
THE ROLE OF REPRESENTATION AND ABSTRACTION IN
STOCHASTIC PLANNING

A Dissertation Presented

by

ZHENGZHU FENG

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2005

Computer Science

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

UMI Number: 3193900

Copyright 2005 by

Feng, Zhengzhu

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3193900

Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

© Copyright by Zhengzhu Feng 2005

All Rights Reserved

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

THE ROLE OF REPRESENTATION AND ABSTRACTION IN
STOCHASTIC PLANNING

A Dissertation Presented

by

ZHENGZHU FENG

Approved as to style and content by:

£) i/ftP
Shlomo Zilberstein j^^air

Andrew G. Barto, Member

 [A c A —'"iV U-k,—
Sridhar Mahadevan, Member

Norman Sondheimer, Member

W. Bruce Croft, Department Chair
Computer Science

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Shlomo Zilberstein, for his support

during my years as a PhD student. His encouragement and guidance were indispensable in

the completion of this dissertation.

I would like to thank my collaborators. Eric Hansen, who was my advisor when I was

working on my Master’s degree at Mississippi State, introduced me to the world of MDPs

and POMDPs. He provided early guidance in pursuing the issues of representation and

abstraction in these models. Richard Dearden, Nicolas Meuleau and Rich Washington pro

vided great help when I was working as an intern at NASA/Ames. Together we developed

the ideas on state abstraction in continuous MDPs. These collaborations helped shape my

ideas on how to perform abstraction for the more general POMDP models.

I thank members of my committee. Discussions with Sridhar Mahadevan helped clar

ify my thoughts and improved the structure of the dissertation. Andy Barto and Norman

Sondheimer provided detail comments on the draft which helped improve its quality sig

nificantly.

Finally, I thank my family for their great support and patience during my years as a

graduate student.

iv

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

ABSTRACT

THE ROLE OF REPRESENTATION AND ABSTRACTION IN
STOCHASTIC PLANNING

SEPTEMBER 2005

ZHENGZHU FENG

B.S., SOUTH CHINA UNIVERSITY OF TECHNOLOGY

M.S., MISSISSIPPI STATE UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Shlomo Zilberstein

Markov decision process (MDP), originally studied in the Operations Research (OR)

community, provides a natural framework to model a wide variety of sequential decision

making problems. Because of its powerful expressiveness, the AI community has adopted

the MDP framework to model complex stochastic planning problems. However, this ex

pressiveness in modeling comes with a hefty price when it comes to solving the MDP

model and obtaining an optimal plan. Scaling up solution algorithms for MDPs is thus a

critical research topic in AI that has received a lot of attentions.

In this thesis I study the role of representation and abstraction in scaling up solution

methods for various MDP models. Three variants of MDP models are studied in this thesis:

A discrete state, fully observable model; a continuous state, fully observable model; and a

discrete state, partially observable model. One contribution of this thesis is the development

v

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

of new algorithms for these models that use various representations to exploit natural state

abstractions. These new algorithms significantly increase the range of problems that can be

solved in practice.

A second contribution is the formulation of a new type of belief-space structure in

partially observable MDPs. Using a region-based representation, new algorithms are able

to reduce the computational time exponentially while still maintaining the optimality of the

solution. This presents a breakthrough in scalability studies for this model. The results open

up a range of opportunities to gain better understanding of the model and its complexity,

and to develop better computational solutions.

vi

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS... iv

ABSTRACT... v

LIST OF TABLES.. x

LIST OF FIG URES... xi

CHAPTER

1. INTRODUCTION .. 1

1.1 Decision theoretic planning... 2
1.2 Representation and abstraction..3
1.3 Exact and approximate algorithms ..4
1.4 Thesis...4
1.5 Contributions... 5

2. MARKOV DECISION PROCESSES...7

2.1 Basic m odel... 7
2.2 Dynamic programming... 8
2.3 Partially observable m odels..10
2.4 Computational complexity..13
2.5 Symbolic representation for discrete state MDPs ...13

2.5.1 Algebraic and binary decision diagrams.. 14
2.5.2 Symbolic dynamic programming for MDPs...16

2.6 Implicit representation for belief-state M D P s.. 17

2.6.1 Piece-wise linear and convex value function ...18
2.6.2 Pruning...20

2.7 Chapter notes...23

vii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. SYMBOLIC HEURISTIC SEARCH FOR DISCRETE STATE M D PS 24

3.1 Symbolic reachability analysis .. 24
3.2 Off-line heuristic search...26

3.2.1 Policy expansion.. 27
3.2.2 Dynamic programming...29
3.2.3 Admissible heuristics ...30
3.2.4 Convergence.. 31
3.2.5 Empirical evaluation.. 31
3.2.6 Summary .. 35

3.3 On-line generalization ...35

3.3.1 Generalization by value ...37
3.3.2 Generalization by reachability...37
3.3.3 Symbolic RTDP.. 38
3.3.4 Adaptive symbolic RTDP...39
3.3.5 Convergence.. 40
3.3.6 Empirical evaluation.. 41
3.3.7 Discussion ..46

3.4 Related w o rk .. 47

3.4.1 Related work in off-line planning ...47
3.4.2 Related work in on-line learning...48

4. STATE ABSTRACTION FOR STRUCTURED CONTINUOUS M D P S 51

4.1 Characteristics of the Mars rover domain.. 51
4.2 Basic m odel... 54
4.3 Piece-wise constant m odel..55

4.3.1 Dynamic programming for the piece-wise constant model.....................57
4.3.2 KD-tree representation...58

4.4 Piece-wise linear and convex m odel.. 60
4.5 Mixed m odel..61
4.6 Empirical evaluations..62
4.7 Chapter notes..67

4.7.1 Contributions.. 67
4.7.2 Related work in exploiting state abstraction.. 67
4.7.3 Related work in continuous state M DPs.. 68

viii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. DISCRETE STATE ABSTRACTION FOR POMDPS 70

5.1 Symbolic abstraction for POMDPs..70
5.2 Symbolic dynamic programming ..71
5.3 Pruning in abstract state space..72
5.4 Empirical evaluation................ 74
5.5 Limitation of discrete state abstraction for PO M D Ps..77

6. REGION-BASED BELIEF STATE ABSTRACTION FOR PO M D PS............... 79

6.1 Pruning revisited... 79
6.2 Witness region..83
6.3 Region-based cross-sum pruning.. 85

6.3.1 Intersection-based incremental pruning.. 87
6.3.2 Region-based incremental pruning .. 88
6.3.3 Empirical evaluation.. 90

6.4 Region-based maximization pruning..96

6.4.1 Projection pruning.. 97
6.4.2 Locality in belief space.. 97
6.4.3 Region-based maximization.. 98
6.4.4 Algorithm..99
6.4.5 Empirical evaluation.. 101

6.5 Sum m ary..105

7. CONCLUSIONS AND FUTURE W ORKS...106

7.1 Summary of contributions.. 106
7.2 Future directions..107

7.2.1 Heuristic search in the space of belief regions....................................... 107
7.2.2 Implementation of Sondik’s policy iteration algorithm108
7.2.3 Large Scale Distributed algorithms...109

APPENDIX: BINARY SPACE PARTITION T R E E ...110

BIBLIOGRAPHY..114

ix

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

LIST OF TABLES

Table Page

2.1 Standard linear program to test if a vector u is dominated by a set of
vectors U .. 22

3.1 Symbolic LAO* algorithm... 28

3.2 Performance comparison of LAO* (both symbolic and non-symbolic) and
SPUDD.. 32

3.3 Trial-based symbolic RTDP algorithm... 39

4.1 Dynamic programming for the piece-wise constant model.................................59

5.1 Algorithm for partitioning a state set, S, into a set of abstract states, R, that
only makes relevant state distinctions found in a set of ADDs V................. 73

5.2 Representative timing results (in CPU seconds) for an iteration of the
dynamic programming update using incremental pruning with and
without state abstraction.. 75

6.1 Algorithm for pruning a set of vectors W .. 81

6.2 Linear programming test for region intersection..86

6.3 Region-based pruning for computing 1...89

6.4 Test results on problems from the literature. Times are shown in seconds
except where noted..91

6.5 Speed-up factors compared to GIP on a range of problems (k,ri).......................96

6.6 Comparisons between RBIP-M and RBIP... 102

x

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

LIST OF FIGURES

Figure Page

2.1 Belief state space for 2-state and 3-state POMDPs...12

2.2 ADDs and state abstraction... 15

2.3 Computation using ADDs...16

2.4 Sample value functions for POMDPs. (Source of picture on the right:
[26]) 18

2.5 Two PWLC representations of the same value function.................................... 21

3.1 Masking a function D with xt/, the characteristic function of a set of states
U.. 26

3.2 Performance comparison in CPU tim e ... 43

3.3 Performance comparison in number of trials..44

3.4 Performance comparison of adaptive symbolic RTDP and adaptive RTDP,
averaged over 100 runs and smoothed.. 45

4.1 Example Mars rover planning domain (Source: [23]).......................................53

4.2 Value function of the Mars rover domain..54

4.3 Rectangular piece-wise constant models..56

4.4 Computing aa ... 57

4.5 Result on problem set ID..63

4.6 Result on problem set 2D..64

4.7 Result on problem set 3D..65

xi

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

4.8 The piece-wise linear value function and the corresponding space partition
for the starting discrete state in a 2D problem...66

6.1 Witness region..84

6.2 Timing result for problem set (k, 10) ..92

6.3 Number of linear programs solved for problem set (k , 10) 93

6.4 Total number of constraints for problem set (k. 10)...94

6.5 Max number of constraints for problem set (k, 10) ...95

6.6 Running time comparison on problem 4x3... 104

6.7 Average number of constraints in problem 4x3...105

A.l BSP example..112

xii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

CHAPTER 1

INTRODUCTION

Automated planning has many applications in a wide variety of areas such as manufac

turing, robotics and space exploration. Research in classical planning is based on simplify

ing assumptions about the capabilities of the agent as well as the planning task. Typically,

agents have perfect actuators and sensors, and they interact with the environment in a fully

predictable, deterministic way. The objective of the agents is usually to reach certain goal

states. Although there are many applications that can satisfy these assumptions, many more

cannot. In real-world situations, agents must cope with various uncertainties and complex

objectives.

One source of uncertainty is in the outcome of actions that the agent can take along the

plan. Some actions may not have the intended effect because of various physical constraints

on the agent’s capabilities. For example, a robot picking up a part may fail to hold it from

time to time. Other actions may by inherently stochastic. For example, performing a

scientific test may produce various results. Another source of uncertainty is in the limited

ability of the agent to accurately identify the current state of the system. Because of the

uncertainty of the outcome of actions, there are multiple possible resulting states that the

agent can be in after an action is taken. It is crucial that the agent can identify the exact

outcome of such an action. In practice this is not always possible because of the limited

sensing capability that the agent has. Finally, for real life applications there may not be a

well defined goal state. Instead, the performance of any plan may be evaluated by some

general utility function, and the objective is to maximize the utility. This thesis addresses

the problem of optimal planning under these circumstances.

1

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1.1 Decision theoretic planning
A Markov decision process (MDP) provides an attractive framework for modeling such

complex planning problems. In its most general form, an MDP can model uncertainties in

both the agent’s actuators and the sensors, and can model both goal oriented and general

utility oriented planning tasks.

Research in MDPs can be traced back to the 1950’s when Bellman studied the dynamic

programming paradigm in sequential decision making [6]. Since then a large literature on

the topic has been formed, mainly by the operations research and control theory communi

ties [62, 39, 2, 95, 79, 74]. Because of its powerful expressiveness, the AI community has

adopted the MDP framework to model complex planning and learning problems. However,

this expressiveness in modeling comes with a hefty price when it comes to solving an MDP

and obtaining an optimal plan. Scaling up planning algorithms for MDPs is thus a critical

research topic that has received a lot of attentions [35, 22, 66, 98, 26, 52, 58].

Exact solution to an MDP in general requires computing a value function over the state

space of the system. For fully observable MDPs with discrete state space, the number of

states grows exponentially with the number of features describing the system. Therefore

although algorithms for this type of MDPs are generally considered tractable [83], they

do not scale to large state spaces. For MDPs with continuous state spaces, as well as the

more general partially observable MDP (POMDP) model, the state space over which a

value function must be computed is uncountably infinite. This large or infinite state space

is therefore the main source of computational complexity in solving MDPs. In fact, solving

finite horizon POMDPs is intractable assuming P / PSPACE [83, 75], and solving infinite

horizon POMDPs is undecidable [76].

Note however that these complexity results are for the worst case scenarios. In practice,

many problems exhibit various structures that make the problems easier to solve. There

fore a critical key to scalable algorithms for MDPs is to discover, understand, and exploit

these structures. This thesis will demonstrate various kinds of abstract structures in differ-

2

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

ent models and domains, explain how they interact with the solution process, and present

scalable algorithms to take advantage of these structures.

1.2 Representation and abstraction
Abstraction is the hallmark of human problem solving. Being able to ignore irrelevant

details at the proper level helps people to cope with the complexity of problem solving.

Imagine if we had to reason about all the details of our everyday life, we would never be

able to accomplish anything. There are many useful forms of abstractions. The focus of

this thesis is on the notion of state abstraction in connection to the large and sometimes

infinite state spaces of various MDP models. In this sense, an abstraction means grouping

states to form abstract states that can be treated as single entities for our computational

needs. Equivalently, an abstraction can also be seen as a partitioning of the state space,

where each partition is an abstract state.

The process of forming abstractions involves analyzing the state space and identifying

groups of states that can be treated the same for the current reasoning task. The represen

tation of the state space plays a crucial role in how efficient and useful such abstraction

can be. In the simplest case, the state space can be represented by a list of all unique

states. Forming abstraction can be accomplished by walking through this list and marking

states that can be treated the same. However, the cost of forming abstraction using this

so called flat representation is usually too great, because it involves enumerating the large

state space, which is the cause of inefficiency we want to avoid at the beginning. Further,

for uncountable state spaces, enumeration becomes impossible. The central theme of this

thesis is on how to exploit various representations to form abstractions effectively and ef

ficiently for different types of state spaces, so that the underlying computation can benefit

the most from the abstractions.

