992; Grosz & Kraus, 1996; Durfee, 1988;
Roth, Vail, & Veloso, 2003). The problem of combining communication acts into the deci-
sion problem of a group of cooperative agents was addressed by Xuan et al. (2001). Their
framework is similar to ours but their approach is heuristic. We proved that the language of
the observations is sufficient in order to reach an optimal decentralized solution (assuming
all the messages incur the same cost). This leads to the understanding that any other type
of communication can serve as an approximation to the optimal solution, which may be
easier to obtain.

In addition to presenting a formal framework of decentralized control, we introduced
tractable algorithms for solving optimally certain classes of Dec-MDPs. The Coverage-
set algorithm that solves optimally decentralized MDPs with a certain reward structure
appeared in (Becker et al., 2003). Here, we add two optimal algorithms aimed at goal-
oriented decentralized control.

The contribution of this paper is in framing and categorizing fundamental issues in
decentralized control of cooperative systems. In particular, we characterized and studied
the complexity of goal-oriented behavior, jointly fully-observable processes and independent
transitions and observations, which result in important and practical classes of control prob-
lems. We also studied three sources for information sharing in such decentralized systems
and provided algorithms that compute optimal solutions. Future research will focus on al-
gorithms for decentralized control with direct communication of messages that are different
from the observations. In particular, we will examine more general models of communication
that allow exchange of partial information and involve unreliable communication.
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