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ABSTRACT

FOUNDATIONS AND APPLICATIONS OF GENERALIZED PLANNING

SEPTEMBER 2010

SIDDHARTH SRIVASTAVA

INTEGRATED M.Sc., INDIAN INSTITUTE OF TECHNOLOGY KANPUR

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Neil Immerman and Professor Shlomo Zilberstein

Research in the field of Automated Planning is largely focused on the problem of

constructing plans or sequences of actions for going from a specific initial state to a goal

state. The complexity of this task makes it desirable to find “generalized” plans which

can solve multiple problem instances from a class of similar problems. Most approaches

for constructing such plans work under two common constraints: (a) problem instances

typically do not vary in terms of the number of objects, unless theorem proving is used

as a mechanism for applying actions, and, (b) generalized plan representations avoid

incorporating loops of actions because of the absence of methods for efficiently evalu-

ating their effects and their utility. Approaches proposed recently address some aspects

of these limitations, but these issues are representative of deeper problems in knowl-

edge representation and model checking, and are crucial to the problem of generalized

planning. Moreover, the generalized planning problem itself has never been defined in a

vii



manner which could unify the wide range of representations and approaches developed

for it.

This thesis is a study of the fundamental problems behind these issues. We begin

with a comprehensive formulation of the generalized planning problem and an iden-

tification of the most significant challenges involved in solving it. We use an abstract

representation from recent work in model checking to efficiently represent situations

with unknown quantities of objects and compute the possible effects of actions on such

situations. We study the problem of evaluating loops of actions for termination and

utility by grounding it in a powerful model of computation called abacus programs.

Although evaluating loops of actions in this manner is undecidable in general, we ob-

tain a suite of algorithms for doing so in a restricted class of abacus programs, and

consequently, in the class of plans which can be translated to such abacus programs.

In the final sections of this thesis, these components are utilized for developing

methods for solving the generalized planning problem by generalizing sample plans

and merging them together; by using classical planners to automate this process and

thereby solve a given problem from scratch; and also by conducting a direct search in

the space of abstract states.
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CHAPTER 1

INTRODUCTION

Automated planning is among the most fundamental problems in the field of Ar-

tificial Intelligence. The study of automated planning originated with notions of gen-

eral problem solving; in general, it can be described as the activity of computing a

sequence of actions which will lead to a desired situation. Since planning is a hard

problem (PSPACE-complete even if the problem is specified using propositional calcu-

lus with grounded actions (Bylander, 1994)), various approaches have been proposed

to construct “generalized” plans which can be reused and applied on multiple problem

instances.

Consider a simplified firefighting problem as an example: an agent needs to de-

termine if any room in a building with multiple, single-hallway floors is on fire. It is

known that if a room is on fire, smoke can be detected from anywhere in that floor,

and its heat can be detected just outside the door. The agent has a smoke detector

and a heat detector. The general solution is straightforward: the agent must first use

its smoke sensor to search the floors for fire, and if smoke is detected, use its heat

sensors to find the room on fire. However, as stated, this problem is beyond even the

representational capabilities of state-of-the-art planners: existing planners would re-

quire a specification of the exact number of floors and number of rooms per floor; in

addition, most formalizations don’t allow expression of constraints such as “a room on

fire implies smoke in its hallway”.

As a result of these limitations, existing approaches must handle each instance of

the firefighting problem with different numbers of floors and rooms independently.
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Further, even if correct plans have been produced for such searches under test con-

ditions for a few small buildings using reactive control or state-of-the-art planners it

is not possible to construct reliable plans for larger buildings. For the fire fighting

agent, reliability is an important factor: generalizations are bound to be incomplete

and planning time is limited–the agent should be able to determine possible gaps in its

generalization efficiently, and request assistance if it is at a building for which its plan

is likely to fail.

1.1 State of the Art

Planning in its current form originates from research on developing a robot which

could interact with its environment to solve problems like rearranging objects (Fikes

and Nilsson, 1971). Although the research problems involved with robot manipula-

tion have since been largely separated from planning, modern planning domain spec-

ification languages are still based on the STRIPS representation developed for this

project (Ghallab et al., 1998; Fox and Long, 2003; Gerevini and Long, 2005).

The problem of developing “generalized" plans which would apply to classes of sim-

ilar problem instances was identified almost immediately after the development of the

STRIPS framework (Fikes, Hart, and Nilsson, 1972). The objective was to construct a

structure for efficient retrieval and storage of useful plan segments. Many approaches

have since been proposed for the construction of such structures, both automatically

and by utilizing hand-coded domain-specific control knowledge (Baier, Fritz, and McIl-

raith, 2007).

Early approaches to this problem such as triangle tables (Fikes, Hart, and Nilsson,

1972) and case based planning (CBP) (Hammond, 1986; Spalzzi, 2001) constructed

plan structures that would be widely applicable, but incurred significant computational

costs for appropriately storing plan segments and subsequently for selecting and modi-

fying the usable ones when presented with a new problem. In explanation based learn-
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ing (EBL) (Dejong and Mooney, 1986), a proof or an explanation of a solution was

generalized to be applicable to different problem instances. However, EBL requires a

hand coded domain-theory to generate the required proof for a working solution. The

BAGGER2 system (Shavlik, 1990) extended this paradigm by generalizing the structure

of the proofs themselves. Given a domain theory including the predicates which cap-

tured recursive concepts, BAGGER2 could identify their application in proofs of plan

instances, and generalize these proofs to produce plans with recursive or looping struc-

tures. However, this approach did not address the problem of the correctness of its

solutions, which could result in non-terminating computations.

Perhaps the most studied aspect of this problem is captured by the framework of

contingent planning (Peot and Smith, 1992; Bonet and Geffner, 2000; Hoffmann and

Brafman, 2005; Bryce, Kambhampati, and Smith, 2006), where the agent does not have

precise information about its state, and therefore needs to construct a plan for handling

multiple scenarios. In essence, this is the fundamental problem in generalized plan-

ning, but contingent planners work in the special case where complete information

about a particular problem to be solved is learned gradually during plan execution it-

self, through sensing actions. Contingent planners also suffer from one of the most

common and significant limitations of approaches for generalized planning: their so-

lution plans are tree-structured, with distinct plan branches corresponding to every

object-property which may vary across problem instances. With this restriction, so-

lution representations become exponential in the number of variable object-properties,

making the problem solving process inherently intractable. With a few exceptions (e.g.,

conditonal nonlinear planning (Peot and Smith, 1992)), contingent planners also do

not attempt to merge different solution branches, which could help alleviate the plan

representation problem.

The inclusion of loops in plans is necessary for constructing powerful generaliza-

tions, and recent approaches have considered richer plan representations that allow
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cyclic flow of control. In strong cyclic planning (Cimatti et al., 2003), the objective is

to produce plans with loops in domains where actions may have to be repeated due to

the possibility of failed outcomes, or where temporal goals require repetition of some

action sequences. However, in this framework linear plans are always preferred: cyclic

plans are produced only if no acyclic plan can solve the given problem. Loops in these

plans are therefore not used as structures for generalization, and they are not analyzed

for making progress towards a goal.

KPLANNER (Levesque, 2005) produces plans with loops with the particular objective

of increasing the range of problems that they solve. It proceeds by iteratively finding

plans for problem instances of increasing values of a unique planning parameter and

attempts to find loops by extracting recurring patterns. This system provides only a

limited form of preconditions for the computed plans: they are guaranteed to work in

a user-supplied interval of values of the planning parameter.

Another recent approach, DISTILL (Winner and Veloso, 2003, 2007), attempts to

learn domain specific planners (dsPlanners) through examples. Such dsPlanners can

be used to generate plans for different problem instances in a domain. DISTILL works

by annotating example plans with partial orderings reflecting every operator’s needs

and effects. This annotation is used to compile parametrized versions of example plans

into a dsPlanner, which consists of branches and simple loops. This approach how-

ever is limited to plan learning, and does not address the problem of correctness or

applicability of its generalizations.

These approaches show a growing trend towards the development of plans which

utilize loops for compactness and greater applicability in terms of problem sizes. How-

ever, there is also a simultaneous trend towards the weakening of fundamental notions

such as plan correctness, or even more generally, knowledge of the potential effects of

a computed plan. Although the inclusion of loops in plans makes it harder (and even
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impossible in the most general case) to evaluate these properties, plans without any

information about correctness or expected results on application have very low utility.

The combined factors of computing a widely applicable, efficient generalized plan

with a compact representation and predictable effects seem to produce an unsolvable

problem. While this is true in the most general case, actual limitations on the solvability

of this problem are not known.

1.2 Objectives of This Thesis

The focus of this thesis is on the following longstanding, albeit informally defined

generalized planning problem:

Given a “class" of problem instances of interest, construct a “generalized plan" for

“efficiently" solving them.

All the approaches discussed above have this objective. However, this problem, and

consequently, the nature of its solutions, have never formulated or studied compre-

hensively. This makes it difficult to analyze different approaches, identify what they

achieve, and to build on those components. Our first objective is to develop a well-

defined notion of generalized plans and identify the most significant problems in comput-

ing them.

As discussed above, efficiently representing and working with unknown and un-

bounded quantities of objects is a key component of generalized planning problems.

However, representing unknown quantities of objects has been recognized as a chal-

lenge not only for planning, but for all of AI. First-order representations solve a part

of this problem by using predicates and quantifiers to express facts about world states

in a compact manner. However, first-order theorem proving turns out to be very ineffi-

cient as a mechanism for planning. We therefore need to develop a representation which

utilizes the expressiveness of first-order logic, while allowing a heuristic, directed-search

based approach for planning.
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Although the benefits of including loops in plans have long been evident, plan-

ning with loops remains a notoriously intractable problem. Remarking on this subject,

Levesque (2005) notes that “even short iterative programs can be quite difficult to rea-

son about”. He concludes that “faced with an intractable reasoning problem, we can

look for compromises. ... [and] forego the strong guarantees of correctness”. KPLAN-

NER is not alone in making these compromises: most approaches for finding generalized

plans work with very low objectives regarding plan correctness. The underlying prob-

lem faced by all approaches in this direction is that plans with loops and even very

primitive actions can simulate Turing machines (see, for instance Fact 1 on page 48),

and thus have an undecidable halting problem. This result makes it impossible, in

general, to perform fundamental tasks such as evaluating the net effect of a loop of

actions included in a solution plan. The inclusion of unpredictable segments of opera-

tions which could traverse the entire state space can undermine the validity of any ap-

proach. However, despite the significance of this problem, there are no approaches for

addressing it. On the other hand, the model checking community has produced numer-

ous advances in approximately analyzing and even proving termination guarantees of

limited classes of programs (Henzinger et al., 2002; Cook, Podelski, and Rybalchenko,

2006; Podelski and Rybalchenko, 2004). A direct application of these approaches to

planning is difficult because action specifications in planning are typically richer and

more expressive than program statements. However, for developing a sound approach

for finding generalized plans we require at the least, a study of the extent to which re-

liable generalized plans can be found and development of efficient methods for computing

the effects of loops of actions in these classes.

One of the most popular approaches for finding generalized plans is to generalize

existing, working sample plans. In fact, to our knowledge all the approaches which
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attempt to find plans for handling multiple problem instances1, beginning with triangle

tables, BAGGER2, CBP, EBP, KPLANNER2 and DISTILL are based on this idea. Of these,

only KPLANNER, BAGGER2, and DISTILL attempt to create generalizations with looping

structure; only KPLANNER explicitly addresses the problem of correctness. Our objective

is to create plan generalizations with loops and well defined notions of correctness.

Creating generalizations which include loops has created a new problem in plan-

ning: since actions in a loop apply on different states in every iteration, it is not easy

to determine when, and if a newly obtained plan segment will be applicable to one of

those intermediate states. At the same time, a single example plan is often insufficient

to explore all the different possibilities and multiple plans will generally be required

to solve a given class of problem instances. The problem of merging multiple exam-

ple plans to create a generalized plan with loops has not been addressed so far by any

known approach. We therefore aim to develop an approach for constructing a generalized

plan with loops by extracting useful segments from multiple sample plans.

Invariably, generalized plans constructed from sample solutions undergo an inter-

mediate phase where they solve some, but not all the possible problem instances of

interest. Although the problem of determining when these plans could fail is in itself

a challenge, another aspect of generalized planning is to be able to extend partial, in-

complete plans towards covering more problem instances. In fact, a solution to this

problem will also allow the development of hybrid approaches like KPLANNER in a more

general setting. KPLANNER’s unique planning parameter allows it to generate new ex-

ample plans aimed at solving new instances from the desired class. In order to do this

more generally, we need to identify potentially unsolved problem instances and extend

the intermediate generalized plan using the generalizations of their solutions. This should

1The objectives of strong cyclic planning differ from this.

2KPLANNER employs a directed hybrid search by incrementally finding solutions and generalizing them
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allow the development of a hybrid generalized planning system by starting the process on

an empty generalized plan.

1.3 Overview and Contributions of This Thesis

Formalizing the Generalized Planning Problem and Evaluation Criteria This the-

sis begins with a simple formulation of generalized plans (Section 2.1) which captures

diverse efforts in this direction, ranging from triangle tables to KPLANNER. This for-

mulation captures many interesting aspects of generalized planning, including the fact

that generalized plans can also incur computational costs in producing real solutions:

triangle tables required a search for the appropriate macro operations, CBP required

extensive computation for plan retrieval and adaptation, KPLANNER and almost any ap-

proach with loops requires an instantiation into a linear sequence of actions. Naturally,

each approach incurs a different cost, with loop unrollings being computationally inex-

pensive compared to the search required while using triangle tables. On the other hand,

KPLANNER solutions are for specific classes of problems varying over a unique planning

parameter, while triangle tables can solve any solvable problem in the domain. In

fact, this formulation of generalized plans leads us to conclude that the quality of a

generalized plan depends on various factors, which also define the key challenges in

computing generalized plans. We present and study these factors in Chapter 2.

Representation for Planning with Unbounded Quantities Our representations for

states and actions are motivated by first-order approaches for planning, such as situa-

tion calculus (Levesque, Pirri, and Reiter, 1998), as well as the TVLA system for model

checking (Sagiv, Reps, and Wilhelm, 2002). TVLA uses 3-valued logical structures for

compactly expressing the set of program states possible at each step in a given pro-

gram. These 3-valued, abstract structures can capture unbounded sets of states with

unbounded universes. We use this mechanism to compactly represent the class of prob-
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lem instances to be solved, and use a specific form of TVLA’s action update mechanism

to apply actions directly on abstract states while minimizing loss in precision.

State abstraction is a crucial component in our approach to generalized planning:

we use abstract states to recognize when certain properties which once held recur,

and thus to identify situations where a previously applied sequence of actions can be

repeated — or in other words, when this sequence of actions can be placed in a loop.

We also use abstract states in the manner of TVLA, to represent the states possible

at any point in a generalized plan’s execution. In addition, the capacity of abstract

states to represent sets of concrete states allows us to use them as belief states for

planning in the presence of partial observability. The mechanism for state abstraction,

as well as our representations for states, actions, and generalized plans are presented

in Chapter 3.

Complexity Characterization and Efficient Algorithms for Computing Precondi-

tions and Effects of Loops of Actions We begin our study of loops of actions with a

fundamental paradigm of computation called abacus programs. Abacus programs have

the same computational power as Turing machines, use only increment and decrement

operations, and have a convenient representation as graphs. Further, plans with loops

in many domains can be directly translated into abacus programs. Analyzing abacus

programs with loops of simple actions thus gives us valuable leverage in understanding

the effects with loops of richer, planning domain actions. Chapter 4 presents a number

of results on the conditions on graph structure under which loops in abacus programs

can be analyzed efficiently, along with algorithms for doing so.

In Chapter 5, we describe the connection between plans and abacus programs and

present algorithms for translating plans into abacus programs without changing their

graph structure. In the remainder of the thesis, these approaches are used extensively

both during, and after the generation of generalized plans to determine that (a) any

loop being created makes measurable progress and will terminate, (b) when, or after
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how many steps each loop will terminate, and (c) the set of problem instances that a

generalized plan with loops will solve.

Approach for Plan Generalization Our approach for generalizing a sample plan is to

apply the plan on an abstract state representing a super-set of the problem instance that

it is known to solve (we call this process “tracing" the plan in the abstract state space).

This provides a sequence of abstract states resulting after each action in the plan; re-

peated states in this sequence indicate that a combination of properties recurred, and

thus the intermediate sequence of actions may be placed in a loop. However, the re-

sulting loop may be a static loop, amounting to a null effect. We use the techniques

developed in preceding chapters to avoid such loops and only create those which make

measurable progress, and are guaranteed to terminate. This is presented in the first

part of Chapter 6.

Approach for Extending Plans with Loops In order to be able to utilize additional

sample plans to cover potentially unsolved problem instances, we store the set of pos-

sible problem instances at each step of the generalized plan. When a new plan is pre-

sented, we trace the plan and use its intermediate abstract states to determine when

the subsequent plan segment will be applicable. If an abstract state has already been

solved, the immediately subsequent steps need not be added to the generalized plan;

on the other hand, if one of its abstract states captures a previously unexplored part

of the state space, a new branch can be created for handling it using the given plan’s

actions. The second part of Chapter 6 describes this process.

Approaches for Plan Synthesis In Chapter 7, we present two approaches for syn-

thesis of generalized plans from scratch. The first approach conducts a search in the

abstract states space for paths with progressive loops leading to a goal state. Although

this is the first approach for finding generalized plans by search, a practical implemen-

tation of this approach requires extensive development of heuristics for guiding the
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search process. An alternative to this approach is to use the fairly advanced directed-

search capabilities of modern classical planners for generating generalized plans. The

second part of Chapter 7 describes an approach for identifying potentially unsolved

abstract states from partial generalized plans, creating a specific, concrete instance of

these states, and invoking a classical planner on these instances to obtain new concrete

plans which can be merged with the generalized plan along the lines of the techniques

developed in Chapter 6.
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CHAPTER 2

THE GENERALIZED PLANNING PROBLEM

Informally, the problem of generalized planning is to find plans that can solve

a set of problem instances. In one form or another, this problem has been studied

since the earliest work on STRIPS planning (Fikes, Hart, and Nilsson, 1972) and the

fundamental motivations behind it stem from classical planning itself. Consider the

simple planning problem of unstacking a tower of blocks. Given a problem instance

with 3 blocks, with block b3 on block b2, and b2 on b1, the solution plan would be:

moveToTable(b3), moveToTable(b2). The problem of classical planning is to find such so-

lution plans for specific problem instances like the three block tower described above.

As we increase the number of blocks in this problem, the complexity of solving it grows

exponentially, although the solutions address common subproblems and are remark-

ably similar to each other. Approaches for finding generalized plans attempt to extract,

and subsequently utilize such common solutions and problem structures.

For instance, a generalized formulation of the unstacking problem would be to

unstack a tower with an unknown number of blocks, or even a set of towers with

unknown numbers of blocks in each. Intuitively, such problems can be “solved” by

algorithmic plans such as the following “Unstack” plan:

Unstack ≡ while(∃b(clear(b)∧¬on-table(b)) : moveToTable(b)

While Unstack contains the basic idea of how to solve any unstacking problem, it cannot

be used directly to solve a particular instance of the problem. For example, let I be an
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Figure 2.1: Execution model for generalized plans

instance of the unstacking problem. To apply Unstack to I we would first check whether

there exists a block that matches the condition of the while loop (a block that is clear

and not already on the table). If so, we must choose such a block, b1, and apply the

action a1 =moveToTable(b1). These operations need to be repeated as long as possible,

thus generating a complete plan, P = a1a2 · · · ak. (Note that Unstack happens to be

a nondeterministic generalized plan: given an instance consisting of several towers of

height greater than one, at each step Unstack may choose the top of any such tower to

move to the table.)

Fig. 2.1 extends this approach to a generic model for executing a generalized plan.

In this figure, the “world” represents the system on which the plan has to be applied,

and a problem instance is a completely specified state of this system. Throughout this

thesis, we will use the following assumptions about the world on which plans will be

applied:

1. Any uncertainty in action outcomes stems from lack of information (or partial

observability) about the current state of the world.

2. This uncertainty, if present, is absolute: the probabilities of possible real states

are unknown.
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3. All actions generate an observation. In settings with complete observability, this

observation is the resulting state; in settings with partial observability the obser-

vation is the observable portion of the resulting state.

The first assumption implies that applying an action on a state of the world must

result in a unique resultant state. However, in many situations the current state of the

world may not be known precisely. Actions applied on such partially known states may

result in one of a set of possible observational outcomes, depending on the true state

that the world was in.

Plan execution starts with the initial observation O0 which consists of all the known

information about the initial state of the world. Subsequently, the execution of a gener-

alized plan amounts to applying a sequence of actions on the given world model. Plan

execution terminates with a special termination action (a f ) which does not generate

any observation. We consider the computational process of generating each successive

action as the generalized plan’s method for instantiation. This method may utilize the

entire history of observations while generating the next action. Consequently, what we

require from generalized plans is a special form of a policy as used in Markov decision

processes.

More specifically, the process of instantiation can be understood to be evaluating a

policy with termination actions which maps sequences of observations to actions. Let

O be the set of observations possible in a domain, and A the set of domain actions.

Formally, a policy P with termination actions is of the form P : O∗ → A∪ {a f } with

the restriction that for any Ō1 ∈ O∗, if we have P(Ō1) = a f , then P(Ō1Ō2) = a f for all

Ō2 ∈ O∗.

In deterministic situations, the world model can be simulated. Consequently, in

such settings generalized plans can be instantiated completely for any initial state by

simulating plan execution.
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2.1 Architecture of Generalized Plans

Any generalized plan can thus be understood as consisting of two components: (1)

a data-structure for representing knowledge and, (2), a method for instantiation which

uses this data-structure to compute a policy with termination actions. We will present

a formally well-defined class of generalized plans (as well as the generalized planning

problem) with this architecture, called graph-based generalized plans (Definition 3) in

the next chapter.

In general, the data-structure component of a generalized plan can be used to store

specific algorithms for the class of problem instances of interest (such as a formal rep-

resentation of the algorithmic plan string of the Unstack plan shown above), or more

general domain-control-knowledge (Baier et al., 2009). A generalized plan need not

provide the guarantee that all its instantiations will be finite. Plan execution or even a

complete offline instantiation of the plan may therefore never terminate. On the other

hand, the fact that a plan’s instantiation method terminates need not imply that it will

always achieve the goal. Proving that a generalized plan is “correct” in the sense of

reaching a goal state starting from a given problem instance therefore subsumes proofs

of termination as well as goal-reachability.

This architecture of generalized plans unifies various approaches to “efficiently" pro-

ducing “good" plans for classes of problems. Approaches for macro tabulation such as

Triangle Tables (Fikes, Hart, and Nilsson, 1972), or plan compilation such as case-based

planning (CBP (Spalzzi, 2001)) can also be understood as developing the generalized

plan’s knowledge data-structure in order to utilize instantiation methods more efficient

than classical planners. More recent approaches like KPLANNER (Levesque, 2005) and

loopDISTILL (Winner and Veloso, 2007) aim to extend the applicability of generalized

plans to unbounded classes of problems by including loops of actions in the generalized

plan’s knowledge data-structure.

15



Trivially, classical planners can also be used as generalized plans with empty data-

structures and instantiation methods based on heuristic search. Classical planners

therefore fit naturally into the broad notion of generalized plans by being able to gen-

erate a plan for every solvable problem instance, but suffer from expensive methods

for instantiation. On the other hand the Unstack algorithm discussed above, is a very

specific generalized plan which produces output plans much more efficiently for the

problem instances that it can solve. In general, a generalized plan may not solve all the

possible problem instances of interest, but it may be computationally much more effi-

cient than a classical planner on the problem instances that it does solve. The benefit of

such a generalized plan rests on being able to efficiently test if a given problem instance

falls under its capability. In case of the Unstack plan, this can be tested efficiently: the

goal of the problem should be to have all blocks on the table.

2.2 Evaluation Criteria for Generalized Plans

Approaches for classical planning typically have a single objective: to generate the

shortest possible plan for solving a given problem instance. Generalized plans on the

other hand need to address several different axes of utility, of which the need for solv-

ing multiple problem instances is only the most obvious. As discussed above, this

requirement is in fact satisfied even by classical planners — which are clearly not ideal

generalized plans: generalized plans need to have efficient instantiation processes. On

the other hand, if we only wanted a low cost of instantiation, a classical plan could be

treated as a generalized plan — classical plans are fully instantiated and will incur no

further computational cost for instantiation. However, a classical plan suffers from the

limitation of being able to solve only a single problem instance of interest.

As the discussion above reveals, unlike classical plans, the utility of generalized

plans depends on several conflicting factors. We list these factors below and discuss

each in turn:

16



1. Complexity of checking applicability

2. Complexity of plan instantiation

3. Domain coverage

4. Complexity of computing the generalized plan

5. Quality of the instantiated plan

Complexity of Checking Applicability An applicability test for a generalized plan is

a procedure which takes as its input a problem instance and returns True or False as

its output, reflecting whether or not the generalized plan can solve the given problem

instance. The complexity of checking applicability is the computational complexity of

this procedure. A generalized plan can be designed to proceed in one of two ways when

given an input problem instance: (1) conduct a pre-designed applicability test to de-

termine if an instantiation will be possible, and if so, proceed to find it, or, (2) directly

attempt an instantiation. The problem with the second approach is that instantiation

can be an expensive and wasteful operation if the generalized plan cannot actually

solve the given problem instance. As mentioned above, instantiations may even en-

ter potentially non-terminating computation, undermining the utility of a generalized

plan. On the other hand, a generalized plan could provide an efficient applicability

test which can determine applicability in time linear in the size of the given problem

instance. While developing such tests is impossible in the most general case due to the

undecidability of the halting problem for general programs, for many generalized plans

in the existing planning domains it is actually possible. Although the first approach is

desirable, it is often very difficult to construct an applicability test; the ideal situation

would be to have a linear-time or better applicability test.

Approaches for finding generalized plans seldom offer applicability tests. KPLAN-

NER (Levesque, 2005), as an exception, provides a partial test: within the user-requested

bounds on a unique parameter that its input problem instances are allowed to vary over,
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its generalized plans are guaranteed to produce a correct instantiation. Approaches like

case-based planning (Spalzzi, 2001) incur large costs of applicability and instantiation

while retrieving and adapting previously observed, potentially applicable plans.

Complexity of Plan Instantiation The complexity of plan instantiation is the total

computational cost of executing the method for instantiation for a given problem in-

stance. This factor distinguishes more desirable generalized plans like Unstack above,

with an instantiation-complexity linear in the number of blocks (using a list of top-

most blocks), from classical planners whose worst-case complexity of instantiation is

exponential in the number of objects.

Quality of the Instantiation The quality of instantiation of a generalized plan deter-

mines its usability on a problem relative to any available alternative solutions. Ideally,

the sequence of actions produced by a generalized plan for a given problem should be

optimal according to a measure like the number of actions or their cost. Determin-

ing how well or poorly a generalized plan’s instantiations perform is not always easy

to determine. In this thesis, we will assume that alternative solutions do not exist,

and consequently, any instantiation which can solve a given problem instance will be

desirable.

Domain Coverage A concrete plan produced by a classical planner can also be used

as a generalized plan by treating the plan itself as the knowledge data-structure, and

a method that incrementally outputs successive actions from the plan as the method

for instantiation. In fact, such generalized plans score very well along all the factors

discussed so far, even though they typically work for only one problem instance. The

domain coverage of a generalized plan evaluates it along one of the most fundamental

motivations behind generalized planning: the extent to which the plan is “generalized”.

Formally, we first categorize two solvable problem instances as distinct if the set

of shortest action-sequences for solving each of them have an empty intersection. In

other words, a problem instance is distinct from another if the two require distinct
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shortest length solutions. Using this definition, we can define the size-n domain cover-

age (Dn(Π)) of a generalized plan Π as the ratio of the number of problem instances

with n elements that the generalized plan can solve (Sn(Π)), with the total number of

solvable problem instances with n elements (Tn(Π)). The asymptotic domain coverage

(D(Π)) of a generalized plan is defined as the limit of this ratio:

D(Π) = lim
n→∞

Sn(Π)
Tn(Π)

The goal of increasing the domain coverage of a generalized plan has received sig-

nificant attention, starting with initial work by Fikes, Hart, and Nilsson (1972). Condi-

tional plans typically have a greater domain coverage than classical plans. However, as

we discuss below, their coverage is ultimately limited due to their limited expressive-

ness.

Complexity of Computing A Generalized Plan The complexity of constructing a

generalized plan depends on the computational complexity of representing its knowl-

edge data-structure. A contingent plan (Peot and Smith, 1992; Bonet and Geffner,

2000) can be used as the knowledge data-structure of a generalized plan. Such a gen-

eralized plan would have a clear applicability test (by definition, it would solve all

instances of the initial belief state used while computing the contingent plan) and a

low cost of instantiation. However tree-structured representations used for expressing

contingent plans can grow exponentially with every unknown predicate tuple, making

such plans inherently more difficult to find. Plan representation thus becomes an im-

portant factor when considering the complexity of deriving a generalized plan itself.