3

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1.3 Exact and approximate algorithms
A general form of state abstraction is function approximation, which uses simple func

tions such as polynomials or neural networks to approximate the true value of all states

in the state space, thus avoiding explicitly enumerating the state space. It is relatively

easy to control the complexity of approximation algorithms by choosing functions that are

known to be easy to compute. As a result, many researchers have focused on approxima

tion algorithms for MDPs [39, 74, 84, 10, 22, 19, 56, 57, 103, 86, 89]. These studies are

very important in that they identify specific instances of problems where approximation

algorithms deliver satisfactory results. On the other hand, most approximation algorithms

cannot provide tight bounds on the approximation error. Some approximation algorithms

can in fact produce arbitrarily poor results, as pointed out in refs. [51, 21]. Further, most

approximation algorithms rely on some strong assumptions about the domain, and it is not

clear how well they can be generalized to other domains.

This thesis focuses on exact solution algorithms for various MDP models. Besides

retaining sound theoretical properties, a better exact algorithm can help us better understand

the general structure of the problem, through the process of solving the problem completely,

and from the optimal solution revealed in this process. With a better understanding of the

general structure, we can in turn develop approximate algorithms with better theoretical

properties, as we did in refs. [43, 45].

1.4 Thesis

The main thesis of this work is that there are useful and general abstract structures in

MDP and POMDP models that can be represented and exploited to significantly accelerate

exact solution algorithms. This is supported by rigorous theoretical analysis and substantial

empirical evaluations. Many results in this thesis have been applied and verified in different

domains and settings by other researchers.

4

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1.5 Contributions
The main contributions of this thesis are the discovery and analysis of various rep

resentation and abstraction schemes for several important MDP models, and the design

and analysis of algorithms that exploit these representations and abstractions. It not only

contributes state-of-the-art algorithms for these models, but also improves the general un

derstanding of their special structures and their relations to scalability.

Previous research on state abstraction for MDPs has focused on a simplified but never

theless important MDP model where the state space is assumed to be finite and the agent

has full observability over the finite state space. Two representations have been developed

to facilitate state abstraction for this case: the decision tree representation [15, 37, 16] and

the decision diagram representation [59, 97]. In particular, the decision diagram approach

borrows data structures developed in the field of automated model checking [32] that have

been shown to be particularly effective in forming state abstraction for the above simplified

MDP model.

Chapter 3 extends this research by combining the symbolic representation with search

algorithms for discrete state MDPs in a fully integrated symbolic model checking frame

work. The resulting algorithm outperforms existing algorithms by orders of magnitudes on

public benchmark problems, and won a first place award in the probabilistic track of the

2004 International Planning Competition [73].

Chapter 4 introduces a new geometric representation for fully observable MDPs with

continuous state spaces. Abstraction over the continuous state space is formed by partition

ing the continuous space into rectangular regions, where the value over each region can be

a constant or a piece-wise linear function. The resulting algorithm effectively discretizes

the continuous space on-demand, spending computational resource where it is needed. It

has been applied to a protocol Mars rover model developed at NASA and outperformed

previous approaches by orders of magnitudes. This research is being continued at NASA

with an attempt to deploy the algorithms on physical rover platforms [78, 77].

5

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

For the more general POMDP model, state abstraction is considerably more difficult

because the solution of a POMDP involves a transformation to a special continuous state

space called a belief space that does not lend itself to the rectangle partition representation

developed in Chapter 4, or any other regular partitioning scheme. In fact, the represen

tation of the value function over this belief space is the major difficulty in POMDP algo

rithms. Chapter 5 develops an abstraction algorithm for the original discrete state space of

a POMDP, which translates into reduced dimensionality of the transformed belief space.

It represents the first algorithm to explicitly exploit state abstraction for POMDPs. Be

cause of the generality of the abstraction scheme, it has been applied to other POMDP

algorithms [54],

In Chapter 6, a new form of abstraction for the belief state space of POMDPs is intro

duced. Using a region-based representation, the notion of abstraction of the belief space

is being made explicit. By exploiting a region-based abstraction, the computational time

for the cross-sum operation, a central bottleneck in POMDP algorithms, can be reduced

exponentially. This exponential reduction in turn exposes another bottleneck in POMDP

algorithms: the maximization step. The same region-based representation can also be used

to exploit abstraction in speeding up the maximization step. The algorithms developed in

this chapter represent the current state-of-the-art exact algorithms for solving POMDPs.

6

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

CHAPTER 2

MARKOV DECISION PROCESSES

This chapter describes the Markov decision process model and reviews standard algo

rithms for solving it. I will focus on the scalability issues of these standard solution algo

rithms and their relation to state space representations and abstractions. No new algorithm

is introduced in this chapter.

2.1 Basic model
A Markov decision process (MDP) is defined as a tuple (S, A, P, R, [3) where:

• S is a set of states;

• A is a finite set of actions;

• P is the transition model. Pa(s'\s) specifies the probability of reaching state s’ when

action a is taken in state s. s is usually referred to as the pre-action state, and s' the

post-action state;

• R is the reward model. Ra(s) specifies the expected reward for taking action a in

state s.

• (3 is a discount factor, where 0 < (3 < 1.

In this definition, the Markovian property is assumed implicitly by the fact that the tran

sition probability and the reward of an action only depends on the current state. An MDP

models an agent acting in a dynamic system whose state space is S. In this thesis, two types

of state spaces are studied: finite discrete state space, and uncountably infinite state space.

7

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

For the moment, the two cases are not distinguished. The basic theory holds for both cases

as long as the transition and reward model are well defined over the state space.

The basic model assumes full observability of the agent, that is, the agent can accurately

identify the state it is in at any time step. At each time step t, the agent observes the current

state st, makes a decision to take action at, the system then transfers to the next state st+1

according to the transition model Pat. At the same time the agent receives a reward Rat (st)

according to the reward model. In general, the decision making at time step t is controlled

by a policy 7r(s, t) that maps the i-step states to actions. The objective of the agent is to

maximize the expected total reward acting in the system:

T

m ax#7T ' 0̂

Here E represents the expectation over all possible state trajectories. T is the planning

horizon, that is, the number of steps that the agent is allowed to take before the process is

terminated. When T is finite, the problem is referred to as a finite horizon problem. When

T is infinite, it is referred to as an infinite horizon problem. For infinite horizon problems,

the discount factor f3 has to be strictly less than 1 to ensure that the sum of rewards is finite.

2.2 Dynamic programming

Dynamic programming is the standard algorithm for solving MDPs. Define value func

tion V n(s) to be the value obtainable if the agent is in state .s and there are n steps left

to be taken. When n — 0, that is, no more action is allowed, the value is 0 for all states:

K°(-) = 0. Given the rc-step value function V n, the (n+ l)-step value function is computed

using the following dynamic programming (DP) update:

F n+1(s) = max | Ra{s) + 0 Pa(s'\s)Vn(s') \ (2.1)
a€ I s 'e s J

8

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

This update needs to be computed for all states s £ S. In the following, we assume that

when computing V k(s), ak(s) is the action that maximizes the right-hand-side of the above

equation.

For finite horizon problem with a planning horizon of T, we need to compute the DP

update from V 1 up to VT. The optimal T-step policy is simply:

7r£(s, t) = aT~t(s).

Note the step index of the DP update is in reverse of the time step index of the agent’s

actions.

For infinite horizon problems, it can be shown that the DP update will converge in the

limit to the optimal value function:

3V*s.t.V* = lim V n
n —>oo

In this case, the optimal policy is also stationary, and can be extracted from V* by an

additional step of DP update:

7r*(s) = argmax < R a(s) + (3 P a(s/|s)V*(s/) I
a€A I s '€S)

In practice, only a finite number of DP updates can be computed. The distance between

the n-step value function and the optimal infinite horizon value function can be bounded:

maxims) - V"+,« l <ses 1 - / 3

The distance maxs |y n+1(s) — Vn(s)| is usually called the Bellman residual.

The above process for solving infinite horizon MDPs is usually called value iteration

(VI), since it iteratively improves a value function until it is good enough, and then extract

9

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

the control policy from it. Another algorithm for solving infinite horizon MDPs is the policy

iteration (PI) algorithm, which iteratively improves a policy directly. Given stationary

policy 7r, its value V 77 can be computed by solving the following linear system in the policy

evaluation step:

V*{s) = Rw{s\ s) + / ?] T P 7r(sV |s)V V) ,V s e S (2.2)
s'es

After the evaluation, PI performs a policy improvement step, which extracts a greedy policy

from the value of the previous policy:

Tr'(s) - argmax < (Ra(s) + {3 Pa(s'|s)K V)- \ (2-3)
aeA I s'es J

Note the policy improvement step is essentially a DP update. This process then repeats with

the current policy replaced by 7r'. It can be shown that the sequence of policies produced

by this process converges to the optimal policy.

As we can see, both value iteration and policy iteration make use of the DP update in

Equation 2.1, which is also the main computation in both algorithms. The algorithms de

scribed in the rest of the thesis are all focused on computing the DP update more efficiently.

They are applicable to both value iteration and policy iteration.

2.3 Partially observable models
In an fully observable MDP, the agent can accurately identify the current state. In

a partially observable MDP (POMDP), this assumption is removed: the agent can only

“guess” what the current state is based potentially noisy sensor inputs. Formally, a POMDP

is defined by the tuple (S, A , P, R, Z, O, (3), where A, P, R and (3 are the same as in the

MDP model described in the previous section, and

• S is a finite set of states;

10

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• Z is a finite set of observation states;

• O is the observation model. Oa(z\s') is the probability that 2 is observed if action a

is taken and resulted in state s';

Note that unlike the basic model, the state space of a POMDP is assumed to be finite.

Allowing partial observability makes POMDPs substantially more expressive then MDPs.

However, to obtain the optimal solution of a POMDP, one has to rely on an equivalent MDP

model. The standard solution method is to convert a POMDP to a fully observable MDP

over belief states. A belief state b is a probability distribution over the discrete state space

Figure 2.1 shows the belief state space of a 2-state POMDP on the left, and a 3-state

POMDP on the right. In the 2-state case, the belief space is a line between the two states.

A belief state b is a point on this line, whose distance to s0 is the probability of being in

Si and vice verse. In the 3-state case, the belief space is a triangle on a plane. A belief

state b is a point on this plane, whose distance to the edge of the triangle opposing S; is the

probability of being in state s*.

Given a belief state b representing the agent’s current best estimate of the underlying

state, there are at most \Z\ possible resulting belief states after action a is taken, one for

each possible observation. The probability of seeing a particular observation 2 can be

computed from the POMDP model:

S :

b : S ^ [0,1],

such that

(2.4)

11

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

S2

Figure 2.1. Belief state space for 2-state and 3-state POMDPs.

The resulting belief state baz can be computed using Bayesian conditioning as follow:

We use baz = Tz (b) to refer to belief update. It can be shown that a belief state updated

this way is a sufficient statistic that summarizes all the previous history of the process [92].

It is the only information needed in choosing an optimal action. An equivalent, fully ob

servable MDP can be defined over this belief state space as the tuple (B , A, T, R b), where

• B is the space of belief states;

• A is the action set as before;

• T is the transition function as defined above. If action a is taken in belief state b, then

the system transfers to belief state Tz (b) with probability Pa(z\b);

• R% is the reward for taking action in belief state b, computed from the POMDP

As in the fully observable case, we can perform dynamic programming for a POMDP

using the equivalent belief-state MDP. Define value function V : B —► 3?. Then the DP

update for POMDP is as follow:

(2.5)

model: I?b(6) = Ks)Ra{s)-

12

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

V n+l(b) = max \ RaB{b) + /? V P a(z\b)Vn(T(b)) > , Vfe £ B (2.6)
I *€Z J

With this, algorithms such as value iteration and policy iteration can be constructed for

POMDPs in exactly the same way as in the basic MDPs, provided that the value function

over the now uncountably infinite belief space can be represented exactly. The representa

tion of the value function will be reviewed in Section 2.6.

2.4 Computational complexity
The computational complexity of solving MDP models is closely related to their state

spaces. Discrete state fully observable MDPs are generally considered as tractable prob

lems, since they can be solved in polynomial time and space in the size of the state space [83]

However, the size of the state space is usually exponentially large for practical problems.

Therefore algorithms that rely on enumerating the state space are generally considered un

scalable. A survey on complexity results for MDPs can be found in [72].

For POMDPs, or equivalently, belief-state MDPs, the complexity is much higher. Solv

ing finite horizon POMDPs is intractable assuming P ^ PSPACE [83, 75], and solving

infinite horizon POMDPs is undecidable [76]. Algorithmically, the uncountably infinite

belief space is the main source of computational complexity in solving POMDPs.

Note that the complexity results reflects the worst case scenario. In practice, many

problems exhibit special structures that allow more efficient algorithms to be developed,

provided that these structures can be represented and manipulated efficiently. In the fol

lowing sections I review previous research in this regard.

2.5 Symbolic representation for discrete state MDPs
Traditionally, the state space of a discrete state MDP is represented by enumerating all

the distinct states in the system. It is usually stored in the computer as a table or a list. The

transition model is represented by a matrix with one entry for each pair of pre-action and

13

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

post-action states. The reward function and the value function used in dynamic program

ming is stored as a table with one entry for each state. This representation is sometimes

called a flat representation [14]. In practice, however, richer representations are often used

to model a problem domain. One common rich representation is that of a propositional,

or symbolic representation, in which the state space is described using a set of Boolean

state variables. A unique state in such a system is a full instantiation of the state variables.

To model such domains as MDPs, a conversion from the richer representation is usually

carried out by enumerating all the combinations of the state variables. The transition and

reward functions are then constructed on top of this enumerated state space. This leads

to the state explosion problem, where the number of states increases exponentially as the

number of state variables increases. This not only increases the cost of representing the

problem, but more importantly the cost of solving the problem.

On the other hand, direct manipulation of a symbolic representation is possible and

proved useful in many other areas. For example, research in single step decision making

such as Bayesian network [85] and influence diagram [63] use state variables to describe

the state space of a problem. They also use graphs to compactly describe the relations

among the state variables, exploiting the sparse nature of the dependence relations in these

systems. Outside the area of Artificial Intelligence, symbolic representation has been ex

tensively studied in the field of model checking [24, 32, 65]. Efficient data structures and

algorithms have been developed to manipulate functions over Boolean variables. Of par

ticular interest to this thesis are the Binary decision diagrams (BDDs) [24] and Algebraic

decision diagrams (ADDs) [4].

