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Abstract

This paper presents an algorithm for learning the mean-
ing of messages communicated between agents that inter-
act while acting optimally towards a cooperative goal. Our
reinforcement-learning method is based on Bayesian filter-
ing and has been adapted for a decentralized control pro-
cess. Empirical results shed light on the complexity of the
learning problem, and on factors affecting the speed of con-
vergence. Designing intelligent agents able to adapt their
mutual interpretation of messages exchanged, in order to
improve overall task-oriented performance, introduces an
essential cognitive capability that can upgrade the current
state of the art in multi-agent and human-machine systems
to the next level. Learning to communicate while acting will
add to the robustness and flexibility of these systems and
hence to a more efficient and productive performance.

1. Introduction

The ability to communicate is essential if intelligent
agents are to interact efficiently with other agents or hu-
man beings. In turn, communicative agents must be able
both to exchange information, and to understand what oth-
ers communicate. We study how agents can combine inter-
pretation with action, learning to understand messages to
improve performance towards a cooperative goal.

Our focus is on cooperative systems, composed either
of autonomous agents alone or of a combination of au-
tonomous agents and humans, working to maximize joint
global utility. (Our model would also apply in some cases
to competitive agents, since even self-interested agents may
find it individually beneficial to learn to understand the
communications of others.) We assume that the agents are
involved in a decentralized control process in which none
of them can observe their environment fully [1]. Due to the
distributed character of the system, there is no central entity
that can oversee the behaviors of all the agents and instruct
each how to behave optimally. Even agents who act coop-

eratively may not necessarily share the same language of
communication, and may not simply be able to exchange
a translation, mapping discrepancies in the languages, in
an off-line manner. Such problems may occur, for instance,
when the content of an agent’s communication arises from
observations available solely to that agent, in the midst of
some shared task. Even agents with the same sensing ap-
paratus may still lack the contextual information necessary
to correctly interpret each other’s messages. Alternatively,
the ability to learn new meanings can guard against unin-
tentional design-time errors. Even agents with pre-existing
protocols for sharing information may come to recognize
that their joint performance is not as expected, and that they
need to adjust their interpretation of shared messages in or-
der to rectify the situation. Verification systems [17] aim at
identifying inconsistencies between a software specification
and its execution code, which can be eventually fixed man-
ually. Our purpose is to automatically learn to correct a mis-
interpretation in addition to identifying it (on-line or by sim-
ulation), in the framework of decentralized control.

In many applications, the misinterpretation of messages
can lead to mis-coordination and an eventual decrease in
performance. NASA’s Climate Orbiter probe, for instance,
crashed as a result of an unwitting use of different (metric
and imperial) conventions of measure by different design
teams, causing the spaceship to follow an incorrect flight
plan [13]. In future, automated systems, consisting of inter-
acting agents designed by multiple agencies or nations, will
need the ability to re-adjust how various communicated di-
rectives are understood, to prevent such misunderstandings
if necessary. Such considerations also arise where users of a
system may have different levels of competence—as in au-
tomated and interactive tutoring—or where it is practically
infeasible to specify all necessary communication protocols
at design-time. The latter problem arises, for instance, in au-
tomated control and diagnosis. In such contexts, the range
of ways a particular mechanism may go wrong cannot gen-
erally be known in advance, and encountered problems of-
ten require novel diagnoses and solutions [2]. Such prob-
lems are compounded when various mechanisms are com-



bined as parts of a larger overall process, as is common
in manufacturing plants. Without the ability to understand
novel communications, automated control systems can be
hindered in their work toward the cooperative goal of sta-
bilizing plant performance, since it becomes difficult, if not
impossible, to coordinate courses of action in the event of
some new combination of mechanical failures.

Each of these problems is an expanded version of gen-
eral ones to do with coordinated action in the pursuit of
common goals. In the study of decentralized Markov De-
cision Processes for multi-agent systems [1, 15], research
has concentrated on cases in which agents share a means
of commonly-understood communication (if communica-
tion plays any role at all). The previous examples suggest
that solving such problems will require not only the ability
to learn better policies for joint action, but also the capac-
ity to learn how to interpret exchanged messages correctly.
Such problems thus combine the general task of coordinat-
ing action towards optimal outcomes with the specific goal
of coming to understand novel communications so to bet-
ter facilitate those outcomes.