Approaches like DISTILL, KPLANNER, and BAGGER2 (Shavlik, 1990) mitigate this cost by

constructing plans with loops that can instantiate into larger concrete plans. While

adding loops can significantly reduce the size of the data-structure used in a gener-

alized plan and increase its domain coverage, it can in general have adverse effects

on plan applicability tests and make such plans unreliable. This is because plans with
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loops and branches approach the expressive power of programs – determining when

they will work, or even terminate is thus undecidable in general for such plans.

The five factors discussed above determine the quality of a generalized plan. While

various approaches have addressed different subsets of these factors, there were none

that address all of them. In the next section, we present an analysis of some well-

established approaches along these five factors.

2.3 Analysis of Existing Approaches

2.3.1 Approaches Focusing on Domain Coverage

These approaches focus on increasing the domain coverage. Consequently, the gen-

eralized plans they produce are intended to work for very broad classes of problem

instances. However, they incur high costs of instantiation which may even exceed the

cost of planning directly, without the additional knowledge components.

2.3.1.1 Triangle Tables

Almost as soon as the problem of planning took its modern form in the STRIPS

representation, it became clear that reusing plans or operator sequences would reduce

significant amounts of repeated effort while solving similar problem instances. Triangle

tables (Fikes, Hart, and Nilsson, 1972) were designed as lookup tables for operator

sequences or macro operators, together with their overall effects and preconditions.

These tables were used to monitor the execution of plans as well as provide short-cuts

to the re-planning process in case of an unexpected result.

This compilation of plan segments forms one of the earliest approaches for gener-

alized planning: the motivation was to obtain a large domain coverage with a cost of

instantiation lower than that of planning from scratch. In the worst case however, in-

clusion of macro operators increases the search space of possible operators. Therefore,
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although the coverage of triangle tables would definitely be greater than that of the

individual plans, they do not guarantee a lower cost of instantiation.

2.3.1.2 Case Based Planning

Triangle tables were difficult to maintain while avoiding multiple, subsuming ver-

sions of operator sequences. An alternate approach, case based planning (CBP), was

developed as a model for “planning from experience” (Hammond, 1986; Spalzzi, 2001).

Like triangle tables, the objective of CBP was to reduce the cost of instantiation while

obtaining a wide domain coverage. CBP approaches directly addressed the problem

of redundant operator sequences by developing specialized representations for storing

plans in a database. This facilitated faster retrieval of plans relevant to the given prob-

lem. Approaches like CHEF (Hammond, 1986) used a model of “the causality of the

domain” to be able to repair these retrieved plans to be applicable to the given problem.

In CBP approaches, subroutines for plan retrieval, adaptation, and efficient storage

have to be executed on every problem instance. This increases the cost of instantiation;

CBP approaches can also suffer from a lack of an efficient test of applicability: while

triangle tables only increased the set of available operators and thus had the same ap-

plicability as the underlying action model, the applicability of a CBP database depends

on the scope of its plan-memory and adaptation routines (although a classical plan-

ner invocation could always be incorporated with a CBP system to make it universally

applicable).

2.3.2 Approaches with Low Costs of Instantiation

Approaches discussed in this section incur fewer overheads during plan instanti-

ation. This is typically accompanied with trade-offs in the domain coverage of the

produced generalized plans and absence of clear applicability tests.
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2.3.2.1 Explanation Based Planning

Explanation based planning borrows ideas from explanation based learning (EBL),

where the proof of a given solution is generalized to solve other, conceptually similar

problem instances. Methods for EBL rely on complete domain theories to be able to

generate these proofs. The BAGGER2 system (Shavlik, 1990) could generate plans with

recursive structures for handling problems with unbounded numbers of objects. By us-

ing recursive structures, BAGGER2 significantly reduced the number of possible actions

or rules to be attempted during plan instantiation.

However, in order to do so, BAGGER2 used an a-priori hand-coded domain theory

which included the recurrence relationships for the recursive concepts that could be

encountered in a solution. Although the use of a domain theory allowed BAGGER2 to

make well-justified generalizations, it could not address the problem of designing an

applicability test: BAGGER2 could generate (but not identify) non-terminating plans.

2.3.2.2 Contingent Planning

The problem of contingent planning addresses a version of the generalized planning

problem where the agent does not have precise information about its environment

and therefore needs to be prepared to solve any of the possible instances it might

encounter. The agent’s actions in contingent planning problems may allow it to gain

new information about its state. A contingent plan, therefore, may consist of such

sensing actions; the remainder of the plan after these actions can depend upon the

results of these actions. At any stage, the set of possible states that the agent may be

in constitutes its belief state. The contingent planning problem can thus be formulated

as a search problem in the space of the agent’s belief states (Bonet and Geffner, 2000),

with the goal belief states consisting only of real goal states. Contingent plans can

be completely instantiated only during plan execution, because parts of the plan may

depend on the results of sensing actions.
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By definition, a contingent plan must solve every initial state represented by the

initial belief state. The applicability test for contingent plans thus reduces to testing

whether the current instance is captured by the initial belief state, which can typically

be done in time linear in the size of the initial state. Contingent plans typically consist

of fully instantiated operations, and can be easily instantiated into linear sequences

of operations once the action observations become available. This makes contingent

plans desirable from the point of view of applicability tests, domain coverage, and

instantiation costs.

However, contingent plans are typically represented using tree structured represen-

tations (Hoffmann and Brafman, 2005) that grow exponentially with the number of

observations to be performed. This makes finding contingent plans computationally

intractable. Contingent planning thus addresses most of the requirements of general-

ized planning – with the exception of the complexity of computing a generalized plan.

Effectively, this restricts the applicability of contingent planners to problems that have

small solutions.

2.3.2.3 Strong Cyclic Planning

In strong cyclic planning (Cimatti et al., 2003), plans are represented as execution

control tables mapping problem states to actions. These tables may incorporate cyclic

flows of control if from every state in the cycle, there exists a path of actions leading

to a goal state. With this structure, under the assumption that during execution every

possible action outcome in the plan has a non-zero probability, the plan will eventually

terminate in the goal state.

Strong cyclic planning allows us to represent compact contingent plans and is par-

ticularly applicable in problems with temporally extended goals, or situations where

actions may fail and the only way to reach the goal is to repeat them until they succeed

(for instance, when the goal is to stack a block on another, but the move action may
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drop a block back on to the table). A strong cyclic planner produces a plan with loops

only if no acyclic plan can solve the given problem.

Although strong cyclic planning alleviates the representational constraints intro-

duced by contingent planning in some situations, loops in strong cyclic plans are

not utilized for generalization. Further, applicability tests for strong cyclic plans are

weaker: strong cyclic plans are guaranteed to terminate, but they may perform an un-

bounded number of operations before doing so. This is unavoidable in some problems

(such as when there is a possibility of the move action dropping a block) but strength-

ening these guarantees for other classes of problems would require further analysis of

the effects of loops included in a strong cyclic plan.

2.4 Discussion

The development of approaches for generalized planning started with compilation

of plan segments for future reuse and adaptation. The focus of research then shifted to

approaches with efficient instantiations, almost all of which used representations with

loops of actions. However, all of the approaches developed so far address only sub-

sets of the interdependent problems of developing applicability tests, achieving broad

domain coverage with low costs of instantiation and representation.

Modern approaches such as KPLANNER, DISTILL and controller synthesis by Bonet

et al. (Bonet, Palacios, and Geffner, 2009) address these problems with the signifi-

cant exception of applicability tests. However, the problems involved in constructing

an applicability test are the very problems involved in constructing a plan with loops:

creating an arbitrary loop of actions in itself is neither challenging, nor even useful.

The critical advantage in including a loop of actions is when this loop forms a compact

representation of a more general, useful process of computation; and in order to de-

termine when a loop being considered for addition by any approach would be useful,

we need to determine if, and when it will have a useful effect. Approaches like KPLAN-
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NER, DISTILL, and controller synthesis by Bonet et al. use empirical observation of loop

effects in known or simulated executions to recognize a loop as well as to justify its

future utility. In the following chapters, we will see that in many situations, we can

do better, and efficiently. While our approach is similar to existing approaches in using

executions to identify potential loops, we conduct analytical computations of potential

loops’ effects before adding them. Consequently, in these domains we obtain plans that

have low costs of instantiation, broad domain coverage, use loops for compact repre-

sentation and also provide efficient tests of applicability with a representation of the

possible effects on plan execution.
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CHAPTER 3

STATE, ACTION AND PLAN REPRESENTATION

We begin this chapter by describing the standard, logic-based framework that we

use to describe planning. This is followed by the definition of our representation of

generalized plans and their instantiations in Section 3.2. Section 3.3 describes the

state abstraction mechanism we use for generalized planning and Section 3.4 describes

how the action formulation is extended to deal with abstract states.

3.1 Actions and Concrete States

States are represented as logical structures. Actions are expressed using update

formulas that define the new truth values of tuples for each predicate.

Running Example Consider a unit delivery problem where some crates are at a dock

and need to be delivered to their respective destinations via trucks that can hold only

one crate at a time.

The state of such a delivery problem is a logical structure of vocabulary Vd =

{crate1, truck1, loc1, done1, destination2, in2, at2; dock}, consisting of a constant, dock, and

predicates whose intuitive meanings are as follows:

• crate(x), loc(x), truck(x): x is a crate, location, or truck, respectively.

• done(x): object x has been delivered.

• destination(x , y): y is the target destination of crate x .

• in(x , y): object x is in truck y .
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• at(x , y): object x is at location y .

The delivery domain has the following actions: Ad = 〈Move2, Load2, Unload1〉 with

the following intuitive meanings:

• Move(x , y): drive truck x to location y .

• Load(x , y): load crate x into truck y .

• Unload(x): unload the contents of truck x .

Each action a consists of a precondition pre(a) and update formulas, up(p, a), defin-

ing the new value of each predicate p after a has been applied. An action can be applied

on a state only if its preconditions hold. For example, the following is the definition of

the action Move:

pre(Move(x , y)) ≡ truck(x)∧ loc(y)∧¬at(x , y)

up(at(u, v), Move(x , y)) ≡ [¬at(u, v) ∧ (v = y ∧ (u= x ∨ in(u, x)))]

∨ [at(u, v) ∧ (u 6= x ∧¬in(u, x))]

We use the notation τa to denote the set of all the update formulas for an action,

and τa(s) to denote the result of applying those formulas on a structure s. We will

represent the update formula for the predicate p – such as the above update formula

for the predicate at – in the following form:

p′ ≡ [¬p ∧ ∆+p,a] ∨ [p ∧ ¬∆−p,a] (3.1)

Here ∆+p,a denotes the conditions under which predicate p is changed to true on

action a, and ∆−p,a denotes the conditions under which it is changed to false. In our
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implementation, constants are represented as unary predicates that are constrained to

be unique. They can thus be updated in a manner similar to predicates, using Eq. 3.1.

In addition to defining the vocabulary and actions of a planning problem, we typ-

ically include an integrity constraint that specifies the set of valid states. For example,

the integrity constraint,Kd for our unit delivery is the universal closure of the conjunc-

tion of the following formulas:

done(x) → crate(x)

destination(x , y)∧ destination(x , y ′) → crate(x)∧ loc(y)∧ y = y ′

crate(x) → ∃y(destination(x , y))

at(x , y)∧ at(x , y ′) → loc(y)∧ (crate(x)∨ truck(x))∧ y = y ′

crate(x)∨ truck(x) → ∃y(at(x , y))

in(x , y)∧ in(x ′, y) → crate(x)∧ truck(y)∧ x = x ′

Generalizing the above example, we formally define a domain schema for a planning

problem as follows:

Definition 1. (Domain schema) A domain-schema is a tuple D = 〈V ,A ,K 〉 where V

is a vocabulary, A is a set of actions expressed in first-order logic with transitive closure

(FO(TC)), and K is an integrity constraint expressed in FO(TC).

Define STRUC[D], to be the set of concrete structures of the domain-schema, D, i.e.,

the set of finite structures of vocabulary V that satisfy K .

Transitive closure is used in our framework to express connectivity properties such

as the transitive closure of on (“above”) in the blocks world (see the Striped Block

Tower, Green Block and Hall-A problems, Section 6.1.3).

For example, the domain schema of the unit delivery problem is Dd = 〈Vd ,Ad ,Kd〉.

We next define a generalized planning problem as follows:

28



Definition 2. (Generalized planning problem) A generalized planning problem is a tuple

〈α,D,γ〉 where α is an FO(TC) formula describing the possible initial states, D is the

domain schema, and γ is an FO(TC) formula specifying the goal states.

Following the discussion in the introduction, an instance of the generalized plan-

ning problem is a concrete initial state, or in other words, a state satisfying the formula

α. The unit delivery problem can now be specified as Pd = 〈αd ,Dd ,γd〉 where

αd ≡ ∃x(truck(x))∧∀x((crate(x)∨ t ruck(x))→ at(x , dock))

γd ≡ ∀x(crate(x)→ done(x))

3.2 Generalized Plan Representation

Intuitively, a generalized plan is a full fledged algorithm. We represent the data

structure component of generalized plans using a graph representation. Formally,

Definition 3. (Graph-Based Generalized plan) A graph-based generalized plan Π =

〈V, E,`, s, T 〉 is defined as a tuple where V, E are the vertices and edges of a finite con-

nected, directed graph; ` is a function mapping nodes to actions and edges to conditions;

s is the start node and T a set of terminal nodes.

This gives us a convenient representation of generalized plans which is also similar

to standard representations for finite state transducers. For ease in explanation of

some of our algorithms for constructing generalized plans however, we will use the

equivalent, dual notation where conditions label nodes and actions label edges. In the

rest of this thesis, all references to generalized plans refer to graph-based generalized

plans.

This representation of actions and plans is similar to situation calculus (Levesque,

Pirri, and Reiter, 1998) and Golog programs (Levesque et al., 1997). However, a signif-

icant difference between our framework and Golog programs is that we automatically
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Load(c)

choose d: dest(c,d)

Move(t, d)

Unload(t)

Move(t,dock)

choose c: crate(c) & !done(c)

No such c

choose t: truck(t)

Exit

Figure 3.1: A generalized plan for delivery. The start node is labeled choose t: truck(t).

generate edge labels (in the form of summarized, abstract structures) representing the

set of concrete states that can provably be solved by the generalized plan starting with

the subsequent node’s action. Further, while Golog programs are typically hand-coded,

albeit sometimes in a partially specified manner, our objective is to find generalized

plans automatically together with the class of problem instances that they can solve.

Fig. 3.1 shows a generalized plan for the delivery problem. A generalized plan can

include choice actions for choosing objects to be used as arguments for future actions.

These actions select an object which satisfies a given formula in first order logic, and

assign it to a constant used in action update formulas. Intuitively, if multiple objects

satisfy the formula used for selection, we require that the generalized plan should

work with any of those qualifying objects. Choice actions are discussed in detail in Sec-

tion 3.4.3; they are constructed automatically in our approach for generalized planning

(Section 6.1).

In general, compound node labels consisting of multiple actions and choice actions

can be used for ease of expression. For simplicity, we allow only a single action per
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node and require that all of an action node’s operands be instantiated (using choice

actions) before executing that node.

3.2.1 Instantiation of Graph-Based Generalized Plans

A generalized plan’s control configuration is given by a tuple 〈pc, S, i〉 where pc ∈ V

is the current control node, S, the problem state for which an action has to be produced;

and i, an instantiation mapping the arguments of `(pc) to elements of the state S. As

mentioned above, the instantiation i is constructed using choice actions (Section 3.4.3).

A control configuration determines the next action to be executed as the action `(pc)

with the arguments represented by i. Successive instantiated actions are produced

by taking as input, the state resulting from an execution of the previous instantiated

action, and following the edge in the generalized plan whose conditions are satisfied by

this state, starting with the initial node s. After executing the action at a node u ∈ V ,

the next possible control nodes are those neighbors v of u for which the condition

`(〈u, v〉), and the preconditions of action `(v) are both satisfied by the current state S

with the current instantiation i. We assume the existence of default edges leading to a

terminal (trap) state labeled with a termination action, which are taken when suitable

next nodes cannot be found in the generalized plan or when an action node is reached

without an instantiation for all of its action’s arguments.

A generalized plan solves a problem instance C (that is, a concrete initial state)

if the execution of every possible instantiation of the plan on C ends with a structure

satisfying the goal. A generalized plan is non-deterministic if it has two edges leaving

some node, with overlapping conditions.

In general, it is undecidable to determine the preconditions of a generalized plan

because of the undecidability of the halting problem and the fact that a generalized

plan can be used to represent an arbitrary program. However, in practice we finesse

this problem by considering only finite domains. In particular, we call a generalized
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planning problem “finitary” if for every instance i ∈ I , the set of reachable states

is finite. The simplest way of imposing this constraint is to bound the number of new

objects that can be created (or found, in case of partial observability). Finitary domains

capture most real-world situations and have a decidable halting problem. In particular,

the language consisting of instances that a generalized plan solves in a finitary domain

is decidable. This is because in these domains we can maintain a list of visited states

(which has to be finite), and identify non-terminating behavior if a state is revisited.

We formalize this notion with the following observation:

Observation 1 (Decidability in finitary domains) The halting problem and the set of

problem instances solved by any generalized plan in a finitary domain is decidable.

3.3 State Abstraction Using 3-Valued Logic

In this section we describe the system of state abstraction we use for compactly

representing unbounded sets of concrete structures. Action application on abstracted

states will be discussed in detail in the next section.

The TVLA static analysis system (Sagiv, Reps, and Wilhelm, 2002) uses three-valued

logic to represent sets of structures of unbounded size, using a single, bounded-size

abstract structure. We adopt this representation, using abstract, three-valued structures

to compactly express sets of planning problems (concrete structures) of unbounded

size.

In a 3-valued structure, each tuple may be present in a relation with definite logical

values 1 (present), 0 (not present), or indefinite value 1
2

(perhaps present). The added

flexibility provided by the indefinite value makes all the difference. We will use the

notation |S| to refer to the universe of the logical structure S.

Definition 4. (3-valued Structure) A 3-valued structure, also called an abstract struc-

ture, S over vocabulary V = 〈pa1
1 , . . . , par

r ; c1, . . . , ct〉 consists of a non-empty universe

|S|, and for every predicate symbol pai
i and tuple (u1, . . . , uai

) ∈ |S|ai , a truth value
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Figure 3.2: Abstraction in the delivery domain

[[p(u1, . . . , uk)]]S ∈ {0,1, 1
2
}, and as usual, for every constant symbol c j an element of

the universe, [[c j]]S ∈ |S|.

The equality relation in a three-valued structure distinguishes summary elements,

s ∈ |S|, which may represent more than one element of a concrete structure, from non-

summary elements, n ∈ |S|, which must represent a unique element. Summary elements

satisfy [[s = s]]S =
1
2
, whereas non-summary elements satisfy [[n= n]]S = 1.

Example 1. Fig. 3.2 shows a diagram of a concrete structure, C, representing a unit

delivery problem consisting of three crates, one truck, and three locations. A three-valued

structure, S, is shown on the right. The double circles represent summary locations. The

solid arrows represent truth values of “1” and the dotted arrows represent truth values of

“1
2
”.

Intuitively the abstract structure S in Fig. 3.2 represents the concrete structure, C ,

as well as all other unit delivery problems that have exactly one truck, the truck is at

the dock and empty, and there is at least one location not equal to the dock.

To define what it means for one structure to represent another structure, we first

define the information ordering: “x ≺ y” to mean that y is more general than x , i.e,

y = 1
2

and x ∈ {0,1}. Let x � y mean that x ≺ y or x = y .
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Structure S2 represents structure S1 iff S1 is embeddable in S2. An embedding is a

map from |S1| onto |S2| that is monotonic with respect to �, i.e. truth does not change,

but it may become less precise:

Definition 5. (Embeddings) The function f : |S1| →
onto |S2| is an embedding of S1 into S2 (

S1 v f S2) iff for all relation symbols pa and elements, u1, . . . , ua ∈ |S1|, [[p(u1, . . . , ua)]]S1
�

[[p( f (u1), . . . , f (ua))]]S2
and for every constant symbol c, f ([[c]]S1

) = [[c]]S2
.

For domain schema D = 〈V ,A ,K 〉, we use the notation,

γD(S) =
�

C ∈ STRUC[D]
�

� ∃ f : C v f S
	

to denote the set of (concrete) instances of D that are represented by S. When D is

understood, we just write γ(S).

In a domain schema, a subset of the unary predicates, A, is identified as the set

of abstraction predicates. In all examples used in this thesis, the set of abstraction

predicates is the set of all (observable) unary predicates. Furthermore, the constants

are interpreted as non-summary elements.

Definition 6. (Role) The role of an element a ∈ |S| is the set of abstraction predicates

that it satisfies and the set of constants that it is equal to:

role(a) =
�

pi ∈ A
�

� [[pi(a)]]S = 1
	

∪
�

c j

�

� [[c j]]S = a
	

.

For example, in Fig. 3.2 elements c1, c2, c3 have role {crate}, L1, L2, L3 have role

{loc}, t has role {truck}, and d has role {loc,dock}.

The abstraction predicates are used to keep certain properties definite as we ab-

stract others. Each concrete structure C is represented by its canonical abstraction: the

most precise abstract structure in which all elements of the same role are merged:
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Definition 7. (Canonical Abstraction) The canonical abstraction of a concrete structure

C is S = canon(C) with |S| = {er : ∃u ∈ |C |(r = role(u))}, with embedding C v f S such

that:

1. f (u) = erole(u)

2. [[r(e1, . . . , ea)]]S = sup�
�

[[r(u1, . . . , ua)]]S
�

� f (ui) = ei, i = 1 . . . , a
	

, for all

relation symbols ra.

Thus the truth value of r(e1, . . . en) in S is the definite value 0 or 1, if C agrees on

that value of r(u1, . . . , un) for all elements of C of the appropriate roles. Otherwise,

the value in S is 1
2
. For example, in Fig. 3.2, S = canon(C). In general, suppose that

C is a concrete structure and S = canon(C). Then by the above definition, er is a

summary element of S i.e., [[er = er]]S =
1
2
, iff C has more than one element of role

r. Furthermore, regardless of how large C is, |S| has no more than 2a elements where

a is the total number of constant symbols and abstraction predicates. Increasing the

number of abstraction predicates makes canonical abstractions more precise at the cost

of increasing their size.

3.4 Action Application on Abstract states

We now present the methodology for applying action updates on abstract states.

We begin by describing TVLA’s focus and coerce operations, which make abstract struc-

tures more precise prior to action application; we describe how these operations are

used in our system for generalized planning in Section 3.4.2, followed by a descrip-

tion of choice actions in Section 3.4.3. Finally, we present a brief discussion of how this

framework relates to, and can be used for, modeling belief states and non-deterministic

sensing actions of contingent planning.

Action application on an abstract structure succeeds only if its precondition eval-

uates to 1. Therefore, action updates will fail on abstract structures which represent
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states that don’t satisfy the preconditions in additions to those that do. Further, when

applied to an abstract structure with imprecise truth values, update formulas for ac-

tions might evaluate to 1
2
. Propagation of the 1

2
truth value in this way can quickly

result in very imprecise structures with no useful information. It is therefore desirable

to improve the precision of abstract structures in terms of the key predicates that an

action and its preconditions depend on. This is done in TVLA through the focus and

coerce operations.

3.4.1 Focus and Coerce

The idea behind focus and coerce operations is to generate distinct structures for

the different definite truth values possible for a given set of properties on a given ab-

stract structure. The role of focus in this methodology is to perform a case analysis,

producing a structure for every possible truth value of the atoms in the given prop-

erties; coerce completes the process by refining structures (by making imprecise truth

values 0 or 1) as far as possible to satisfy the integrity constraints and rejecting any

structure produced by focus which cannot be refined to be consistent with the integrity

constraints (Sagiv, Reps, and Wilhelm, 2002). This mechanism is used to increase

precision in abstract structures just prior to action application.

Given an abstract structure S and a formula φ on which we need precision, a

focus operation is defined as one that produces a set of possibly abstract structures,

Focus(S,φ) = {S1, S2, . . . Sk}, which capture exactly γ(S), and in each of which φ eval-

uates to a definite truth value for any possible instantiation of its free variables. In

general, the set Focus(S,φ) may be infinite. Consequently, there is no general algo-

rithm for focus. TVLA’s limited focus algorithm on a formula with one free variable on

a structure which has only one role (Rolei) is illustrated in the top row of Fig. 3.3: if

φ() evaluates to 1
2

on a summary element, e, then this can be captured by three dif-

ferent abstract structures corresponding to cases where: either all of e satisfies φ, or
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part of it does and part of it doesn’t, or none of it does. In general, additional elements

created during this process inherit the truth values of other predicates from the original

summary element. Note that φ evaluates to a definite truth value for all elements in

each of these three structures. The focus algorithm on a binary predicate, at most one

of whose arguments is a summary element, is identical. In fact, this algorithm works

in any situation where at most one of a predicate’s free variables is instantiated with a

summary element (the focus formulas used in this thesis satisfy this requirement). Oth-

erwise, this algorithm does not terminate. The focus operation wrt a set of formulas

works by successive focusing wrt each formula in turn.

This process of splitting summary elements could produce structures that violate

the integrity constraints. Such structures are later removed by TVLA’s coerce opera-

tion. Using the integrity constraints, coerce either refines structures by making their

relations’ truth values precise, or discards them when a refinement reconciling a fo-

cused structure with the integrity constraints is not possible. Further descriptions of

these operations can be found at (Sagiv, Reps, and Wilhelm, 2002).

3.4.2 Action Specific Focus Formulas

Recall that the predicate update formulas for an action operator take the form

shown in Equation 3.1. For unary predicate updates, expressions for ∆+i and ∆−i are

monadic (i.e. have only one free variable, corresponding to the free variable on the

LHS, apart from action arguments whose values will be constants when an action is

applied). When applied on a structure with precise truth values for abstraction pred-

icates, an update of the form of Eq. 3.1 can result in imprecise truth values for these

predicates only if the formulas ∆± evaluate to imprecise truth values. Consequently, in

order to keep the abstraction predicates precise, we focus on ∆± expressions prior to

action application.
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We choose the set of focus formulas to be used prior to an action update as exactly

the predicate terms occurring in ∆± formulas for the abstraction predicate updates

and the predicate terms used in action preconditions. The fact that these formulas are

monadic ensures that the focus algorithm with these formulas terminates.

We use Fa to denote this set of focus formulas for an action a. We illustrate this

choice of focus formulas using the following example from the blocks world, since

non-choice actions in the unit delivery problem do not need focus formulas.

Example 2. Consider a blocks world domain schema with the vocabulary V = {on2,

topmost1, onTable1}, and abstraction predicates {topmost, onTable}. Consider the

Move action which has has two arguments: obj1, the block to be moved, and obj2, the

block it will be placed on. The update formula for topmost is:

topmost ′(x) = [¬topmost(x)∧ (on(obj1, x)∧ x 6= obj2)]

∨ [topmost(x)∧ (x 6= obj2)]
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Following the discussion above, the update formula for topmost can evaluate to 1
2

because

on(ob j1, x) can evaluate to 1
2
. Consequently, on(obj1, x) ∧ (x 6= obj2) is included in the

focus formula for Move(). Effectively, this formula is on(obj1, x) because x 6= obj2 will

evaluate to a definite truth value for every instantiation of x. This is because the constant

obj2 will be assigned to a singleton element by a choice action.

3.4.3 Isolating Action Arguments

The previous section described methods for making action updates precise after

suitable action arguments had been selected and labeled by constant symbols. We

will now describe how action arguments can be selected in an abstract structure. This

requires special techniques because elements of an abstract structure can be summary

elements representing sets of similar concrete elements. Actions however, are concrete

and are typically applied upon individual concrete elements. We use focus and coerce

to develop an effective mechanism for drawing out representative elements to be used

as action arguments from their summary elements.

Consider Fig. 3.3. If integrity constraints restricted φ to be unique and satisfiable,

then structure S3 in Fig. 3.3 would be discarded by coerce. Further, the summary ele-

ments for which φ() holds in S1 and S2 would be replaced by singletons (the lower row

in Fig. 3.3). The two structures S′1 and S′2 denote situations where (a) φ() holds for a

single object of role Rolei, and that this is the only object of this role, and (b) φ() holds

for a single object of role Rolei, but there are other objects of Rolei as well. In other

words, this combination of focus and coerce yields the two possible situations when an

individual element is selected from a summary element: that individual may, or may

not, be the last remaining individual represented by the summary element. Elements

chosen from their summary elements in this manner can be used as action arguments.
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Choice actions of the form “choose c: ξ(c)” can therefore be implemented by ap-

plying the following steps on a given structure. (“chosen” is a new predicate, with the

integrity constraint of uniqueness)

1. Set the chosen predicate: chosen(x) := ξ(x)∧ 1
2

2. Focus w.r.t chosen(x): This creates multiple structures with different possible

choices of elements satisfying ξ.

3. Set the argument: for every resulting structure, set constant c to the element

satisfying chosen.