2.5.1 Algebraic and binary decision diagrams

ADDs are a generalization of BDDs, a compact data structure for Boolean functions

used in symbolic model checking. A decision diagram is a data structure that corresponds

to an acyclic directed graph. It compactly represents a mapping from a set of Boolean state

14

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

h
X

/ \

0

X Y Z h
So 111 5 1

Si 1 1 0 5 1

s 2 101 5 i

s 3 1 0 0 10 L

s 4 Oil 5 '"s

S5 0 1 0 10 -A

s 6 0 0 1 5 3
S7 0 0 0 10 3

Figure 2.2. ADDs and state abstraction.

variables to a set of values. A BDD represents a mapping to the values 0 or 1. An ADD

represents a mapping to any finite set of values. To represent these mappings compactly,

decision diagrams exploit the fact that many instantiations of the state variables may map

to the same value. In other words, decision diagrams exploit state abstraction.

Figure 2.2 shows two ADDs representing two functions / i and / 2 over three state vari

ables X, Y and Z. Each node in an ADD represents a state variable. A solid edge from a

node represents the true value of that node, and a dashed edge represents the false value.

To find the function mapping of a particular instantiation of the variables, one traverses

from the root of the diagram following the edges according to the truth assignment in that

particular instantiation, until a leaf node is reached. The value in the leaf node is the value

that the function assigns to that particular variable instantiation.

The corresponding flat representation of the same functions are listed in the table on

the right of Figure 2.2. As we can see, although there are 8 unique states in the state space,

some of the states maps to the same value. The ADD representation captures this structure,

by ignoring the state variables when they are irrelevant. As a result, the ADD representation

for the two functions are much more compact than the table representation.

In addition to representing functions more compactly, ADDs and BDDs can be used to

perform computation such as summation and multiplication over functions more efficiently.

Figure 2.3 shows an example of adding two functions represented by two ADDs. Instead

15

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

fi h fi + h

5 10 1 2 3 6 12 7 8 13

Figure 2.3. Computation using ADDs.

of converting the diagrams representation of the functions into tables, one can recursively

traverse the diagrams to construct a new diagram that represents the resulting function. Ef

ficient algorithms and caching schemes for manipulating decision diagrams and performing

computations have been developed by the symbolic model checking community. There are

professional software packages publicly available [69, 93].

2.5.2 Symbolic dynamic programming for MDPs

Hoey et. al[59] describe how to represent the transition and reward models of a MDP

compactly using ADDs. Let X = (X i , . . . , X n} represent the state variables at the current

step, and let X ' = {X [, . . . , X'n} represent the state variables at the next step. For each

action, an ADD P a (X , X ') represents the transition probabilities for the action. 1 Similarly,

the reward model R a(K) for each action a is represented by an ADD, so is the value

function V (X) . The advantage of using ADDs to represent mappings from states (and

state transitions) to values is that the complexity of operations on ADDs depends on the

size of the diagrams, not the size of the state space. If there are sufficient regularities in

'In practice, constructing the full transition function P “(X,X') may not be feasible. Hoey
et. al[59] discuss how to construct the full transition function incrementally while performing the
dynamic programming update. The technique is used in implementing algorithms presented in
Chapter 3.

16

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

the model, ADDs can be very compact, allowing problems with large state spaces to be

represented and solved efficiently.

Using this representation, the DP update in Equation 2.1 can be carried out using ADD

computations as

Here all the functions Vn, V"-1, Pa, Ra are represented by ADDs. The addition and mul

tiplication operators are standard ADD arithmetic operators. The summation over X ' is

the so called existential abstraction operator in model checking, which effectively sums

over values of all post-action states. This is basically the SPUDD algorithm [59]. Instead

of enumerating the state space and computing Equation 2.1 once for each state, SPUDD

computes an updated value function for all the states in one step using the various ADD

operations. In doing so, it exploits the compactness of the ADD representation and the

efficiency of ADD computations. Results reported in [59] suggest that SPUDD runs 30

to 40 times faster than traditional value iteration algorithms on nontrivial domains. For

artificially constructed best case examples, SPUDD runs exponentially faster.

2.6 Implicit representation for belief-state MDPs
Unlike finite state MDP, the DP update for POMDPs (Equation 2.6) cannot be computed

directly since the belief state space is uncountably infinite. Since V (b) is a function defined

over the infinite belief space, it is impossible to represent an explicit mapping from very

belief state to values. Nevertheless, we will see that exact DP algorithms can still be carried

out by exploiting the mathematical structures of the POMDP model. However, the lack of

precise representation for the belief state space presents a major difficulty in exploiting

state abstractions in POMDP research.

maxagA

17

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

V

(a) 2-state POMDP

Si

So

(b) 3-state POMDP

Figure 2.4. Sample value functions for POMDPs. (Source of picture on the right: [26])

2.6.1 Piece-wise linear and convex value function

The POMDP model posses special mathematical structures that allows the value func

tions used in the DP update to be represented implicitly without explicitly representing the

belief state space. This is based on the following theoretical results:

1. The optimal value function for POMDP is convex [3];

2. For finite-horizon POMDPs, the value function is also piecewise linear [95, 92];

3. For infinite-horizon POMDPs, the optimal value function can be approximated arbi

trarily closely by a piecewise linear and convex function [95, 96];

4. The DP update preserves the piecewise linear and convex (PWLC) property of the

value function [95, 92].

Thus, if V n is piecewise linear and convex, V n+1 as computed by the DP update is

also piecewise linear and convex. We can represent a piecewise linear and convex function

exactly using a finite set of vectors F — {7 1 , , 7 ^}. Each vector 7 has a size of |S|. We

18

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

use 7 (s) to denote the value of state s in a particular vector 7 . The value of a specific belief

state b can then be computed as

V(b) = max b ■ 7Tier

where

b ' 7 := J^6 (s)7 (s)
ses

is the dot product between a belief state and a vector. Figure 2.4 shows examples of value

functions of a 2-state POMDP and a 3-state POMDP.

With this representation, the DP update can be computed exactly by constructing a set

of vectors that represents the updated value function V n+1, given another set of vectors

that represents the previous value function V n. This process is usually broken down into

several smaller steps [25]:

V a’z(b) = + pP a(z\b)Vn(T(b))-,

V a(b) = £ > ‘’*(6);

V n+1{b) = max V a(b).

Each of these value functions is piecewise linear and convex, and can be represented by

a set of vectors. Let V', V“, Va,z and V be the vector sets representing Vn+1, V a, V a,z and

V n, respectively. The DP update in terms of these vector sets is as follow:

y a ,z
= G V}; (2.7)

va = e* 6 zVa’2; (2 .8)

V' - U„GAVa. (2.9)

19

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

where va’z’1 is the vector defined by

v^'K s) = + P J 2 Oa(z\s!)Pa{s'\8)vi(s'), (2.10)
' ' s’es

Equation 2.10 is usually referred to as a projection: it projects vectors representing V n

backward to obtain vectors that represents the expected value of executing action a and

observing z.

The © operator in Equation 2.8 is the so called cross-sum operator. Let U and W be

two sets of vectors. The cross sum of U and W is defined as

U © W = {u + w\u EU ,w £ W}.

Note the size of the cross-sum is the product of the size of the individual sets:

|W©W| = \ u \ X |W|.

This turns out to be the major source of complexity for POMDP algorithms. The vector

representation of a (n + l)-step value function is exponential in the size of the n-step value

function. Precisely:

|V |n+1 oc \A\ x |V”P

Fortunately a large number of vectors can usually be pruned from this representation with

out affecting the value that it represents.

2.6.2 Pruning

For any PWLC function, there are infinitely many sets of vectors that can represent it.

However, a PWLC function also has a unique and minimal set of vectors that represents it.

Figure 2.5 shows two sets of vectors that represents the same PWLC function. The one on

the right is the minimal representation. The DP update process in the previous section does

20

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

7i

72

75

7i

72

73

74

75

Figure 2.5. Two PWLC representations of the same value function.

not always generate minimal representations, and it is crucial to find the minimal represen

tation before proceeding to the next step of DP update due to the exponential growth in the

size of the vector sets at each step.

The minimal representation can be derived from a non-minimal representation by re

moving dominated vectors in that representation. The simplest method of removing dom

inated vectors is to remove any vector that is point-wise dominated by another vector. A

vector u is point-wise dominated by another vector w if

u(s) < w(s) for all s G S

. The vector 7 4 in Figure 2.5 is an example of a point-wise dominated vector. It is dom

inated by the vector 7 2 . Removing point-wise dominated vectors is relatively efficient,

requiring a pair-wise comparison of vectors in a set. However, not all dominated vectors

are point-wise dominated. For example, vector 73 in Figure 2.5 is not point-wise dominated

by any other single vector; it is jointly dominated by 72 and 7 5 .

There is a linear programming method that can detect all dominated vectors. Given a

vector u and a set of vectors U that does not include u, the linear program in Table 2.1

determines if u is dominated or not. It searches through the whole belief space to find a

21

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

LPTEST(u, U)
variables: d, b(s) Vs 6 S
maximize d
subject to the constraints

b • (w — u) > d, Vu e W
E , es 6(s) = 1

Table 2.1. Standard linear program to test if a vector u is dominated by a set of vectors U.

belief point on which u has the greatest distance d from the upper surface defined by U. If

d is positive, then u is not dominated by U. Otherwise it is dominated. This linear program

has the following characteristics:

• The number of variables is \S\ + 1,

• The number of constraints is \U\ + 1.

There are other slightly different forms of linear programs to test dominated vectors, but

asymptotically, the number of variables is always 0(151), and the number of constraints is

always 0{\U\).

Let PM(W) denote the operator that uses the above tests to prune vector set U to its min

imal form. The minimum-size sets of vectors defined earlier can be computed as follows:

Va'z = <E V};

Va = PR{©xeZVa’*};

V = PR{UaeAVa}.

It is well known that solving linear programs in the pruning procedure PM takes up most

of the computational time in the DP update [25]. Pruning algorithm plays a central role in

many POMDP algorithms and is one of the focuses of this thesis.

22

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2.7 Chapter notes
Thorough mathematical treatments on MDPs can be found in many references, such as

[6 , 62, 87]. The standard dynamic programming algorithms for MDPs date back at least

to the 1950’s [6]. The study of partially observable MDPs starts in the 1960’s [39], and

complete DP algorithms were first developed in the 1970’s [95, 92, 96].

23

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

CHAPTER 3

SYMBOLIC HEURISTIC SEARCH FOR DISCRETE STATE MDPS

This chapter describes two new algorithms for solving large scale discrete state MDPs.

They are based on a heuristic search approach toward solving MDPs. Traditional heuris

tic search algorithms for MDPs all rely on a flat state representation. The two algorithms

in this chapter apply the symbolic representation used in the SPUDD algorithm (reviewed

in Section 2.5.2) to heuristic search algorithms. In particular, the symbolic LAO* algo

rithm [44] represents currently one of the best optimal algorithms for solving large scale

symbolic MDPs, and the symbolic RTDP algorithm [46] provides a novel framework for

experience generalization in stochastic on-line planning. Although this chapter does not

present new representations, it demonstrates the effectiveness a good representation can

have on the efficiency of solution algorithms. Therefore this chapter serves as a motivation

to the study of more advanced representations for increasingly more complex problems in

later chapters.

3.1 Symbolic reachability analysis
While the SPUDD algorithm exploits state abstraction through the use of the ADD rep

resentation, it still solves the MDP for all states. In practice, if the starting state is known,

then some states in the state space may not be reachable. Therefore the value of those states

are irrelevant to making decisions and need not be computed at all. Many algorithms take

advantage of this fact. For example, the LAO* algorithm [55], the RTDP algorithm [5],

the envelope algorithm [35], and many reinforcement learning algorithms [98]. These al

gorithms are very similar to classical heuristic search algorithms. They are sometimes re-

24

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

ferred to as search algorithms for MDPs. The search component in these algorithms makes

it possible to focus computations on reachable and relevant states. On the other hand, like

classical search, these algorithms still rely on a flat representation of the state space which

is subject to the state explosion problem. In contrast, state space traversal algorithms ex

tensively used in the field of symbolic model checking operates directly using ADDs and

BDDs and can alleviate many of the state explosion problems.

In symbolic model checking, a set of states S is represented by its characteristic func

tion xs, where

Since the characteristic function is a mapping from state variables to 0 and 1, it can be

represented by an ADD. The traversal is computed by a series of image operations. Given

a set of states represented by an ADD characteristic function, the image operator computes

the set of all possible successor states under some transition function. To perform this

operation, it is convenient to convert the transition ADD P “(X'|X) to a 0-1 ADD Ta(X'|X)

where

Here the conjunction T a (X , X') A x s (X) selects the set of valid transitions and the

existential quantification 3x extracts and unions the successor states together. These op

erations are well studied in the symbolic model checking literature, and there are efficient

algorithms and implementations available [94], The Image operator returns a characteristic

1 if s G S';
X S (8) = {

0 if f ig S .

0 otherwise

The image operator can then be formally defined as

Image-xj(S, T a) = 3x [T ° (X , X ') A X s (X)] .

25

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Xu D D u

Figure 3.1. Masking a function D with xu, the characteristic function of a set of states U.

function over X ' that represents the set of reachable states after an action is taken. A swap

operator can be used switches variables in X ' in an ADD with those in X, effectively chang

ing the pre-action and post-action status of a function. We will use the image operator to

perform symbolic reachability analysis in off-line search (Section 3.2), and generalization

in on-line search (Section 3.3).

3.2 Off-line heuristic search

Symbolic LAO* is an extension to LAO* [55] that uses ADDs to symbolically represent

an MDP. In addition, it uses symbolic reachability analysis to find the set of relevant states

and to limit the dynamic programming update, using what I call a masking operation.

Figure 3.1 shows the result of a masking operation. Given an ADD D and a set of

relevant states U, masking is performed by multiplying D by xu- This has the effect of

mapping all irrelevant states to the value zero. 1 Let Du denote the resulting masked ADD.

Mapping all irrelevant states to zero can simplify the ADD considerably. If the set of

‘In fact, one can choose to map irrelevant states to arbitrary values. This suggests a way to
simplify a masked ADD further. After mapping irrelevant states to zero, the value of an irrelevant
state can be changed to any other non-zero value whenever doing so further simplifies the ADD [61].