This paper frames the language-learning problem as a
decentralized control problem (Section 3). After presenting
related work (Section 2), we adopt Bayesian filtering meth-
ods to the language-learning problem in cooperative con-
texts. Initial experiments (Section 4) show how languages
with different structures can be learned and how the learn-
ing process is affected by characteristics of both language
and environment. Section 5 discusses our conclusions and
points to extensions of the current research.

2. Related Work

Prior studies on coordination in multi-agent sys-
tems have generally assumed that agents possess a
previously-known and fixed language of communica-
tion when appropriate. (See for example [12, 5]); con-
sider also the KQML language [6], a standard that pre-sets
all possible inter-agent communication). We believe that ro-
bust decentralized systems require that agents adapt their
communication language when new situations arise or
when mis-coordination occurs possibly due to misunder-
standings. Such mis-coordination can either be revealed in
practice, or in simulation, and serves as a signal for reinter-
pretation of messages received.

At the intersection between cognitive science and com-
putational simulations, research has studied the evolution of
lexicons and the problem of learning a language from pos-
itive examples [20, 7]. Our approach is different: we study
how agents can learn to interpret each other’s messages to
improve performance in the context of a shared task and
plan of action. Adaptive language games [18] and the an-
choring problem [3] are also relevant areas of study. The lat-

ter work raises questions concerning formal models for the
study of the language-learning problem. This paper is a step
in that direction: we formalize the language-learning prob-
lem as a decentralized control problem [9] and study it in
the framework of reinforcement learning. Our previous re-
search has focused on the computation of optimal joint poli-
cies when a shared language of communication is assumed.
Here, the agents need to learn such a language in order to
optimize their joint behavior. The system is reinforced so it
can improve its global performance. Agents update their in-
terpretations to act better. We do not reinforce the choices
of interpretations per se (as in [22]).

Other work has proposed that rational and self-interested
agents can negotiate to evolve a shared communication lan-
guage [8]. In such a context, conflicts between these agents
arise because each one prefers a distinct communication
language, based on the cost of employing that language; the
communication process here is defined in terms of commu-
nication acts that increase the speaker’s expected utility. We
are interested instead in communication that enables effi-
cient coordination of agents towards a mutual goal. Com-
munication serves to increase the overall utility of the sys-
tem as a whole; the particular language learned will thus be
directly related to this system-utility, rather than to the in-
dividual cost of using that language. As a result of these
choices, agents using our techniques may be able to coordi-
nate action efficiently or optimally even though not all the
messages are completely understood. So long as their mu-
tual goals are achieved satisfactorily, the agents will be sim-
ilarly satisfied with their existing interpretations.

Importantly, our work relies on the idea that agents treat
communicated messages as having some sort of meaningful
structure. Initially, agents presume that others involved in a
shared cooperative task are communicating information rel-
evant to that task. This has the effect of reducing the number
of possible interpretations an agent has to consider, mak-
ing the learning process more manageable. As well, treat-
ing messages as having meaningful structure speeds learn-
ing and allows for generalizations between various envi-
ronments. Our results show the advantages and complica-
tions of this approach. Treating messages as having some
semantic structure can allow agents to learn their mean-
ings more quickly; at the same time, the specification of
this structure and the learning-updates related to it can be-
come more difficult. The concentration on semantics further
distinguishes our approach from such prior work as [21], in
which a generalization of the perceptron algorithm was pro-
posed to allow a multi-agent system to collectively learn a
single shared concept.

Philosophically, this work stems from thought originat-
ing with Quine [16], who argues that interpreting speak-
ers of foreign languages is essentially the same as interpret-
ing speakers of our own. On this view, we are always con-



structing “translation manuals” between one another’s utter-
ances, and we understand others by relating what they say
and do to what we ourselves would say and do in the con-
text of our shared environment. Further, translation is al-
ways under-determined by available evidence, and there are
often multiple competing possible translations of another’s
language. Davidson [4] and Putnam [14] extend these ideas.
Davidson has written on what he calls “radical interpreta-
tion,” exploring the idea that all understanding of others is
a radically indeterminate procedure of making and adjust-
ing predictions about their behavior, based on very basic
assumptions about the structure of their beliefs and inten-
tions. Again, this process is essentially the same whether
or not we share a common language with the one being in-
terpreted. We update our interpretation of other agents con-
stantly, based upon our success or failure in predicting how
they will behave, hoping at best to converge on some gen-
erally successful set of expectations regarding that behav-
ior. Putnam examines how changing context can alter the
meaning of even apparently well-understood terms in a lan-
guage. Together, these ideas suggest that designers of com-
municative agents must allow that even well-defined proto-
cols and languages can lead to cases in which the interpre-
tation of messages become ambiguous or error-laden, and
must be adjusted in order to make coordination possible.