Example 3. Consider the sequence of operations in Fig. 3.4 in a simplified version of

the delivery domain (we ignore the trucks and current positions of crates). chosen(x) is

initialized to 1
2

for all objects with the role crate in this figure. The first focus operation

illustrates the drawing out of an action argument from its summary element, in this case,

of role {crate}. A constant c is set to the drawn out crate. The second focus operation

focuses on destination(c, x), effectively creating possible cases for the destination of crate

c. Integrity constraints are used to assert that (a) chosen(x) must hold for a unique

element, and (b) every crate has a unique destination, so that coerce discards structures

where c has none, or non-unique destinations.

Note that in this example, different outcomes of focus operations can be easily differen-

tiated on the basis of the number of elements of some role. After the first focus operation,

the two possible outcomes are characterized by whether or not there are at least two ob-

jects with the role crate. This becomes useful when we need to find the conditions under

which an action branch leading to a goal will be taken (Chapter 5).

Action Application on Abstract Structures: Summary The overall approach for

applying actions on abstract structures is shown in Fig. 3.5. The abstract structure is

first focused w.r.t action-specific focus formulas. The resulting focused structures are
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then tested against the preconditions, and action updates are applied to those that

qualify. We then remove any constants representing action arguments, and canonically

abstract the resulting structures, yielding the abstract result structures. The operation

of canonical abstraction is referred to as “blurring” in TVLA, and is denoted with a b in

the transitions defined below.

We formalize the different phases of an action transition as follows:

Definition 8. (Action Transition) Let a be an action and S1 a three-valued structure with

constants representing each of a’s arguments. S1
a−→ S2 holds iff S1 and S2 are three-valued

structures and there exists a focused structure S1
1 ∈ fFa

(S1) s.t. S2 = canon(τa(S1
1)). The

transition S1
a−→ S2 can be decomposed into a set of transition sequences for each result

of the focus operation: {(S1

fFa−→ S i
1

τa−→ S i
2

b−→ S2)|S i
1 ∈ fFa

(S1) ∧ S i
2 = τa(S i

1) ∧ S2 =

canon(S i
2)}.

The local safety theorem (Sagiv, Reps, and Wilhelm, 2002) shows that this action

mechanism is sound: the results of action application on an abstract state S1 represent

all possible results of action application on γ(S1). Consequently, any property true

of all the abstract result states must be true of all the truly possible results of action

application on γ(S1). In the following statement, extend the notation of τa to represent

its element-wise application on a set of states.
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Theorem 1. (Local Safety Theorem) (Sagiv, Reps, and Wilhelm, 2002) Let S1, . . . , Sn be

the results of applying action a on S0. Then τa(γ(S0))⊆ ∪i=1...nγ(Si).

3.5 Belief States and Sensing Actions

The abstraction methodology described in the previous sections translates the gen-

eralized planning problem into a contingent planning problem with partially observ-

able states. More precisely, this abstraction results in a state space with uncertainty

about object quantities and properties, such that information about object quantities

available to the agent during plan execution is sufficient only to determine if there are

multiple, none, or exactly one element of each role.

These abstract states represent sets of possible concrete states in a manner simi-

lar to the modeling approach used in contingent planning, where belief states (Bonet

and Geffner, 2000; Hoffmann and Brafman, 2005) represent sets of possible real world

states which are indistinguishable due to lack of information. Current belief state rep-

resentations, however, do not capture uncertainty in object quantities. Contingent

planners use “sensing” actions to determine properties of belief states. A sensing ac-

tion leads to multiple possible belief states, corresponding to the different values of the

property being sensed.

Focus operations associated with actions described in the previous section are thus

analogous to sensing actions of contingent planning. More precisely, we can define

a sensing action in our framework as an action operator with a given monadic focus

formula representing the property to be sensed. The only difference between such

actions and a regular action operator in our framework is that the focus formula for a

sensing action is specified independently of the updates that the action may perform.

Example 4. A partially observable version of the delivery domain can be constructed by

adding uncertainty about the number of crates and locations and the destination relation.

The canonically abstracted structure on the right in Fig. 3.2 can be used to represent the
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belief state of such a formalization. We can define a sensing action, findDest(c,d), for

determining a crate’s destination using the focus formula dest(c, l) and update formulas

setting a new constant d to the crate’s destination. This formulation allows us to solve the

sensing version of the delivery problem, as discussed in Section 6.2.4.

3.6 Discussion

3.6.1 State and Action Representations

Many plan and knowledge representation systems have been proposed for plan-

ning. Early approaches, prior to the development of the STRIPS framework (Fikes and

Nilsson, 1971) relied upon first-order logic both as a representation and as the infer-

ence mechanism for determining the effect of an action on a state. These approaches

suffered from the frame problem due to the need for axioms specifying all facts that

were not changed by an action. The STRIPS approach solved this problem by using

an extra-logical mechanism for action updates. A state was represented as the set of

propositions true in that state; actions consisted of add and delete lists, consisting of

propositions to be added or removed from that state. In doing so however, STRIPS

sacrifices existential quantification, because of which arguments of actions in a STRIPS

specification must include every object whose properties may be changed. An action

for moving block x to block y , when both x and y are topmost, would require as argu-

ments x , y , as well as the block on which x rests–so that the topmost predicate can be

set for this block during the action update.

Although situation calculus (Levesque, Pirri, and Reiter, 1998) follows a pre-STRIPS

approach, it avoids the frame problem by using successor state axioms. These axioms

specify the conditions under which predicates hold, or cease to hold in a manner similar

to Eq. 3.1 on page 27:

pre(a, s)→
��

p( x̄ , do(a, s))↔ γ+F ( x̄ , a, s)
�

∨
�

p( x̄ , s)∧¬γ−F ( x̄ , a, s)
��

(3.2)
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In this equation capturing the effect of action a on predicate p when applied in situ-

ation s, γ+F represents the condition under which p becomes true and γ−F , the condition

under which it becomes false. pre(a, s) holds if the preconditions of a are satisfied in s.

Our approach is similar to situation calculus in utilizing a first-order predicate up-

date equation, but also similar to the STRIPS approach in using a query evaluation on a

state represented as a first-order structure to apply the action update. Eq. 3.1 presents

a convenient template for predicate re-definitions which we use throughout. However,

it can be replaced by a more general formula without changing the mechanism for

applying actions on concrete states.

Our approach also differs from existing action representation approaches in using

explicit choice actions to select action arguments. Making argument choices explicit

allows us to generalize these choices as well as to efficiently account for their cost

during plan instantiation.

Finally, integrity constraints allow us to specify constraints such as: “if a room is on

fire, its hallway must have smoke” for the firefighting problem.

3.6.2 Generalized Plan Representations

As discussed in Section 3.2, prior approaches have addressed the problem of repre-

senting generalized, algorithmic plans. Representations such as robot programs (Levesque,

2005) and dsPlanners (Winner and Veloso, 2003) have been used for the construction

of generalized plans; representations such as Golog and LPP (Baier et al., 2009) have

been used to design generalized plans by hand, for encoding preferred planning oper-

ations. Graph based generalized plans allow us to easily represent control flows while

making their structure explicit. In Chapter 4, we will use this to categorize a class

of generalized plans for which preconditions can be found accurately and efficiently.

Subsequently, while constructing generalized plans, we will use their edge labels to

represent abstract structures capturing the set of states possible at any point in the
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generalized plan. These labels turn out to be very useful, and serve multiple purposes

in addition to determining the flow of control during execution: in Section 6.2, we will

use these labels to efficiently merge segments of different example plans which handle

the similar problem instances; in Chapter 7, these labels are used to extend partial

generalized plans to handle new problem instances.

3.6.3 State Abstraction

We use abstraction for state aggregation, which has been extensively studied for

efficiently representing universal plans (Cimatti, Roveri, and Traverso, 1998), solving

MDPs (Hoey et al., 1999; Feng and Hansen, 2002), for producing heuristics and for hi-

erarchical search (Knoblock, 1991). Unlike these techniques that only aggregate states

within a single problem instance, canonical abstraction can construct aggregations of

states from different problem instances with different numbers of objects.

Hoffmann, Sabharwal, and Domshlak (2006) study the use of abstraction for STRIPS-

style classical planning. They prove that for a wide class of abstractions motivated by

those used for evaluating heuristics in planning, searching over the abstract state space

cannot perform better than informed plan search (using heuristics or resolution based

search). Our objective is to use abstraction for the different problem of simultaneously

planning in infinitely many state spaces.
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CHAPTER 4

ANALYZING ABACUS PROGRAMS WITH LOOPS

In order to be able to construct generalized plans with loops, we first study how to

determine if a potential loop of actions will make progress towards the goal, or, at the

least, terminate after a bounded number of iterations. With such methods in hand, we

will construct generalized plans by evaluating the benefit of creating possible loops of

actions.

We start by studying a powerful model of computation called abacus programs. We

will solve the problem of determining loop termination and progress for some classes

of abacus programs; in the next chapter, we will show how plans with loops in many

problem domains can be directly translated into such abacus programs. Finally, we will

use these techniques in developing algorithms for finding generalized plans in Chapters

6 and 7.

4.1 Abacus Programs

Abacus programs (Lambek, 1961) are finite automata whose states are labeled with

actions that increment or decrement a fixed set of registers. Formally,

Definition 9. (Abacus Programs) An abacus program 〈R ,S , s0, sh,`〉 consists of a finite

set of registers R , a finite set of states S with special initial and halting states s0, sh ∈ S

and a labeling function ` : S \ {sh} 7→ Act. The set of actions, Act, consists of actions of

the form:

• Inc(r, s): increment r ∈ R; goto s ∈ S , and
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Figure 4.1: An abacus machine for the program: while (r1 > 0) { r1−−;r2++}

• Dec(r, s1, s2): if r = 0 goto s1 ∈ S else decrement r and goto s2 ∈ S

We represent abacus programs as bipartite graphs with edges from states to actions

and from actions to states. In order to distinguish abacus program states from states in

planning, we will refer to a state in the graph of an abacus program as a “node". The

two edges out of a decrement action are labeled= 0 and> 0 respectively (see Fig. 4.1).

Given an initial valuation of its registers, the execution of an abacus program starts

at s0. At every step, an action is executed, the corresponding register is updated, and a

new node is reached. An abacus program terminates iff its execution reaches the halt

node. The set of final register values in this case is called the output of the abacus

program.

Abacus programs are equivalent to Minsky Machines (Minsky, 1967), which are as

powerful as Turing machines and thus have an undecidable halting problem:

Fact 1. The problem of determining the set of initial register values for which an abacus

program will reach the halt node is undecidable.

Nevertheless, for some abacus programs halting is decidable, depending on the

complexity of the loops. A simple loop is a cycle. A simple-loop abacus program is one

all of whose non-trivial strongly connected components are simple loops. In the next

section we show that for any simple-loop abacus program, we can efficiently character-

ize the exact set of register values that lead not just to termination, but to any desired

“goal” node defined by a given set of register values (Theorem 2).
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4.2 Applicability Conditions for Simple Loops

Let S1, a1, . . . , Sn, an, S1 be a simple loop (see Fig. 4.2). We denote register values

at nodes using vectors. For example, R̄0=〈R0
1, R0

2, . . . , R0
m〉 denotes the initial values of

registers R1, . . . , Rm at node S1. Let a(i) denote the index of the register changed by

action ai. Since these are abacus actions, if there is a branch at ai, it will be determined

by whether or not the value of Ra(i) is greater than or equal to 0 at the previous node.

We use subscripts on vectors to project the corresponding registers, so that the

initial count of action ai ’s register can be represented as R̄0
a(i). Let ∆i denote the vector

of changes in register values R1, . . . , Rm for action ai corresponding to its branch along

the loop. Let ∆1..i = ∆1 +∆2 + · · · +∆i denote the register-change vector due to a

sequence of abacus actions a1, . . . , ai. Given a linear segment of an abacus program,

we can easily compute the preconditions for reaching a particular register value and

node combination:

Proposition 1. Suppose S1
a1−→ S2

a2−→ · · ·Sn is a linear segment of an abacus program

where Si are nodes, ai are actions and F̄ is a vector of register values. A set of necessary

and sufficient linear constraints on the initial register values R̄0 at S1 can be computed

under which Sn will be reached with register values F̄ .

Proof. (Sketch) We know F̄ = R̄0 +∆1..n. We only need to collect the conditions nec-

essary to take all the correct action branches, keeping us on this path. This can be

done by computing the register values at each node Si in terms of R̄0, and using this

expression to state the required inequality for following the required branch of the next

action.

Proposition 2. Suppose we are given a simple loop, S1, a1, . . . , Sn, an, S1, of an abacus

program. Then in O(n) time we can compute a set of linear constraints, C(R̄0, F̄ , l), that

are satisfied by initial and final register tuples, R̄0, F̄ , and natural number, l, iff starting
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Figure 4.2: A simple loop with (right) and without (left) shortcuts

an execution at S1 with register values R̄0 will result in l iterations of the loop, after which

we will be in S1 with register values F̄ .

Proof. Consider the action a4 in the left loop in Fig. 4.2. Suppose that the condition

that causes us to stay in the loop after action a4 is that Ra(4) > 0. Then the loop branch

is taken during the first iteration starting with fluent-vector R̄0 if (R̄0 +∆1..3)a(4) > 0.

This branch will be taken in l subsequent loop iterations iff (R̄0+ k ·∆1..n+∆1..3)a(4) >

0, and similar inequalities hold for every branching action, for all k ∈ {0, . . . , l − 1}.

More precisely, for one full execution of the loop starting with R̄0 we require, for all

i ∈ {1, . . . , n}:

(R̄0+∆1..i−1)a(i) ◦ 0

where ◦ is one of {>,=} depending on the branch that lies in the loop; (this set

of inequalities can be simplified by removing constraints that are subsumed by oth-

ers). Since the only variable term in this set of inequalities is R̄0, we represent them

as LoopIneq(R̄0). Let R̄l = R̄0 + l × ∆1..n, the register vector after l complete itera-

tions. Thus, for executing the loop completely l times, the required conditions are

LoopIneq(R̄0)∧LoopIneq(R̄l−1). These two sets of conditions ensure that the conditions

for execution of intermediate loop iterations hold, because the changes in register val-
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ues due to actions are constant, and the expression for R̄l−1 is linear in them. Note

that these conditions are necessary and sufficient since there is no other way of execut-

ing a complete iteration of the loop except by undergoing all the register changes and

satisfying all the branch conditions.

Hence, the necessary and sufficient conditions for achieving the given register-value

after l complete iterations are:

C(R̄0, F̄ , l)≡ LoopIneq(R̄0)∧ LoopIneq(R̄l−1)∧ (F̄ = R̄l).

Each loop inequality is constant size because it concerns a single register. The total

length of all the inequalities is O(n) and as described above they can be computed in a

total of O(n) time.

Note that an exit during the first iteration amounts to a linear segment of actions

and is handled by Prop. 1. Further, the vector F̄ can include symbolic expressions. Ini-

tial values R0 can be computed using Rl = F ; these expressions for R0 can be used as

target values for subsequent applications of Prop. 2. Therefore, when used in combi-

nation with Prop. 1, the method outlined above produces the necessary and sufficient

conditions for reaching any node and register value in an abacus program:

Theorem 2. Let ΠA be a simple-loop abacus program. Let S be any node in the program,

and F̄ a vector of register values. We can then compute a disjunction of linear constraints

on the initial register values that is a necessary and sufficient condition for reaching S with

the register values F̄ .

Proof. Since ΠA is acyclic except for simple loops, it can be decomposed into a set of

segments starting at the common start-node, but consisting only of linear paths and

simple loops (this may require duplication of nodes following a node where different

branches of the plan merge). By Prop. 1 and 2, necessary and sufficient conditions for
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each of these segments can be computed. The disjunctive union of these conditions

gives the overall necessary and sufficient condition.

4.3 Nested Loops Due to Shortcuts

Due to the undecidability of the halting problem for abacus programs, it is impossi-

ble to find preconditions of abacus programs with arbitrarily nested loops. The previous

section demonstrates, however, that structurally restricted classes of abacus programs

admit efficient applicability tests. Characterizing the precise boundary between decid-

ability and undecidability of abacus programs in terms of their structural complexity is

an important open problem.

In this section, we show that methods developed in the previous section can be

extended to a class of nested loops caused due to non-deterministic actions. Non-

deterministic actions are common in planning but do not exist in the original definition

of abacus domains. In the representation of Definition 9, we define a non-deterministic

action in an abacus program NSet(r, s1, s2) as follows:

• NSet(r, s1, s2): set r to 0 and goto s1 ∈ S or set r to 1 and goto s2 ∈ S.

We assume that the register r is new, or unused by deterministic actions. A non-

deterministic action thus has two outgoing edges in the graph representation, corre-

sponding to the two possible values it can assign to a register value. Either of these

branches may be taken during execution. Although the original formulation of abacus

programs is sufficient to capture any computation, the inclusion of non-deterministic

actions allows us to conveniently treat a powerful class of nested loops (encountered

in partially observable planning) as a set of independent simple loops.

Definition 10. (Complex Loops) A complex loop in a graph is a non-trivial strongly

connected component that is not a simple loop.

52



Definition 11. (Shortcuts) A shortcut in a simple loop is a linear segment of nodes start-

ing with a branch caused due to a non-deterministic action in the loop and ending at any

subsequent node in the loop, but not after a designated start node. The start node must

precede all of the loop’s shortcuts (e.g., node S2 in Fig.4.2).

For ease in exposition, we assume that no branch originating at a node on the short-

cut but not on the simple loop leads to a node on the simple loop. However, methods

for computing applicability conditions in the following sections can be easily applied

to such shortcuts with branches: the fundamental idea is to treat each complete loop

execution possible around the start node as a simple loop, and this extends naturally

to situations with branches on shortcuts.

The definition above also constrains shortcuts to originate from a branch of a

non-deterministic action; shortcuts beginning with branches of deterministic, register-

decrementing actions are considered in Sections 4.3.3.1 and 4.3.3.2.

In terms of graph structure, simple loops with shortcuts categorize the class of

graphs with cycle rank (Eggan, 1963) one. This class of graphs captures many common

control flows, including those with doubly nested loops and nested for loops such as:

for i=1 to n do {for j=1 to k do {xyz}}.

Actions which create shortcuts in such loops can be easily transformed into non-

deterministic actions followed by actions with the original conditions.

4.3.1 Applicability Conditions for Monotone Shortcuts

We now consider a special class of simple loops with shortcuts, where the shortcuts

are monotone:

Definition 12. (Monotone Shortcuts) The shortcuts of a simple loop are monotone if the

sign (positive or negative) of the net change, if any, in a register’s value is the same due to

every simple loop created by the shortcuts.
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For ease of exposition we require that the start nodes of all shortcuts in a sim-

ple loop occur either at the common start node, or before the end node of any other

shortcut, making shortcuts non-composable (i.e., only one shortcut can be taken in

every iteration). Non-composability allows us to easily count the simple loops caused

due to shortcuts independently. For instance, we can view the loop with shortcuts in

Fig. 4.2 as consisting of 3 different simple loops. Which loop is taken during execution

will depend on the results of non-deterministic actions a3 and a5. Additionally, we

will only consider the case where non-deterministic actions occur on the outer, simple

loop. Composable shortcuts and branches caused due to non-deterministic actions on

shortcuts can be handled similarly by considering all possible completions of the loop

independently, as simple loops. However, this may result in exponentially many simple

loops in the worst case.

Suppose an abacus program Π is a simple loop with m monotone shortcuts and a

chosen start node Sstar t . We consider the case of l complete iterations of Π counted at

its start node, with k1, . . . , km representing the number of times shortcuts 1, . . . , m are

taken, respectively. The final, partial iteration and the loop exit can be along any of the

shortcuts, or the outer simple loop, and can be handled as a linear program segment.

Let k0 be the number of times the underlying simple loop is executed without taking

any shortcuts. Then,

k0+ k1+ . . . km = l (4.1)

Determining Final Register Values We denote the loop created by taking the i-th

shortcut as loopi, and the original simple loop taken when none of the shortcuts are

taken as loop0. The final register values after the l =
∑m

i=0 ki complete iterations can

be obtained by adding the changes due to each simple loop, with ∆loopi denoting the

change vector due to loopi:

F̄ = R̄0+
m
∑

i=0

ki∆
loopi (4.2)
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Cumulative Branch Conditions For computing sufficient conditions on the achiev-

able register values after k0, . . . , km complete iterations of the given loops, the approach

is to treat each loop as a simple loop and determine its preconditions. Note that every

required condition for a loop’s complete iteration stems from a comparison of a regis-

ter’s value with zero. We therefore want to determine the lowest possible value of each

register during the k0, k1, . . . km iterations of loops 0, . . . , m, and constrain that value to

be greater than zero. For every register R j, we first identify the index of simple loop

which can cause the greatest negative change in a single, partial iteration starting at

Sstar t , as min( j), and the value of this change as δmin( j). For readability we will use b

to denote min( j) .

Let R+ and R− be the sets of registers undergoing net positive and negative changes

respectively, by any loop. For R j ∈ R+, the lowest possible value is R0
j+δb. The required

constraint on R j is simply R0
j + δb ≥ 0 (“≥” because “>” must hold before the decre-

ment), since the value of R j can only increase after the first iteration. For R j ∈ R−, the

lowest possible value is R0
j +
∑

i 6=b ki∆
loopi
j + (k

b− 1)∆
loop

b

j + δ
b, achieved when loop

b is

executed at the end, after all the iterations of the other loops. This leads to the follow-

ing inequalities:

∀R j ∈ R−
�

R0
j +

m
∑

i=0

ki∆
loopi
j +δ

b−∆
loop

b

j ≥ 0
	

(Sufficient(1))

∀R j ∈ R+
�

R0
j +δb ≥ 0

	

(Sufficient(2))

Together with Eqs. (4.1 & 4.2), these inequalities provide sufficient conditions binding

reachable register values with the number of loop iterations and the initial register

values. However, the process for deriving them assumed that for every j, loop
b will

be executed at least once. We can make these constraints more accurate by using

a disjunctive formulation for selecting the loop causing the greatest negative change

among those that are executed at least once. For register R j, let 0 j, . . . , m j be the
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ordering of loops in decreasing order of negative change values caused by an initial

segment of the loop starting at Sstar t . We use ki<x = 0 as an abbreviation for ∀i < x :

ki = 0. We can then write a disjunction of constraints corresponding to the first loop in

loop0 j
, . . . loopm j

which has non-zero iterations:

∀R j ∈ R−
∨

x=0 j ,...,m j

�

ki<x = 0; kx 6= 0;

R0
j +
∑

i≥x

ki∆
loopi
j +δx−∆

loopx
j ≥ 0

	

(4.3)

∀R j ∈ R+
∨

x=0 j ,...,m j

�

ki<x = 0; kx 6= 0; R0
j +δx ≥ 0

	

(4.4)

Constraints 4.3 & 4.4 are derived from the unnumbered constraints above by re-

placing b with x , which iterates over loops in the order 0 j..m j, specific to register R j;

δx represents the greatest negative change in loop x for role j.

If the partial negative change for every register in every loop is at most the net

negative change of that loop, conditions 4.3 & 4.4 reduce to the conditions labeled

Sufficient (1 & 2) above. This is because δx becomes equal to ∆loopx
j in Eq. 4.3; all

of the disjuncts in Eq. 4.3 then reduce to ∀R j ∈ R−{R0
j +
∑m

i=0 ki∆
loopi
j ≥ 0}. Further,

Eq. 4.4 and Sufficient (2) become vacuously true because the partial negative change

cannot be more than the net negative change (zero) for registers in R−.

Accuracy of the Computed Conditions Note that these conditions do not deal with

equality conditions that may have to be satisfied for staying in a loop. Equality condi-

tions are very constraining, and may constrain the execution of a loop corresponding

to a shortcut to occur exactly once, when the equality condition holds. However, con-

ditions (4.1-4.4) can be extended to include equality conditions for the first and last it-

eration of each loop. This will make (4.1-4.4) sufficient conditions for situations where

equality branches are required to stay in the loop (in our experience this is rare in

planning domains). However, adding these constraints may also make (4.1-4.4) unsat-
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isfiable if the same register is used in two different equality constraints corresponding

to two different loops caused by shortcuts.

In order to discuss when conditions (4.1-4.4) are accurate and not over-constraining,

we first define order independence:

Definition 13. (Order Independence) A simple loop with shortcuts is order independent

if for every initial valuation of the registers at Sstar t , the set of register-values possible at

Sstar t after any number of iterations does not depend on the order in which the shortcuts

are taken.

An equality constraint in a loop is considered spurious if no loop created by the

shortcuts changes the register on which equality is required. During the execution of

the loop, the truth of such conditions will not change. Consequently, such equality

conditions do not introduce order dependence. In practice, these conditions can be

translated into conditions on register values just prior to entering the loop.

A simple loop with shortcuts will have to be order dependent if one of the following

holds: (1) the lowest value achievable by a register during its execution depends on

the order in which shortcuts are taken. In this case, possible lowest values will impose

different constraints for each ordering; or, (2) a non-spurious equality condition has to

be satisfied to stay in a loop. In the latter case, the non-deterministic branch leading to

the shortcut that has the equality condition will have to be taken at the precise iteration

when equality is satisfied. In fact, the disjunction of these two conditions is necessary

and sufficient for a loop to be order dependent.

Proposition 3. A simple loop with shortcuts is order-dependent iff either (1) the lowest

value achievable by a register during its execution depends on the order in which shortcuts

are taken or (2) a non-spurious equality condition has to be satisfied to continue a loop

iteration.
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Proof. Sufficiency of the condition was discussed above. If the loop is order dependent,

then there is a register value that is reachable only via a “good" subset of the possible

orderings of shortcuts. Consider an ordering with the same number of iterations of

these shortcuts, not belonging to this subset. During the execution of this sequence,

there must be a first step after which a loop iteration that could be completed in the

good subset, cannot be completed in the chosen ordering. This has to be either because

an inequality > 0 is not satisfied before a decrement, which implies (1) holds, or be-

cause R j = 0 is required to continue the iteration; this must have been possible in the

good loop orderings, but R j > 0 must hold here, which implies case (2) holds.

A naive approach of even expressing the necessary conditions for an order depen-

dent loop can be exponential in the number of shortcuts, even while considering just a

single iteration of each loop. Deriving better representations for such conditions is an

important direction for future work.

Example 5. Consider loops l1, l2 created by shortcuts in a larger loop. l1 increases R1 by

5 and R2 by 1. l2 first decreases R1 by 4 and then increases it by 5. l1, l2 are monotone

shortcuts but their combination is order dependent: at Sstar t with R1 = 1, l2 cannot be

executed completely before executing l1. Expressing precise preconditions for reachable

register values thus requires a specification of the order in which the shortcuts have to be

taken.

We can now present two results capturing the accuracy of the conditions (4.1-4.4).

Proposition 4. If Π is an order independent simple loop with monotone shortcuts, then

Eqs. (4.1-4.4) provide necessary and sufficient conditions on the initial and achievable

register values.

Proof. By construction, the inequalities ensure that none of the register values drops

to zero, so that if a register value satisfies the inequalities, then it will be reachable.
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This proves that the conditions are sufficient. Suppose that a register value F̄ is reach-

able from R̄0, after k0, . . . km iterations of loop0, . . . , loopm respectively. Eq. (2) cannot

be violated, because the changes caused due to the loops are fixed; Eq. (1) will be

satisfied trivially. If R̄0, k0, . . . , km don’t satisfy Eqs. (4.3-4.4), the lowest value achieved

during the loop iterations will fall below zero because the loop is order independent.

Therefore, (4.1-4.4) must be satisfied.

Proposition 5. If Π is a simple loop with monotone shortcuts, then Eqs. (4.1-4.4), to-

gether with constraints required for equality branches during the first and last iterations

of the shortcuts containing them give sufficient conditions on the possible final register

values in terms of their initial values.

Proof. By construction, conditions (4.1-4.4) and the equality constraints ensure that

every branch required to complete ki iterations of loop i will be satisfied.

This leads to the main result of this section, which is analogous to Theorem 2 for

simple loops:

Theorem 3. Let Π be an abacus program, all of whose strongly connected components are

simple loops with monotone shortcuts. Let S be any node in the program, and F̄ a vector

of register values. We can then compute a disjunction of linear constraints on the initial

register values for reaching S with the register values F̄ . If all simple loops with shortcuts

in Π are order independent, the obtained precondition is necessary and sufficient.

Proof. Similar to the proof by decomposition for Theorem 2, using Propositions 4

and 5.

Semantics of the Computed Conditions In the result and the conditions constructed

above, the ki variables, which count the number of times a non-deterministic ac-

tion effect occurs, appear to be measuring an inherently unpredictable property (non-

determinism) and seem to mitigate the utility of the computed preconditions. However,
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as we will see in the next section, non-deterministic abacus actions may stand for sens-

ing actions; while we may not be able to predict the outcome of each sensing action, it

may still be possible to know how many times a certain outcome is possible, which is

all that we need for the conditions above. In addition, if the ki are used as parameters,

the sufficient conditions above capture their tolerable values under which a desired

register value may be achieved.