26

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

reachable states is small, the masked ADD often has dramatically fewer nodes. This in turn

can dramatically improve the efficiency of computation using ADDs.

Symbolic LAO* does not maintain an explicit search graph. It is sufficient to keep track

of the set of states that have been expanded so far, denoted G, the partial value function,

denoted Vg, and a partial policy, denoted ttg- For any state in G, we can “query” the

policy to determine its associated action, and compute its successor states. Thus, the graph

structure is implicit in this representation. Throughout the whole LAO* algorithm, only

one value function V and one policy n is maintained. Vq and ttq are implicitly defined by

G and the masking operation. Symbolic LAO* is summarized in Table 3.1. The details are

explained in the following sections.

3.2.1 Policy expansion

In the policy expansion step of the algorithm, reachability analysis is performed to find

the set of states F that are not in G (i.e., have not been expanded yet), but are reachable

from the set of start states, S°, by following the partial policy -kg- These states are on the

fringe of the states visited by the best policy. We add them to G and to the set of states

B C G that are visited by the current partial policy. This is analogous to expanding states

on the frontier of a search graph in heuristic search. Expanding a partial policy means that

it will be defined for a larger set of states in the dynamic programming step.

Because a policy is associated with a set of transition functions, one for each action, we

need to invoke the appropriate transition function for each action when computing succes

sor states under a policy. For this, it is useful to represent the partial policy ttq in another

way. For each action a, there is a set of states in which a is the action to be taken under

the current policy. Call this set of states S f Note that 5 “ D S“' = 0 for a f a', and

LiaS" = G. Given this alternative representation of the policy, line 4 computes the set of

successor states following the current policy by applying the Image operator on each set 5“

and the transition function of a.

27

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

policy Expansion^, S°, G)
1 . F = F = 0
2 . from = S°
3. REPEAT
4. to = U 0 Image(from PI 5 “,
5. F = F U (to - G)
6 . E = F U /rom
7. from = to fl G — F
8 . UNTIL (/rom = 0)
9. F = F U F
1 0 . G = G U F
1 1 . RETURN (F, F, G)

value!teration(F, V)
1 2 . saveV = V
13. E' = Ua Image(E, Pa)
14. REPEAT
15. V ’ = V
16. FOR each action a
17. V a = R f + 7 S e' Peje '
18. M = maxa Va
19. V — Me + saveV-g
2 0 . residual = ||Vjg — Vf\\
2 1 . UNTIL stopping criterion met
2 2 . 7r = extractPolicy(M, {U“})
23. RETURN (V, 7T, residual)

LAO*({Pa}, {i?a},7 , S°, h , threshold)
24. V = h
25. G = 0
26. 7r = 0

27. REPEAT
28. (F, F, G) = policy Expansion^, S°, G)
29. (V, 7r, residual) = valueIteration(E , V)
30. UNTIL (F = 0) AND (residual < threshold)
31. RETURN (7r, V, F , G).

Table 3.1. Symbolic LAO* algorithm.

28

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3.2.2 Dynamic programming

The dynamic-programming step of LAO* is performed using a modified version of

the SPUDD algorithm. The original SPUDD algorithm performs dynamic programming

over the entire state space. We modify it to focus computation on reachable states, using

the idea of masking. Masking lets us perform dynamic programming on a subset of the

state space instead of the entire state space. The pseudo-code in Table 3.1 assumes that

dynamic programming is performed on E, the states visited by the currently best (partial)

policy. This has been shown to lead to the best performance of LAO*, although a larger

or smaller set of states can also be updated [55]. Note that all ADDs used in the dynamic-

programming computation are masked to improve efficiency.

Because ttq is a partial policy, there can be states in E with successor states that are not

in G, denoted E '. This is true until LAO* converges. In line 13, we identify these states so

that we can do appropriate masking. To perform dynamic programming on the states in E,

we assign admissible values to the “fringe” states in E', where these values come from the

current value function. Note that the value function is initialized to an admissible heuristic

evaluation function at the beginning of the algorithm.

With all components properly masked, we can perform dynamic programming using

the SPUDD algorithm. This is summarized in line 17. The full equation is

V“(X) = J?£(X) + T ^ i W X ' l X) ■ VE,(X!). (3.1)
E'

The masked ADDs RaE and PEuE, need to be computed only once for each call to procedure

valuelteration since they don’t change between iterations. Note that the product PEuEi ■ V'E,

is effectively defined over E U E'. After the summation over E', which is accomplished

by existentially abstracting away all post-action variables, the resulting ADD is effectively

defined over E only. As a result, V a is effectively a masked ADD over E, and the maximum

M at line 18 is also a masked ADD over E. In line 19, we use the notation ME to emphasize

29

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

that V is set equal to the newly computed values for E and the saved values for the rest of

the state space. There is no masking computation performed.

The residual in line 20 can be computed by finding the largest absolute value of the

ADD (Ve — Vg). We use the masking subscript here to emphasize that the residual is

computed only for states in the set E. The masking operation can actually be avoided

here since at this step, VE = M, which is computed in line 18, and is the M from the

previous iteration.

Dynamic programming is the most expensive step of LAO*, and it is usually not effi

cient to run it until convergence each time this step is performed. Often a single iteration

gives the best performance. After performing value iteration, we extract a policy in line 22

by comparing M against the action value function V a (breaking ties arbitrarily):

Vs € E 7r(s) = a if M(s) = Ua(s).

The symbolic LAO* algorithm returns a value function V and a policy 7r, together with

the set of states E that are visited by the policy, and the set of states G that have been

“expanded” by LAO*.

3.2.3 Admissible heuristics

LAO* uses an admissible heuristic to guide the search. Because a heuristic is typi

cally defined for all states, a simple way to create an admissible heuristic is to use dynamic

programming to create an approximate value function. Given an error bound on the ap

proximation, the value function can be converted to an admissible heuristic. (Another way

to ensure admissibility is to perform value iteration on an initial value function that is ad

missible, since each step of value iteration preserves admissibility.) Symbolic dynamic

programming can be used to compute an approximate value function efficiently. St. Aubin

et al. [97] describe an approximate dynamic programming algorithm for factored MDPs,

called APRICODD, that is based on SPUDD. It simplifies the value function ADD by

30

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

aggregating states with similar values. Another approach to approximate dynamic pro

gramming for factored MDPs described by Dearden and Boutilier [37] can also be used to

compute admissible heuristics.

Use of dynamic programming to compute an admissible heuristic points to a two-fold

approach to solving factored MDPs. First, dynamic programming is used to compute an

approximate solution for all states that serves as a heuristic. Then heuristic search is used

to find an exact solution for a subset of reachable states.

3.2.4 Convergence

At the beginning of LAO*, the value function V is initialized to the admissible heuristic

h that overestimates the optimal value function. Each time value iteration is performed, it

starts with the current values of V. Hansen and Zilberstein (2001) show that these values

decrease monotonically in the course of the algorithm; are always admissible; and converge

arbitrarily close to optimal. LAO* converges to an optimal or e-optimal policy when two

conditions are met: (1) its current policy does not have any unexpanded states, and (2) the

error bound of the policy is less than some predetermined threshold. Like other heuristic

search algorithms, LAO* can find an optimal solution without visiting the entire state space.

The convergence proofs for the original LAO* algorithm carries over directly to symbolic

LAO*.

3.2.5 Empirical evaluation

This section presents empirical data on the performance of symbolic LAO*. Note that

the effectiveness of symbolic LAO* was also verified in the Probabilistic Track of the 2004

International Planning Competition, in which the algorithm won a first place award [73].

Table 3.2 compares the performance of LAO* and SPUDD on the factory examples (f to

f6) used in [59] to test the performance of SPUDD, as well as some additional examples (al

to a4). We use additional test examples because many of the state variables in the factory

examples represent resources that cannot be affected by any action. As a result, we found

31

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Reproduced
with

perm
ission

of the
copyright owner.

Further reproduction
prohibited

without perm
ission.

E;tarn]

1*51

Die

14

Rea<

\E\

chability Ri
Symb-LAO

|G|

ssults
*

reach
Symb

N j

Size
•LAO*

L

Results
SPU]

N
DD

L exp.

1

symb-LA
DP

lining Re
o*

total

suits
LAO*

total
SPUDD

total
f 2 17 14 5 105 190 55 5 1 2 2 0 246 0.3 6.4 6.7 3.8 34.5
fO 2 19 14 5 62 132 61 5 1597 246 0 .2 3.5 3.7 3.7 46.2
fl 2n 14 4 54 107 54 4 3101 327 0 .1 3.6 3.7 3.7 1 0 1 .6

f2 2:22 14 4 6 6 125 53 4 3101 327 0 .2 4.1 4.4 4.1 105.0
f i 2 25 15 4 59 136 74 4 9215 357 0 .2 4.7 4.9 3.7 289.1
f4 228 15 4 49 125 78 4 22170 527 0 .1 5.0 5.2 3.7 645.3
f5 231 18 5 218 509 83 4 44869 1515 1 .2 35.9 37.3 4.4 1524.2
f6 235 23 9 1419 2386 106 5 169207 3992 13.5 771.5 792.6 9.3 7479.5
al 2'JU 25 3.0xl0a 3.3 xlO3 l.OxlO6 181 19 15758 4056 0.5 53.6 54.0 39.01 12774.3
a2 22U 30 l.OxlO4 3.3 xlO4 l.OxlO6 6240 2190 9902 4594 57.7 1678.5 1738.1 4581.9 10891.7
a3 23(J 1 0 1 .8 x l 0 6 1.9xl06 6.7xl0 7 3522 439 25839 6434 7.3 344.8 352.1 N/A 11169.9
a4 2 4U 10 9.6 xlO4 2.8 xlO6 1.7xl010 99 4 N/A N/A 0.7 75.5 76.3 N/A N/A

Table 3.2. Performance comparison of LAO* (both symbolic and non-symbolic) and SPUDD.

that only a small number of states are reachable from a given start state in these examples.

Examples al to a4 are modified version of the factory examples where every state variable

can be changed by some action, and thus, most or all of the state space can be reached from

any start state. Such examples present a greater challenge to a heuristic-search approach.

Because the performance of LAO* depends on the start state, the experimental results

reported for LAO* in Table 3.2 are averages for 50 random starting states. To create an ad

missible heuristic, we performed several iterations (ten for the factory examples and twenty

for the others) of an approximate value iteration algorithm similar to APRICODD [97]. The

algorithm was started with an admissible value function created by assuming the maximum

reward is received each step. The time used to compute the heuristic for these examples is

between 2% and 8 % of the running time of SPUDD on the same examples.

LAO* achieves its efficiency by focusing computation on a subset of reachable states.

The column labeled \E\ shows the average number of states visited by an optimal policy,

beginning from a random start state. Clearly, the factory examples have an unusual struc

ture, since an optimal policy for these examples visits very few states. The numbers are

much larger for examples al through a4. The column labeled reach shows the average

number of states that can be reached from the start state, by following any policy. The col

umn labeled |G| is important because it shows the number of states “expanded” by LAO*.

These are states for which a backup is performed at some point in the algorithm, and this

number depends on the quality of the heuristic. The better the heuristic, the fewer states

need to be expanded to find an optimal policy. The gap between \E\ and reach reflects

the potential for increased efficiency using heuristic search, instead of simple reachability

analysis. The gap between |G| and reach reflects the actual increased efficiency.

The columns labeled N and L, under LAO* and SPUDD respectively, compare the size

of the final value function returned by symbolic LAO* and SPUDD. Columns N give the

number of nodes in the respective value function ADDs. Columns L give the number of

33

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

leaves. Because LAO* focuses computation on a subset of the state space, it finds a much

more compact solution (which translates into increased efficiency).

The last five columns compare the average running times of symbolic LAO* to the

running times of non-symbolic LAO* and SPUDD. Times are given in CPU seconds. For

many of these examples, the MDP model is too large to represent explicitly. Therefore,

our implementation of non-symbolic LAO* uses the same ADD representation of the MDP

model as symbolic LAO* and SPUDD. However, non-symbolic LAO* performs heuristic

search in the conventional way by creating a search graph in which the nodes correspond

to “flat” states that are enumerated individually.

The total running time of symbolic LAO* is broken down into two parts; the column

“exp.” shows the average time for policy expansion and the column “DP” shows the average

time for dynamic programming. These results show that dynamic programming consumes

most of the running time. This is in keeping with a similar observation about the original

(non-symbolic) LAO* algorithm. The time reported for dynamic programming includes

the time for masking. For this set of examples, masking takes between 0.5% and 2.1% of

the running time of the dynamic programming step. The last three columns compare the

average time it takes symbolic LAO* to solve each problem, for 50 random starting states,

to the running times of non-symbolic LAO* and SPUDD. This comparison leads to several

observations.

First, note that the running time of non-symbolic LAO* is correlated with |G|, the

number of states expanded and evaluated during the search, which in turn is affected by the

starting state, the reachability structure of the problem, and the accuracy of the heuristic

function. As |G| increases, the running time of non-symbolic LAO* increases. The search

graphs for examples a3 and a4 are so large that these problems cannot be solved using

non-symbolic LAO*. (N/A indicates that the problem could not be solved and no data is

available.)

34

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The running time of symbolic LAO* depends not only on \G\, but also on the degree

of state abstraction the symbolic approach achieves in representing the states in G. For

the factory examples and example al, the number of states evaluated by LAO* is small

enough that the overhead of symbolic search outweighs the improved efficiency from state

abstraction. For these examples, symbolic LAO* is somewhat slower than non-symbolic

LAO*. But for examples a2 to a4, the symbolic approach significantly - and sometimes

dramatically - improves the performance of LAO*. Symbolic LAO* also outperforms

SPUDD for all examples. This is to be expected since LAO* solves the problem for only

part of the state space. Nevertheless, it demonstrates the power of using heuristic search to

focus computation on relevant states.

Note also that examples a3 and a4 are beyond the range of both SPUDD and non-

symbolic LAO*, or can only be solved with great difficulty. Yet symbolic LAO* solves

both examples efficiently. This illustrates the advantage of combining heuristic search and

state abstraction, rather than relying on either approach alone.