3. The Language-learning Model

We frame the language-learning problem through action
as a decentralized Markov decision process with direct com-
munication [9]. Agents can exchange information while act-
ing towards some global goal. Interpreting a message con-
sists in deciding upon a course of action, after consider-
ing the contents of the messages received. In the particu-
lar context of our studies here, agents need to learn a map-
ping from the speaker’s messages to their own observations,
and then act based on an existing policy. For example, sup-
pose that agents exchange messages describing some local
goal to be pursued. We assume that each agent knows an op-
timal plan to reach any possible local goal. Then we will say
that agent 1 correctly interprets a message σ sent by agent 2,
if (a) agent 2 uses σ to express some local goal gσ , and (b)
agent 1 reaches goal gσ (or one indifferent from the point
of view of overall reward) following an optimal plan of ac-
tion. The language-learning problem arises when agents act
towards a goal as a result of misinterpreting the messages.
Since we presume that the agents already possess optimal
plans for any such goal, the problem is then learning how to
interpret the messages correctly, so that they correctly iden-
tify the goal to be pursued.

We employ the model of a decentralized MDP
with communication and goal-oriented behavior (GO
Dec-MDP-Com) [11]. Formally, a GO Dec-MDP-Com

for two agents and finite time-horizon T is given by
〈S, A1, A2, Σ, CΣ, P, R, Ω1, Ω2, O, T 〉. The set S is
the set of global states, which are partially observed
by each agent. Ωi represents the set of these observa-
tions. O is the probability of making a certain observation
(for each agent), given the state of the system and the ac-
tions performed by the agents (taken from corresponding
set Ai). As a result of performing actions, the system tran-
sitions to a possibly different state s′ with probability
P (s′|s, a1, a2). Agents exchange information, incur-
ring a cost CΣ. In this paper, agents do not share a single
language of communication, i.e., there are two differ-
ent languages Σ1 and Σ2 such that agent i initially em-
ploys Σi. We assume that actions incur a cost, and some
states (denoted as global goal-states g ∈ G ⊂ S) yield a re-
ward if reached by time T . That is, the reward function
R(s, a1, a2, s

′) is given by Cost(a1)+Cost(a2)+JR(s′),
where JR(s′) ∈ < when s′ ∈ G. Our model and asso-
ciated algorithm generalize to the n-agents case, where
learning occurs pairwise.

At time 0, each agent i can only send and correctly inter-
pret messages from its own language Σi. The cost of com-
munication CΣ is set to zero. In the future, we will consider
cases in which communication is not free, and the kinds
of cooperation attainable when the agents cannot afford to
communicate enough to allow for complete interpretations.

We apply the approximation scheme [10] based on a
mechanism for communication. Such a mechanism decom-
poses a decentralized problem into temporary single-agent
problems, and includes a policy of communication enabling
agents to obtain global information when they communi-
cate. In our study, agents share a common goal, which can
then be broken down into local goals for each agent. Mes-
sages are used to share each agent’s observations of rele-
vant features of the environment. Given these observations,
each agent can then deduce some local goal, and act towards
it; the learning problem thus becomes one of learning how
other agents express their observations.

In detail, the mechanism works as follows. Agents ex-
change messages in languages that are not completely un-
derstood by the receiver. Each agent then computes its lo-
cal goal, and finds the optimal course of action leading to
it. (Again, we assume that this solution is known.) The pol-
icy of communication instructs the agent to communicate
each time they reach their local goal. The reward obtained
when the agent reaches a local goal can be either a local re-
ward function or the global reward that the system obtains.
In the first case, we can say that agents learn each message
correctly so long as they learn to maximize their individ-
ual rewards; the “correct” meaning of any message is then
just the interpretation that most increases utility. In the sec-
ond case, agents may still learn to coordinate their actions
and maximize joint reward even though they may not have



correctly interpreted all the messages exchanged from an
individual perspective. For example, both agents may come
to believe that they have behaved as expected because the
overall reward value was the one expected for the system,
even if this is in fact a result of one agent receiving more re-
ward than it usually expects, while the other receives less.