While our methods seem to be imprecise (sufficient but not necessary) for loops

with order dependent shortcuts, the non-determinism behind such shortcuts signifi-

cantly undermines the value of complete necessary and sufficient conditions expressed

in terms of the possible loop orderings: these orderings cannot be predicted in advance

as they depend on the order in which different outcomes of non-deterministic actions

will be taken. In other words, in an adversarial formulation of the problem where na-

ture “controls” the non-deterministic action outcomes, we actually need the worst-case

conditions provided by Eqs. (4.1-4.4).

4.3.2 Relaxing Monotonocity

Although the introduction of non-deterministic actions makes it easier to express

plans with sensing actions, it significantly adds to the power of abacus programs con-

sisting of simple loops with shortcuts. Specifically, we show below that reachability in

an abacus program consisting of a simple loop with non-monotone shortcuts is at least

as hard as the problem of reachability in a vector addition system (Hopcroft and Pan-

siot, 1979). Vector addition systems are not as powerful as Turing machines, but still

have a hard reachability problem. Although it has been proved that reachability in vec-

tor addition systems is decidable, known algorithms require non-primitive-recursive

space (Kosaraju, 1982). We use the formalization of vector addition systems as pre-

sented by Hopcroft and Pansiot (1979):
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Figure 4.3: Reduction of a vector addition system to a non-deterministic abacus program.

Definition 14. (Vector addition systems) An n-dimensional vector addition system (VAS)

is a pair (x , W ) where x ∈ Nn is called the start point and W is a finite subset of Zn. The

reachability set of the VAS (x , W ) is the set of all z, z = x + v1 + · · · + v j where each

vi ∈ W and all the components of all intermediate sums, x + v1 + · · ·+ vi, 1 ≤ i ≤ j are

non-negative.

Proposition 6. Determining the set of register values reachable at the start node of an

abacus program consisting of a simple loop with shortcuts is at least as hard as the problem

of determining the reachable register values in a vector addition system.

Proof. Suppose (x , W ) is an n-dimensional VAS. We construct an abacus program with

n registers, one for each dimension in the given VAS. We can then construct a simple

loop with shortcuts so that each of the simple loops created corresponds to a unique

w ∈ W . The shortcut corresponding to wi would consist of sequences of increment-

ing/decrementing actions for each dimension in wi (see Fig. 4.3). For decrementing

actions, the zero-branches lead to an exit from the loop to a trap state. In the resulting

abacus program, a given configuration of register values is reachable at the start state

iff there exists an ordering of the simple loops created by shortcuts which leads to it. In

other words, every reachable register-value configuration corresponds to a sum of the

wi ’s with none of the intermediate values being negative.

4.3.3 Simple Loops with Shortcuts due to Deterministic Actions

In this section we discuss simple loops with shortcuts without any non-deterministic

actions.
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Algorithm 1: Reachability for deterministic, monotone shortcuts
Input: Deterministic abacus program in the form of a simple loop with

monotone shortcuts, an initial register configuration R̄0

Output: Sequence of (loop id, #iterations) tuples.
R̄← R̄01

Iterations← empty list2

LoopList← simple loops created by shortcuts3

while LoopList 6= ; do4

if no l ∈ LoopList satisfies LoopIneql(R̄) then5

Return Iterations6

end
l ← id of loop for which LoopIneql(R̄) holds7

Remove l from LoopList8

lmax ← FindMaxIterations(R̄, l)9

Iterations.append((l, lmax))10

R̄← R̄+ lmax∆l11

end
Return Iterations12

4.3.3.1 Monotone Shortcuts

Let ΠA be an abacus program in the form of a simple loop with shortcuts originating

at deterministic (decrementing) actions. Taking an initial register valuation as input,

Alg. 1 computes a sequence of tuples representing the order in which the simple loops

created by shortcuts will be taken, and the number of times each such loop will be

executed in this ordering. Such a sequence is sufficient to calculate all the reachable

register values during an execution of the given program.

Alg. 1 relies on the following observations:

1. Because all the shortcuts are monotone, if a loop is executed for a certain number

of iterations and then exited, the flow of control will never return to that loop.

2. For any given configuration of register values at the start node, at most one of the

simple loops created by shortcuts may be completely executable. This is because

if multiple simple loops can be executed starting from a given register value con-

figuration, then at some action node in the program, it should be possible for the
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control to flow along more than one outgoing edge. However, this is impossible

because every action which has multiple outcomes (a decrementing action) has

exactly two branches, whose conditions are always mutually inconsistent.

The overall algorithm works by identifying the unique loop l whose LoopIneq is sat-

isfied by the value R̄ (initialized to R̄0)[steps 5-8], calculating the number of iterations

which will be executed for that loop until LoopIneq gets violated [step 9], updating the

register values to reflect the effect of those iterations [step 11] and identifying the next

loop to be executed [the while loop, step 4].

The subroutine FindMaxIterations uses the inequalities in LoopIneq (see prop. 2)

to construct the vector equation (R̄+ lmax∆l +∆1..i−1)a(i) ◦ 0 for every action in loop

l. This system of equations consists of an inequality of the following form for every i

corresponding to a decrementing action in the loop:

lmax < (R̄a(i)+∆
1..i−1
a(i) )/∆

l
a(i)

Since R̄ is always known during the computation, the floor of the minimum of

the RHS of these equations for all i yield the largest possible value of lmax . Equality

constraints either drop out (if the net change in their register’s value due to the loop

l is zero and they are satisfied during the first iteration), or set lmax = 1 (if the net

change in their register’s value is not zero, but it is satisfied during the first iteration).

Note that if there is any loop which does not decrease any register’s value, it will never

terminate. This will be reflected in our computation by an lmax value of∞.

Let b be the maximum number of branches in a loop created due to the shortcut,

and L the total number of simple loops generated due to the shortcuts. The most expen-

sive operation in this algorithm is step 5, where R̄ is tested on every loop’s inequality

(these loop inequalities only need to be constructed once). Step 5 is executed in O(Lb)

time and step 9 in O(b) time. The entire loop may be executed at most L times, re-

sulting in a total execution time of O(L2 b). On the other hand, if such a program is
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Deterministic Non-deterministic

Monotone Shortcuts Alg. 1 Eq.(1-4) (order-indep.)
Non-monotone Shortcuts unknown VAS�

Table 4.1: Known results on reachability for abacus programs of cycle rank one.

directly applied on a problem instance and the program terminates, then the execution

time for the program will be of the order of the largest register value.

4.3.3.2 Non-monotone Shortcuts and Linear Hybrid Automata

Currently, the complexity and decidability of the problem of reachability for aba-

cus programs consisting of simple loops with non-monotone, deterministic shortcuts

is unknown. In general, reachability problems for abacus programs can be easily rep-

resented as reachability problems for linear hybrid automata (LHA) (Alur, Henzinger,

and Ho, 1996). While a hybrid system is a model of computation which combines dis-

crete state transitions with continuous flows of real-valued variables within each state,

in linear hybrid automata the flows of these variables are constrained by linear expres-

sions. Numerous implementations of approximate and partially decidable algorithms

have been developed for model checking linear hybrid systems. Deterministic abacus

programs with simple loops with shortcuts can be easily represented as a particularly

simple class of linear hybrid systems, with register changes occurring as “jump" transi-

tions between discrete states. We have obtained promising results using LHA analysis

tools on these translated representations. A detailed analysis of their applicability, as

well as the impact of monotonicity and our restrictions based on graph structure on

LHA verification algorithms is left for future work.

Table 4.1 summarizes known results about determining the set of states reachable

from a given initial state for abacus programs with simple loops with shortcuts.
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4.4 Discussion

Summary The study of abacus programs with loops will allow us to efficiently ana-

lyze plans for handling unbounded numbers of elements in the next chapter. Although

it is immediate that the problem of determining reachable states through a given abacus

program cannot have a general solution, results in this chapter prove that for restricted

classes of abacus programs reachability can be determined very efficiently. Analysis of

this problem using the representation of abacus programs has an added benefit: we

can use these results to control the growth of generalized plans along structures that

are decidable; further, these results will allow us to determine the utility and safety of

adding a possible loop to a generalized plan.

Directions for Future Work The results in this chapter initiate the study of reachabil-

ity along classes of graphs. Directions for future work include a better understanding

of the boundary between decidability and undecidability in terms of the structure of

abacus programs, and also the impact of constraints such as monotonicity and cycle-

rank one on related approaches for model checking of programs. Along these lines, it

would also be informative to study if existing methods for model checking and analysis

of programs as well as hybrid systems can be guaranteed to work on any class of abacus

programs which relaxes these constraints.

Related Work Although various approaches have studied the utility and generation

of plans with loops, very few provide any guarantees of termination or progress for

their solutions. Approaches for strong cyclic planning (Cimatti et al., 2003) attempt

to generate plans with loops for achieving temporally extended goals and for handling

actions which may fail. Loops in strong cyclic plans are assumed to be static, with the

same likelihood of a loop exit in every iteration. The structure of these plans is such

that it is always possible–in the sense of graph connectivity–to exit all loops and reach

the goal; termination is therefore guaranteed if this can be assumed to occur even-
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tually. Among more recent work, KPLANNER (Levesque, 2005) attempts to find plans

with loops that generalize a single numeric planning parameter. It guarantees that the

obtained solutions will work in a user-specified interval of values of this parameter.

DISTILL (Winner and Veloso, 2007) identifies loops from example traces but does not

address the problem of preconditions or termination of its learned plans. Bonet, Pala-

cios, and Geffner (2009) derive plans for problems with fixed sizes, but the controller

representation that they use can be seen to work across many problem instances. They

also do not address the problem of determining the problem instances on which their

plans will work, or terminate. To the best of our knowledge, complexity of restricted

classes of abacus programs in terms of graph structure has not been studied before.

However, abacus programs have been utilized in studies of planning frameworks be-

fore, notably in the analysis of planning with numeric variables (Helmert, 2002).

Finding preconditions of linear segments of plans has been well studied in the plan-

ning literature. Triangle tables (Fikes, Hart, and Nilsson, 1972) can be viewed as a

compilation of plan segments and their applicability conditions. However, there has

been no concerted effort to find preconditions of plans with loops. Static analysis of

programs deals with similar problems of finding program preconditions. These meth-

ods typically work with the weaker notion of partial correctness, where a program is

guaranteed to provide correct results if it terminates. Methods like Terminator (Cook,

Podelski, and Rybalchenko, 2006) specifically attempt to prove termination of loops,

but do not provide precise preconditions or the number of iterations required for ter-

mination.
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CHAPTER 5

TRANSFORMING PLANS INTO ABACUS PROGRAMS

Methods developed in the previous chapter can be used to find preconditions of

plans with loops which satisfy the appropriate graph-structural requirements, as long

as planning actions can be characterized in terms of simple numeric changes. One

approach for achieving such actions is to consider their effects as changes in the number

of elements satisfying different properties. However, determining the appropriate set of

properties whose counts will be useful in characterizing actions is not always obvious.

In this chapter we show how canonical abstraction can be used to automatically

translate action transitions in a class of planning domains into abacus actions by treat-

ing role-counts (the number of elements of each role in a structure) as register values for

abacus actions. These methods will be used in the following chapters for construction

of generalized plans with loops, termination guarantees, and preconditions.

5.1 Overview

We begin by illustrating the idea behind finding preconditions for success of action

sequences on a special class of domains that use only unary predicates. These ideas

are then generalized to abstract domains with binary relations that satisfy some key

requirements (FC3 domains, Definition 18). Section 5.3 presents a set of necessary

conditions under which canonical abstraction produces FC3 domains; the complexity

of our algorithms is discussed in Section 5.3.1. Domains satisfying these necessary

conditions are called extended-LL domains. Section 5.4 discusses an easily recogniz-

able subclass of extended-LL domains; the transport example discussed below will turn
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out to be a member of this subclass. Section 5.5 formalizes the close relationships

between generalized plans in extended-LL domains and abacus programs, allowing us

to use results from the previous chapter to find plan preconditions in these domains.

Section 5.6 demonstrates the power of the resulting methodology by applying it on

ten different plans with loops which have been studied in the literature, albeit so far

without approaches for reliably computing their effects.

Consider a simplified transport domain where objects need to be moved from one

location to another by a single truck of capacity one. The vocabulary for this domain

consists of unary predicates {atL1, atL2, inT, object, truck}. The actions are

• moveTLi(): move the truck to location i,

• loadT(x): load object x into the truck,

• unloadT(): unload object from the truck.

Fig. 5.1 on the next page shows a sequence of action operations on an abstract

initial structure S1. For the purpose of this example, assume that the goal is to have

exactly one object at L1, as in structure S6. Note that this sequence of actions creates

a loop; the only branch is caused by the first choice action. Unlike loops over a se-

quence of concrete states, this loop makes progress towards the goal. In the following

development, we will measure this progress using role-counts:

Definition 15. (Role-count) The role-count of a role R in a concrete structure C is the

number of elements in C that satisfy R.

Note that precise role-counts can only be computed for concrete structures. Sum-

mary elements in abstract structures obscure their role-counts; in the case of the action

transitions in Fig. 5.1 however, it is possible to compute the precise changes in role-

counts due to each action on its preceding abstract structure. It can also be proved
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that every concrete structure represented by the abstract structures in Fig. 5.1 will un-

dergo the same changes, as annotated near the top of the figure (this is not true in

general for action application on abstract states). Further, the condition determining

whether or not the branch exiting the loop is taken can be determined, and depends

on a role-count.

Suppose n0
1 denotes the role-count of {object, atL1} for a concrete structure embed-

dable in S1. The role-count change annotations near the top of Fig. 5.1 indicate that n0
1

will drop by one in every iteration of the loop. Therefore, we can determine that the

branch exiting the loop will be taken after exactly n0
1− 1 iterations. This means that

1. The goal is provably reachable from any of the infinitely many structures repre-

sented by S1.

2. Given a structure s ∈ S1 the number of steps required to reach the goal following

the given loop can be easily determined.

In any domain representation constructed using just unary predicates if action ar-

guments are drawn out prior to action application (sec. 3.4.3), it is possible to carry

out this method of analysis to determine facts like (1) and (2) above for a generalized

plan with any number of simple loops. In the remainder of this section we provide the

details for a generalization of this technique to a broader class of domains.

5.2 FC3 Conditions

The most important properties of the simplified transport domain that made it pos-

sible for us to determine preconditions over sequences and loops of actions are:

1. When an action has multiple abstract structures as outcomes, role-counts in the

initial structure determine which branch will be taken.

2. Given a pair (S, a) where the arguments for a are instantiated by constants in

the abstract structure S, the changes in role counts of every concrete structure
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represented by S due to a are the same! This enables us to represent precisely

the changes in role-counts caused by an action on an abstract structure.

Note that combining 2 with 1 above brings us close to the abacus program formu-

lation; a precise relationship will be presented in the form of Lemma 2 and Theorem 7.

In order to extend this idea to domains with binary relations, we will need some

restrictions on these relations in order to make the results of focus operations categoriz-

able in terms of role counts. Formally, we want certain relations to be focus-classifiable

with respect to a chosen language, i.e, properties expressed using this language should

be sufficient to determine what the result of a given focus operation will be, on a given

abstract structure. In this thesis, we use the language ER consisting of conjunctions of

inequalities between constants and the counts of elements of roles coming from a set

of roles R . A generalization to more expressive languages is left for future work.

Focus-classifiability will allow us to categorize branches caused due to the focus

operation in terms of simple inequalities, as in the case of the first action in Fig. 5.1.

Definition 16. (Focus Classifiability w.r.t. R) A focus operation fF on a structure S

satisfies focus classifiability w.r.t. R if for every Si ∈ fF(S) it is possible to compute a

constraint l j ∈ ER such that for every C ∈ γ(S), C ∈ γ(Si) iff C |= l j.

Given focus classifiability, we need the ability to back-propagate constraints l ∈ ER

through actions in order to express the conditions on an abstract structure under

which an action branch occurring after multiple intermediate actions will be taken. We

achieve this by formalizing property (2) of the simplified transport domain: we want

actions to show constant change w.r.t. the set of rolesR required for focus-classifiability.

Definition 17. (Constant Change) An action transition S1

fFa−→ S i
1

τa−→ S i
2

b−→ S2 shows

constant change w.r.t. a set of roles R iff there exists a constant δ j for each R j ∈ R such

that whenever C1 ∈ γ(S i
1), C2 ∈ γ(S i

2) and C1
a−→ C2, we have #R j

(C2) = #R j
(C1) +δ j.
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With constant change and focus classifiability, we can compute preconditions for

linear sequences of actions.

Definition 18. (FC3 Domains) Let S be a set of abstract states closed under transitions

for actions from a set A (i.e., if Si ∈ S and Si
a1−→ · · ·

ak−→ S f with a1, . . . , ak ∈ A , then

S f ∈ S ). S is an FC3 domain1 w.r.t. ER and A iff for every S1 ∈ S and transition

S1

fFa−→ S i
1

τa−→ S i
2

b−→ S2 where a ∈ A , the focus operation satisfies focus classifiability, and

the transition itself shows constant change w.r.t. R .

The set of actions A for an FC3 domain is omitted when understood. We now

prove that preconditions for reaching a particular abstract structure through a linear

sequence of actions can be found in FC3 domains. For convenience, we use the notation

S|l to denote the refinement of S such that γ(S|l) = {C : C ∈ γ(S)∧ C |= l}.

Lemma 1. (Precondition for a single action) Suppose S1

fFa−→ S i
1

τa−→ S i
2

b−→ S2 in an FC3

domain w.r.t. ER . Then for every l2 ∈ ER there is an l1 ∈ ER such that for all C1 ∈ γ(S1),

C1 ∈ γ(S1|l1) iff upa(C1) ∈ γ(S2|l2).

Proof. Since action fFa
satisfies focus classifiability, there is a constraint li such that

C ∈ γ(S1|li) iff C ∈ γ(S i
1). We therefore need to compose li with a constraint for

reaching S i
2|l2 to obtain l1. This can be done by rewriting l2’s inequalities in terms of

counts in S1 since counts don’t change during the focus operation from S1 to S i
1.

More precisely, suppose #R j
(S i

2) = #R j
(S1) + δ j. Then we obtain the corresponding

inequalities for S1 by substituting #R j
(S1) + δ j for #R j

(S i
2) in all inequalities of l2. Let

us call the resulting set of inequalities l i
1. Because action a shows constant change l i

1 is

satisfied by a C1 ∈ γ(S i
1) iff τa(C1) satisfies l2. The conjunction of l i

1 and li thus gives

us the desired constraint l1.

This method can be inductively extended to linear sequences of transitions:

1FC3 stands for “focus-classifiability and constant change”

72



Theorem 4. (Preconditions for a linear sequence of structures and actions) Suppose

we have a sequence of actions a1, a2, . . . , an such that S1

fFa1−→ S i
1

upa1−−→ S i
2

b−→ S2 · · ·
b−→

Sn

fFan−→ S i
n

upan−−→ S i
n+1

b−→ Sn+1, in an FC3 domain. Then we can find a constraint lini t ial

on S1 such that a member C ∈ γ(S1) reaches Sn+1|l f inal
along this path of transitions iff

C ∈ γ(S1|lini t ial
).

Theorem 4 mirrors Prop. 1 on page 49 for linear segments of abacus programs. FC3

domains however, differ from abacus programs along one key aspect: action effects can

be classified in terms of comparison with any constant in FC3 domains as opposed to

abacus domains where comparisons are only conducted with a fixed constant (zero).

In spite of this, the approach developed for finding preconditions of simple loops of

abacus programs can be applied to any FC3 domain. In the case of simple loops with

shortcuts however, the approach we developed for abacus programs requires that all

comparisons be made with a unique constant.

The next section serves two purposes. First, it identifies some sufficient conditions

under which canonical abstraction produces FC3 domains. Second, these conditions

enforce the restriction that different action outcomes be categorized in terms of com-

parisons between role-counts and a single constant (one).

5.3 Extended-LL Domains: Sufficient Conditions for Obtaining FC3

Domains

In the previous section we developed a set of requirements on abstract state spaces

under which we will be able to find preconditions of plans with simple loops. We

now provide a set of sufficient conditions on abstract states and the syntax of action

operations under which the FC3 conditions are satisfied. In domains satisfying these

conditions, constraints determining focus branches and role-count change vectors due

to actions can be computed in time linear in the number of elements in the initial

abstract structure.
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We call a formula φ with a single free variable role-specific if it can only hold for ob-

jects of a certain specific role in a given structure. In other words, φ is role-specific in S

iff there exists a role R such that for all C ∈ γ(S)we have C |= ∀x(φ(x)→ R(x)), where

we use R(x) as an abbreviation for the conjunction of predicates in R together with lit-

erals denoting negations of abstraction predicates not in R. The following proposition

gives sufficient conditions for focus-classifiability. We call a formula “uniquely satisfi-

able” if it must hold for exactly one element.

Proposition 7. (Sufficient conditions for focus-classifiability) Ifψ is uniquely satisfiable

in all C ∈ γ(S) and role-specific in S then the focus operation fψ on S satisfies focus

classifiability w.r.t ER . Further, in this case the constraints used for classifying the focus

branches are inequalities between role-counts and 1.

Proof. Since the focus formula must hold for exactly one element of a certain role, the

only branching possible is that caused due to different numbers of elements satisfying

the role while not satisfying the focus formula: either there is only one element of the

role, and it satisfies the focus formula, or there are more than one elements of that role

and one of them satisfies the focus formula (see Fig. 3.3). The branch is thus classifiable

on the basis of the number of elements in the role (= 1 or > 1).

Note that if a focus formula is unsatisfiable in all C ∈ γ(S), then the focus operation

will have only one outcome, and branch classification will not be required. We can

immediately extend Prop. 7 to a set of role-specific and uniquely satisfiable formulas as

long as any pair of these formulas either always, or never coincide:

Corollary 1. If Φ is a set of uniquely satisfiable and role-specific formulas for S such that

any pair of formulas in Φ is either mutually exclusive or mutually equivalent, then the

focus operation fΦ on S satisfies focus classifiability.

The condition of unique satisfiability on the focus formulas for actions (the ∆±

expressions) used in Prop. 7 and Corollary 1 also gives us actions with constant change:
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Proposition 8. (Sufficient conditions for constant change) Let a be an action whose

predicate update formulas take the form shown in Eq. 3.1. Action a shows constant change

if for every abstraction predicate pi, all the expressions ∆+i ,∆−i are at most uniquely

satisfiable.

Proof. Suppose S1

fFa−→ S i
1

τa−→ S i
2

b−→ S2; C1 ∈ γ(S i
1) and C1

τa−→ C2 ∈ γ(S i
2).

For constant change we need to show that #Ri
(C2) = #Ri

(C1) +δ where δ is a con-

stant. Recall that a role is a set of abstraction predicates. Furthermore, because the

set of focus formulas fFa
consists of pairs of formulas ∆+i and ∆−i for every abstraction

predicate, and these formulas are at most uniquely satisfiable, each abstraction pred-

icate changes on at most 2 elements. The focused structure S i
1 shows exactly which

elements undergo change, and the roles that they leave or will enter.

Therefore, since C1 is embeddable in S i
1 and embeddings are surjective, the number

of elements leaving or entering a role in C1 is the number of those singletons which

enter or leave it in S i
1. Hence, this number is the same for every C1 ∈ γ(S i

1), and is a

constant determined by S i
1.

Since the required conditions in Prop. 8 are subsumed by those in Corollary 1,

Corollary 1 provides sufficient conditions under which a focus operation on an abstract

structure satisfies the FC3 conditions of focus classifiability and constant change.

Therefore, if every abstract structure reachable from a given abstract structure Sinit

satisfies the conditions of Corollary 1 for every action possible on it, the space of reach-

able structures from Sinit will constitute an FC3 domain.

We call domains that satisfy Corollary 1 as extended-LL domain because of their

close relationship with linked lists in the abstraction.

Definition 19. (Extended-LL domains) An extended-LL domain is a domain schema D

with a start structure Sstart such that all its actions’ focus formulas Fai
are role-specific,
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exclusive when not equivalent, and uniquely satisfiable in every structure reachable from

a start structure Sstart.

More formally, if Sstart →∗ S and ∆±i are the action specific focus formulas, then

∀i, j,∀e, e′ ∈ {+,−} we have ∆e
i role-specific and either ∆e

i ≡ ∆
e′
j or ∆e

i =⇒ ¬∆e′
j

in S.

Note that if actions can be decomposed so that each action operator has only one

focus formula, the restriction of “exclusive when not equivalent" in Definition 19 be-

comes vacuously true.

Intuitively, extended-LL domain-schemas are those where the information captured

by roles is sufficient to determine whether or not an object of any role will undergo

change due to an action. Examples of such domains are linked lists, blocks-world sce-

narios, assembly domains where different objects can be constructed from constituent

objects of different roles, and transport domains.

In general, domains can be proved to be extended-LL domains by inductively prov-

ing the properties in Definition 19 for all the structures reachable from a given start

structure. In practice, this can be proved more easily. In the delivery domain for

instance, the only focus operations correspond to choice operations (which satisfy the

extended-LL conditions: the choice formulas are defined to be unique and role-specific)

and the focus operation for crate destinations, which are also role-specific to the role

loc and constrained to be unique.

Theorem 5. (Sufficient conditions for FC3 domains: extended-LL domains) The space

of all reachable states in an extended-LL domain constitutes an FC3 domain.

5.3.1 Complexity of Finding Preconditions in Extended-LL Domains

Algorithm 2 shows a simple and efficient algorithm for computing the role-count

changes due to an action on an abstract structure in an extended-LL domain. While

computing count, summary elements are counted as singletons. Changes computed
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in this way are accurate because in extended-LL domains, only singleton elements can

change roles. The algorithm conducts O(s) operations, where s is the number of distinct

roles in the two structures.

Algorithm 2: ComputeSingleStepChanges

Input: Action transition S1

fFa−→ S i
1

τa−→ S i
2

b−→ S2

Output: Role-change vector ∆
R← roles in S i

1 or S i
21

for r ∈ R do
countold(r)= No. of elements with role r in |S i

1|2

countnew(r)= No. of elements with role r in |S i
2|3

∆r = countnew(r)− countold(r)4

end

Conditions classifying branches from a structure S can also be computed efficiently

in extended-LL domains: we know all action branches take place as a result of the

focus operation. The role(s) responsible for the branch will have different numbers

of elements in the focused structures prior to action update. Using a straightforward

comparison of role counts, the responsible role and its counts (> 1 or = 1) for different

branches can be found in O(s) operations where s is the number of roles in S.

Using the algorithm for computing one step change vectors ∆i (Algorithm 2), the

constraints l0(k) representing preconditions of loops of transitions (Prop. 2) can be

computed in O(s · n) time, where s is the maximum number of roles in a structure in

the loop, and n is the number of actions in the loop.

5.4 Classical Unary Domains

We can now see the motivating example shown in Fig. 5.1 as a special case of

extended-LL domains where all the predicates in the vocabulary are unary. We define

classical unary domains as domain-schemas with only unary predicates whose action

updates can be represented using finite, but possibly conditional add and delete lists of

properties.
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More precisely, the action updates in classical unary domains are of the form:

up(p(x), a) ≡ ¬p(x)∧ [∨i=1..n{x = ar gi} ∧∆+(x)] (5.1)

∨ p(x)∧¬[∨i=1..n{x = ar gi} ∧∆−(x)] (5.2)

This form of action updates restricts an action’s effects to a finite set of action argu-

ments. Such restrictions are common in classical planning problem descriptions where

all the objects whose properties may be changed as a result of an action need to be

provided as action arguments (hence the qualifier “classical” in the name for these

domains).

Under canonical abstraction, such domains lose almost no information. Since we al-

ways draw-out action arguments prior to action application in the abstract state space,

the update carried out by Eqs. (5.1) and (5.2) always shows constant change in the

abstract state space (the reasons are similar to those in Prop. 8). Action updates in

classical unary domains require no focus operations - every formula evaluates to def-

inite truth values since all the unary predicates are abstraction predicates. The only

branches are caused due to the operations for drawing out action arguments. These

operations use focus formulas constrained to be role-specific and uniquely satisfiable,

and thus satisfy focus-classifiability (Prop. 7). This leads to the following theorem:

Theorem 6. (Classical unary domains are extended-LL domains) All classical unary do-

mains are extended-LL domains, and consequently, result in FC3 domains under canonical

abstraction.

Many interesting problems can be translated into classical unary domains by creat-

ing an instance for every relation of arity k with all possible values for the other k− 1

arguments: in the simplified transport domain introduced earlier in this section we

constructed unary relations at Li corresponding to the different possible locations. This

process is similar to propositionalizing the relations, where the resulting vocabulary
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would have had a constant, (instead of a unary relation) for every relation and tuple

of arity k (instead of tuples of arity k− 1).

The limitation of this approach is that it does not allow generalization in the num-

bers of arguments which have been converted into relation instances (e.g. the loca-

tions in the transport example). Extended-LL domains are thus a strict generalization

of classical unary domains, allowing us to represent problem domains like the deliv-

ery problem and blocks-world problems as described in Section 5.6 on page 83 and

Section 6.1.3 on page 96.