3.2.6 Summary

We have described a symbolic generalization of LAO* that solves factored MDPs using

heuristic search. Given a start state, LAO* uses an admissible heuristic to focus compu

tation on the parts of the state space that are reachable from the start state. The stronger

the heuristic, the greater the focus and the more efficient a planner based on this approach.

Symbolic LAO* also exploits state abstraction using symbolic model checking techniques.

It can be viewed as a decision-theoretic generalization of symbolic approaches to nonde-

terministic planning.

3.3 On-line generalization
Since LAO* and symbolic LAO* are off-line algorithms, the agent must wait till the full

optimal solution is found before acting. For problems that requires faster response time,

35

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

it is desirable to act sooner at the cost of sub-optimal performance. Real-time dynamic

programming (RTDP) [5] is an algorithm that offers such trade-off. In RTDP, the search

and dynamic programming happens in real-time and are more closely integrated. Because

of this, RTDP usually achieves a good value function faster than LAO*, although eventually

it takes longer than LAO* to converge to the optimal [55].

The basic RTDP algorithm works as follows. At each time step t, the agent observes

the current state st and immediately performs a DP backup to update its value:

V t+1(st) <- max 1 Ra(st) + 7 ^ s/)V*(s0
“G I s'es

The values of all other states are kept unchanged, that is, for all s ^ st:

V t+1{s) =

If the initial value function is an admissible estimate of the optimal value function, then an

agent can always take the action that maximizes Equation 3.3. Otherwise some exploration

scheme must be used in choosing actions, in order to ensure convergence. After an action

is taken, the agent observes the resulting state and the above process repeats.

As mentioned before, although RTDP provides good initial results relatively quickly, it

can take a long time to converge. This is due to the enumerative nature of the trajectory

sampling. When the state space is large enough, a state by state update becomes very

inefficient, especially if the sampling in the domain involves carrying out physical actions.

Therefore some way of generalizing the limited experience is necessary. The symbolic

RTDP algorithm presented in this section uses symbolic model checking techniques to

generalize experience from a single state to a group states, and perform DP update on the

resulting group.

There are many ways to group states into abstract states. In this section, two heuristic

approaches are studied that are motivated by the idea of generalization by structural simi-

36

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

larity. A value-based generalization creates an abstract state consists of states whose value

estimates are close to that of the current state. A reachability-based generalization creates

an abstract state that consists of states that share with the current state a similar set of suc

cessor states. Unlike SPUDD, we explicitly construct these abstract states at each time step

of symbolic RTDP, using standard ADD model checking operators.

3.3.1 Generalization by value

With a value-based abstract state, the experience is generalized to states that have sim

ilar value estimates as the current state. The intuition is that states with similar optimal

values may also be similarly desirable. Generalizing updates to states with similar esti

mated values helps the agent in two ways. First, if some of these states indeed have similar

optimal value as the current state, the update strengthens this similarity and the agent is

better informed in the future when these states are visited again. Second, if some of the

states have very different optimal value than the current state, the generalization helps to

distinguish them and avoid computations on them in the future when the same state as the

current state is visited again.

Let s be the current state and V be the current value function. The characteristic func

tion of the value-based abstract state E can be constructed by setting leaf nodes in V with

values close to V (s) to 1, and all other leaf nodes to 0. The change at the leaf nodes then

propagates up to the root. This operation is standard in most ADD packages, including

CUDD [93], the one we use for our implementation. The complexity of this operation is

0 (| V|), where]V| is the number of nodes in the ADD representation of V.

3.3.2 Generalization by reachability

With a reachability-based abstract state, the experience is generalized to states that are

similar to the current state in terms of the set of one-step reachable states. The intuition

here is that if the agent is going to visit some states, say C, from the current state s, then

any information about C is useful not only to s but also to other states that can reach C.

37

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

By generalizing the update to these other states the agent is better informed in the future

whether to aim at C or to avoid it.

To compute the abstract state based on reachability, we introduce a new operator from

the model checking literature. Similar to the Image operator (Section 3.1) which computes

a set of reachable states, the PreImage(C) operator computes the set of states that can

reach some state in C in one step. The reachability-based abstract state E can then be

computed as:

E = Prelmage(lmage({s})) — PreImage(S — Im age({s})).

3.3.3 Symbolic RTDP

Table 3.3 shows the pseudo-code of a trial-based version of symbolic RTDP. It takes

as input an admissible initial value function Vo, a starting state so, the number of trials to

run, and the number of steps to run in each trial. It returns an updated value function, from

which a policy can be extracted.

We extend the idea of masking in symbolic LAO* to symbolic RTDP by performing DP

on the abstract state E that the current state s belongs to. The abstract state is constructed by

one of the generalization procedures mentioned in previous sections. In the pseudo-code,

this is denoted by the function Generalize(s).

Once the set E is computed, it is used to mask the current value function before per

form the DP update, using the same masking process described for symbolic LAO* (Equa

tion 3.1). After the update, an action is chosen that maximizes the DP update at state s.

The agent then carries out the action, and the process repeats.

Although both symbolic LAO* and symbolic RTDP use a “masked” DP update, the

masks they use are different and serve different purposes. The mask in symbolic LAO*

contains all states visited so far by the forward search step. The purpose of masking is to

restrict computation to relevant states. The mask in symbolic RTDP contains states that

share structural similarity with the state being visited currently. The purpose of masking

38

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

SymbolicRTDP(V0, so, nTrials, nSteps)
1. v < - v 0;
2. Repeat nTrials times
3. s sol
4. Repeat nSteps times
5. E <— Generalize^)
6. E' <— States reachable in one step from E
7. y co p y y

8. For all a G A:
9. Qa <- ^ (X) + 73 i ? 'i W X , X') • VE,
10. VE «- maxa Qa
11. a *- argmaxa Qa(s)
12. V «- VE + Vj°ra
13. s <— Execute(s, a)
14. Return V

Table 3.3. Trial-based symbolic RTDP algorithm

here is to generalize update on a single state to an abstract state. This generalization has

two consequences. It introduces some overhead in the DP step, including identifying the

abstract state, and performing masked DP instead of single-state DP. On the other hand, it

updates the value of a group of states in a single step, at a cost that can be significantly

less than updating the states separately, because the symbolic computation exploits state

abstraction.

3.3.4 Adaptive symbolic RTDP

Barto et.al [5] describe an adaptive version of RTDP where the model parameters are

not known and have to be estimated on-line while the agent is acting. It is straightforward

to extend symbolic RTDP to this setting. We call this algorithm adaptive symbolic RTDP.

Learning algorithms developed for Bayesian networks can be applied to learn the model

parameters of a factored MDP, for example [50, 91]. Since model learning is not the focus

of this thesis, we introduce two assumptions for this task to simplify implementation in

the empirical test: 1) The reward function is given; and 2) The structure of the transition

39

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

ADD P “(X '|X) is given for all actions a. In other words, only the probabilities need to be

estimated. Note that similar work in prioritized sweeping [36, 1] use the same assumption.

Given these assumptions, it is straightforward to design a maximum-likelihood algorithm

to estimate the missing probabilities.

With model parameters updated properly at each step, we need to modify the symbolic

RTDP algorithm by using the learned model in Equation 3.1. The identification of the

abstract state remains the same. To satisfy the convergence conditions for adaptive RTDP,

we use a simple e-greedy exploration schemes [98] to replace the action selection step at

line 11 of the algorithm. Finally, since there is no model to begin with, it is generally not

possible to compute admissible heuristic systematically. But a good estimate can still speed

up convergence.

3.3.5 Convergence

If we implement the function G enera lize^) so that it only returns {s}, then symbolic

RTDP becomes the original RTDP. On a state by state level, the only difference between

RTDP and symbolic RTDP is that RTDP update the current state only, while symbolic

RTDP update the current state and some other states.2 Thus, if the convergence conditions

for RTDP are met, symbolic RTDP will also converge.

Theorem 1 Symbolic RTDP converges to the optimal value function under the same con

ditions that RTDP converges if fo r every state s, s G Generalizes(s).

Proof The convergence proof of the original RTDP relies on converting the sequential

update of states by RTDP to an asynchronous dynamic programming process [5]. It has

been shown that under various conditions, this asynchronous DP process converges to the

optimal value function, as long as the current state is always updated. Symbolic RTDP

2Note that this possibility of updating extra states other than the current state is mentioned in
the original RTDP paper [5]. The symbolic generalization technique presented here provides a
systematic and efficient way of choosing the extra states and updating their values.

40

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

can be analyzed in exactly the same way by converting it to an asynchronous DP process.

And since s e Generalizes(s) hold for all s, the current state is always updated, in addi

tion to some other states. Updating these other states only improves their value, thus the

asynchronous DP process will still converge, if only faster. ■

3.3.6 Empirical evaluation

In this section, we consider the empirical performance of symbolic RTDP and adaptive

symbolic RTDP, and the generalization behavior of our two techniques for identifying an

abstract state. We compare the performance of symbolic RTDP to both RTDP and symbolic

LAO*, and compare the performance of adaptive symbolic RTDP to an adaptive version

of RTDP. In our comparison, all algorithms use the same symbolic representation of the

problem. The reason the non-symbolic algorithms must use a symbolic representation

is that our test problems are so large that a traditional table-based representation of the

transition matrix cannot fit in memory. However, non-symbolic RTDP performed single

state DP backups using Equation 3.3 in our comparison, and does not exploit the symbolic

representation in solving the MDP.

We tested the various algorithms on the same test problems used in Section 3.2.5, espe

cially the most difficult of these problems, numbered al through a.4. The results for these

four problems were similar and we only report results for problem a l here. For all algo

rithms, we use the same starting states. For all the non-adaptive versions of RTDP, we use

the same admissible heuristic function, and for the adaptive version of RTDP, we initialize

the value function to zero.

3.3.6.1 Symbolic RTDP

In our experiments, the on-line or RTDP planning algorithms performed 100 trials,

each consisting of 20 steps from the starting state. The off-line planner, symbolic LAO*,

ran until convergence.

41

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Figure 3.2 compares the performance of these algorithms. The x-axis shows the CPU

time measured in seconds. The y-axis shows the value of the start state. Each point on the

symbolic LAO* curve represents an iteration of forward search, followed by a backward DP

update. Each point on the three RTDP curves represents a trial of 20 steps. As we can see,

the two symbolic versions of RTDP perform much better than the original RTDP. This is

because the symbolic approaches generalize experience and exploit state abstraction, while

the original approach does not. Symbolic RTDP also compares favorably with symbolic

LAO*. In particular, symbolic RTDP with generalization by value quickly reaches a near

optimal value in the early stage of computation, while symbolic LAO* gradually catches

up after about 100 seconds. Symbolic LAO* converges after running about 8 minutes,

while symbolic RTDP continues without reaching the same value even at the end of the

100 trials. This behavior - in which symbolic RTDP improves a solution more quickly

at first, and symbolic LAO* achieves eventual convergence faster - is similar to behavior

observed in comparing non-symbolic versions of LAO* and RTDP [44].

From Figure 3.2, we can also see that symbolic RTDP takes longer to finish each trial

than RTDP. In fact, RTDP finishes 100 trials in about 500 seconds, while the two sym

bolic RTDP algorithms only finish 20 to 40 trials at the same time. However, in each trial

symbolic RTDP improves the value function more than RTDP. If we plot the curves of the

three RTDP algorithms against the number of trials, shown in Figure 3.3, the difference is

more obvious. After about 20 trials, symbolic RTDP reaches a value that is within 0.1 of

the value that symbolic LAO* converges to. For RTDP, the difference in value is larger

than 2.1 after 100 trials. Because RTDP updates a single state only at each step, it takes

less time to finish a trial than symbolic RTDP, which performs the extra work of identify

ing and updating the abstract states at each step. However, the extra work performed by

symbolic RTDP is more than justified by the improved performance it achieves due to state

abstraction and generalization.

42

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

835

834

B 833
CD
</)
S 832
CO

O 831a>3
§ 830

829

828
0 100 200 300 400 500 600 700 800

CPU seconds

Figure 3.2. Performance comparison in CPU time

From Figures 3.2 and 3.3, we can see that the two notions of generalization work simi

larly well for this problem, with generalization by value slightly better than generalization

by reachability. We expect that the relative performance of the two methods will depend

on the characteristics of a problem. In particular, if the current value estimation is close to

the underlying optimal value function, as is the case when an admissible heuristic is used,

value based generalization should work better. Otherwise reachability based generalization

can be more effective, as we will see in the next experiment.

3.3.6.2 Adaptive symbolic RTDP

We next compare adaptive versions of symbolic RTDP that uses the two generalization

approaches, with an adaptive version of non-symbolic RTDP. The initial value function

43

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

835

834

B 833
CO
0)
i 832
CO

O 831
oJ3
$ 830

829

828
0 10 20 30 40 50 60 70 80 90 100

Number of trials
Figure 3.3. Performance comparison in number of trials

was set to 0 in our experiments. Figure 3.4 shows the results. Each curve represents the

accumulated reward in each trial, and is averaged over 100 runs and smoothed. Each run

contains 2 0 0 trials with 2 0 steps per trial.

As we can see, the two symbolic RTDP algorithms consistently outperform non-symbolic

RTDP. Moreover, while we see a clear trend that the symbolic RTDP curves are improving,

the non-symbolic RTDP curve seems to show no improvement over time. This is because

symbolic RTDP generalizes its on-line experience, while RTDP does not. Recall that the

problem has 20 state variables, or 1,048,576 states. Each run performs 200 x 20 = 4,000

times of sampling, which is less than 0.4% of the state space. (Considering some states

may be sampled more than once, the actual sample coverage is likely to be smaller.) Since

RTDP does not generalize, sample coverage at this magnitude is far from enough, symbolic

44

RTDP
Symbolic RTDP-reach
Symbolic RTDP-value

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

(0

Ecd
5oi_

X3
©
i 23
E3o

1140
1120
1100

© 1080
1060
1040
1020
1000
980
960
940

>%/

Symbolic RTDP-reach
Symbolic RTDP-value

RTDP

/ 'v v

0 20 40 60 80 100 120 140 160 180 200
Number of trials

Figure 3.4. Performance comparison of adaptive symbolic RTDP and adaptive RTDP,
averaged over 1 0 0 runs and smoothed.

RTDP, on the other hand, generalizes beyond the actual samples, and is able to improve its

performance based on the same amount of experience that’s available to RTDP.