As an example of this mechanism, if the agents’ global
goal is to meet as soon as possible in some gridworld envi-
ronment, the mechanism used might be to exchange current
locations and then move towards the location at the middle
of the Manhattan distance between the agents. Each agent i
computes this middle point based on the distance between
its own location (known with certainty) and the location of
the other agent j, given by the message that j has sent to i.
Each agent adopts this point as its local and temporary goal,
and applies its own optimal local policy of action to reach
it. The agents then attempt to learn a correct mapping be-
tween their languages based on the rewards received after
reaching the goal-point that each thought correct.

3.1. Bayes Filters

We adopt the method of Bayesian filtering, used for ex-
ample in robotics to handle localization [19]; the Bayes-
Filter algorithm for discrete state-spaces appears in Fig-
ure 1. In this model, agents possess a set of beliefs, in the
form of a probability distribution over possible states of
the environment; the filtering algorithm updates this distri-
bution over time. Updates occur under two basic circum-
stances: (1) An agent updates its belief function based on
new observations. Such observations may determine the
state exactly, or may imply a probability distribution over
the states depending perhaps on noise factors. (2) Agents
make belief-updates predictively: before taking any action,
the agent updates the probability distribution for each state
in which it may end up. Implementation thus requires:
(1) A sensor model, giving P (z|x), the probability of ob-

servation z in any state x.
(2) An action model, giving P (x|u, x′), the probability of

state x, after action u in state x′.

3.1.1. The Particular Model In the language-learning
context, states involve not only the immediate environ-
ment, but also a translation-table: a probability distribu-
tion over possible meanings for each message received.
The agent’s actions are then determined, in part at least,
by the most probable meaning assigned to the most re-
cent messages. The exact form of the table depends upon
the presumed structure of the languages being trans-
lated. In general, each row in agent i’s translation-table cor-
responds to some atomic component of the agent’s own
language Σi. Columns then correspond to atomic com-
ponents identified in messages received in the language
Σj . Entry (σi, σj) gives the probability that σj has the

Bayes-Filter(Bel(x),d){
NormFactor=0
If d is a perceptual data item z then

For all x do
Bel′(x) = P (z|x)Bel(x)
NormFactor = NormFactor + Bel′(x)

For all x do
Bel′(x) = NormFactor−1Bel′(x)

else if d is an action data item u then
For all x do

Bel′(x) =
∑

x′ P (x|u, x′)Bel(x′)
return Bel’(x) }

Figure 1. Bayes-Filter Algorithm

same meaning as σi. The overall structure of the ta-
ble corresponds to bounds on the presumed structure of
messages received, based on the assumption that cooper-
ating agents communicate things related to the immedi-
ate task. This radically constrains the range of possible
interpretations, in order to make communication gener-
ally feasible; such constraints correspond to the use of such
considerations as relevance and context in real-world com-
munication, in order to make interpretation easier, or even
possible.

Probabilities then play two important roles here. First,
the filtering algorithm assigns probabilities to various pos-
sible translation-tables, taken as part of the local state of the
agent. Second, agents choose actions based upon the prob-
able meaning of recent messages, calculated based on the
overall probability that some translation is correct, and the
individual probabilities contained in the corresponding ta-
ble. Language learning interleaves interpretation with ac-
tion, in a joint process designed to narrow down possible
translations, while still acting on current ones, however un-
certain they may be.

To cope with particular features of this task, the basic
filtering algorithm must be modified in two main ways.
First, agents do not enumerate and update all possible be-
liefs: since belief-states themselves contain combinations of
continuous probability distributions, there will be infinitely
many available at any time. Instead, only those states nec-
essary are generated and updated at each step; for many ap-
plications, the procedure is straightforward, and is sound
so long as states not generated are properly taken to oc-
cur with zero probability. Second, the set of possible belief-
states changes over time: since agents do not generally
know all the elements of the language to be translated in
advance, newly-encountered components must be added to
the translation-tables along the way.