5.5 Extended-LL Domains and Abacus Programs

We can now complete the development of methods for finding preconditions of

plans with loops. Intuitively, generalized plans with extended-LL domain actions cor-

respond to abacus programs with the same topological structure, permitting a direct

application of the methods developed in the previous chapter.

5.5.1 Translation From Plans to Abacus Programs

We begin with a lemma establishing the relationship between extended-LL actions

and abacus programs.

Lemma 2. Let S1
a1−→ S2 be an action operation in an extended-LL domain, where S2

represents only one of the possible results of a focus operation conducted as a part of a1.

For all s1 ∈ γ(S1), the effect of this operation on role-counts in s1 can be represented

as a linear abacus program Πa whose registers represent role-counts in s1. In other words,

there is an abacus program Πa such that for all s1 ∈ γ(S1), a1(s1) ∈ γ(S2) iff the final

node of Πa is reachable starting with the initial role-counts (register values) of s1.

Proof. The desired program Πa will have a register for every role with an element in

S1 or S2. The changes in role-counts due to any action a on an abstract structure S0 in
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R−−

=0

R++> 0
R−−

(not possible)

? 0

Figure 5.2: Linear abacus program segment for a decrementing action in an extended-
LL domain.

an extended-LL domain can be listed as a set of increments: {(R+1 , c1), . . . (R+k , ck)} and

a set of roles decremented by 1 {R−1 , . . . R−m}.

Starting with an initial state-node for Πa labeled S0, we first add sequences of ci

abacus action nodes for each role Ri that needs to be incremented, with new interme-

diate state-nodes. Let the final state-node obtained after this operation be nsI .

We then need to add abacus operations simulating role decrements. First, for each

decrement to be conducted we identify the branch (R−i > 1 or R−i = 1) that was taken

in the given action operation. This is possible because of the extended-LL domain as-

sumption. Starting at nsI , we add sequences of abacus operations corresponding to

each decrement operation. Since abacus actions can only conduct comparisons with

zero, each of these sequences consists of the following 3 actions as shown in the figure

below: one decrement operation for the role, an extra decrement to conduct a com-

parison with zero instead of with 1, and finally, an increment operation to reverse the

extra decrement (see Fig. 5.2).

Here, the comparison operation after the second decrement is the operation iden-

tified in the given extended-LL action. Chaining such role-decrementing sequences of

operations one after the other, starting at nsI gives us a linear abacus program; we

set the unique halting state of this program to be the last state in the sequence. By

construction, the role-counts of a state s1 ∈ γ(S1) will lead to the halting state in Πa iff

the branch condition for S1
a1−→ S2 are satisfied.
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A plan with extended-LL domain actions can therefore be converted into an abacus

program without changing its structural complexity (its loop structure). This is for-

malized in the following result, where we assume, without loss of generality, that the

initial node of a generalized plan represents a null action.

Theorem 7. Let Π be a graph-based generalized plan whose edges are labeled with ab-

stract structures and every segment in the graph of the form
Si−→ ak

S j
−→ represents the

transition Si
ak−→ S j in an extended-LL domain with sensing actions. There exists an abacus

program Πa with the same loop structure as Π, such that any node n in Π is reachable

from an initial state si iff a corresponding node na is reachable in Πa starting with the

initial register valuation corresponding to si ’s role-counts.

Proof. Consider the dual representation of ΠD where structures label nodes and actions

label edges. The overall idea is to construct Πa by converting each transition from ΠD

into a linear abacus program segment as in Lemma 2.

In case a structure node has multiple outgoing edges, there are two possible cases:

1. There are only two outgoing edges, labeled with the same action, and these

branches are role-count classifiable. In this case, we use the same initial decre-

menting segment (the first decrementing operation in Fig. 5.2) while converting

the two transitions into an abacus program with a branch.

2. The outgoing transitions are not role-count classifiable and stem from a sensing

action. In this case, we use the NSet action to obtain a non-deterministic abacus

program.

The halting state of each such transition’s abacus program segment becomes the

initial state for subsequent transitions; the halt state of the abacus program can be

treated as any node with out-degree zero.
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Equivalence of reachability follows by an inductive proof of equivalence of path

existence between a pair of nodes in Π and the corresponding nodes in Πa, using

Lemma 2 as the base case.

Note: The second construction in this proof, which uses the NSet actions can also

be used to translate non-deterministic generalized plans with nodes having overlapping

outgoing-edge conditions into non-deterministic abacus programs.

In the rest of this thesis, we will only consider generalized plans which satisfy the

requirements of Theorem 7. In this way, the union of structures labelling the outgoing

edges from the initial, null-action node of a generalized plan represents the set of

possible initial states on which the plan can be executed. Theorem 7 allows us to use

the methods for computing preconditions of abacus programs in the previous chapter

for finding preconditions of generalized plans in extended-LL domains.

5.5.2 Translation From Abacus Programs to Plans

A similar structure preserving translation can be used to translate abacus actions

into sequences of extended-LL domain actions which use roles as registers. Note that

in extended-LL domains, an action which increases a role-count also necessarily decre-

ments some other role-count. Therefore, in order to simulate abacus actions that in-

crement a register without a corresponding decrement, we add an extra role R∞ from

which all the action simulating increments can delete objects. Comparisons R∞ > 0 are

assumed to always succeed. Thus, we have:

Lemma 3. Linear segments of abacus programs can be simulated by linear segments of

programs in extended-LL domains and vice versa.

Corollary 2. Plans with extended-LL domain actions can simulate abacus programs with-

out increasing the loop complexity and vice versa.

Note however, that plans in extended-LL domains tend to be more compact since a

single action can update many role-counts, with increments larger than 1.
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Theorem 8. Plans with extended-LL domain actions are Turing complete.

Extended-LL domains thus represent a powerful class of planning domains. Their

action operations, however, are fundamentally simple and can be analyzed along the

lines developed in the previous sections.

The next section shows a range of problems which can be represented in extended-

LL domains, and whose actions can be treated as abacus actions. As a result, precondi-

tions and termination guarantees of a wide range of plans with loops in these domains

can be computed very efficiently. We also demonstrate our approach on plans with

complex loops created by non-deterministic sensing actions.

5.6 Example Plans and Preconditions

We implemented the algorithm for constructing preconditions for simple loops and

order independent nested loops due to shortcuts, and applied it to various plans with

loops that have been discussed in the literature.

In all of these plans, the changes in every possible execution of the simple loop

with shortcuts on every role-count (or register) are all in the same direction. Using the

notation of Eqs. (4.1-4.4), δx , or the partial negative change for a register in loopx is

never more than ∆loopx
j for all loops. Therefore, Eqs. 4.1, 4.2, and the conditions la-

beled Sufficient (1) and (2) on page 55 are necessary and sufficient (see the discussion

following Eqs. (4.3 & 4.4)). The precondition computation algorithm constructs these

equations by symbolically evaluating each constraint using the loop change vectors ∆.

These vectors in turn are calculated using methods discussed in Section 5.3.1.

Existing approaches solve different subsets of these problems, but almost uniformly

without computing plan preconditions or termination guarantees. For nested loops, our

implementation takes a node in a strongly connected component as an input and com-

putes an appropriate start node. It then decomposes the component into independent

simple loops and computes the preconditions.
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Stop

#(se
rve

r,a
tD
1)=0

move(T2, D3); unload(T2); move(T2,L);move(T2,D2)

#(monitor,atD2)>0

#(server,atD1)>0

load(s, T1: server(s) & atD1(s))

move(T1, L)

unload(T1)

move(T1,D1)

move(T2,L)

load(m, T2: monitor(m)& atD2(m))

load(s, T2:server(s) & atL(s))

Figure 5.3: Solution plan for the transport problem

The evaluation in this section focuses on our approach for computing preconditions

of plans in abacus program representations; we present detailed representations of

these problems and approaches for computing these generalized plans in the following

chapters. Table 5.1 shows timing results for computing preconditions for 10 different

plans.

Plan Representation Figs. 5.3, 5.4, and 5.5 show solution plans for some of the test

problems. The default flow of control continues line by line (semi-colons are used as

line-breaks). Edges are shown when an action may have multiple outcomes and are

labeled with the conditions that must hold prior to action application for that edge to

be taken (as with abacus programs). Only the edges required by the plan are drawn;

the preconditions must ensure that these edges are always taken. For clarity, in some

cases we label only one of the outcomes of an action, and the others are assumed to

have the complement of that label. Actions are written as “ActionName(args:argument-

formula(args))". Any object satisfying an action’s argument formula may be chosen for

executing the plan. The desired halt states are indicated with the action “Stop".

Transport In the transport problem (Srivastava, Immerman, and Zilberstein, 2008)

two trucks have to deliver sets of packages through a “Y"-shaped map (shown in
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Fig. 6.5 on page 100 together with the representational details for computing a gen-

eralized plan for this problem). Locations D1, D2 and D3 are present at the three

terminal points of the Y; location L is at the intersection of its prongs. Initially, an un-

known number of servers and monitors are present at D1 and D2 respectively; trucks

T1 (capacity 1) and T2 (capacity 2) are also at D1 and D2 respectively. The goal is to

deliver all objects to D3, but only in pairs with one of each kind.

The problem is modeled using the predicates {server, monitor, atDi, inTi, atL, T1,

T2}. As discussed in the previous section, role-counts in this representation can be

treated as register values and actions as abacus actions on these roles. The plan shown

in Fig. 5.3 first moves a server from D1 to L using T1. T2 picks up a monitor at D2,

moves to L, picks up the server left by T1 and transports both to D3. The first action,

load, uses as its arguments an object s (satisfying server(s)∧atD1(s)), and the constant

T1 representing the truck T1. It decrements the count of the role {server, atD1} and

consequently has two outcomes depending on its value. Note that the second load

action in the plan also has two outcomes, but only the one used in the plan is shown.

In order to reach the Stop state with the goal condition, we require that final values

of s1 =#{server, atD1} and m2 =#{monitor, atD2} be zero. Let s3=#{server, atD3}

and m3=#{monitor, atD3}. The changes caused due to one iteration of the loop are

+1 for m3, s3 and −1 for s1, m1. Using the method developed in Prop 2, the necessary

and sufficient condition for reaching the goal after l iterations of the loop is that there

should be equal numbers of objects of both types initially: m0
2 = l = s0

1.

Transport Conditional We made the transport problem conditional by introducing

two non-deterministic aspects: objects left at L may get lost, and servers may be heavy,

in which case the simple load action drops them and the forkLift action has to be

used. Fig. 5.4 shows a plan solving this version of the problem. Extra branches have

been added to the skeletal plan seen in Fig. 5.4 for handling non-deterministic action

outcomes. The modified plan uses forkLift actions when needed; if a server is not
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move(T2, D3)

unload(T2); move(T2,L); move(T2,D2)

move(T2, D1)

move(T2,L)

move(T2,L)

server lost

load(m, T2: monitor(m)& atD2(m))

#(monitor,atD2)=0

load(s,T2: server(s)& atD1(s))

load(s, T2:server(s) & atL(s))

move(T1, L); unload(T1); move(T1,D1)

forkLift(s, T2)

heavy
forkLift(s, T2)

forkLift(s, T1)heavy

load(s, T1: server(s) & atD1(s)) Stop
#(server,atD1)=0

heavy

Figure 5.4: Solution plan for the conditional version of transport

found when T2 reaches L, the plan proceeds by moving T2 to D1, loading a server, and

then proceeding to D3. Note that the shortcut for the “server lost" has a sub-branch,

corresponding to the server being heavy. The plan can be decomposed into 8 simple

loops. Of these, 4, which use the “server lost" branch use one extra server (loops

0,5, 6 and 7 in the inequality below). Let role-counts s2, m2, s3, m3 be as in the previous

problem. Then, the obtained applicability conditions are:

s f
3 = m f

3 =
∑7

i=0 ki

m f
2 = m0

2−
∑7

i=0 ki = 0

s f
1 = s0

1 −
∑7

i=0 ki − k0− k5− k6− k7 = 0

These conditions show that every possible loop decrements the role-counts s and m;

however, in order to have all objects at D3 the conditions now require extra servers to

be kept at D1, amounting to the number of times a server was lost.

Recycling In this problem a recycling agent must inspect a set of bins, and from each

bin, collect paper and glass objects in their respective containers. The plan includes

nested loops due to shortcuts (Fig. 5.5), with the start node at PickObj. senseType is a
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mv(R, b: −empty(b))
#(−empty) = 0

Stop

PickObj(o: in(o,b))

senseType(o)

collect(o,c: forPaper(c)& −full(c)) collect(o,c: forGlass(c)& −full(c))

glasspaper

#(forPaper, −full)>0 #(forGlass, −full)>0

empty(b)

Figure 5.5: Solution plan for the recycling problem

sensing action, and the collect actions decrement the available capacity of each con-

tainer, represented as the role-count of {forX, ¬full} where X is paper or glass. Let e,

fg, fp, p, g denote the role-counts of non-empty bins, glass container capacity, paper

container capacity, paper objects and glass objects respectively. Let l1 denote the num-

ber of iterations of the topmost loop, l2 of the paper loop and l3 of the glass loop. The

applicability conditions are:

e f = e0− l1 = 0, fp f = fp0− l2 ≥ 0, p f = p0+ l2, fg f = fg0− l3 ≥ 0, g f = g0+ l3.

Note that the non-negativity constraints guarantee termination of all the loops.

Accumulator The accumulator problem (Levesque, 2005) consists of two accumula-

tors and two actions: incr_acc(i) increments register i by one and test_acc(), tests if the

given accumulator’s value matches an input k. Given the goal acc(2) = 2k−1 where k

is the input, KPLANNER computes the following plan: incr_acc(1); repeat {incr_acc(1);

incr_acc(2); incr_acc(2)}until test_acc(1); incr_acc(2). Although the plan is correct for

all k ≥ 1, KPLANNER can only determine that it will work for a user-provided range of

values. This problem can be modeled directly using registers for accumulators and as-

serting the goal condition on the final values after l iterations of the loop (even though

there are no decrement operations). We get
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Problem Time (s) Problem Time(s)

Accumulator 0.01 Prize-A(7) 0.02
Corner-A 0.00 Recycling 0.02
Diagonal 0.01 Striped Tower 0.02
Hall-A 0.01 Transport 0.01
Prize-A(5) 0.01 Transport (conditional) 0.06

Table 5.1: Timing results for computing preconditions

acc(1) = l + 1; acc(2) = 2l + 1= 2k− 1.

This implies that l = k− 1≥ 0 iterations are required to reach the goal.

Further Test Problems and Discussion We tested these algorithms with many other

plans with loops. Table 5.1 shows a summary of the timing results. The runs were

conducted on a 2.5GHz AMD dual core system. Problems Hall-A, Prize-A(5) and Prize-

A(7) (Bonet, Palacios, and Geffner, 2009) concern grid world navigation tasks. In

Hall-A the agent must traverse a quadrilateral arrangement of corridors of rooms; the

prize problems require a complete grid traversal of 5× n and 7× n grids, respectively.

Note that at least one of the dimensions in the representation of each of these problems

is taken to be unknown and unbounded. Our implementation computed correct precon-

ditions for plans with simple loops for solving these problems. In Hall-A, for instance,

it correctly determined that the numbers of rooms in each corridor can be arbitrary and

independent of the other corridors. The Diagonal problem is a more general version of

the Corner problem (Bonet, Palacios, and Geffner, 2009) where the agent must start at

an unknown position in a rectangular grid, reach the north-east corner and then reach

the southwest corner by repeatedly moving one step west and one step south. In this

case, our method correctly determines that the grid must be square for the plan to suc-

ceed. In Striped Tower (Srivastava, Immerman, and Zilberstein, 2008), our approach

correctly determines that an equal number of blocks of each color is needed in order to
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mvToTable(b: clear(b) & −onTable(b) & red(b))repeat

mvToTable(b: clear(b) & −onTable(b) & blue(b) )repeat

mv(b, c: blue(b) & onTable(b) & −onTable(c) )

mv(b, c: red(b) & onTable(b) & −onTable(c) )
#(onTable, red)=0

#(onTable, blue)=0

Stop

mv(b, c: base(c) & blue(b) & onTable(b))

until #(clear, −onTable, red)=0

until #(clear, −onTable, blue)=0

(a) Alternating

mvE()repeat

repeat

until dFromE=0

until dFromN=0

mvS()

mvW()

d
F
ro

m
W

>
0 dFromS=0

mvW()

stop

dFromW=0

mvN()

(b) Diagonal

senseSmoke(f: robotAtFlr(f))

mvNextFlr(f)

smoke−smoke

senseHeat(r: robotAtRm(r))

mvNextRm(r)extinguish(r)

heat −heat

#(−visited,room,onCurFloor)=0

Stop−NoFire

#
(−

v
isite

d
,flo

o
r)=

0

(c) Fire Fighting

mvW()repeat

repeat mvN()

repeat mvE()

repeat mvS()

until dFromE=0

until dFromN=0

until dFromW=0

until dFromS=0

(d) Hall-A

Figure 5.6: Generalized Plans for Test Problems
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create a tower of blocks of alternating colors. In all the problems, termination of loops

is guaranteed by non-negativity constraints such as those presented above.

5.7 Discussion

This chapter completes our development of methods for analyzing plans with loops

by translating them into abacus programs. Results show that the algorithms developed

are very efficient for extended-LL domains. The primary function of extended-LL do-

mains is to capture representations where action branches on abstract states can be

classified in terms of role-counts. The methods discussed in this and the previous chap-

ter can however be applied more generally. In particular, action branches that cannot

be classified in terms of role-counts can be considered to be non-deterministic from

the point of view of precondition computation. The computed preconditions for the

resulting plans may not be accurate (sufficient but not necessary), but may still pro-

vide useful information such as a guarantee of termination or an upper bound on the

number of iterations until termination.

Identifying broader classes of applicability of these methods is a natural direction

for future work. In particular, these methods can be applied in any situation where

changes in certain quantities are sufficient to determine when a loop of actions will

terminate. The idea of using role counts can be extended to the numbers of elements

satisfying more general properties. These properties could be constructed using meth-

ods from description logic. Another direction for future work is to combine these meth-

ods with approaches for symbolic computation of preconditions of action sequences

(Sanner and Boutilier, 2009).
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CHAPTER 6

GENERALIZING SAMPLE PLANS

This chapter describes algorithms for generalizing sample plans using state abstrac-

tion. We first discuss an approach for generalizing a single concrete plan by adding

choice actions and identifying loops in Section 6.1. In most generalized planning prob-

lems however, a single plan cannot visit and solve all the possible problem situations,

even in the abstracted state space. However, merging plans with loops becomes difficult

because each iteration of a loop may result in different states, with different paths to

the goal. Section 6.2 presents an approach for addressing this problem using abstract

representations of intermediate states in a loop of actions.

6.1 Generalizing a Single Plan

We present our approach for computing a generalized plan from a plan that works

for a single problem instance in Algorithm 3. A preliminary version of this algorithm

was described in (Srivastava, Immerman, and Zilberstein, 2008). The input to Alg. 3

is a concrete example plan π = (a1, a2, . . . , an) for a concrete state C0. Let S0 be an

abstract structure embedding C0. In order to be able to find preconditions, S0 should be

such that the space of structures reachable from it constitutes an extended-LL domain.

In our experience, the canonical abstraction of C0 suffices; if the space of reachable

structures is not extended-LL, loops can still be found, but the procedure for finding

preconditions may encounter a branch which is not focus classifiable, and therefore

yield only necessary, but not sufficient preconditions.
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Algorithm 3: ARANDA-Learn
Input: π= (a1, . . . , an): plan for C0

Output: Generalized plan Π
SASequence← Trace(C0,π)1

loopSet← formLoops(SASequence)2

Π← createGraph(SASequence, loopSet)3

S f ← last structure in SASequence4

lΠ← findPrecon(S0,Π,ϕg)5

return Πr , lΠ6

The idea behind Alg. 3 is to apply a given concrete plan in the abstract state space,

starting with an abstract start state (line 1). Because of abstraction, recurring proper-

ties become easily identifiable as repeating abstract states. Procedure formLoops uses

these recurring identical structures to identify potential loops (line 2). formLoops re-

turns a data structure representing all the loop positions and lengths; this is converted

in a straightforward manner to a graph representation with nodes and edges by the

subroutine createGraph (line 3).

If there is a constraint on the final abstract structure under which the goal formula

is satisfied, then this is back propagated into a constraint on the initial structure in Π

using methods described in Chapters 4 and 5. This is implemented in the findPrecon

subroutine (line 5).

The methodology for findPrecon was discussed in Chapters 4 and 5. We now pro-

vide a description of the subroutines Trace (listed on pg. 93) and formLoops (listed on

pg. 94).

6.1.1 Tracing

Procedure Trace takes as input, a concrete plan π and a concrete structure C0 and

returns a trace, or a sequence of abstract structures and actions (SASequence). In or-

der to do so it first generalizes the choice actions in π (line 2). The generalized choice

action selecting action ai ’s kth argument is specified using a formula capturing exactly

the role of the element ok chosen by the original choice action, in the preceding con-
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Procedure Trace(C0,π)

S0← canon(C0)1

(a1, . . . , anc
)← GeneralizeChoiceActions(π)2

for i in [1, . . . , nc] do3

Ci ← ai(Ci−1)4

AbsStrucSet← ai(Si−1)5

for S in AbsStrucSet do6

if Ci v S then
Si ← S7

end
end

end
return SASequence← (S0, a1), (S1, a2), . . . (Snc−1, anc−1), Snc

8

crete state, Ci−1. The choice action is constructed as discussed in Section 3.4.3. The

resulting sequence of actions is successively applied on concrete and abstract states,

starting with C0 and its canonical abstraction, S0 (lines 3,4,5). After each action’s ap-

plication, the set of abstract structures obtained is traversed while searching for the

one that embeds the corresponding concrete result (line 7). Since action updates on

abstract structures capture all possible results, and the results of the focus operation

are mutually inconsistent, exactly one such abstract structure will be found. This ab-

stract structure becomes the next abstract structure in the trace, and the one on which

the next action operator will be applied. Once all actions have been applied and all

the abstract structures capturing the observed concrete results at each step have been

obtained, a sequence of (abstract state, action) tuples is returned.

6.1.2 Identifying Loops

The formLoops subroutine converts a sequence of structures and actions into a path

with simple (i.e, non-nested) loops. The restriction to simple loops is imposed so that

we can efficiently find plan-preconditions. More precisely, it returns a set of tuples

consisting of the loopStart, loopEnd and loopExit indices in the input SASequence

(computed by Trace). The loopStart and loopEnd indices of a loop capture the seg-
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Procedure formLoops(SASequence, loopSet = {})
/* SASequence=(S0, a1), (S1, a2), . . . (Snc−1, anc−1), Snc

*/

for sa in SASequence do1

Last[sa]←−1
end
loopFound← False2

for sa in SASequence do3

if Last[sa] >−1 and safeLoop((Last[sa], indexInSASequence(sa))) then
loopStart← Last[sa]4

loopEnd← indexInSASequence(sa)5

loopFound← True6

break /* exit the loop */7

end
else

Last[sa]← indexInSASequence(sa)8

end
end
if loopFound then

/* Extend the loop by capturing any subsequent iterations
*/

i← loopEnd; loopLength← loopEnd − loopStart9

while SASequence[i] = SASequence[loopStart +10

(i-loopEnd)mod(loopLength)] do
i← i+ 111

end
loopExit← i− 112

loopSet← loopSet∪ {(loopStart, loopEnd, loopExit)}13

SASequence← segment of SASequence after LoopExit14

return formLoops(SASequence, loopSet)15

end
return loopSet16
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ment of SASequence that forms the loop; the loopExit index denotes the last element

of SASequence which can be rolled into an iteration of this loop.

formLoops makes a single pass over the input sequence of abstract-state and instan-

tiated action pairs while maintaining a look-up table, Last, for the last index where a

particular (state, action) pair occurred. If the kth element of SASequence matches its

j th element ( j < k), then the index j is taken as the beginning of a loop (loopStart)

and index k as its end (loopEnd). Such a repeated pair (S j−1, a j) = (Sk−1, ak) indicates

that some properties that held in the concrete state after application of a j−1 were true

again after application of ak−1 as witnessed by the fact that Sk−1 = S j−1, and further,

that in the example plan, the same action a j = ak was applied at this stage. This is

our fundamental cue for identifying an unrolled loop – as long as an identical abstract

state can be reached again, the same actions can be applied. The subroutine safeLoop

returns True iff the loop makes a net non-zero change, determined using methods from

chapters 4 and 5.

The elements between positions loopStart and loopEnd in SASequence constitute a

single loop iteration. Once these positions are identified, further iterations of the loop

are identified (lines 9-13). In order to do so, elements following SASequence[loopEnd]

are matched with the corresponding elements in the newly identified loop, following

SASequence[loopStart]. The mod operation (line 10) is used to roll back to the be-

ginning of the loop in case multiple iterations occur after the loop is identified. The

index after which elements of SASequence do not match the elements of the loop is

identified as the loop’s exit (line 12). Finally, the newly identified loop, characterized

as (loopStart, loopEnd, loopExit) is added to the set of loops provided as input. The

entire procedure then recurses on the segment of SASequence after loopExit.

Example 6. Consider the transport problem discussed in Section 5.1. Fig. 6.1 shows a

concrete plan execution on this problem. By adding a choice action before the first load

operation, and tracing out the plan on the canonical abstraction of the initial structure
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loadT(o1)

unloadT()

Figure 6.1: An example plan in the transport domain.

we get exactly the path shown in Fig. 5.1. The included loop can be identified using form-

Loops, as described above.

6.1.3 Implementation and Results

We implemented a prototype for ARANDA-Learn in Python, using TVLA as an en-

gine for computing action results. We ran the prototype on some problems derived

from classical planning benchmarks. We summarize the problems and the results be-

low. In each of these problems, the class of initial instances was represented using

a three-valued structure. Table 6.1 (pg. 109) shows a comprehensive summary of the

preconditions for the generalized plans found for these problems, and the start struc-

tures on which they apply. The li variables in this table correspond to the number of

iterations of the i th loop in the generalized plan, where the numbering begins from

the terminal node. Timing results for different phases of plan generalization, and for

precondition evaluation are shown in Table 6.2 (pg. 110).

Each of the generalized plans described in this section can also be found directly by

the plan synthesis approach (ARANDA-Synth) discussed in Chapter 7. In fact, ARANDA-
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Synth can find complete generalized plans for these problems by finding the extra

branches required to cover the smaller problem instances missed by the generalizations

presented below.

Note on Problem Domains The first three problems described below are representa-

tive of many similar problems in the transport and blocks world domains. The Hall-A,

Corner-A, Prize-A and GreenBlock problems are from work by Bonet, Palacios, and

Geffner (2009), who designed these problems in a partially observable framework

where observations are automatically triggered when the real states generating them

are reached. This formulation thus does not require sensing actions. Although this is a

very different formulation from ours, the problems remain meaningful and interesting

in our setting as well. In most cases, the abstraction we used to represent the multiple

possible initial states corresponded with the belief states used by Bonet et al. to reflect

partial observability. In general, their solutions are much more compact than ours - this

is expected, as we restrict our implementation to find only simple loops.

Delivery

We implemented the non-deterministic version of the delivery problem with a sens-

ing action findDest for one truck. The action and vocabulary for this problem were

defined in Section 3.1 on page 26 and the non-deterministic, sensing aspects were de-

scribed in Section 3.5 on page 43. Because of the restriction to a single truck, the

Move and Load actions requires only one argument representing the destination and

the crate to be loaded respectively; the Unload action does not require arguments,

and the predicate in becomes unary and holds for the object currently in the truck.

The input example plan delivered five objects to two different locations. The abstract

start structure is shown in Fig. 6.2. ARANDA-Learn found the generalized plan shown in

Fig. 6.3. Since the delivery domain is an extended-LL domain, we can use the methods

described in Chapter 5 to compute the preconditions for this plan as #(item) ≥ 3. In
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Figure 6.2: Abstract start structure for the Delivery problem

fact, here and in all the following examples the preconditions also show how many

loop unrollings there will be in a plan execution (e.g., #(crate) = l + 3, where l ≥ 0 is

the number of loop iterations).

Trucks

Vocabulary: {Monitor, Server, T1, T2, atL1, atL2, inT1, inT2}

Actions: {LoadTi(x), UnloadTi(), GoToL jTi()}

This is a problem from the transport domain. We have two source locations L1

and L2, which have a variable number of monitors and servers respectively (Fig. 6.5).

There are two trucks, T1 at L1 and T2 at L2 with capacities 1 and 2 respectively. The

generalized planning problem is to deliver all – regardless of the actual numbers –

items to L4, but only in pairs with one item of each kind.