By comparing the two symbolic RTDP curves, we can see that generalization by reach

ability performs better than generalization by value. In fact, generalization by value has the

worst online performance among the three algorithms in the first 60 trials. This is because

in the early stage, the value estimates are very inaccurate, so the computation performed

by generalization by value is mainly geared toward distinguishing states that have similar

estimates but indeed have different optimal values. As experience accumulates, the value

estimates become more accurate and generalization by value can better exploit it to gather

more reward.

45

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

We point out that, although the curves in Figure 3.4 look a bit noisy, the difference we

discussed is statistically significant. We performed i-tests at various points of interest in the

data to confirm this. In particular, around trial 20, there is significant difference between

the two generalization methods. (The probability that the two are the same is 0.078.) In

later trials, as the two curves cross, the significance of the difference reduces. Finally, at

the end of the 2 0 0 trials, the difference between any two of the three algorithms is again

statistically significant.

3.3.7 Discussion

Generalization has been long recognized as a crucial component of efficient planning

and learning. It accelerates the learning process and reduces the amount of interaction with

the environment needed to reach a desired level of competence. Many forms of general

ization have been developed for deterministic and stochastic domains, but none has been

proved effective for on-line planning in stochastic environments. We have described sym

bolic RTDP, an extension of RTDP that uses symbolic model checking techniques as an

approach to generalizing experience in solving factored MDPs. By identifying and up

dating abstract states instead of single states, symbolic RTDP improves a state evaluation

function faster than RTDP not only in terms of CPU time, but also in terms of the number

of steps of interaction with the environment. This is particularly desirable when performing

real-world actions is more expensive than performing computation, which is the case for

many applications. The result is a novel generalization technique for on-line planning that

accelerates convergence without compromising optimality. While generalization seems to

always be beneficial, the effectiveness of different generalization methods may vary at dif

ferent stages of on-line planning. Intuitively, generalizations that group together a larger set

of situations are more powerful, but they are also more risky when they are based on little

experience. It remains an open problem how to further accelerate convergence using mixed

46

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

strategies that apply different forms of generalization at different stages of the interaction

with the environment.

3.4 Related work

3.4.1 Related work in off-line planning

Symbolic model checking techniques have been used previously for nondeterministic

planning. In both nondeterministic and decision-theoretic planning, plans may contain

cycles that represent iterative, or ”trial-and-error,” strategies. In nondeterministic planning,

the concept of a strong cyclic plan plays a central role [31, 33]. It refers to a plan that

contains an iterative strategy and is guaranteed to eventually achieve the goal. The concept

of a strong cyclic plan has an interesting analogy in decision-theoretic planning. LAO* was

originally developed for the framework of stochastic shortest-path problems. A stochastic

shortest-path problem is an MDP with a goal state, where the objective is to find an optimal

policy (usually containing cycles) among policies that reach the goal state with probability

one. A policy that reaches the goal with probability one, also called a proper policy, can

be viewed as a probabilistic generalization of the concept of a strong cyclic plan. In this

respect and others, the symbolic LAO* algorithm presented in this chapter can be viewed as

a decision-theoretic generalization of symbolic algorithms for nondeterministic planning.

One difference is that the algorithm presented in this paper uses heuristic search to limit

the number of states for which a policy is computed. An integration of symbolic model

checking with heuristic search has not yet been explored for nondeterministic planning.

However, Edelkamp describes a symbolic generalization of A* that combines symbolic

model checking and heuristic search in solving deterministic planning problems [41]. A

combined approach has also been explored for conformant planning [7].

In motivation, our work is closely related to the framework of structured reachability

analysis, which exploits reachability analysis in solving factored MDPs [13]. However,

there are important differences. The symbolic model-checking techniques we use differ

47

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

from the approach to state abstraction used in that work, which is derived from GRAPH-

PLAN [12]. More importantly, their concept of reachability analysis is weaker than the

approach adopted here. In their framework, states are considered irrelevant if they cannot

be reached from the start state by following any policy. By contrast, our approach considers

states irrelevant if it can be proved (by gradually expanding a partial policy guided by an

admissible heuristic) that these states cannot be reached from the start state by following

an optimal policy. Use of an admissible heuristic to limit the search space is characteristic

of heuristic search, in contrast to simple reachability analysis. As Table 3.2 shows, LAO*

evaluates much less of the state space than simple reachability analysis. The better the

heuristic, the smaller the number of states it examines.

Symbolic representation has been applied to classical planning as well, mainly using

BDDs [41,7, 64, 30]. These work mainly build on the space traversal techniques provided

by symbolic model checking, and do not involve complex probabilistic reasonings. More

expressive representations such as first-order logic have also been applied to model and

solve MDPs with considerable success [18, 60].

3.4.2 Related work in on-line learning

In the original RTDP paper [5], it is suggested that updating extra states other than the

current state at each step may improve the rate of convergence. On the other hand, using a

flat representation, updating a large number of extra states will also slow down the whole

algorithm. Further, it is not clear how to choose these extra states and how efficient such

choice can be made. Symbolic RTDP provides a practical solution to all these issues.

Symbolic RTDP is closely related to Prioritized Sweeping (PS) [80, 1, 36], another

class of algorithms that perform backups on multiple states for each episode of real-world

interaction. In PS, each state is assigned a priority that is proportional to the change in the

current value estimation. The algorithm then perform backups on states in order of their

priority until the next action is taken. In particular, the Structured PS algorithm by Dear-

48

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

den [36] uses a decision tree data structure to update a group of states with the same priority

using a local decision-theoretic regression operator, which is equivalent to the masked up

date operator used by symbolic RTDP and symbolic LAO*.

Symbolic RTDP is different from PS in the way it chooses extra states to be backed-up.

Symbolic RTDP extends off-line planning algorithms that exploit problem structures, such

as SPUDD and symbolic LAO*, to an on-line setting. It generalizes on-line experiences

to states that are similar to the current state as measured by the similarity of the under

lying value or reachability structure. When these structures are present in the problem,

generalization improves on-line performance with very small computation overhead. PS,

on the other hand, chooses extra states according to their priority, which is a measure of

the changes in the value estimation. It is not clear whether the special value or reachability

structure in a problem translates directly to exploitable structures in the space of priorities.

The idea of extending a backup of a single state to an abstract state is also closely re

lated to function approximation methods for solving MDPs (See [21] for a brief review.)

However, our work is fundamentally different in that we use an exact representation of the

problem and the value function, while function approximation methods use an approximate

representation. As a result, our approach preserves the guarantee of convergence and op

timality of an algorithm, whereas most function approximation methods do not [21]. On

the other hand, our representation does not exclude the possibility of approximation. By

grouping similar but not identical state values together, we can reduce the size of the ADDs

and the DP update can be computed more efficiently. This form of approximation has been

studied in standard DP algorithms [97, 43] and shown to converge with bounded error.

Those results can be extended to symbolic LAO* and symbolic RTDP as well.

Our work is also related to the idea of model minimization for MDPs, presented in [34].

Their algorithm constructs a stochastic bisimulation [6 8] for a symbolically represented

MDP. The bisimulation consists of abstract states that are equivalent in terms of optimal

value and optimal policy. A potentially smaller MDP can be constructed over this ab-

49

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

stract state space and the optimal solution for it is also optimal for the original MDP. Our

algorithm can be seen as an on-line version of model minimization, similar to [1 0 0], in

terleaved with an update of the value function using dynamic programming. Unlike MDP

model minimization, we treat states as equivalent based on the current value estimate or

local reachability structure, not the ultimate optimal value function. Thus, states that are

“accidentally” equivalent in the short term are not distinguished from states that are truly

equivalent in the long term. As a result, symbolic RTDP traverses an abstract state space

that is potentially much smaller than the one that would be created by MDP model mini

mization.

50

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

CHAPTER 4

STATE ABSTRACTION FOR STRUCTURED CONTINUOUS MDPS

This chapter describes an important subclass of continuous state MDPs developed in

collaboration with NASA researchers [42]. It models the control of a Mars rover with

multiple continuous resources that need to be considered as part of the state space [23, 42].

The representation introduced here is inspired by the symbolic representation of discrete

state MDPs. The state abstraction is created by partitioning the continuous space into

rectangle regions. Each region is treated as an abstract state. Value functions over the state

space are collectively defined by value functions over the regions. Since each region is still

a continuous space, the piece-wise linear and convex value function representation used in

standard POMDP algorithms (Section 2.6) is applied here to represent functions over the

regions. This in turn relates to the region-based representation for POMDPs to be presented

in Chapter 6 .

4.1 Characteristics of the Mars rover domain
Consider a rover exploring Mars by carrying out various experiments. Different experi

ments have different scientific values associated with them. Each experiment may consume

various amount of resources such as time, energy, data storage and/or communication band

width. For many of these experiments, there is inherent uncertainty about the amount of

resources that may be consumed. For example, when moving between two locations, the

amount of time required depends on the slope, roughness and soil characteristics of the ter

rain between the two locations, and the wheel slippage and sink-age [23]. It is impossible

to model these factors precisely and therefore the time needed to move from one location to

51

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

another can only be modeled probabilistically according to some statistic estimations of the

various factors involved. The uncertainty about time also contributes to uncertainty about

the amount of energy that will be used as well.

There are also constraints imposed on the experiments. For example, the action of

driving requires that the energy is above certainty level to initiate the movement, although

the level of energy needed to sustain a certain speed may be lower. This translates to an

energy threshold above which driving can be effectively carried out. In another example,

taking a picture may only be performed when the sun is at a certain angles to provide

sufficient lighting. This translates to a time window during which experiments involving

picture taking can be performed.

These constraints on actions and experiments essentially partition the time-energy space

into rectangle regions. Within each region, the effects of an action are assumed to be the

same regardless of the exact location at which that action is taken in that region. We will

show that based on this assumption, the DP process can be carried out in a space consisting

of rectangle regions in the continuous belief space.

Bresina [23] presented an example of such a domain, depicted in Figure 4.1. Each rect

angle box represents an action. Arrows represents precedence constraints between actions.

Each action consumes time and energy according to some Normal distributions, and some

actions have resource constraints imposed (e.g. E > 10Ah for Visual Servo).

In this example, there are potentially two experiments to be considered. The primary ex

periment involves approaching a target point (VisualServo), digging the soil (Dig), backing

up a little bit (Drive), and taking several spectral images of the area (NIR). Taking spectral

images requires considerable energy (E > 3Ah), therefore a backup plan is to take a high-

resolution optical image (Hi res) instead, which only need a little energy (E > .02Ah). For

this experiment, if the spectral images are successfully taken, then its scientific value is 1 0 0 .

If only optical images are taken, then the value is 10. A secondary experiment involves tak

ing a low-resolution picture of the area (Lo res), invoking on-board image analysis routines

52

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

energy

time

E > .02 Ah
(1 = .01 Ah
0 = 0 Ah

t e [9:00,14:30]
|X = 5 s
0 = 1 S .

10

E > 10 Ah
|I = 5 Ah
O = 2.5 Ah

energy

H = iooos
O = 500 s

E > .1 Ah
| i = .05 Ah
O = .02 Ah

| l = 6 0 s
O = 1 s

E > .6 Ah
n = .2 Ah
O = .2 Ah

|1 = 40 S
O = 2 0 s

time

VisualServo(27 13) || Dig(60) || Drive(-2)
^

Hi res v =

7̂ >3Ah
| i = 2 Ah
a = .5 Ah

t e [10:00,14:00]
[i = 600 S
O = 60 S

NIR v = 100

E > .02 Ah E > .12 Ah E > 3 Ah
|X = .01 Ah]l = .1 Ah]l = 2 Ah
a = 0 Ah a = .01 Ah O = .5 Ah

energy

time

i A
t e [9:00,16:00]
]X = 5 s
0 = 1

| i = 120 s
O = 20 S

t e [10:00,13:50]
[I = 600 S

O = 60 s

iiL . Jk. Al
v = 5 Lo res Rock finder NIR

w ~
v = 50

Figure 4.1. Example Mars rover planning domain (Source: [23])

to find rocks in the image (Rock finder), and then taking spectral images of the rocks found

(NIR). The value of this experiment is 50.

Figure 4.2 shows the optimal value function of this problem over the continuous space

of time and energy. The shape of this value function is characteristic of the rover domain,

as well as other domains featuring a finite set of goals with positive utility and resource

constraints. Such a value function features a set of humps and plateaus, each of them

representing a region of the state space where a particular goal (or set of goals) can be

reached. The sharpness of a hump or plateau reflects the uncertainty attached to the actions

leading to this goal. Moreover, constraints on the minimal level of resource required to

53

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

V a l u e

'Xp''

Figure 4.2. Value function of the Mars rover domain

start some actions introduce abrupt cuts in the regions. The goal of this chapter is to exploit

such structure by grouping together states belonging to the same plateau, while reserving a

fine discretization for the regions of the state space where it is the most useful (such as the

curved hump where there is more time and energy available).

4.2 Basic model
Consider an MDP model with a continuous state space: {X, A, P, R, }, where

• X is a vector of continuous state variables (X \ , . . . , Xd). Without loss of generality,

assume the value of the variables are all in the range [0 , 1), so the state space is the

unit square [0 , l)d. x £ [0 , l)d refers to a particular state.

• A is a finite set of actions.

• P is the transition model. Following [20], both relative and absolute transitions are

allowed. A relative transition is expressed as P “(x + Sx, x), the probability that the

state is shifted by <5x relative to x. An absolute transition is expressed as P a(x', x),

the probability that the resulting state is x'. The finite set of possible resulting states

from taking action a in state x is referred to as the outcomes and denoted A“. For

54

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

relative outcomes, an element 5; G A“ is a pair (<5x,p), where p is the probability of

that outcome. Similarly for absolute outcomes, 5t is a pair (x',p).

• R is the reward model: i?a(x) is the reward for taking action a in state x.

The objective is to maximize the expected total reward of a finite-horizon plan. The DP

update for this model is:

y n+1(x) = max{i?“(x) + Y ' P a(x',x)V n(x)} (4.1)
a £ .A ^x'eA£

where V n(x) is the value function over the horizon of n time-steps and V°(x) = 0.