As an example, consider a simple gridworld problem: the
environment is a 2×2 grid; to identify locations, agents use
unambiguous proper names, meaning (1) each grid-square
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Figure 2. A new message is added.

in the grid has exactly one name, and (2) each name iden-
tifies exactly one grid-square. Suppose agent a uses the in-
tegers {1, 2, 3, 4} to name the four grid-squares; the goal
is to find a mapping between these names and those used
by another agent. Agents communicate grid locations using
their own naming conventions; the other agent receives the
message, attempts to interpret it, and proceeds to the most
likely square. A reward follows, indicating whether or not
the agent has successfully identified the correct location.

Figure 2 shows how agent a adds newly-received mes-
sages into its translation-table. We assume that a begins in
the sole belief-state B0 (i.e., a assigns B0 unit probabil-
ity). We see that a has previously received two messages,
“A” and “B”; further, a has successfully translated the first
of these, since P (A means 2)=1. Two more features of the
table stand out. First, each column sums to 1; a knows the
components of its own language, and knows that the distri-
bution for any message must sum properly. Second, rows
do not sum to 1; before a has seen all of the words in the
other language, it cannot know how to fill out each row of
its translation-table.

Suppose a now receives a new message, “C”; the belief-
state is then updated from B0 to B1. A new column is added
to the table: since a already knows that the name “2” cor-
responds to message “A”, “C” receives a zero probability
for this entry, and all remaining entries are uniformly dis-
tributed, reflecting the proper-name model of the language.
Since “2” is translated as “A”, it will not be translated as
any other name, and so the 0 is inserted in the table; fur-
ther, a has no reason to think “C” any more likely to name
one remaining square in the grid than another, and so the re-
maining probability mass is distributed uniformly.

Having expanded the table, a now chooses an action.
Since the probability that “C” means “1”, “3”, or “4” is the
same, a is indifferent. Of course, this need not be true; in
general, the choice of an action is computed based on the
most likely translation for the current message, weighted
by the probability assigned to each possible translation-
table. Assume that a chooses “1” as the most likely transla-
tion: Figure 3 shows the action model update of a’s belief-
function (the “else” clause of the filtering algorithm in Fig-
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Figure 3. The two states possible after Go(1).

ure 1) before going to the square named by “1”. We as-
sume action outcomes are deterministic: after taking action
Go(1), a is sure to end up at the desired square. Further-
more, the reward observed at the end of the action deter-
mines precisely whether or not a is correct in its translation
(i.e., a receives a particular reward if and only if it has cor-
rectly identified the chosen square). Thus, the update pro-
cess replaces B1 with two new possible belief-states.

Belief-state B2 reflects the outcome that the translation
(C means 1) is correct. In this case, the entry (1, C) in the
table is set to unit probability, and all other entries in the
row and column are set to 0. Again, this is a reflection of
the unambiguous nature of the name language; more com-
plex update scenarios are possible. Note also that the table
in B2 also updates the probabilities contained in column
“B”; since we normalize all columns, the probability mass
for entry (1, B) is distributed over the remaining possibil-
ities. Belief-state B3, for its part, reflects the outcome that
the translation (C means 1) is incorrect. Here, the only col-
umn affected is “C”; the entry (1, C) is set to 0, and its prob-
ability mass distributed over the remaining entries in that
column. Lastly, a assigns predictive probabilities to these
two new belief-states before it takes action Go(1), based on
what the outcome of that action can tell us about the cho-
sen translation. In this case, P (B2|B1, Go(1)) is simply the
original probability, 1/3, taken from table B1, that transla-
tion (C means 1) is correct. Similarly, the probability of the
incorrect translation is P (B3|B1, Go(1))=(1−1/3)=2/3.

So long as agents can fully observe their states follow-
ing any action, the presence of stochastic actions does not
fundamentally influence the ability to learn a language. The
action-model update step would simply produce more dis-
tinct sets of belief states, based on the uncertainty of the
outcomes.
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For this environment, the sensor model is also simple: a
either receives appropriate reward R for successfully trans-
lating “C” or not. If a does receive R, belief-state B2 is
clearly correct and post-observation probability P (B2|R)=
1, while P (B3|R)=0 and the latter belief-state can be dis-
carded. If a does not receive R, then the opposite holds. In
either case, a is left with a single belief-state on which to
base its next actions. Again, we stress that for more com-
plex cases, the relevant updates can be more complicated.
In particular, it need not be the case that a is left with but
one belief-state at the end of the process of action and ob-
servation, since observed rewards may not determine sin-
gle states, and actions may not have determinate outcomes.
Still, the basic principles remain the same.