We represented this domain without using any binary relations, as a classical unary

domain. Fig. 6.5 shows initial abstract structure used for tracing. The example plan

for six pairs of such items worked as follows: T1 moved a monitor from L1 to L3 and

returned to L1; T2 then took a server from L2 to L4, picking up the monitor left by

T1 at L3 on the way. Fig. 6.4 shows the main loop discovered by our algorithm. The

computed preconditions for the final generalized plan are shown in Table 6.1, and

constrain the counts of servers and monitors to be equal, and at least 2.
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choose d: d=dock

choose d: d=dock

choose d: d=dock
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choose c: item(c)

choose c: item(c) & inT(c)

Move(d)

Load(c)

d = findDest(c)

choose c: item(c)

choose c: item(c)

Move(d)

choose c: item(c) & inT(c)

d = findDest(c)

Unload()

Move(l)

choose l: l=d

Load(c)

choose c: item(c) & inT(c)

d = findDest(c)

Unload()

Move(l)

choose l: l=d

choose c: item(c) & inT(c)

Load(c)

#{item} > 1

#{item} > 1

#{item} > 1

#{item} = 1

#{loc} > 1

#{loc} > 1

#
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o

c
} 

>
 1

Figure 6.3: Generalized plan for unit
delivery problem instances with at
least 2 crates.

LoadT1(c)

mvT1L3()

mvT1L1()

choose c: server(c) & atL2(c)

LoadT2(c)

mvT2L3()

choose c: monitor(c) & atL3(c)

LoadT2(c)

mvT2L4()

UnloadT1()

UnloadT2()

LoadT1(c)

mvT1L3()

mvT1L1()

choose c: server(c) & atL2(c)

LoadT2(c)

mvT2L3()

choose c: monitor(c) & atL3(c)

LoadT2(c)

mvT2L4()

UnloadT1()

UnloadT2()

mvT2L3()

mvT2L2()

mvT2L3()

mvT2L2()

choose c: monitor(c) & atL1(c)

#
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} 
=

 1

#{monitor, atL1} > 1

#{server, atL2} > 1

#{server, atL2} = 1

Figure 6.4: Main loop for Trucks

99



L3 L4

L2

L1

Monitors, T1: Capacity 1

Servers, T2: Capacity 2

Monitor

atL1

Server

atL2

T2

atL2

T1

atL1

Figure 6.5: Map and the start structure for Trucks
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Figure 6.6: Abstract start structure for striped block tower

Striped Block Tower

Vocabulary: {Red1, Blue1, base1, onTable1, on2, topmost1, on∗2, misplaced1}

Actions: {Move(x , y), moveToTable(x)}

Given a tower of red and blue blocks with red blocks at the bottom and blue blocks

on top, the goal is to find a plan that can construct a tower of alternating red and blue

blocks, with a red “base” block at the bottom and a blue block on top. We used transitive

closure of the “on” relation, on∗, to express stacked towers and the goal condition.

Fig. 6.6 shows the abstract initial structure. The misplaced predicate is used to

determine if the goal is reached. misplaced holds for a block iff either it is on a block

of the same color, or above a block which is on a block of its own color.

The input example plan worked for six pairs of blocks, by first unstacking the

whole tower, and then placing blocks of alternating colors back above the base block.
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Our algorithm discovered three loops: unstack red, unstack blue, stack blue and red

(Fig. 6.7). The preconditions shown in Table 6.1 describe possible role-counts at the

start structure. These conditions capture a more general situation where the start struc-

ture may have some blocks on the table, corresponding to the roles {Red, misplaced,

onTable, topmost} and {Blue, misplaced, onTable, topmost}. If we set these quantities as

zeros, we get l1 = l3 and l1 = l2 + 1, which constrain the number of red and blue

blocks in the initial stack to be equal. Further, the number of blue blocks should be

3+ l2+1, counting the blocks with roles {Blue, misplaced} and one extra block with the

role {Blue, misplaced, topmost}.

Green Block

Vocabulary: {topmost1, onTable1, on2, on∗2, isGreen2}

Actions: {unstack(), senseColor(x), collect(), discard()}

The Green Block problem is to find a green block in a stack of blocks. We formulate

this problem using a sensing action to determine the color of the topmost block (cf.

note on problems above). Fig. 6.8 shows the abstract initial structure. We use the

isGreen(arg,x) predicate in order to implement the sensing action for block x ’s color

using the focus operation.

The unstack action places the topmost block into the gripper; the senseColor action

senses the color of the topmost block; the collect action collects the block in the gripper

and the discard action discards it. The color of a block is visible only while the object

is on the stack, and is obscured when the block is in the gripper.

This problem domain does not belong to the extended-LL class because its goal

depends on a sensing action whose result cannot be predicted based on role-counts

alone. However, our methods for plan generalization still compute a deterministic

generalized plan which can be proved to work for almost all possible problem instances
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mvToTable(b)

mvToTable(b)

mvToTable(b)

mvToTable(b)

mvToTable(b)

mvToTable(b)

choose c: red(c) & onTable(c) & base(c)

Move(b,c)

choose b: blue(b) & onTable(b) & topmost(b)

choose c: blue(c) & topmost(c)

Move(b,c)

choose b: red(b) & onTable(b) & topmost(b)

choose b: blue(b) & onTable(b) & topmost(b)

choose c: red(c) & topmost(c)

Move(b,c)

choose b: red(b) & onTable(b) & topmost(b)

choose c: blue(c) & topmost(c)

Move(b,c)

choose b: blue(b) & onTable(b) & topmost(b)

choose c: red(c) & topmost(c)

Move(b,c)

mvToTable(b)

mvToTable(b)

choose b: blue(b) & topmost(b) & misplaced(b)

choose b: red(b) & topmost(b) & misplaced(b)

choose b: red(b) & topmost(b) & misplaced(b)

choose b: blue(b) & topmost(b) & misplaced(b)

choose b: blue(b) & topmost(b) & misplaced(b)

choose b: red(b) & topmost(b) & misplaced(b)

Move(b,c)

choose b: blue(b) & onTable(b) & topmost(b)

choose c: blue(c) & topmost(c)

choose c: red(c) & topmost(c)

Move(b,c)

#{blue, misplaced} > 1

#{red, misplaced} > 1

#{red, misplaced} > 1

#{blue, misplaced, onTable, topmost} > 1

#{blue, misplaced} = 1
#{blue, misplaced} > 1

#{red, misplaced} = 1
#{red, misplaced} > 1

#{red, misplaced, onTable, topmost} > 1

#{blue, misplaced, onTable, topmost} > 1

#{red, misplaced, onTable, topmost} > 1

#{blue, misplaced, onTable, topmost} > 1

#{blue, misplaced, onTable, topmost} = 1

#{red, misplaced, onTable, topmost} = 1

Figure 6.7: Generalized Plan for Striped Block Tower. In choice actions, only the pred-
icates belonging to the role being chosen are shown.
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isGreen

isGreen

on*

Figure 6.8: Initial abstract structure for the green block problem.

(whenever except when the number of blocks is more than 4; see the preconditions on

page 109).

The smallest example plan in which a loop could be recognized found a green block

and collected it after discarding 3 non-green blocks. The computed generalized plan

recognizes the loop with an exit when the topmost block’s color is sensed to be green.

The learned generalized plan is thus correct and deterministic, but its precondi-

tions are not expressible in terms of the counts of available roles. Because of this, the

preconditions we obtain are necessary, but not sufficient.

Hall-A

Vocabulary: {e2, n2, e∗2, n∗2, wborder1, nborder1, eborder1, nborder1, visited1}

Actions: {mvE(), mvW(), mvN(), mvS()}

The hall-A problem was designed by Bonet, Palacios, and Geffner (2009) for eval-

uating methods for computing looping finite-state controllers for solving contingent

planning problems. It consists of 4 corridors arranged to form a quadrilateral (Fig. 6.9a).

Each corridor consists of multiple adjacent rooms which have to be traversed to cross
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(b) Initial abstract structure

Figure 6.9: Representation of the Hall-A problem

the hall; the problem is to find a plan for visiting all four corners and returning to the

starting point, for an agent starting at a given corner.

The e and n relations represent the east and north relations between rooms and the

e∗ and n∗ relations, their corresponding transitive closures. The visited relation is used

to determine the goal condition and x − border predicates define different segments of

the quadrilateral corridor system. The smallest example plan from which our approach

could identify loops solved this problem for a square arrangement with 7 rooms in each

hall. The canonical abstraction of this initial state, used as the initial abstract structure

during tracing, is shown in Fig. 6.9b.
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The example plan traversed the halls in a square arrangement with 7 rooms along

each wing. The generalized plan consists of four loops. The fact that the numbers of

iterations of each of these loops do not have to match is captured by the preconditions.

The generalized plan can therefore solve any trapezoidal arrangement of halls with at

least 6 rooms in each wing.

Bonet, Palacios, and Geffner (2009) formulate this problem with an initial belief

state of a fixed size, with uncertainty arising only due to lack of precision in the agent’s

location. The controller learned by their approach can be seen to work for halls of

any dimensions with the agent starting at any of the rooms, but this fact is not discov-

ered automatically. In our approach, the initial belief state generalizes the problem to

quadrilaterals with sides of arbitrary lengths. The amount of information revealed by

abstract states in our formulation closely match those in Bonet et al.’s partially observ-

able formulation: the agent knows only which segment it is in, and whether or not it is

at a corner.

Representing Grid-world Problems

In all of the following problems we model grids by representing the agent’s location

in the grid using distances from all the four borders. These distances are represented

as role-counts of the four single-predicate roles created by the abstraction predicates

{dFromE, dFromW, dFromN, dFromS}. Each of the four mvX () actions for moving along

the cardinal directions adds and subtracts an element from the corresponding pair of

roles. As with the formulation of Hall-A above, the amount of information revealed by

the abstract states closely matches that of the belief states used by Bonet et al.

The vocabulary and actions for each of the following problems therefore, are:

Vocabulary: {dFromE, dFromW, dFromN, dFromS}

Actions: {mvE(), mvW(), mvN(), mvS()}
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dFromE dFromN

arg

nextE nextN

Figure 6.10: Initial abstract structure for the Prize-A and Diagonal Return problems.

Prize-A

In Prize-A, the agent must completely traverse all the squares of a given rectangular

grid, starting at a given corner. The abstract start structure is shown in Fig. 6.10.

For this problem, Bonet et al. obtain a single-state controller for a 4× 4 grid which

can actually work for all grids composed of 4 columns of squares. Their implementation

could not solve problems with more rows.

Utilizing example plans that traversed the grid row-wise, our approach easily scales

to grids with higher numbers of rows. We present timing results with 5 and 7 row grids

in Table 6.2. Note that a complete general solution to a grid with n rows is quadratic

in n, and consequently cannot be learned from such example plans because of our

restriction to generalized plans with simple loops. The obtained generalized plans

have a different simple loop for each row in the grid.

The preconditions constrain the number of iterations of all but the last loop to be

equal; as in the blocks problem, they are more general than the initial abstract structure

in Fig. 6.10 and allow the starting location to be at a distance from the West corner.

Consequently, the number of iterations of every loop other than the first eastward

traversal are constrained to be equal, restricting the plan to square grids. Further,

if #{dF romW} is set to zero, denoting a start at the southwest corner, the number of

iterations of the first loop (l6) also get constrained to be equal to the others.
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arg

nextW nextS nextE nextN

Figure 6.11: Initial abstract structure for the corner problem.

Corner-A

In the Corner-A problem, the agent must reach the top right corner of the grid. The

start structure for this problem is shown in Fig. 6.11.

We used an example plan that moved the agent to the right and then up along

the right boundary. The learned generalized plan consists of a loop of mvE() actions

followed by a loop of mvN() actions. Preconditions show that the plan works for any

grid at least 3 squares wide and 2 squares high.

Diagonal Return

In this problem, the agent must start at the south-west corner, reach the north-

east corner and return along the diagonal. This problem was not included in the set

of problems used by Bonet et al; we use it to illustrate how relationships between

iterations of different loops can be captured effectively. The abstract start structure

for this problem is identical to the one for Prize-A (Fig. 6.10). The example plan first

moved the agent as far east as possible, then moved north to the north-east corner

before returning along the diagonal grid squares using alternating mvS() and mvW()

actions.

The generalized plan captures the three loops of actions and its preconditions are

shown in Table 6.1. These preconditions are again much more general than the pro-

vided initial abstract structure. They show that the abstract goal structure with the
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agent at the south-west corner will be achieved by the generalized plan as long as the

grid is square. More precisely, the obtained preconditions constrain the problem in-

stances to those where #{dFromE}+#{dFromW}= #{dFromN}+#{dFromS} (this can

be obtained explicitly by solving the presented preconditions for l1).

Summary of Timing Results

Timing results for all the test problems are shown in Table 6.2. While the results

show good scalability, many engineering optimizations are possible on our prototype

implementation of the presented algorithms. Our implementation is written in Python,

which is an interpreted language. Faster results can be obtained from an implemen-

tation in a compiled language. Profiler outputs show that most of the time is spent in

calls to TVLA and in Python’s module for adding or removing edges from graphs that

we use to implement logical structures. Optimization of these data structures can also

improve the running times.

While the entire process of tracing can be understood as contributing to the infor-

mation utilized for computing preconditions, the actual time required for computing

preconditions from the obtained generalized plan is negligible. In conclusion, this ap-

proach is very scalable, and provides an efficient method for finding generalized plans

with preconditions.

Discussion and Evaluation of the Results

Table 6.3 shows an evaluation of the generalized plans found by ARANDA-Learn,

and described in the previous section. Testing for applicability requires only counts of

elements of different roles in the start structure. Table 6.3 lists this cost as O(n) but it

can be reduced to a constant number of numeric comparison operations if these counts

are provided with the initial concrete state.

Plan instantiation cost is always O(n) because we find plans with simple loops, all

of which reduce the count of some role(s) and thus can be iterated at most O(n) times.
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Problem Start Structure Preconditions on Start Structure

Delivery Fig. 6.2 #{item}= 3+ l1;#{loc}> 1
Trucks Fig. 6.5 #{monitor, atL2} = 2 + l1;

#{server, atL1}= 2+ l1

Blocks Fig. 6.6

#{Blue, misplaced}= 2+ l3
#{Red, misplaced}= 3+ l2
#{Red, misplaced, onTable, topmost} =
−1+ l1− l2
#{Blue, misplaced, onTable, topmost} =
l1− l3

Green Block Fig. 6.8 #{}= 2+ l1

Hall-A Fig. 6.9b
#{wborder}= 4+l1; #{nborder}= 4+l2
#{eborder}= 4+ l3; #{sborder}= 4+ l4

Prize-A(5 rows) Fig. 6.10
l1 = l2 = l3 = l4 = l5;#{dFromE} = 3+

l6
#{dFromW}= l5− l6; #{dFromN}= 5

Prize-A(7 rows) Fig. 6.10
l1 = l2 = l3 = l4 = l5 = l6 =

l7; #{dFromE}= 3+ l8
#{dFromW}= l7− l8; #{dFromN}= 7

Corner-A Fig. 6.11 #{dFromN}= 2+l1;#{dFromE}= 3+l2

Diagonal Return Fig. 6.10
#{dFromE} = 3+ l3;#{dFromS} = l1 −
l2;
#{dFromW}= l1− l3;#{dFromN}= 3+
l2

Table 6.1: Preconditions for example problems. li denote the number of iterations
of loop i in the corresponding plan; preconditions for the Green Block problem are
necessary, but not sufficient.

109



Problem Tracing Loop Finding Computing Preconditions Total
Delivery 66.12 3.93 0.01 70.05
Trucks 85.79 2.94 0.01 88.74
Blocks 65.01 2.04 0.02 67.06
Green Block 17.04 0.52 0.00 17.56
Hall-A 32.30 1.89 0.01 34.19
Prize-A(5 rows) 35.73 0.51 0.01 36.24
Prize-A(7 rows) 47.93 0.79 0.02 48.73
Corner-A 6.94 0.04 0.00 6.98
Diagonal Return 20.89 0.22 0.01 21.12

Table 6.2: Timing results for ARANDA-Learn. All results in seconds; runs were carried
out on a Linux machine with an Intel Core2 Duo 1.6GHz processor and 1.5GB RAM.

Each iteration has a constant number of choice operations, and each of these can be

executed in constant time by maintaining look-up tables containing elements of each

role, as a part of the action updates.

We use the ratio of the length of an instantiated plan for a problem instance of size

n with the length of the optimal plan for that size as a measure of the quality of the

generalized plan. All the obtained plans except for Trucks execute a minimal number

of operations and are optimal. Plan optimality for Trucks is less than 1 because our

plan uses both vehicles; the fewest actions are used if only the Truck is used for all

transportation, in which case a problem instance with p pairs of deliverables is solved

in 9p actions. On the other hand, the obtained plan has a better makespan.

6.2 Merging Multiple Plans

In the previous section we presented an approach for finding generalized plans by

identifying sequences of actions which could be converted into useful loops making

progress towards the goal. However, as shown in Table 6.1, a single plan may not be

sufficient to cover all the possible results of actions on abstract structures. This problem

is more pronounced in the presence of partial observability, where sensing actions may
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Problem Domain Coverage Applicability Test Instantiation Cost Optimality

Delivery ≥ 3 items O(n) O(n) 1
Trucks ≥ 2 pairs O(n) O(n) 9p

11p
= 0.81

Blocks ≥ 4 pairs O(n) O(n) 1
Green Block ≥ 4 blocks O(n) O(n) 1
Hall-A ≥ 6 rooms/wing O(n) O(n) 1
Prize-A (5) 5× (3+ l) grids O(n) O(n) 1
Prize-A (7) 7× (3+ l) grids O(n) O(n) 1
Corner-A (2+ l)× (3+ k) grids O(n) O(n) 1
Diag-Return (3+ l)× (3+ l) grids O(n) O(n) 1

Table 6.3: Evaluation of some generalized plans. n denotes the size of the problem
instance and l, k are variables ≥ 0. See Sec. 6.1.3 for discussion of optimality of the
Trucks solution.

be required to discern certain state properties during plan execution. Plans that use

sensing actions need to be able to solve every possible outcome of these actions. The

input plans in these scenarios may only encounter one of the possible results of each

application of a sensing action. Our objective is to be able to compose different such

example plans into a coherent, generalized plan. In doing so, we need to be able to

work with uncertainties in both object quantities and properties.

Let us consider the following example of a contingent planning problem with un-

known quantities of objects: a recycling robot must pick up objects from a set of bins,

perform a sensing action to determine recyclability of the drawn object, and store it in

an appropriate container.

Example 7. The recycling problem can be modeled using the following vocabulary: V =

{bin1, visited1, object1, collected1, empty1, container1, forPaper1, forGlass1, in2, isPaper1,

isGlass1, robotAt1}.

An example structure, S, can be described as follows: the universe, |S| = {b, o, c1, c2},

binS = {b}, objectS = {o}, containerS = {c1, c2}, forPaperS = {c1}, forGlassS = {c2},

inS = {(o, b)}, isPaperS = {o}, robotAtS = {b}, visitedS = {b}. We omit the predicates

not satisfied by any tuples.
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Figure 6.12: Representing belief states in the recycling problem using state abstraction.

Integrity constraints for the recycling domain would include among others the formulas

∀uvw(in(u, v)∧ in(u, w)→ (v = w ∧ (bin(v)∨ container(v)))) meaning that each object

can be in at most one bin or container, and ∀u(object(u)→ (isGlass(u)↔¬isPaper(u)))

meaning that objects are either of type paper or of type glass.

To keep the presentation simple, we assume here that no bin contains more than one

object. The goal condition is that all bins are empty: ∀x(bin(x)→ empty(x)). The pre-

condition and updates for the action collect(o, c) are:

(isGlass(o) ↔ forGlass(c)) ∧ container(c) ∧

∃b(bin(b)∧ in(o, b)∧ robotAt(b))

in′(u, v) := (in(u, v)∧ u 6= o)∨

(¬in(u, v)∧ u= o ∧ v = c)

empt y ′(u) := empt y(u)∨ in(o, u)

col lec ted ′(u) := col lec ted(u)∨ o = u
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6.2.1 Observation Model and Sensing Actions

Contingent plans deal with uncertainty about predicates in the agent’s belief state

using observation or sensing actions (Bonet and Geffner, 2000; Hoffmann and Brafman,

2005). We model sensing actions as focus operations w.r.t the respective formulas being

sensed. As discussed in Sec 3.4.1, the focus operation on an abstract state returns a

set of more precise belief states corresponding to the different possible definite truth

values of the formula being focused on.

For instance, the recycling domain has only one sensing action applicable to a cho-

sen bin marked with the new (not in the domain’s vocabulary) abstraction predicate

chosen: senseType(), with the focus formula ∃x(chosen(x) ∧ in(o, x) ∧ isPaper(o)).

When applied to an abstract structure (such as S4 or S5 in Fig. 6.13), it returns struc-

tures with different possible types of a single object in the chosen bin. Note that the

integrity constraint that each object has a unique type makes either of the predicates

isPaper, isGlass sufficient for sensing an object’s type.

In addition to uncertainty about predicates, the agent does not have precise infor-

mation about object quantities. We only require that it has sufficient knowledge to

determine whether there are zero, exactly one, or more than one objects of each role

at any step.

The contingent planning problem Our objective in dealing with partial observability

continues to be that of generalized planning: given a set of domain-specific actions,

integrity constraints, a goal formula, and an initial belief state Sinit, our objective is to

find a generalized plan solving the initial belief state Sinit.

6.2.2 The Branch and Merge Algorithm

The most significant challenge faced by approaches combining multiple example

plans is to determine positions in an existing plan where segments of a new example

plan would be useful. This becomes more difficult when the existing plan contains
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Algorithm 6: Branch and Merge

Input: Existing plan Π, π= (a1, . . . , an), S#
0

Output: Extended version of Π
bpπ, bpt ← 01

t← Trace(π, S#
0 ) mpΠ, mpt ← findMergePoint(Π, t, bpΠ, bpt)23

repeat4

if mpΠ found then5

bpΠ, bpt ← findBranchPoint(Π, t,mpΠ, mpt)6

end
if bpΠ found then7

mpΠ, mpt ← findMergePoint(Π, t, bpΠ, bpt)8

addEdges(Π, t, bpt , mpt , mpΠ, bpΠ)9

end
until new bpΠ or mpΠ not found
if bpπ found and mpπ not found then

/* A terminal segment of t was not merged */
remainderT← path added to Π after bpΠ10

/* Try to create loops in remainderT */
formLoops(remainderT)11

end
return Π12

loops. BranchAndMerge (Alg. 6) is a greedy algorithm for addressing this problem. It

uses abstract structures in plan traces as a compact representation of the infinitely

many situations where the subsequent sequence of actions would be useful. The input

to Alg. 6 is the existing plan (initially ;), a new linear example plan and a concrete

structure solved by the example plan.

Such example plans can be provided from prior experience. Given an abstract struc-

ture S0 representing the initial belief state, they can be also generated by existing clas-

sical planners as follows: (a) create a concrete member state S#
0 ∈ γ(S0) with specific

truth values for the unobservable predicates. The number of universe elements in S#
0

corresponding to a summary element in S0 can vary; we used a heuristic process to

add at least six elements in S#
0 for every summary element in S0. (b) make the ap-

propriate sensing actions for the unobservable predicates as prerequisites for actions
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Algorithm 7: Generalizing and merging examples
Input: Sini t , the initial belief state
Output: Plan Π
Π← ;; looseEnds← Sini t

while looseEnds 6= ; do
Remove S0 ∈ looseEnds
S#

0 ← concrete instance of S0

π0← invokeClassicalPlanner(S#
0 )

Merge(Π,π0, S#
0 )

looseEnds← getLooseEnds(Π)
end
return Π

which use those predicates (c) solve this problem instance using a classical planner

like FF (Hoffmann and Nebel, 2001).

In the recycling problem, the input to a classical planner can be a problem instance

with multiple non-empty bins where each object’s type is “paper”. The collect action’s

formulation will require a predicate “sensed” to hold for the object being collected.

The sensed predicate on the other hand will only be set by a “senseType” action with

no other effect. This problem’s solution plan will use “senseType” actions, but will only

solve the problem for “paper” objects.

BranchAndMerge proceeds as follows. The example plan is first generalized (line 2)

using the Trace subroutine discussed in Section 6.1.1 on page 92; we provide a brief

overview of this process for readability. The input to Trace is a pair (π, S#
0 ), where

π = (a1, . . . , an) is a solution plan for the concrete structure S#
0 . Plan π is generalized

by replacing the action ai ’s arguments by their roles in the concrete structure S#
i−1

(S#
i = ai(S#

i−1), i = 1, . . . , n) and including the automatically generated (Sec. 3.4) focus

formulas. This results in a modified linear plan applicable in the abstract state space,

say π′. The sequence of intermediate concrete states is then generalized by applying

π′ on the canonical abstraction S0 of S#
0 , and keeping only those results Si = a′i(Si−1)

which are consistent with the S#
i . This results in an interleaved sequence of structures

and actions because only one of the results of the focus operation can be consistent
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Object/Method Description

Trace integer indexed list of Transitions
Transition tuple of (init structure, action, final

structure)
Transition Methods initStruc(), action(), finalStruc() – return

corresponding elements
GeneralizedPlan Graph with Nodes and Edges

Node labeled with structure. node.struc() returns the la-
belled structure

Edge tuple of (node1, node2, action)
Edge Methods n1(), n2(), action() return start node, end node

and action name respectively

Table 6.4: Data structures used in Algorithms 8 and 9

with a concrete state. Structures which are not consistent with the result seen in π at

the same step represent possible situations that were not handled by π. These abstract

structures can be indexed and stored in a list of “looseEnds” if suggestions for further

examples are needed or in a hybrid implementation (Alg. 7).

Given an example trace t and an existing plan Π, BranchAndMerge uses [in lines

3 & 8] findMergePoint (Alg. 8) to find the index of the earliest structure in t that is

embeddable in a structure in Π. If successful, findMergePoint returns mpΠ and mpt , the

node in Π and the index in t corresponding to these structures. A successful search

indicates that the new example encountered an instance of a belief state present in

Π. However, the subsequent actions in t may not be different from those following

mpΠ in Π, or may not handle any new problem instances in addition to those already

handled by Π. In order to minimize the new edges added to Π, after finding the merge

points, Alg. 6 conducts a search for a branch point using the procedure findBranchPoint

(Alg. 9).

findBranchPoint simultaneously traverses the actions of t and Π starting from the

last known merge points mpt and mpΠ, and returns the last node and index where

the example trace matched the plan Π. More precisely, starting at the previous merge
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Algorithm 8: findMergePoint(GeneralizedPlanΠ, Trace t, Node bpΠ, integer bpt)

i← bpt1

while i < leng th(t) do2

egStruc← t[i].finalStruc()3

for node in bpΠ’s loop do4

/* traverse nodes in order of addition to Π */
if egStruc v node.struc() and resulting loop will terminate then5

return node, i6

end
end
i← i+ 17

end
/* Merge point not found in nodes of bpΠ's loop */
/* Conduct a search over all non-ancestors of bpΠ */
candidates← nonAncestorNodes(Π, bpΠ)8

/* candidates are ordered by non-decreasing distance from bpΠ
*/

i← bpt9

while i < leng th(t) do10

egStruc = t[i].finalStruc()11

for node in candidates do12

if egStruc v node.struc() then13

return node, i14

end
end
i← i+ 115

end
return NULL, NULL16
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Algorithm 9: findBranchPoint(GeneralizedPlan Π, Trace t, Node mpΠ, integer
mpt)

i← mpt1

gpNode← mpΠ2

while gpNode 6= NULL and i < leng th(t) do3

/* Match edge-actions and node-structures in Π */
/* with actions and structures of transitions in t */
egStruc← t[i].finalStruc()4

egAction← t[i].action()5

embeddingFound← False6

for e in outEdges(gpNode) do7

/* Search the list of outgoing edges from gpNode */
/* for one that can embed egAction and egStruc */
GPStruc← e.n2().struc()8

GPAction← e.action()9

if GPAction = egAction and egStruc v GPStruc then10

/* an edge from gpNode with matching action */
/* and subsuming result node is found. Move to the

next */
/* gpNode in Π and transition in t */
gpNode← e.n2()11

i← i+ 112

embeddingFound← True13

break /* End the for loop */14

end
end
if (not embeddingFound) {return gpNode, i}15

end
return NULL, NULL /* No branch point found */16
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points mpt , mpΠ it matches successive elements of t with action edges and structure

nodes in Π until it finds a node bpΠ in Π and an index bpt for a structure in t such that

either (a) none of the successor actions of bpΠ in Π match any of the successor actions

of bpt in t, or (b) there is a matching successor action in Π, but its resulting structure

does not embed the resulting structure in t. A branch point will not be found only if

the example trace after the last merge point is completely subsumed by a path in Π.

In this way findBranchPoint gives us a situation where the example trace behaved

differently from the existing plan. In general, the search for subsequent merge points

can range over all nodes in Π. Allowing merges with any node in Π introduces loops

of increasing complexity, which makes it difficult to determine vital properties such as

the guaranteed termination of the resulting plan. From this point of view, we limit

the set of allowed merge points to non-ancestors of the last branch point and nodes

within the same loop. The list of non-ancestors is obtained by running BFS on Π with

its edges inverted, and taking the complement of the obtained set of reachable nodes.