4.3 Piece-wise constant model
The structure that we exploit in this chapter consists of partitioning the continuous state

space into discrete regions, each of which can be treated as a single entity or an abstract

state. In particular, we consider (hyper-)rectangular partitions of the state space [0, l)d. We

will use the term “rectangle” or “region” instead of “hyper-rectangle” for brevity, and will

discuss examples from a 2-dimensional state space. The formalism generalizes naturally to

arbitrary number of dimensions.

The important property of the models is that they are closed under the DP update op

erator in Equation 4.1. There are many models that satisfy this property; we consider a

piece-wise constant model in this section, and a piece-wise linear model in the next sec

tion.

Definition 1 Rectangular Partition A rectangular partition of the state space [0, l) d is

a finite set of rectangles 03 = {□!. D2, where = YllX-0111, X ^ 9h), such that

Ui<i<fc = [0 , l)d, and Dj DOj = <l> iffi ± j.

55

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

X X
Transition Model Reward Model

Figure 4.3. Rectangular piece-wise constant models

Definition 2 RPWC function A function f : [0, l)d—>0 is RPWC, if there exists a rect

angular partition EB = {dx, D2, . . . , □&} such that Vi, 1 < i < k, and Vx, y E □*,

/(*) = / (y).

The set O that a RPWC function maps to can either be the set of real numbers R, in

the case of the reward model, or the set of all possible outcome sets A, in the case of the

transition model.

As shown in Figure 4.3, the state space is partitioned into rectangular regions. For each

action, the outcome set and the probability distribution over it are the same for all states

inside a region of the transition model partition. We will use Aft to refer to the outcome

set associated with a rectangle □ and an action a. In the case of a relative outcome set, for

a region □,

Vx,yenP a(x + <5x, x) = Pa(y + Sx, y).

Thus a relative outcome can be seen as shifting a region. An absolute outcome maps states

in a region to a single state z:

Vx,yeDP “(z,x) = P a(z,y).

We will concentrate on the relative transition models, since they are more interesting from a

formal and algorithmic standpoint. We will mention implications of absolute models where

necessary.

56

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

x 0 £ 2 m :

- ■ r a : t

xO.

E“ V"11

Figure 4.4. Computing aa

For a specific action a, the transition model is represented by a partition EB̂ , and for

each rectangle □ G EEj., a set of relative outcomes Ag together with a probability distribu

tion over these outcomes. Similarly, the rewards Ra are constant in each region. The reward

model is represented by a rectangular partition EÊ and for each rectangle □ a constant Ra

representing the reward. Note that the partitions for the transition and reward model of an

action need not be the same.

Applying RPWC assumptions to the standard model described in the previous section

results in an MDP M l = {X, A, 7g, Ra], where 7® and Rm are RPWC transition and

reward models as described above. Under this model, if V n is RPWC, then Vn+1 computed

by the DP update in Equation 4.1 is also RPWC. Since we can represent a RPWC function

exactly using a set of rectangles, this theorem enables us to carry out the Bellman backup

exactly.

4.3.1 Dynamic programming for the piece-wise constant model

We now describe the Bellman backup procedure for the RPWC model. We first show

how to compute the summation in Equation 4.1, which we denote as aa:

<ra := ^ P a(x',x)U"(x/)
x 'e A g

We construct a partition for cra by projecting the partition defined by the transition model

of action a, namely EBf,, onto the partition defined by Vn, using Procedure oa listed in

57

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Figure 4.1. As an example, Figure 4.4 shows the sub-dividing process for a single rectangle

□ 6 fflj. There are two relative outcomes for this action if taken in □, namely <5i with

probability 0 .2 and S2 with probability 0.8. For each outcome, we compute the new position

of rectangle □, and intersect it with the partition of Vn. The result is then multiplied by

the probability of the outcome. Finally, the results of all outcomes are intersected and the

summation is computed within each sub-region of the intersection.

Note that this process assumes relative outcomes. For absolute outcomes, we need to

modify step 1(a) so that the region Qf is not subdivided, and is assigned the value of the

outcome state in Vn multiplied by the outcome probability.

The remainder of the Bellman backup involves adding the reward and performing the

max over all possible actions. The full algorithm is listed as Procedure Bellman backup in

Figure 4.1. In the whole process, a rectangle is further sub-divided only when necessary

during the process of intersecting two partitions.

4.3.2 KD-tree representation

For our implementation, we use kd-trees [49] to store and manipulate the rectangular

partitions. A kd-tree is a multidimensional generalization of the binary tree in which space

is recursively split by hyper-planes orthogonal to one of the k axes. Note that the partition

induced by a kd-tree may contain unnecessary splitting of regions in a RPWC function.

On the other hand, the intersection operation, which is the main computation of the whole

algorithm, can be performed efficiently using algorithms such as [82] on kd-trees. (See Ap

pendix A for a review of the algorithm). Notably, these algorithms treat different numbers

of dimensions in a uniform way and have complexities that only depend on the size of the

kd-trees.

Actions that have a relative effect on some variable tend to cause the partition of the

value function to get finer as the horizon increases, which can affect the efficiency of the

algorithm. For this reason, it can be necessary to implement a merging mechanism to unify

58

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Procedure aa

1. For each region Q,- in EBy

(a) For each outcome <5* E Aq.

i. Compute the region resulting from shifting Dj by the rela
tive outcome <5,.

ii. Intersect the shifted region with the partition of V n, pro
ducing sub-regions D fk

iii. Assign to each sub-region the value of the corresponding
region of V n multiplied by the probability of the outcome 5^

(b) Intersect all the shifted regions from all of the outcomes, producing
partition EBja.

(c) Assign to each of the regions in partition EB the sum of the values
of the corresponding sub-regions □ >fc.

2. Assemble the final partition: ffl(Ta =

Procedure Bellman backup

1. Compute partition El0-a for all a using Procedure aa.

2. For each action a

(a) Intersect partition EECTo with to get partition EBq0.
(b) The value of each region in E0Qa is computed by summing the val

ues of the corresponding regions of and

3. The partitions EB<ga of all actions are intersected, producing EBy+i.

4. The value of each region in EByn+i is computed as the max of each of the
corresponding regions in all the partitions fflga.

Table 4.1. Dynamic programming for the piece-wise constant model

neighboring regions with the same value. One can further reduce the complexity of the

algorithm by merging pieces with similar value, trading quality of solution for computation

time.

Merging based solely on value can break the RPWC property, resulting in partitions

that can not be represented by kd-trees. For our implementation, we performed the merg-

59

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

ing taking into account both the value and the structure of the kd-tree representation, by

performing a depth-first traversal of the kd-tree, and merging the leaf-nodes of the kd-tree

if they have the same value. This way the kd-tree representation is maintained throughout

the merging process.

4.4 Piece-wise linear and convex model
In this section, we extend the model M l by allowing more complex reward structures

so that richer domains can be modeled. For example, to take into account the lighting of

a rock from the sun in a rover problem, the value of taking a picture could vary linearly

with time of the day. To model such structures, we extend the RPWC reward model to a

rectangular piece-wise linear and convex (RPWLC) reward model.

Definition 3 RPWLC A function f : [0, l) d —> R is RPWLC if 1) there exists a rectangle

partition EH = {□ ! , . . . , □&}; and 2) Vi, 1 < i < k, there exists a PWLCfunction L{ such

thatVx. £ d j, /(x) = Lfx) .

This representation allows R and V 1 for a region of the partition to be the maximum of

a set of linear functions, rather than a single function as in Ml. We allow this because a

Bellman backup will create non-rectilinear regions when it performs the maximization step

on linear functions.

We will refer to the model with the RPWLC assumption as M2 = {X, A, T&, R®},

where Rjfc is the RPWLC reward model as defined above. Often, the reward function may

be of a simpler form (a single linear function per region), but the resulting value function

will remain RPWLC. Note that the transition model remains RPWC in M2.

As in the RPWC model Ml, the operations during the Bellman backup for M2 are in

tersection, summation, and max. The intersection is identical. The difference between M l

and M2 arises from the fact that for the value functions in M2, each rectangle contains a set

of linear functions rather than a single scalar value. In particular, we need to perform addi

tion and maximization between two sets of linear functions over the same rectangle. These

60

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

operations are well defined in standard POMDP algorithms as reviewed in Section 2.6.

In particular, the addition of two sets of linear functions Lx and L2 is carried out by the

cross-sum operator, and the maximization be carried out by the union operator.

Just as in standard POMDP algorithms, pruning is performed to remove dominated

linear functions. Maximization over the remaining linear functions is used to determine the

value and policy of any point in the state space. This considerably improves the efficiency

of the algorithm, and the combination of pruning and maximization over the remaining

linear functions achieves the maximization part of the Bellman equation.

To adapt the algorithms in Table 4.1 so that they support the M2 model, we make the

following changes:

• In step (l)(c) of Procedure oa and step (2)(b) of Procedure Bellman backup, we

change sum of values to cross-sum of linear functions.

• In step (4) of Procedure Bellman backup, we change max of values to union of linear

functions.

• Then we add a pruning after step (l)(c) of Procedure oa and after steps (2)(b) and (4)

of Procedure Bellman backup.

4.5 Mixed model

In this section, we further extend the model to include discrete state components, which

is the case of the Mars rover domain that motivated this work [23]. The new model is

defined as M3= {5, X, A, Tg, R^j , where S' is a set of discrete states. The full state space

is the product S x X. We will use (s, x) to refer to a specific state in the state space.

P a(s' ,x' ,s,x) is the probability of reaching (s', x') if action a is taken in state (s, x).

We will generally define the transition model by a a marginal probability distribution on

the arrival discrete state: P^(s', s,x), and a conditional distribution over the continuous

space P “(x', s', s, x) given the arrival discrete state. As in M l and M2, the conditional

61

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

distribution P “ is assumed to be RPWC. For reward, we will define a function 72“ (x) for

each action and discrete state pair, and assume that all i?“ are RPWLC. We represent the

value function over the full state space using a set of functions V := {Vs(x)|s 6 S}. The

Bellman backup for M3 can be performed as:

a loop over the discrete states to the computation described in the previous section.

4.6 Empirical evaluations
This section presents empirical results obtained by solving prototype instances of the

Mars rover domain. This line of research is being continued at NASA at the time of writing

of this thesis, with new results being reported recently [78,77].

We tested our algorithms on a Mars rover domain adapted from [23]. The domain con

tains a “primary” plan, which consists of approaching a target point, digging the soil, back

ing up, and taking spectral images of the area. All these actions are assumed to consume

time and battery power according to different Gaussian distributions. There are two poten

tial branches to the primary plan: The first branch is to replace the spectral imaging with

a high-resolution camera imaging, which in general consumes more time and energy. The

second branch is to replace the digging-backing-imaging plan with a simple low-resolution

imaging, and then perform on-board image analysis.

We model the domain with 11 discrete states representing different stages of the rover

exploration process. We vary the number of continuous variables, which model different

types of resources, from 1 to 3, creating three sets of test problems, referred to as ID, 2D

and 3D, respectively. In the original domain, action effects on the resources are modeled

x(x)—max {Ras (x)+J^ P^{s'\s, x)<r*'}

Algorithmically, the addition of cfiscrete states changes the backup procedure by adding

62

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5.5

RPWCRPWLC

E 4.5

■5a>o 4 i r' naive

3.5

2.5
45000 5000035000 400003000025000

Input discretization

Figure 4.5. Result on problem set ID.

with continuous probability distributions. In our model, these continuous distributions are

discretized. The resolution of the discretization is the independent variable in our exper

iments. For each resolution, we create two versions of the problem, one with constant

rewards (RPWC representation), the other with rewards that are linear functions of the

continuous variables (RPWLC representation). We compare the performance of our algo

rithm on each of these two representations with a naive algorithm that discretizes the value

function using the same resolution used in the input discretization.

Figures 4.5 to 4.7 show the results. The X-axis shows the input discretization resolu

tion on each continuous variable. The Y -axis shows the elapsed run-time of the different

algorithms, on a logarithmic scale. Note that for the naive approach, the run-time of the

two versions (RPWC and RPWLC) of the problem are largely the same, because after the

discretization of the value function, the identical amount of computation is carried out for

both problems. Thus only the result on the RPWC problem is plotted.

63

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

6
naive

5

4 RPWLC

3

RPWC2

o> 1

0

1

•2

•3
50 100 150 200 250 300 350 400

Input discretization

Figure 4.6. Result on problem set 2D.

As the figures show, our algorithm is slower than the naive approach for all the ID

problems. The overhead of dealing with the complex data structure exceeds the savings

gained from it for the simple version of the problems. For the 2D problems, the RPWC

model outperforms the naive approach. For lower input resolutions (from 50 to 150), the

RPWLC model performs similarly to the naive approach. However, it is considerably faster

for higher resolution problems. For the 3D problems, the difference between the naive

approach and our approaches is more dramatic. In particular, the naive approach did not

finish after 3 hours for problems with resolution greater than 80.

These results shows that our algorithm can scale better as the number of continuous

variables increases. The improved scalability results from exploiting the specific problem

structure to avoid unnecessary discretization of the value function. Figure 4.8 shows the

resulting value function on a specific discrete state of a problem in the 2D set with RPWLC

rewards, and an input discretization of 25 on each dimension. The left side shows the actual

64

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

10

8
naive

6

RPWLC4

2

RPWC
0

•2

•4
100 120 14060 8020 40

Input discretization

Figure 4.7. Result on problem set 3D.

function, and the right side shows the corresponding partition over the continuous space. As

we can see, fine discretization is only applied to the upper right region. Approximately 70%

of the space is treated exactly with only a small number of regions. In contrast, the naive

approach discretizes the entire space evenly, expending a large amount of computation on

areas that are, in fact, from the same linear function. Our algorithm avoids this computation

by treating large regions as a single state.

Two features in Figure 4.8 deserve further analysis. Firstly, although the input is only

discretized with a resolution of 25, the resulting partition has considerably more discretiza

tion points, albeit all concentrated at the upper right region. This is because the initial

partitions defining the transition and reward models are not necessarily aligned with the in

put discretization, so a finer partition is needed to represent the optimal value function. The

naive approach doesn’t make the additional distinctions so it misses details of the value

65

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

0 . 1 5

/ 0 . 5

? 0 . 4

0.9

0.8

0.7

0.6

0.5>-
0.4

0.3

0.2

0.1

X

Figure 4.8. The piece-wise linear value function and the corresponding space partition for
the starting discrete state in a 2D problem.

function. The complexity grows over the course of the dynamic programming, so early

iterations use coarser partitions, providing another saving over the naive approach.