4. Experiments

Our initial experimental results demonstrate the basic
feasibility of the given approach to the language-learning
problem, and illustrate how performance is affected by var-
ious features, such as the structure of the observations and
rewards, or of the language itself. We ran a number of tests
involving a basic cooperative task for two agents (a1 and a2)
in a simple gridworld environment, averaging results over
one hundred runs with random starting locations. Work pro-
ceeds in turns; on even-numbered rounds:
(1) a1 is the actor, randomly1 choosing a square and send-

ing a message to a2 to that effect.
(2) a2 is the translator, choosing a square based on its cur-

rent translation of a1’s language.
(3) a2 receives a reward, depending upon its choice, and up-

dates its beliefs accordingly.
On odd numbered rounds, a1 and a2 switch roles; the task
continues until one agent has successfully translated the
other’s language. Currently, this involves one agent assign-
ing unit probability to a complete translation-table, i.e., ev-
ery row contains exactly one entry with probability 1 (and

1 Our ongoing research investigates cases in which agents can choose
particular messages non-randomly, to guide the learning-process.

Language Turns Time (s) Max. Beliefs
Names 156 0.5 1

Coordinates 27 119.3 13812

Table 1. Two languages on a 25 × 25 grid.

the rest 0). Obviously, this could be modified to involve
other, perhaps more tolerant, criteria of success.

In step (2) of the process, the choice of a square is
based on the current message and belief-state of the trans-
lator. This belief-state is a probability distribution over
translation-tables; for each such table Ti, let Pi be the
probability that Ti is the correct translation. Each table Ti

maps components of received messages to possible mean-
ings; for any complete received message σj (in the actor’s
language) and meaning σk (in the translator’s own lan-
guage), let Ti(σk , σj) be the probability computed from
table Ti that (σj means σk). The most likely meaning of
the message σj is thus calculated as that σk satisfying:
maxk

∑
i Pi ·Ti(σk, σj). The various possible tables Ti are

chosen based on the presumed structure of the two given
languages; the probabilities Pi are updated using the Bayes-
Filter algorithm.

Our first study involves a simple language of unambigu-
ous names (as in Section 3.1.1). Each agent attempts to learn
the other’s mapping from names to grid-squares. Rewards
are simple: translators receive a 0 reward for correctly iden-
tifying the square chosen, and otherwise the reward is 1;
translations are updated in either case. Figure 4 charts the
average number of turns as translator an agent must take to
arrive at a complete translation for this language. The ra-
tio of grid-size to number of turns is relatively stable: for
grid size G × G, the number of turns is roughly G2/4. We
can see that agents pursue a decision-theoretically optimal
course of action here. Translators initially assign novel mes-
sages a uniformly-distributed probability of naming squares
for which the name is not already known; further, after vis-
iting any square, the translator knows the exact (0/1) proba-
bility that the latest message names it, based on the reward
received. Once some message σi is known to correspond to
the name of square x, the translator always visits x upon re-
ceiving σi. Conversely, the translator never visits x once it
knows that current message σj cannot name it. Finally, for
messages not yet translated with certainty, the most proba-
ble translation is chosen (breaking ties randomly). Since the
translation-action strategy is thus optimal with respect to ex-
pected reward, it will not in general be possible to do bet-
ter in terms of average number of attempts before achieving
a complete translation.

Such a simple example shows the elementary feasibil-
ity of the filtering approach, but we are also interested in
testing more complicated languages and reward structures.



Within the same gridworld context, we also investigate mes-
sages in a language of (x, y) coordinate-pairs. Due to this
structure, translation-updates carry more information than
when simple names are concerned. However, the number of
possible translations may increase drastically after each up-
date. In the name-language, the reward observed after any
action determined a single possible belief-state for the trans-
lator: either the translation of some name is known with cer-
tainty, or it is absolutely certain that one particular transla-
tion is incorrect. In a language of coordinate-pairs, with a
basic success/failure reward structure, things are not so sim-
ple. If selection of some grid-square is successful, of course,
the translation of some message (σx, σy) is known with cer-
tainty, and any other possibilities for that pair are elimi-
nated. If selection is unsuccessful, however, there are three
options: either both translations of σx and σy are incorrect,
or only one of them is. In the worst case, then, the essen-
tially uninformative (0/1) reward structure can cause a large
increase in the number of belief-states an agent has to en-
tertain, affecting overall performance. Indeed, this increase
may be so great that while translation uses a smaller number
of turns, overall time spent is much worse, as agents have to
update many more beliefs in any given turn (see Table 1).
In general the problem becomes potentially intractable for
the combination of the coordinate-language and an essen-
tially uninformative reward.