The resulting plans can be analyzed for preconditions very efficiently using methods

from Chapters 4 and 5.

The overall BranchAndMerge algorithm works by adding nodes for structures and

edges labeled with actions from the branch point to the merge point (bpt , mpt respec-

tively) in the trace t, starting at bpΠ in Π and ending at mpΠ. If the merge point in

Π coincides with the previous branch point, Alg. 6 introduces a new loop. If a merge

point is not found, all the actions and structures from bpt are added to Π, in a linear

path starting at bpΠ. Alg. 6 then calls the formLoops algorithm (Alg. 5) in order to find

loops in the path of actions that was added after bpΠ.

Given a generalized plan Π with ΠE edges and a new trace t with tn nodes, Alg. 6

runs in time O(ΠE · tn) and satisfies the following property:

Observation 1 In any plan produced by Alg. 6, the shortest path to the goal from any

concrete member of the initial belief state is smaller than or equal to the best provided
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example that solved it. This is because action sequences from example traces are either

merged with existing edges that subsume them, or are added to the existing plan.

A Hybrid Approach Alg. 6 can be implemented as a part of a proactive algorithm

for incrementally generating example plans and merging them (Alg. 7). Alg. 7 uses the

list of looseEnds which can be created by Trace. It requires a book-keeping subroutine

for removing structures which have been solved from the list looseEnds when example

traces are merged with the existing plan Π.

6.2.3 A Detailed Example

Fig. 6.14(a) shows a plan segment that collects one object of type paper, moves

to the next bin and finds a glass object. S#
0 is a concrete structure in which more

than 2 objects each of type paper and glass have been collected, and two bins remain

to be visited. Two of the actions in this example, gotoNextBin and senseType, can have

multiple abstract results due to the focus operations described earlier. When applied on

an abstract structure with an unknown number of unvisited bins, the two results of the

gotoNextBin action correspond to whether or not the next bin is the last unvisited bin,

as per the drawing-out operation described earlier (Fig. 6.13). The senseType action

uses the focus operation to enumerate the different possibilities for the type of the

object being sensed. Dotted edges in Fig. 6.14 represent results of these actions that

did not occur in the execution of the given example plan on S#
0 .

Fig. 6.14(b) shows the result of generalizing Fig. 6.14(a). S#
0 ’s canonical abstrac-

tion, S0, is identical to S4, the abstract result of collecting another object of type

paper. This is recognized by formLoops (Alg. 6, line 10) because at this stage, the

plan Π is empty. formLoops creates a loop by attaching the “collectPaper()” edge to

S0 (Fig. 6.14(c)). The following action edge (gotoNextBin()) from S#
4 however, is not

merged with the edge between S0 and S1 because S#
5 and its abstraction S5 do not have

any elements with the role of “unvisited bins”, thus differing from S1.

121



g
o

To
N

e
x
tB

in
()

S
0#

S
1#

se
n

se
Ty

p
e

()
S

2#
p

re
P

ro
c

−
P

a
p

e
r(

)
S

3#
c

o
lle

c
tP

a
p

e
r(

)
S

4#
se

n
se

Ty
p

e
()

S
5#

g
o

to
N

e
x
tB

in
()

S
6

S
0

S
2

p
re

P
ro

c
−

P
a

p
e

r(
)

S
3

S
1

S
0

S
5

S
6

S
5

S
7

S
1

S
8

S
0

g
o

To
N

e
x
tB

in
()

se
n

se
Ty

p
e

()
S

2

p
re

P
ro

c
−

P
a

p
e

r(
)

S
3

S
1

S
5

g
o

To
N

e
x
tB

in
()

S
8

S
6

S
7

S
9

p
re

P
ro

c
−

G
la

ss
()

c
o

lle
c

tG
la

ss
()

S
1
0

S
1
2

S
0

g
o

To
N

e
x
tB

in
()

se
n

se
Ty

p
e

()
S

2

p
re

P
ro

c
−

P
a

p
e

r(
)

S
3

S
1

g
o

To
N

e
x
tB

in
()

S
6

se
n

se
Ty

p
e

()
S

5

S
7

S
8

p
re

P
ro

c
−

G
la

ss
()

c
o

lle
c

tG
la

ss
()

g
o

To
N

e
x
tB

in
()

S
7#

S
9#

S
1
0

#
S

1
1

#
S

1#

(a
) 

E
x
a
m

p
le

 p
la

n
 e

x
ec

u
ti

o
n

:

(b
) 

A
ft

er
 T

ra
ci

n
g
:

se
n

se
Ty

p
e

()
g

o
to

N
e

x
tB

in
()

se
n

se
Ty

p
e

()
g

o
To

N
e

x
tB

in
()

c
o

lle
c

tP
a

p
e

r(
)

(e
) 

A
ft

er
 G

en
er

a
li

za
ti

o
n

 a
n

d
 M

er
g
e:

(c
) 

A
ft

er
 F

in
d

in
g
 L

o
o
p

s:
(d

) 
E

x
a
m

p
le

 p
la

n
 f

o
r 

u
n

h
a
n

d
le

d
 s

tr
u

ct
u

re
:

c
o

lle
c

tP
a

p
e

r(
)

se
n

se
Ty

p
e

()

se
n

se
Ty

p
e

()

g
o

To
N

e
x
tB

in
()

c
o

lle
c

tP
a

p
e

r(
)

se
n

se
Ty

p
e

()

Fi
gu

re
6.

14
:

A
de

ta
ile

d
ex

am
pl

e
fo

r
M

er
ge

.
D

ot
te

d
ed

ge
s

re
pr

es
en

t
re

su
lt

s
th

at
di

d
no

t
oc

cu
r

in
th

e
ex

am
pl

e.

122



Fig. 6.14(d) shows an example plan for handling a structure identical to S#
1 , but

with the type of the object in the bin set to glass. This plan is also traced in the abstract

state space and Alg. 6 is called with the resulting trace and the current generalized

plan (shown in Fig. 6.14(c)). Alg. 6 in turn calls findMergePoint, which identifies S1 as

a merge point. It then invokes findBranchPoint, which also returns S1. This is because

the result of the senseType action on S1 is S7 in the generalized trace, where the chosen

bin has an object of type glass (unlike S2, where it was paper).

After finding this branch point, Alg. 6 calls findMergePoint again, and this time,

cannot find any merge points in the example trace before S11, which it determines can

be embedded in S1. It returns S1 in Π and S11 in t as the merge point, following which

the subroutine addEdges is used to add the structures and actions between S7 and S11

to Π.

6.2.4 Implementation and Results

We present the results of some of our experiments with an implementation of Bran-

chAndMerge. The test problems were motivated by benchmarks from the international

planning competitions and require solutions with different combinations of loops and

branches. Incremental results for each problem are shown in Fig. 6.15, with segments

added due to different examples labeled and drawn with different edge types. The

actual outputs are more detailed, and include one iteration of the loop learned using

the first example prior to the topmost action shown in the figures. Since the loops tend

to get too complex to understand visually, we present modified outputs in order to aid

readability: structure-nodes and edge labels for results of sensing actions are not drawn

and some action operands are summarized into action names. We present a summary

of these results with their incremental domain coverages, and provide representative

detailed results and execution times for the recycling problem.
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The fact that all the loops make progress and terminate can be determined auto-

matically by computing the role-count changes using methods described in Chapter 5.

Fire Fighting This problem was discussed in the introduction. Smoke can be detected

from anywhere on a floor iff one of its rooms is on fire. The agent has smoke and heat

sensors; it can use the senseSmoke and goToNextFloor actions to reach the correct floor,

and the senseHeat and goToRm actions to find the room on fire. The extinguishFire

action can be used to extinguish a fire. The number of rooms and floors in the building

are unknown, and unbounded.

The first example plan solved an instance of the problem with 6 floors, with 1

room on each floor. None of the floors were smoky in this problem instance (we did

this to stress BranchAndMerge; a problem instance with a smoky floor would have

extracted more of the solution plan from the first example itself.). The example plan

used goToNextFloor to traverse all the floors but found none to be smoky. Since this was

the first example, BranchAndMerge called formLoops which created the loop labeled (1)

(Fig. 6.15(a)).

The second example plan solved a smaller problem instance. In its initial state, the

agent is on the fourth floor of a building with 6 floors and this floor is smoky, but the

smoke has not been detected. The fire is in room 4; there are 5 rooms on this floor

(the agent starts at the fourth floor to make it harder to identify the context – starting

at the first floor would have provided a large prefix of actions matching those of Π).

The example plan used senseHeat and goToRm actions to visit rooms 1,2, and 3 before

reaching room 4, sensing heat, and extinguishing the fire. BranchAndMerge found that

the initial structure of this plan was embeddable in the abstract structure in loop 1

(Fig. 6.15(a)(1)), corresponding to the agent being at any floor of the building. The

first senseSmoke action was also merged with (1), but its result and the remainder of

the example trace was not embeddable anywhere in the existing plan (Fig. 6.15(a)(1)).

A loop was also detected in the remainder of this trace (Fig. 6.15(a)(2)). The gener-
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alized plan formed using examples (1) and (2) does not solve some boundary cases,

for instance when the first floor is smoky or when the first room in a floor has fire.

Example plans 3 and 4 handled these situations. However, only two edges were added

from these plans, connecting structures already in the generalized plan. In the final

plan, there are no unresolved action branches indicating that the goal structure with

the fire extinguished is always reached.

Recycling This problem was used as the running example and its solution was de-

scribed in Sec. 6.2.3. BranchAndMerge creates a loop in this example, illustrating how

small examples can be used to identify powerful loops. Example 3 dealt with an un-

handled branch caused due to the drawing out of elements from a summary element

(last bin was reached), and example 4 handled the case where the last object was of

type glass.

Transport We have a Y-shaped transport map with depots D1, D2, D3 on the end

points. Two trucks, T1 and T2 with capacities one and two are originally at D1 and

D2, respectively. The problem is to deliver an unknown number of server crates (from

D1) and monitor crates (from D2) in pairs with one of each kind to D3. Location L at

the center of the Y can be used to transfer cargo between the two trucks. There are two

non-deterministic factors in this problem: server crates may be heavy, in which case the

simple load action drops them and a forkLift action must be used; crates left at L may

get lost if no truck is present.

The first example plan delivered 6 pairs of crates to D3 without experiencing heavy

crates or losses. The second example found a heavy crate, and delivered it using forkLift

actions instead of load; in the third plan a crate left at L was found missing when T2

reached L, and another crate had to be picked up from D1. The plan computed using

these three examples does not handle one case of a server crate being heavy (Fig. 6.15).

This was was handled by example plan 4.
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Figure 6.16: Domain coverage of recycling problem plans.

Key Observations All the presented solutions solve problems of unbounded sizes.

BranchAndMerge adds only necessary segments from example plans. For instance, only

edges for the two forkLift actions from the entire second example in transport were

added. In fire fighting, the result of senseHeat action in example 4 of the fire fighting

problem was directly merged to a structure that had already been handled. Merging

plan segments within loops is a powerful technique for increasing the scope of the

plan far beyond the individual examples: in recycling, the plan learned using the first

example solves only n of the 2n+1 − 1 possible problem instances of size at most n.

The second plan covers a single specific problem instance. The generalized, merged

result using these two plans solves 2n−1 instances (it assumes that the last two bins

have paper).
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Plan Gen(1) Gen(1..2) Gen(1..3) Gen(1..4) CFF-soln7
Time(s) 110 129 134 144 262

Table 6.5: Solution Times

Further Details and Comparison We illustrate the incremental increases in domain

coverage discussed above with plots (Fig. 6.16) and the times (Table 6.5) taken to gen-

eralize and merge input example plans for the recycling problem. Fig. 6.16 shows that

the domain coverage Dπ(n) increases significantly with each new example plan, and

approaches 1 with four examples. Since no other approach can solve these problems

due to uncertainties in object quantities, direct comparisons are not feasible. However,

to put this in perspective, we compare these results with the domain coverage and exe-

cution time for the largest recycling problem instance (with 7 bins) that we could solve

using contingent-FF (Hoffmann and Brafman, 2005), a state-of-the-art contingent plan-

ner. Given the four example plans for recycling described above, the generalization and

merging process produces a near complete solution while taking 45% less time than the

time taken by contingent-FF to find a plan (CFF-soln7) for 7 bins. Generalized plans

for all the other problems discussed above were generated in under 300 seconds and

showed similar comparative performance with contingent-FF. Tests were conducted on

a 2.5GHz AMD Dual-Core machine with 2GB of RAM.

6.3 Discussion

Summary This chapter presents two fundamentally new approaches for creating gen-

eralized plans with loops from example plans. During the process of construction of

loops, we focus on two main aspects: (a) the loop must have a justification in terms

of a recurring set of properties observed in the example, and (b) the loop must make

measurable progress, and terminate in a bounded number of steps. In doing so, we

developed the only known approach for merging a loop of actions with a potentially
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useful sequence of actions from a new plan. Our use of abstract states allows us to

observe these two conditions and also in storing the set of abstract states possible at

each step in the generalized plan. In the next chapter, we will use these states to iden-

tify situations that are not handled by the existing generalized plan, and ultimately to

extend the generalized plan to solve them.

Directions for Future Work Although many of the presented algorithms in this chap-

ter are the only known ones for safely constructing generalized plans, are demonstrably

scalable, and produce generalizations with a large class of loops, they can be optimized

and enhanced functionally. In particular, the construction of loops can be directed so

as to maximize the progress along a certain specific role-count. The current implemen-

tation is in Python, which is an interpreted language. Better performance could also be

achieved by an implementation of the same algorithms in a compiled language.

In the presented algorithms, loops are recognized when an abstract structure is

revisited. However, a concrete plan may have used different orderings of an action

sequence to achieve the effects corresponding to each iteration of the identified loop.

Although this will not effect loop identification, reordered actions will result in fewer

merges and more plan branches accomplishing the same effects. Another interesting

direction for future work is to optimize the plan merging process by eliminating these

spurious re-orderings of actions in a plan. This can be done either after plan generation,

or even during the generation of classical plans by introducing a lexicographic ordering

on actions with the same heuristic impact during search.

Related Work Recent approaches to finding plans with loops include KPLANNER, DIS-

TILL and the work of Bonet et al. (2009). Of these approaches, only KPLANNER provides

a partial applicability test. A more detailed discussion of these approaches was pre-

sented in Chapters 1 and 4. The objective of learning loops by generalizing concrete

plans is similar to the objectives of programming by demonstration (PBD). In practice,
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approaches for PBD follow very different assumptions compared to those in the field

of AI Planning. Lau et al. (2003) address the significantly different problem of using a

given segment of a user’s actions (e.g. keystrokes in a text editing task) to predict the

remainder of the program being executed. In this approach, loop iterations in train-

ing examples are explicitly annotated by the user. The SHEEPDOG (Lau et al., 2004)

system on the other hand uses an extension of Hidden Markov Models to predict the

next most likely action required during a technical support task. Instead of computing

the preconditions for their learned structures, both of these systems provide probabilis-

tic quality and usability guarantees. Such guarantees can be useful in many settings,

particularly those where a limited domain theory prevents precondition analysis. The

PLOW system (Allen et al., 2007) also captures loops via demonstration, but uses a

mixed-initiative approach where the user provides cues to the system for beginning a

loop recognition process, proactively corrects the system’s errors while demonstrating

a solution, and provides explicit loop termination conditions.

A related area of research is workflow inference, where actions are replaced by

functions whose inputs and outputs are data-collections. Approaches for workflow in-

ference like LAPDOG (Eker, Lee, and Gervasio, 2009) and WIT (Yaman and Oates,

2007) learn loops of actions from example traces but fundamentally differ from plan-

ning in the notion of actions: in effect, action outcomes of workflow actions, which

amount to data or information, are never “deleted”. This implies that an observed

sequence of actions can always be repeated. This allows WIT to work without any

information about action preconditions and effects: action occurrences in an observed

trace can be treated like alphabets in a problem of grammar induction. In planning

however, actions regularly remove facts on which successive actions, or loop iterations

may depend. Our approach represents summarized information about the states pos-

sible after an action application using abstract states. This information captures action
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effects and allows us to determine when (and how many times) a loop of actions may

be executed.
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CHAPTER 7

GENERALIZED PLAN SYNTHESIS

This chapter presents two approaches for computing generalized plans without a

priori, user-provided sample plans. The first approach (Section 7.1) computes gener-

alized plans with loops by conducting a search in the abstract state space, using the

abstract action mechanism developed in Chapter 3. In practice, this approach would

require heuristics applicable to paths with loops in the abstract state space to make

the search process efficient. The second approach (Section 7.2) exploits the directed

search mechanism of classical planners themselves, for finding generalized plans.

7.1 Synthesis via Search

The abstract action mechanism developed in Chapter 3 can be used to conduct a

search in the finite abstract state space. The size of this space is determined by the

number of abstraction predicates and relations in the domain. Although the num-

ber of possible roles is exponential in the number of abstraction predicates, not all of

those roles can coexist. For example, in the unit delivery problem, there are 4 possi-

ble roles for crates ({crate}; {crate, chosen}; {crate, delivered}; {crate, chosen, delivered}),

1 possible truck role, and 2 possible location roles ({location}; {location, targetDest}).

Consequently, the at() relation can be instantiated over at most (4+ 1)× 2 = 10 com-

binations of operands. Since only a chosen crate can be loaded, the in() relation has

only 1 possible instantiation. Each of these 11 total instantiations can have one of three

truth values, and for each complete assignment of truth values, there can be at most
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36 ways of assigning an element-type (singleton, summary, or non-existent) to the six

crate and location roles. This gives us an upper bound of 317 reachable abstract states.

On the other hand, if we do not use abstraction, a loose lower bound on the number

of reachable states is (nl + 1)nc+1, assigning one of nl delivery locations and the dock

to the nc crates and the truck. The number of abstract states is smaller even if we have

only 8 crates and 8 delivery locations! In the transport example discussed later, the

number of concrete states far exceeds the number of abstract states if there are more

than 9 total items (monitors or servers). Since current classical planners can solve

even larger instances of this problem, abstract state search presents a viable and more

efficient alternative.

The algorithm for synthesis of generalized plans using search is presented as ARANDA-

Synth (Algorithm 10). It proceeds in phases of search and annotation. During the

search phase it uses the procedure getNextSmallest to find a path π (with non-nested

loops only) from the start structure to a structure satisfying the goal condition. Heuris-

tics can be used to aid the efficiency of the search. During the annotation phase, it uses

the procedure findPrecon to find the precondition for π, if we are in an extended-LL

domain. Methods for findPrecon were described in Chapters 4 and 5. The resulting

algorithm can be implemented in an any-time fashion, by returning plans capturing

more and more problem instances as new paths are found.

Algorithm 10: ARANDA-Synth
Input: Generalized Planning Problem 〈S0,D,ϕg〉, where S0 is an abstract

structure
Output: Generalized Plan Π
Π← ;
while Π does not cover I = γ(S0) and ∃π: unchecked path to goal do
π← getNextSmallest(S0,ϕg) Cπ← findPrecon(S0,π,ϕg)
if Cπ is not subsumed by labels on current edges from sΠ then

Add edge from sΠ to sπ with label Cπ
end

end
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Algorithm 11: getNextSmallest(S0,ϕg)

{ /* All data structures are global, and maintained across calls
if S0 does not have queues then

MsgInQ(S0) ← {[ ]}; MsgOutQ(S0) ← ;
*/

π← ;; Pause← False1

while π is not a path to ϕg do2

forall S with non-empty MsgInQ or MsgOutQ do3

Activate(S)4

}

Procedure Activate(S) {
while MsgInQ(S) 6= ; and not(Pause) do5

m ← PopQ(MsgInQ(S)); genMsg(S,m)6

forall MsgOutQ(S) 6= ; do7

m ← PopQ(MsgOutQ(S)); sendMsg(S,m)8

}

Procedure genMsg(S, m) {
if S ∈ m \ loops then9

/* m \ loops = [S0, S1, . . . , Sk−1, S, . . . , Sl]; A loop is formed */
m'← createLoop(m,S)10

/* m′← [S0, S1, . . . , Sk−1, [S, Sk+1, . . . , Sl]] */
PushQ(MsgOutQ(S),m')11

mS ← append(m',S)12

else /* Loop not formed */13

mS ← append(m,S)14

PushQ(MsgOutQ(S), mS)15

if S |= ϕg then16

π← mS;Pause← True /* The next path */

}

Procedure sendMsg(S, m) {
if not newLoop(m) then17

for Sn ∈ possNextStruc(S) do18

if afterLastLoop(m, Sn) then19

/* Adding Sn won't cause a nested loop */
rcvMsg(Sn, m)20

else /* m's last element is a loop */21

if S not last in loop then22

Sn← successor of S in the loop23

rcvMsg(Sn,m)24

}

Procedure rcvMsg(S, m) {
PushQ(MsgInQ(S), m)25

}
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Procedure getNextSmallest (Algorithm 11) works by passing path messages along

action edges between structures. A path message consists of the list of structures in

the path, starting from the initial structure S0. Loops in the path are represented by

including the loop’s structure list, in the correct order, as a member of the path message.

The first structure after a loop in the message denotes the exit from the loop.

MsgInQ(S) and MsgOutQ(S) functions index into the message queues for the given

structure. The procedure starts by sending the message containing the empty path ([ ])

to MsgInQ(S0). When getNextSmallest is called, structures are activated, i.e. their mes-

sages are processed and dispatched until a path to the goal structure is found (lines

1-4). Path messages are generated by genMsg(S,m) which takes a structure and the

incoming message, and dispatched by sendMsg(S,m), which takes the destination struc-

ture and the message to be sent to it as arguments. Message size is not a serious over-

head for message passing, which can be effectively executed using only the message

pointers.

During every activation, all the messages in every structure’s MsgInQ and MsgOutQ

are processed using genMsg and sendMsg (lines 5-8). These operations can be carried

out in parallel. sendMsg makes sure that messages go only to those structures that won’t

create a nested loop. genMsg(S,m) checks if the incoming message creates a simple loop

by checking if S is already present in the message without its loop elements (line 9). If

a simple loop is created, the appropriate loop element is added to the path message to

obtain m′. In this case, two kinds of messages are sent out: one ending with the newly

formed loop (line 11), which is sent only to S’s successor in the loop, and the other

denoting an exit from the loop at S itself (line 12), which is only sent to the non-loop

neighbors of S by sendMsg. If a loop is not formed, S is simply added to the end of the

path message and placed in MsgOutQ(S)(lines 14,15). At this stage, it is also checked

if S is a goal structure. If it is, the newly formed path is returned, and this phase of

activation ends. In practice, this phase can be optimized by interleaving precondition
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evaluation and the search for new paths: if a newly found path includes structures

that occur in paths found earlier, its preconditions can first be found only up till those

structures. Unless they increase the coverage on those structures over the earlier paths,

this path can be discarded and the activation phase can continue until a useful path is

found.

Once the messages have been generated, subroutine sendMsg looks at each message,

and sends it to successor structures that will not create a nested loop (lines 18-20), or

to successor structures within the newly formed loop (line 22-24).

This algorithm generates all paths with simple loops to the goal, while ordering

them across activation phases in a non-decreasing order of lengths. The length of a

path with a loop is counted by including one full iteration of the loop, and a partial

iteration until the structure where it exits.

Together with the facts that the state space is finite and that we can find precondi-

tions in extended-LL domains, Algorithm 10 realizes the following theorem.

Theorem 9. (Generalized planning for extended-LL domains) Algorithm 10 finds most

general plans amongst those with simple loops in extended-LL domains.

Example 8. Fig. 7.1 shows the structures and actions in a path found in the unit delivery

domain using the ARANDA-Synth algorithm. The initial structure represents all possible

problem instances with any number of crates and locations (at least one of each). The

abstract structure after unloading 3 crates is identical to the one after unloading 4 crates.

This appears in the path as a simple loop. While this path to the goal works for instances

with at least 4 crates, paths for fewer crates do not include loops, have fewer action edges

and are thus found before the shown path.

Possible exits due to branching effects are not shown in the figure except for the last

choose(C rate) action; they have to be taken into account during precondition evaluation.

If speculative plans are acceptable, this algorithm can be applied more broadly

without the need for finding preconditions. In practice, heuristics would be required
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Figure 7.1: Example for ARANDA-Synth
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to guide the search process in a manner similar to classical planners. However, in this

case the heuristics would have to be loop “aware", to allow an action to lead back to a

previously visited state in situations where the resulting loop would be beneficial.

7.2 Hybrid Plan Synthesis

We now present a hybrid approach for computing generalized plans that are guar-

anteed to terminate. Upon termination, these plans either achieve the goal, or result

in one of a known set of possibly unsolved situations. In many planning domains,

the quality of provided guarantees is significantly better, and includes a precise char-

acterization of the set of problems solved along with the number of steps required to

reach the goal from a given problem instance. The overall architecture of the approach

(Fig. 7.2) relies upon generating an instance of the current class of unsolved states

and solving it using a classical planner. A generalized version of this solution is then

incorporated into the generalized plan. Maintaining the set of unsolved problem in-

stances thus allows the process to be directed towards the currently unsolved problem

classes. At any stage during the construction of a plan, the partial generalized plan

demonstrates similar correctness guarantees and can be effectively used.

The overall algorithm is presented as Alg. 12. The generalized plan is initialized

with a single node labelled with a set of initial states represented using an abstract

structure S0. We will assume that S0 is at least role-abstracted: that it has at most one

element (either a singleton or a summary element) for each role. During plan synthesis,

a list of un-resolved nodes (non-goal nodes with out-degree zero), called open nodes, is

maintained. This list is initialized with n0. Open nodes represent an upper bound on

the set of problem states that are not solved by the generalized plan.

The main loop of the algorithm iteratively picks an open node n, obtains a classical

plan solving one of the instances represented by Struc(n), generalizes that plan, and

finally, merges it back into the existing generalized plan. The choice of the next open
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Algorithm 12: Hybrid Generalized Plan Synthesis (ARANDA-Hybrid)
Input: Abstract structure S0, domain D, goal formula ϕg

Output: Generalized Plan Π
Π← 〈V = n0, E = ;, Struc(n0) = S0, OpenNodes= (n0)〉1

repeat2

Pick an open node n3

RoleCounts← GetValidRoleCounts(Sn)4

ϕn← GetFOSpec(Struc(n), RoleCounts)5

Cn← ModelGenerator(ϕn)6

πn← ClassicalPlanner(PDDL_Translation(Cn), DPDDL)7

πc
n← AddChoiceActions(πn, PDDL_Translation(Cn))8

tn← Trace(πc
n, Struc(n))9

Π← MergeWithOpenNodes(Π, tn, n, Cn,πc
n)10

until OpenNodes = ; or InstanceLimitReached
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node to be solved can be prioritized; in our experiments we use a random ordering of

open nodes.

Given an open node n, steps 4-6 generate a concrete instance of the set of states

represented by Struc(n) using a first-order model generator. This process is discussed

in detail below. In step 7, a classical planner is invoked with a PDDL version of this

problem instance, an instantiated goal formula and a PDDL version of the domain

D. AddChoiceActions then generalizes the obtained plan πn by inserting argument-

selecting choice actions before each of its actions. The roles for action arguments are

computed in AddChoiceActions by simulating an execution of the plan πn on Cn.

Subroutine Trace in step 9 uses a modified version of the algorithm discussed in

Section 6.1.1 to keep track of the problem instances which will not be solved by the

generalization of a computed classical plan. Recall that in the trace subroutine, abstract

action operators are applied to abstract structures starting with Sn. Whenever an action

leads to multiple abstract states due to focus operations, the next action is applied only

on the state that embeds the result obtained at that step in an execution of the plan πc
n

upon the concrete instance Cn. Traces are represented using the same representation as

generalized plans but are much simpler, consisting of a single main branch going from

Sn to the goal, with branches leading to leaf, or open nodes of the trace. These nodes

capture possible results of actions that did not occur in the example plan; consequently,

states represented by these nodes may not have a path to the goal. In this way, members

of Struc(n) that are not solved by the generalized example πc
n get collected in the trace’s

open nodes. Step 10 merges this trace with the existing generalized plan. In doing

so it also determines if the new open nodes are subsumed by existing nodes in the

generalized plan. This is described in detail in Section 7.2.2.