To improve the situation, we consider other possible re-
ward structures, which give the translator more informa-
tion about what may have gone wrong. These are: Reward
0/1/2: agents receive 0 if translation is correct, 1 if trans-
lation fails but one coordinate is translated correctly, and 2
if failure results because both coordinates are translated in-
correctly; Reward 0/1/2/3: agents receive 0 if translation
is correct, 1 if it fails but σx is translated correctly, 2 if it
fails but σy is translated correctly, and 3 if failure results
because both are translated incorrectly. The more informa-
tive rewards greatly improve performance in terms of all
problem-dimensions: number of turns before translation is
successful, maximum number of beliefs that an agent must
entertain at any time, and overall time of completion.

Figure 5 compares results for the name-language and for
the different variations of the coordinate-language, in the
context of a 25×25 grid. Scale here is logarithmic, with val-
ues normalized to the Reward 0/1/2/3 case; results average
over 100 random runs. In general, the extra information pro-
vided by the coordinate-language as opposed to the name-
language significantly reduces the number of turns taken.
Further, with respect to the coordinate-language alone, the
more informative reward functions lead to significantly bet-
ter results in terms of maximum number of belief-states ever
updated in one pass of the filtering algorithm, and thus in
terms of overall time taken. Such relations are not absolute,
however. For instance, although the maximum number of

Figure 5. Different languages on a 25×25 grid.

beliefs is somewhat larger for the Reward 0/1/2 case than for
the name-language, the increase in information gained by
using coordinates still decreases the number of turns enough
to lead to a decrease in overall time taken in the former case.
In the single case shown, and in general, the performance
of the two cases with more structured rewards was essen-
tially the same; while the 0/1/2/3 structure led to slightly
improved performance, the differences were not significant.
Finally, Figure 6 shows the increase in the number of turns
taken as the grid grows in size for both the name-language
and for the coordinate-language with 0/1/2 reward structure.
We did not test the name-language for very large grids, since
the time taken quickly became unmanageable; in any case,
the difference is evident for the limited range considered.

5. Conclusions and Future Work

Automated language learning is clearly a challenging
problem. This paper presents a framework to study this
problem based on decentralized Markov decision processes
and reinforcement learning. We adapt Bayesian filtering
techniques to our decentralized environment. Agents are as-
sumed to know optimal local policies to local goals, al-
though they lack one language of communication to ex-
change their observations. Agents learn to correctly inter-
pret others’ messages while acting optimally to some goal,
computed based on the current interpretation of the most
recent message. Our initial studies show how simple lan-
guages can be learned and how characteristics of both these
languages and of the rewards and observations available in
the local environment can affect this process.

Our results also show the benefit—even necessity—of
treating received messages as having meaningful structure.
For some elementary cases, it may be possible to duplicate
our results using generally naive learning methods. For ex-
ample, agents might simply extend the state-space of their
MDPs by adding received messages to their observations,
and use straightforward reinforcement learning approaches
over the expanded state-space. However, the improved re-
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sults we achieve using coordinate-languages, as opposed
to simple names, demonstrates how paying attention to the
structure of messages as messages (as opposed to treating
them as unanalyzed features of the environment) can speed
learning. Language is thus one problem domain for which
considerations of structure become important to the ability
to learn. Further, by treating messages as having meaning-
ful structure, it becomes possible to learn languages that are
portable over different environments and tasks.

We intend to continue studying theoretical aspects of
this learning problem as well as the scalability of our ap-
proach. The first is related to what classes of languages can
be learned efficiently. The second will consider generaliza-
tions of our approach, for example by clustering reachable
or otherwise similar states, and learning how to communi-
cate in those states. Learning speed can improve when it is
possible to generalize over messages. (e.g., when features
are functions of other features in the same message). We
are also interested in analyzing our approach, when com-
munication may be assigned a cost, and when the process
may not be jointly fully-observable.
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