140



7.2.1 Generating Concrete Instances

The subroutine GetValidRoleCounts creates an instance of valid role-counts for a

given structure using the domain’s integrity constraints. We specified integrity con-

straints on role-counts as simple linear equalities, such as (#Red = #Blue)∨ (#Red =

#Blue+1) for the striped tower problem discussed in the section on results. Instances

of such inequalities can be generated automatically using mathematical packages (we

used Mathematica). The subroutine GetFOSpec returns a first order representation ϕn

of the three-valued abstract structure Struc(n). ϕn consists of three sets of axioms,

Axu, Axe, and Ax i, capturing facts about the elements of the universe, its relations, and

the integrity constraints respectively. Recall that every element in an abstract structure

corresponds to a unique role, and that its summary elements may correspond to mul-

tiple elements in a concrete structure that it represents. Let Sn = St ruc(n); r(S) the

set of roles with non-empty instantiations in S and u(Sn) be the set of roles that corre-

spond to singleton elements in Sn. We use the abbreviation ri(x) to denote first-order

formulas for roles. That is, ri(x) ⇐⇒ (∧p j∈rolei
p j(x)∧pk 6∈rolei

¬pk(x)). Axu, Axe ensure

that every element has one of the roles r(Sn) and that definite truth values in Sn are

respected:

Axu(Sn) ≡ ∀x (∨ri∈r(Sn)ri(x))∧

∧r j∈u(Sn)∀x , y (r j(x)∧ r j(y) =⇒ x = y) (7.1)

Axe(Sn) ≡
∧

v∈{>,⊥}

∧

p, ri , r j :
[[p(ri , r j ) = v]]Sn = 1

∀x , y (ri(x)∧ r j(x)

=⇒ p(x , y) = v) (7.2)

Axu is extended in a straightforward manner to assert that every role has the num-

ber of elements obtained using GetValidRoleCounts.
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The integrity constraints of a domain may include statements about transitive clo-

sure. We use the notation ptc to denote the transitive closure of a predicate p in the

vocabulary of a domain-schema. In general, transitive closure cannot be accurately

formalized in first-order logic. This makes it impossible, in general, to create models

for formulas in FO(T C) in which predicate ptc’s interpretation is the true transitive clo-

sure of predicate p’s interpretation. In restricted settings however it is possible to do

so using methods described by Lev-Ami et al. (2009). In this thesis, we use their axiom

schema T1[p]:

T1[p]≡ ∀x , y (ptc(x , y) ⇐⇒ p(x , y)∨ (∃z p(x , z)∧ ptc(z, y)))

Theorem 10. (Lev-Ami et al., 2009) In any finite and acyclic model of T1[p], ptc is

equivalent to p+, the non-reflexive transitive closure of p.

In other words, if the relation p is constrained to be acyclic, then in every finite

structure, T1[p] defines ptc as exactly the non-reflexive, transitive closure of p. We

found that transitive closure in this restricted setting suffices to express necessary state

properties such as “every block in the tower is above the bottommost block", “every

grid square in a row is to the west of the eastern border" etc. Such expressions are used

in the Striped tower, Hall-A and Reverse problems presented in Section 7.2.4.

Let PT C be the set of predicates in the domain for which transitive closure is used

in the integrity constraints. The first-order expression for Ax i therefore includes, in

addition to any integrity constraints used in the domain, the axioms T1[p] and the

statements ∀x¬ptc(x , x), for all p ∈ PT C .

For a three-valued structure S, let FO(S) ≡ Axu(S) ∧ Axe(S) ∧ Ax i. The following

result shows that step 6 in Alg. 12 generates a concrete instance Cn ∈ γ(Sn) as long as

the model generator employed is sound.

Theorem 11. Suppose that all p ∈ PT C are acyclic and S is an abstract structure corre-

sponding to an open node in a generalized plan. Then a concrete structure C belongs to

γ(S) iff C |= FO(S).
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Proof. Suppose C ∈ γ(S). Then there must be an embedding of C into S. Because this

embedding can only make truth values imprecise, it will have to map an element in |C |

to an element in |S| of the same role (see Definition 5 on page 34). Thus, C must satisfy

the first conjunction in Axu, stating that every element must have one of the roles in S.

Under this embedding, multiple elements of |C | (say c1, . . . , cm) can be mapped to

a single element (say s1) of |S|, only if [[s1 = s1]]S is 1
2
. Otherwise, the truth value

of s1 = s1 in S will become inconsistent with at least one of [[c1 = c2]]C (= 0) and

[[c1 = c1]]C (= 1). In other words, there must be exactly one element in C for every

singleton roles u(S) in S. Thus, we have C |= Axu. By a similar reasoning, C must

satisfy Axe: otherwise we get a tuple whose truth value on a predicate in C conflicts

with the truth value of the corresponding tuple in S.

In order to show that C |= Axi, we first note that T1[p] is a sound axiom scheme:

it is always satisfied by a model which interprets ptc as the correct transitive closure of

p. Since we have C ∈ γ(S), C interprets ptc correctly, and therefore must satisfy T1[p]

for every p ∈ PT C . Finally, by definition of γ(S), we know that C must satisfy all the

domain-specific integrity constraints. Thus, we have C |= Axi.

Conversely, suppose C |= FO(S). We need to construct an embedding from |C | into

|S| and show that C satisfies all the integrity constraints, and interprets ptc correctly.

Because C |= Axu, we know every element’s role corresponds to an element’s role

in S. Further, since S corresponds to an open node in a generalized plan, it must have

at most one element of each role: this is assumed to be true for the initial structure;

the action update mechanism (Definition 8 on page 42) ensures that it continues to

hold for every structure resulting from action application. The required embedding

therefore maps every element in |C | to the element with the same role in |S|. Axiom

Axe ensures that this mapping is an embedding.

Since all p ∈ PT C are acyclic, C interprets ptc correctly by Theorem 10. Finally, C

must satisfy all the integrity constraints because we have C |= Axi.
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7.2.2 Merging Traces with Open Nodes

Algorithm 13: MergeWithOpenNodes
Input: Generalized plan Π, open node n0, new trace t, concrete state Cn, plan πc

n
Output: Extended version of Π
/* t0 = start node of t */
bpπ, bpt ← 0; mpΠ, mpt ← n0, t01

repeat2

if mpΠ found then3

bpΠ, bpt ← findBranchPoint(Π, t,mpΠ, mpt)4

end
if bpΠ found then5

mpΠ, mpt ← findMergePoint(Π, t, bpΠ, bpt)6?

addEdges(Π, t, bpt , mpt , mpΠ, bpΠ)7?

end
until new bpΠ or mpΠ not found
tryMergeOpenNodes(Π)8?

for m ∈ Nodes(Π): Cn v St ruc(m) do9?

MergeWithOpenNodes(Π, Trace(πc
n, Struc(m)), m,⊥,;)10?

end

The MergeWithOpenNodes subroutine (Alg. 13) uses the overall structure of Bran-

chAndMerge (Alg. 6 on page 115) while adding several functional and performance

enhancements. Lines that were added or whose subroutines were significantly mod-

ified are labeled with a “?"; these changes are described below. The overall merge

algorithm proceeds by identifying a node in the generalized plan which can embed

a node in the trace. This node is considered as a merge point, where the trace and

and the generalized plan can be merged. Once a merge point is found, the algorithm

searches for a branch point, or a successive node where the example trace differs from

the generalized plan. After finding a branch point, the algorithm recurses to find the

next merge point and adds edges from the example trace between successive branch

points and merge points in the generalized plan. In this way, it retains the control be-

havior shown in the example plan, while making the added segments usable from any

of the merged nodes, thereby increasing the applicability of the generalized plan.

144



MergeWithOpenNodes makes a number of functional enhancements and optimiza-

tions upon this fundamental algorithm. When adding a new edge from the trace at a

node v in the generalized plan, subroutine addEdges also adds any open nodes asso-

ciated with that edge in the trace. During the addition of an edge, addEdges checks

for two possible subsumptions: if the result node of the edge being added embeds

any existing open neighbor of v, that neighbor is removed from the graph; symmet-

rically, if any of the open nodes being added are subsumed by an existing non-open

neighbor of v, they are not added. Merging the trace produced for covering a single

open node can thus resolve several other open nodes. Further, after finding a branch

point vb, BranchAndMerge limits the search for merge points to the non-ancestors of

vb and nodes within the loop containing vb, in order to avoid creating loops that may

be too complex to analyze. We extend this search to also include those ancestors va of

vb which satisfy the following constraints: (1) no path from va to vb includes a node

belonging to a strongly connected component of size more than 1, and (2) the loop

created by merging vb with va is guaranteed to terminate. (1) requires an enumeration

of all acyclic paths from va to vb. This is done using a modified version of DFS which

marks a node as “visited” only after all its descendants have been explored, and always

clears the temporary labels used during the exploration from a node. Termination is

checked by searching for a role whose count undergoes a net decrease as a result of ev-

ery possible new loop created by merging vb with va. Since all input states of planning

problems can be assumed to be finite (albeit unbounded), this ensures that every loop

will terminate. Note that the strongly connected components produced in this manner

are simple loops with shortcuts (see Chapter 4) — they consist of only acyclic paths

between va and vb prior to merge. This ensures that once the execution control exits a

strongly connected component, it can never return to that component. These changes

in Alg. 13 allow us to create many more progressive loops than in the original merge

algorithm.
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Finally, after completing a merge of the trace, MergeWithOpenNodes performs two

extra steps pertinent to the management of open nodes. The subroutine tryMergeOpenN-

odes merges every open node in the plan that can be merged with any other node with-

out creating a potentially non-terminating loop. Finally, step 10 in Alg. 13 checks if

the example plan Cn can be embedded into another open node in the plan and if so,

recurses with a call to trace and merge.

These enhancements not only allow us to effectively conduct a search for general-

ized plans, but also reduce the number of classical planner invocations and the size of

the problem instance in each invocation. In the hall-A problem discussed in the Sec-

tion 7.2.4 for instance, the ability of finding progressive loops with ancestors of branch

points allowed the generation of the entire plan without ever invoking the planner with

more than one element per role. This would not have been possible with the original

merge algorithm.

7.2.3 Properties of Hybrid Plan Synthesis

Property 1 When the generalized plan terminates on a problem instance, it does so

either at an open node or at a goal node. Action application on abstract structures

succeeds only if its preconditions are definitely true (and thus will be satisfied in every

situation possible at that stage in the generalized plan). Therefore, there is always an

applicable action at any internal node n in the plan. The execution of a generalized

plan created using Alg. 12 can therefore only terminate at a node with out-degree zero.

Property 2. If a problem instance p cannot be solved by a generalized plan, its execution

on p will necessarily terminate at an open node. This is a direct consequence of Property

1. Structures represented by open nodes thus provide an upper limit on the class

of problem instances that cannot be solved by a generalized plan. In this way, they

constitute an index of unsolved situations and when they might occur.
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Property 3. Generalized plans created by Alg. 12 are guaranteed to terminate in any

domain where changes in role-counts due to action operation on abstract structures can

be computed automatically. Computation of preconditions guaranteeing goal reachabil-

ity, and consequently termination, was discussed in Chapters 4 and 5. Condition (1)

enforced by Alg. 13 while creating loops ensures that execution control never returns

to a strongly connected component after exiting from it. This, together with the fact

that all loops terminate guarantees that the generalized plan will terminate. Further,

the decreasing role-count for a loop also allows the computation of an upper bound on

the number of times a particular loop can be executed. As discussed in Chapter 5, in

extended-LL domains role-count changes can be computed automatically.

Property 4. For plans computed in extended-LL domains, if all strongly connected com-

ponents of the plan are simple loops or simple loops with shortcuts, then plan preconditions

can be computed in terms of the role-counts in a given problem instance.

This property follows from the precondition computation techniques described in

Chapter 4 and Theorem 7 on page 81.

7.2.3.1 Reachability of Generated Instances

Action update on an abstract structure may result in a structure that embeds a su-

perset of the actually possible concrete results (Sagiv, Reps, and Wilhelm, 2002). This

over-approximation is neither entirely undesirable nor unintended — over-approximated

state representations can potentially capture future states. Over-approximation is there-

fore fundamental to the mechanism of recognizing and creating loops. However, open

nodes that represent only concrete states that are unreachable along any existing path

in the plan can lead to wasteful model-generator and planner invocations. Such open

nodes can be easily pruned using the precondition evaluation (Chapters 4 and 5): if

the precondition for reaching a node is not consistent with the initial abstract state,

then that node can be removed from the plan. If the preconditions are consistent with
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the initial abstract state, then they can be used to construct a concrete instance which

can reach the open node. Thus, we have:

Property 5. In extended-LL domains the set of problem instances covered by the gener-

alized plan strictly increases with every iteration of the main loop in Alg. 12.

Reachable, yet unsolvable open nodes may be produced in domains where action

effects cannot be reversed. Determining that no concrete instance of an open node is

solvable requires reasoning abilities beyond the scope of this thesis; however, if a node

can be identified as unsolvable, and if preconditions can be computed for reaching

that node, then an instance of the initial state satisfying those preconditions can be

generated. The classical planner solution for this instance can then be merged with

the generalized plan’s start node as the initial merge point. In this way, the scope

of the generalized plan can be extended to include problem instances that may have

otherwise resulted in the unsolvable open node.

7.2.4 Implementation and Results

We implemented Alg. 12 in Python using Mace4 ( http://www.cs.unm.edu/

~mccune/mace4/) as the model generator and the classical planner FF (Hoffmann

and Nebel, 2001). The implementation automatically computes changes in role-counts

when possible and creates loops only when termination can be guaranteed. Table 7.1

shows a summary of the results including the number of planner calls, the largest

problem instance generated, the total time taken for computing the generalized plan,

and applicability status of the resulting plan, where “T" indicates proven termination,

“C" indicates a complete solution, and “P" indicates an automatic proof of completeness.

The experiments were carried out on a 1.6GHz-Intel Core2Duo laptop with 1.5GB of

RAM.

We tested the applicability of this approach on an automated programming problem

(“Reverse") of reversing a singly linked list. Actions in this domain consist of program
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Problem Ncalls ‖S‖max T(s) Applicability
Delivery 9 9 346 T, C , P
Hall-A 14 10 283 T, C , P
Reverse 9 8 153 T, C
Striped Tower 11 9 837 T, C , P
Transport 7 13 725 T, C , P

Table 7.1: Summary of results

statements over three variables, such as ptr1 = ptr1->next,

ptr1->next=ptr2, and ptr1=ptr2. Pointer assignment actions in this domain can

be irreversible. Linked list manipulation programs are particularly difficult to verify

because of the possibility of unreachable data elements. Our approach computes the

correct program with a loop for reversing the list pointers, but also generates two

unreachable and unsolvable nodes. The computed program is guaranteed to terminate

as per Property 1 and forms a complete solution, but a proof of completeness requires

the pruning of these unreachable nodes.

We also tested the implementation on some open problems in the planning liter-

ature for which there are currently no approaches capable of computing generalized

solutions with termination guarantees. The first two loops in the obtained plan for the

striped tower problem move blocks to the table; the last loop moves blocks back in al-

ternation; the plan includes edges by-passing these loops in cases with too few blocks.

This plan has 10 terminal nodes, of which five are unsolvable (marked with a triangle),

resulting from unsolvable initial instances; the goal nodes are marked with circles. Pre-

conditions for reaching any node in this plan with given role-counts can be computed

automatically using methods presented in Chapters 4 and 5. Other problems included

in the tests are Delivery and Transport (Srivastava, Immerman, and Zilberstein, 2008)

and Hall-A (Bonet, Palacios, and Geffner, 2009). The solutions to all of these problems

are provably complete and terminate.
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7.3 Discussion

Summary The algorithms presented in this chapter bring together all the ideas de-

veloped in this thesis. Both the approaches for plan synthesis presented here make

extensive use of methods for analyzing loops of actions developed in Chapters 4 and

5. Both approaches also use abstract state representations to recognize potential loops;

ARANDA-Hybrid also utilizes these representations to merge similar plan segments, in

the vein of the BranchAndMerge algorithm developed in Section 6.2. The experiments

conducted using ARANDA-Hybrid show a close proximity between generalized planning

and automated programming. As such, these algorithms demonstrate the utility of the

methods for precondition analysis and state abstraction presented early in the thesis.

Future Work The ARANDA-Hybrid approach presents several opportunities for future

research and optimization. The use of model generators can be studied further, to

develop a better understanding of when finite models of restricted classes of first-order

logic can be found efficiently. A backtracking version of ARANDA-Hybrid would be able

to avoid problems associated with domains where the effects of actions cannot always

be reversed. However, doing so requires methods for rolling a possibly “dead-end"

structure back along the applied actions to a point where it was still solvable. As in

the plan generation process, this may be easier to do with concrete instances of these

dead-end structures. The development of loop-aware heuristics for guiding the search

process in ARANDA-Synth also comprises an entirely new direction for future research.

Related Work In itself, the idea of building plans by adding segments covering new

instances can be considered to be of low novelty. What makes these approaches stand

out from the rest of the literature on planning is the ability to do this reliably, in the

presence of loops of actions which result in a different sequence of concrete states in

every iteration. Few approaches attempt to do so. Of the two most closely related ap-

proaches, KPLANNER recognizes patterns that are common across all the example plans
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it generates – in contrast, the example plans generated by our approach handle differ-

ent aspects of a problem and can amount to partial solutions which cannot be generated

as instantiations of the final generalized plan. Instead, these example plans capture the

required set of actions starting from intermediate steps in the plan. On the other hand,

while DISTILL does consider merging multiple example plans into dsPlanners, it does

not handle the problems of (a) identifying problem instances not covered by a partial

plan (b) merging plan segments into dsPlanners with loops, and (c) applicability and

termination conditions of the generated dsPlanners.

As such, there is no systematic approach for a directed search for generalized plans

that provides strong guarantees about execution outcomes or termination. Kuter et al.

(2008) provide an approach for incrementally generating strong cyclic plans. Some of

the ideas in this approach are similar to those behind ARANDA-Hybrid. This approach

differs from ours most significantly along two dimensions: first, Kuter et al. deal with

domains where actions may have multiple outcomes when applied on a state; in our

formulation, this can only happen if there is partial observability, or if the state is an ab-

stract state. In either case, these states represent collections of potentially unbounded

states, and obtaining a classical plan requires us to generate a concrete instance. In

contrast to Kuter et al.’s approach, our objective then, is to generalize the obtained plan

before merging it with the existing generalized plan. Secondly, Kuter et al. use the

framework of strong cyclic planning (Cimatti et al., 2003) where loops are introduced,

or are desirable only when a linear plan cannot solve the given problem. In contrast,

we create loops which make measurable progress in each iteration, with the objective

of compactly representing solutions to multiple problems.
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CHAPTER 8

CONCLUSION

The central investigation of this thesis has been on the analysis and computation

of structures which can be efficiently constructed and used for solving broad classes of

related, yet distinct problem instances. We introduced this problem, in its commonly

studied form as follows:

Given a “class" of problem instances of interest, construct a “generalized plan" for

“efficiently" solving them.

The motivation behind finding such generalized plans is natural, given the com-

plexity of the planning problem. Modern classical planners have witnessed immense

performance gains by treating the planning process as heuristic search, with automated

methods for computing domain independent heuristic functions (Bonet and Geffner,

2001; Hoffmann and Nebel, 2001; Helmert, Haslum, and Hoffmann, 2007). However,

scalability with increasing numbers of objects remains a challenging problem, espe-

cially in the presence of partial observability where “sensing” actions lead to multiple

plan branches and an exponential growth in plan size. As a result, the problems mo-

tivating generalized planning have remained; research focus on them however, has

decreased since their conception (Fikes, Hart, and Nilsson, 1972). Recent advances

in constructing plans with loops (Levesque, 2005; Winner and Veloso, 2007) have re-

vived interest in the field by demonstrating tangible methods for constructing plans

which could potentially solve unbounded classes of problems.

At the time of presentation of this thesis, clarity on the fundamental problems in

generalized planning had not improved much beyond the original efforts; and while the
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inclusion of loops in plans could arguably be the most significant factor in the current

development of the field, their impact (both in terms of risks and benefits) was not well

understood. In Chapter 2, we started our investigation with a clearer formulation of

what we need from a generalized plan. This definition allowed us to distinguish the

desirable factors of a generalized plan; a key component of this understanding is the

fact that a generalized plan may be incomplete from the point of view of the original

class of problem instances of interest, but may still be useful from the point of view

of the problems that it does solve – provided, of course, that the two classes can be

recognized efficiently. Given the nature of what we expect from generalized plans,

the most general form of this problem of determining the class of problems that a

generalized plan can solve (its preconditions) is unsolvable due to undecidability of the

halting problem for Turing machines. However, we need to confront the same problems

even during the construction of generalized plans with loops, where determining the

utility or the preconditions of a potential loop of actions becomes a crucial step.

The architecture of generalized plans presented in Chapter 2 unifies a diverse array

of planning frameworks, including classical planning, contingent planning, case-based-

planning, and planning with loops, as well as approaches for representing partial plans

or domain control knowledge (Baier, Fritz, and McIlraith, 2007). For the latter, it

allows the generalized plan “structure” to be partial, or abstract. Plan instantiation

methods for such plans will have to conduct a non-trivial amount of computation. The

cost of instantiation of a generalized plan distinguishes generalized plans of varying

specificity in terms of the amount of pre-computation embedded in them. In addition

to this cost, the measures presented in Section 2.2 highlight the multiple objectives of

generalized planning and the conflicting nature of these objectives.

In terms of these objectives, the approaches we presented create plans that have a

worst case cost of instantiation O(nL) where n is the total number of elements in the

problem instance and L is the number of connected components in the generalized plan
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(every complete iteration of a simple loop or simple loop with shortcuts must decrease

the role-count of some role by one). The applicability test can be constructed in time

independent of the number of objects in the problem instance: O(Lb) for plans with L

simple loops and O(RLK2 b) for plans with R affected role-counts, L strongly connected

components with at most K shortcuts each, and at most b branches exiting the loop.

Most of the output plans presented in this thesis have an asymptotic domain coverage

of 1; loops are used to reduce the complexity of plan representation and computation.

However, a greater understanding of measures of plan representation constitutes one

of the directions for future research. The optimality of the produced plans is also 1

in most cases (all but the transport problem create optimal instantiations). Construc-

tion of generalized plans can be directed toward greater domain coverage or better

optimality. Trade-offs between these two aspects and further development of optimiza-

tions focusing on either aspect will be considered in future work on the presented

algorithms.

8.1 Representation

The state and action representation we use is reminiscent of classical approaches to

AI. However, although we use a compact first-order representation, action updates are

applied as queries on states defined as logical structures. The separation of operand-

selection components of actions as “choice” actions makes it possible for us to gener-

alize operands of actions easily, which is particularly useful when they are in a loop.

Choice actions need to be instantiated at run time, and separating them brings out this

important but often overlooked factor in the creation of generalized plans.

The representation of graph-based generalized plans is based on a well-established

representation of control structures. This representation aids in complexity analysis

and categorization of precondition evaluation, as demonstrated by the analysis of

different classes of abacus programs in Chapter 4. The graph-based representation
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also makes it easier to conceptualize algorithms for constructing generalized plans by

adding edges and merging structure nodes which subsume each other (Alg. 6).

Perhaps one of the key components in the development of this thesis is the use

of state abstraction for representing sets of states, which can also be treated as belief

states. Originally developed as a part of the TVLA system (Sagiv, Reps, and Wilhelm,

2002), this mechanism was used to represent supersets of program states possible at

different steps in a program. Our use of this framework hinges on the mechanism for

“drawing out” action operands prior to action application. The algorithms presented in

this thesis restrict choice operations to selecting objects described only in terms of their

roles. In future work these specifications can be extended to more general formulas

and combined with approaches for symbolic computation of preconditions.

8.2 Abacus Programs and Their Relationship to Generalized Plan-

ning

The notion of abacus programs allows us to study the fundamental problems be-

hind computing the effects of loops of actions as well as to solve them efficiently for

a class of planning domains. Our analysis shows that computation of reachable states

and preconditions is very easy in the case of abacus programs with simple loops. On

the other hand, with non-deterministic actions common to many planning domains,

arbitrary nested loops even with cycle rank one (simple loops with shortcuts) can be

as hard as VAS reachability. The key factors responsible for this complexity are non-

monotonicity and order-dependence. Without these factors, this computation becomes

much more tractable (Theorem 3 on page 59 and Alg. 1 on page 62).

The methods developed in Chapter 4 are generally applicable to any system where

action effects and branch conditions can be summarized in terms of numeric changes

on a fixed set of registers. In Chapter 5 we describe how the state abstraction technique
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discussed earlier can sometimes allow us to achieve this; the general requirements for

any abstraction process to be analyzed in this way are captured by the FC3 conditions.

Extended-LL domains were defined as a special case of these conditions, by restrict-

ing the syntax of action update formulas. All domains specified in PDDL using only

unary predicates can be expressed in this way. In addition, domains with binary pred-

icates whose values can be determined (or derived based on the integrity constraints)

using unary predicates of objects fall under this class.

The complexity of determining the numeric changes due to actions and branch con-

ditions will depend upon the specific mechanism used for abstraction. In extended-LL

domains, this can be accomplished in O(r) operations, where r is the largest number

of roles in the abstract structures encountered in the generalized plan. Extended-LL

domains form a one to one correspondence with abacus programs (Corollary 2). Con-

sequently, any control flow or plan can be translated into a plan with extended-LL

domain actions (or even abacus actions). In principle, a single extended-LL domain is

therefore sufficient to express any systematic procedure of computation and its effects.

Extended-LL domains have an added benefit over abacus programs: they can be used

to convert plans with loops into abacus programs in situ, without changing the loop

structure. This gives us greater flexibility during plan construction, when structures

that are not analyzable can be avoided.

More generally, branches caused due to actions or focus operations not within the

extended-LL category can all be treated as non-deterministic from the point of view

of precondition evaluation (reflecting the fact that we don’t know how to categorize

the results of those actions in terms of role-counts). This could allow us to compute

guarantees on termination, but without precise preconditions for reaching desired loop

termination nodes. Even in this situation, “open nodes” (Section 7.2) would represent

the possible loop termination situations and the problem instances which need to be

solved by classical plans during hybrid search. In future work, the scope of these
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methods can also be extended by identifying broader classes of problems where ac-

tion effects can be summarized in terms of changes in the counts of objects satisfying

properties that are more general than object roles.

8.3 Approaches for Plan Generalization

Approaches for constructing plans with loops typically use example plans to guide

the addition of loops of actions. Various techniques can be used to detect these se-

quences: KPLANNER uses a logical definition of “loop un-windings” to identify patterns

of actions in example plans; DISTILL uses an annotated partial ordering to identify re-

peating sequences of the same block of partially ordered operations, and controllers

generated by Bonet, Palacios, and Geffner (2009) are essentially computed as the

smallest correct representations of concrete plans solving an example problem instance.

In all of these approaches, the justification for adding a loop is based on experience

with prior example(s). Our approach for generalizing example plans is similar to these

approaches in the sense of relying on working examples; it differs significantly in the

ideas behind recognizing, identifying, and constructing loops of actions. A potential

loop is identified when a previously visited abstract state is revisited. Identifying a loop

therefore does not require a repeating pattern of actions to occur in the given plan.

Further, the identified loop is added to the plan only if it makes a net change in the

count of at least one role. This ensures that the loop will not represent a recurring

sequence of concrete states (the loop will not be “static”). Further iterations of the loop

are merged with it if the following actions are exact un-windings of the loop.

This approach works very well on problems which require solutions with only sim-

ple loops. However, for generating compact plans it also requires that the next iteration

of the identified loop in the example plan follow the same action ordering. In future

work, we plan to develop methods for alleviating this constraint by preventing spurious

action re-orderings in plans generated by classical planners.
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Although example plans provide vital clues for identifying loops, there are no ap-

proaches for determining how to incorporate the knowledge provided by additional

example plans into a partially constructed plan with loops. The root of this problem

is that the states possible in intermediate stages of the plan are not known – adding a

branch to a loop will therefore produce unpredictable results. In our approach how-

ever, loops are recognized in terms of their invariants, or the properties that must hold

after each action in every iteration of the loop. These invariants are represented com-

pactly in terms of abstract structures on which we can directly trace and attach useful

operator segments from new example plans.

8.4 Approaches for Plan Synthesis

We discussed two approaches for plan synthesis which do not rely upon user-

provided examples for producing generalized plans. The first (Section 7.1) offers a

state-search based solution to generalized planning which has never been developed

before. Heuristic search has proved to be a very successful paradigm in general by

providing domain-independent mechanisms for conducting directed search. In future

work we plan to utilize the vast literature on heuristic search to develop methods for

guiding the proposed search for paths with loops in the abstract state space.

We also presented a hybrid search algorithm which achieves goal-directed behavior

by employing classical planners themselves. While any approach for plan generaliza-

tion can be converted into an approach for hybrid plan synthesis by using an automated

planner to generate example plans, the challenge is to be able to (1) give such a plan-

ner the right problems required for extending the existing plan, and (2) to be able

to generalize the resulting examples while also utilizing the structure of the existing

generalized plan.

In order to address (1), we use a first-order model generator to construct instances

of the non-goal abstract states that a generalized plan may terminate in (Section 7.2.1
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on page 141). With our framework for merging example plans (Section 6.2), classical

plans which solve these instances can be merged into the generalized plan and can also

be used to create loops with existing nodes of the generalized plan, thereby addressing

(2). As a result, the hybrid search algorithm provides an incremental, goal-directed

approach for constructing generalized plans.

As with any procedure for incremental plan generation, hybrid search can get stuck

if the domain has unsolvable, “dead-end” states. In domains with “dead-ends”, hybrid

search requires a mechanism for backtracking in order to avoid committing to action

sequences which can lead to such states. Development of such methods is an important

direction for future work.
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