Secondly, note the region from around point (0.6,0.2) to (1.0,0.5). The value function

as can be seen on the left of Figure 4.8 over this region has a curved shape. It is in fact

composed of 13 linear functions. This is typical when the reward model is RPWLC. Again,

the dynamic programming is keeping the discretization to a minimum by automatically

grouping states whose value function can be represented in a single PWLC form into an

abstract state.

For all tests, the solution times for RPWLC models are greater than those of the RPWC

model. This is because of the extra computation on the linear vectors in the RPWLC model,

in particular, solving the linear programs to keep the representation of the PWLC function

minimal. For the 3D problem set, the RPWLC model runs out of memory for the problem

with input discretization of 140. The primary cause of this is that some regions require a

large number of linear vectors to represent the value function. Our current algorithm at

tempts to minimize the number of regions. However, we can introduce a trade-off between

the size of the partition and the size of the vector representation, by sub-dividing a partition

66

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

to allow more vectors to be pruned. The idea that smaller partition allows more vectors to

be pruned will be fully explored in Chapter 6 , when we deal with the vector pruning issue

in solving POMDPs.

4.7 Chapter notes

4.7.1 Contributions

The technical contribution in this chapter is a novel state abstraction algorithm for per

forming dynamic programming in solving a class of continuous state MDPs. Encouraged

by the results, NASA engineers are extending the models and techniques developed in this

chapter to more challenging problems [78, 77].

Within this thesis, this chapter serves an important role. It demonstrates one way of

explicitly representing regions of a continuous state space. As pointed out in Chapter 2,

representation of the continuous belief space is one of the major challenge in POMDP al

gorithms. Although the representation developed later in Chapter 6 for POMDPs is vastly

different than the rectangle representation used in this chapter, they share conceptual simi

larities in that they partition the continuous space into a finite number of regions. Further,

the PWLC representation us used in this chapter is a direct adaption from POMDP algo

rithms.

4.7.2 Related work in exploiting state abstraction

Although the model considered in this chapter involves continuous state variables, the

state abstraction process is very similar to the symbolic approach used in Chapter 3 and [37,

59]. In the symbolic approach, value functions are represented by decision diagrams (or

decision trees in the case of [37]) that maps discrete state variables to values. Here value

function over a continuous state space is represented by a KD-tree that partitions the state

space into rectangle regions, where each region can be treated as an abstract state. Dynamic

programming is then carried out on top of this representation, computing a new KD-tree

67

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

representing the updated value function given another KD-tree representing the current

value function.

The choice of a rectangle partitioning scheme may seem overly restrictive. However

it makes the data structure easy to handle, with efficient algorithms readily available from

the computational geometry community. Further, the ability to define piece-wise linear and

convex functions over a region substantially increases its modeling power.

To the best of my knowledge, this is the first general approach toward state abstrac

tion in continuous MDPs. The closest related previous work along this line is proba

bly the Explanation-Based Reinforcement Learning (EBRL) framework by Dietterich and

Flann [38]. In it, a “region-based” dynamic learning algorithm is developed that uses rect

angles to represents regions of a discrete grid world that have identical values. It differs

from this work in the following aspect: 1) EBRL is designed for discrete grid-world state

spaces, not continuous state spaces; 2) EBRL is a goal regression algorithm. Given a rect

angle goal region, it reasons about what other rectangle regions can be constructed that

will reach the goal region, hence the “explanation” component of the algorithm. 3) EBRL

only allows constant value over a rectangle region. Another closely related work is the

time-dependent MDP model by Boyan and Littman [20]. It can be seen as a special case of

the model considered in this chapter, where only one continuous state variable is allowed.

The regions in this case are one-dimension intervals, which are easier to handle than the

multi-dimensional regions considered in this chapter.

4.7.3 Related work in continuous state MDPs

The most common approach to handle continuous state variables in MDPs is to use

function approximators such as artificial neural networks[10, 98], to discretize the contin

uous state space more or less naively, which does not scale well to multiple dimensions,

or to use Monte-Carlo approaches [99]. None of these approaches exploits the structure

in the problem. In fact, the initial attempt to solve the problem as reported in [23] uses a

68

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

variant of the Monte-Carlo algorithm to compute the function in Figure 4.2; the algorithm

took orders of magnitude longer than the method in this chapter. Munos and Moore [81]

propose a formal model of a continuous MDP and algorithms for discretizing it adaptively.

Their approach involves solving the MDP at one level of discretization, then locally refin

ing the discretization, and repeating until the approximation is good enough. In contrast,

our algorithm finds the correct level of discretization and solves the MDP only once, while

at the same time takes advantage of the structure of the problem.

69

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

CHAPTER 5

DISCRETE STATE ABSTRACTION FOR POMDPS

From this chapter on, we turn our attention to the more general POMDP model. The

main difficulty in solving POMDPs is the PWLC representation of the value function over

the belief space, which is a continuous simplex with a dimensionality equal to the size

of the original discrete state space of the POMDP. This chapter describes a simple state

abstraction technique for the discrete state space so that the dimensionality of the belief

space can be reduced. The approach is a natural generalization of the symbolic abstraction

techniques presented in Chapter 2. However, the benefit of the abstraction is somewhat

different than in the fully observable model. The results in this chapter shows the effective

ness of abstraction on the discrete state space for POMDPs, but also exposes its limitation

and motivates the research to study abstraction directly in the continuous belief space in

the next chapter.

5.1 Symbolic abstraction for POMDPs
Like the discrete state space of the MDP model described in Section 2.5.2, the dis

crete state space of a POMDP can also be represented symbolically using a set of Boolean

variables. In this chapter, we consider the following symbolic POMDP model which is an

extension of the symbolic MDP model reviewed in Section 2.5.2:

• X = {Xj , . . . , Xk} is a finite set of Boolean state variables;

• Z is a finite set of observation states;

70

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• P is the transition model. P a(X'|X) is an ADD that represents the transition function

of action a;

• O is the observation model. Oa(z\X!) is an ADD that represents the probability of

observing 2 if action a is taken and resulted in a transition to a state described by X'.

• R is the reward model. Ra(X) is an ADD representing the reward function of action

a.

Recall that the value function of a POMDP is a piece-wise linear and convex (PWLC)

function defined over the belief space, a probability distribution over the discrete state space

of the POMDP (Section 2.6). A PWLC function V is represented by a set of linear vectors

V = {ui, . . . , vm}. Each vector is a mapping from the state space to some values. Therefore

each vectors can be represented by an ADD, denoted v fX) . The PWLC function is in turn

represented by a set of ADDs.

5.2 Symbolic dynamic programming
As reviewed in Section 2.6, the dynamic programming update for POMDP involves

constructing a new set of vectors V" +1 that represents the (n + l)-step-to-go value func

tion, from an existing set of vectors V" that represents the n-step-to-go value function.

The DP update process begins by constructing a projection set for each pair of action and

observation:

{</>,*,y € Vn^

where

Vs, vâ (s) = ^ + p £ 0 a (2 | s ') P V k K (s ')
' I s'es

is the projection computation. As in the symbolic dynamic programming for fully observ

able MDPs, this computation can be carried out using ADD computation as follow:

w«.*.i(x) = + / 3 y 'o a(z |x ')P a(x ' | x y (x /).
IZ | X'

71

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Here, the vectors va'z,i and v \ the transition function P a, the observation function Oa,

and the reward function Ra are all represented by ADDs. All binary operations such as

addition, multiplication, and division are carried using ADDs. The summation over X'

is the existential abstraction operator a reviewed in Section 2.5.2. The benefit of using

ADDs to perform this computation is the same as in the MDP case: The ADD exploits

state abstractions by grouping states with the same value together and treat them as a single

abstract state. When there are large number of states in a vector that has the same value,

the ADD computation can be much more efficient than a flat state computation.

5.3 Pruning in abstract state space
Although the ADD representation helps speedup the projection computation, it’s main

benefit lines in the pruning computation. Recall that after the projection, three pruning

steps are carried out to construct the (n + l)-step value function:

y a’z = G V } ;

V° = PR{®2€ZVa’z};

V' = PM{Uae^Va}.

Each pruning takes as input a set of vectors U and remove those in U that are dominated.

Most dominated vectors can only be detected by solving the linear program listed in Ta

ble 2 .1 (page 2 2).

To use this linear program to prune a set of vectors represented in factored form, we first

perform the pre-processing step summarized in Table 5.1. It takes as input a set of ADDs

V and creates an abstract state space for it that only makes the state distinctions according

to the value they map to. Each ADD defines an abstraction of the state space where the

number of abstract states is equal to the number of leaves of the ADD, and each abstract

state represents a set of states with the same value. The set of abstract states defined by and

72

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

procedure CREATE-PARTITION(V)
H - { S }
for each vector v G V

T <— set of abstract states defined by v
for each abstract state t E T

for each abstract state r e R
if (f fl r = 0) or (r C t) then do nothing
else if t C r then

R +- R - {r}
R <— R U {t} U {r — t}
exit innermost for loop

else
R ^ R - { r }
R <— R U {r — t} U {r fl t}
T *—T U { t — r}
exit innermost for loop

return R

Table 5.1. Algorithm for partitioning a state set, S, into a set of abstract states, R, that only
makes relevant state distinctions found in a set of ADDs V.

ADD can be constructed by first enumerating the leaves of the ADD. For each leaf L, a

new ADD that represents the characteristic function corresponding L is constructed by first

copying the original ADD and then setting the leaf L to 1 and all other leaves to 0. This

is the same procedure used to construct the generalization set used in the symbolic RTDP

algorithm described in Section 3.3.1.

In the pseudocode for CREATE-PARTITION, R denotes a set of abstract states. Ini

tially, R contains a single abstract state that corresponds to the entire state set of the prob

lem. Gradually, R is refined by making relevant state distinctions. Set operations such as

union and difference are implemented using set operations in ADDs (or BDDs). Each new

state distinction splits some abstract state into two abstract states. The algorithm does not

backtrack; every state distinction it introduces is necessary and relevant. The algorithm

has a worst-case running time of |V||S'|2, although it runs much faster when there is state

abstraction. (It is easy to imagine a faster heuristic algorithm that finds a useful, though

73

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

not necessarily best, state abstraction. For the examples we have tested so far, we have not

found this necessary.)

In the resulting abstraction, two states will be mapped to the same abstract state if they

have the same value in each of the ADDs in V. Because an abstract state corresponds to

a set of underlying states, the cardinality of the abstract state space can be much less than

the cardinality of the original state space. Using this abstract state space, the number of

variables in the linear program can be greatly reduced, leading to reduced computational

time solving the linear programs. As we will see in the next section, solving these linear

programs takes most of the computation time in the DP update process for POMDPs.

5.4 Empirical evaluation
We test the effectiveness of the state abstraction technique using the incremental prun

ing (IP) algorithm [25]. One version of IP uses the symbolic representation and solves the

pruning linear programs in abstract state space. The other version is the original algorithm

that does not use a symbolic representation and solves the linear programs in the original

flat state space.

Table 5.2 shows some representative timing results. For six different POMDPs, it com

pares one iteration of incremental pruning with and without the state abstraction technique

described in previous sections. The results without state abstraction are shown above the

results with state abstraction. It is important to note that both algorithms have the same in

put and compute identical results. Both perform the same number of projections, the same

number of pruning operations, the same number of linear programs, etc. The main differ

ence is the data structures they use for the projection and the state space used to construct

the linear programs used for pruning.

The column with the heading “Abs” indicates the average cardinality of the abstract

state sets that are created. In general, the higher the degree of abstraction for a problem,

the faster the symbolic algorithm runs relative to the original algorithm. The relationship

74

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

#

P
char
\s\

roblei
acteri

n
sties
\o\

cha
|V|

Solutioi
iracteris

|V'|

t
tics

Abs projection

Timing

partition

Results

LP total

1 2 5 3 2 1 91 229 14.0
0.37
1.06 9.76

480.64
343.69

498.70
366.31

2 2 5 6 2 2 25 142 20.9
0 .2 1

0 .2 1 8.63
3640.28
3471.36

3831.83
3615.33

3 2 6 6 2 2 32 30 7.5
1.14
0.63 0.60

5.37
2.69

6.69
4.04

4 2 6 5 2 2 521 2539 64.0
53.42

395.63 1.81
7957.78
8072.14

8181.89
8653.18

5 2 7 8 2 2 42 42 1 2 .8

7.53
5.57 3.81

132.96
30.49

154.18
41.44

6 2 10 11 2 3 198 457 34.6
4113.07

225.31 63.36
8099.05
641.75

12546.14
959.67

Table 5.2. Representative timing results (in CPU seconds) for an iteration of the dynamic
programming update using incremental pruning with and without state abstraction.

between degree of abstraction and computational speedup is not quite so simple, however.

It can be complicated by other factors, including the cardinality of the set of state-value

functions and the number of observations. We have broken down the timing results to help

illustrate the effect of these various factors. (Note that the total time is slightly larger than

the sum of the times for all the operations; this reflects a slight overhead in the algorithm

for setting up the computation.)

Problem 1 in Table 5.2 is the coffee problem used as an illustration in [17]. Problem

3 is a variation of the widget-processing example in [40]. The other problems are various

synthetic POMDPs created for the purpose of testing. Problem 4 illustrates the worst-

case behavior of the algorithm when there is no state abstraction. Problem 2 illustrates

the performance of the algorithm where there is a very modest degree of state abstraction.

Problems 5 and 6 illustrate the performance of the algorithm when there is a high degree

of state abstraction; they represent close to the best-case behavior of the algorithm for

problems of their size. As problem size increases, that is, as the cardinality of S, O, and V

increases, the potential speedup from using a factored representation increases as well.

75

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Two operations of the dynamic programming algorithm exploit a symbolic representa

tion: the projection operation and the linear programming (LP) in the pruning operation.

The table breaks down the timing results for operation. For the symbolic algorithm, the

time used for creating the abstraction is also listed in the column “partition”.

For most POMDPs, and for all POMDPs that are difficult to solve, most of the run

ning time of dynamic programming is spent pruning vector sets. Our results show that

solving linear programs constructed over the abstract state space is significantly faster than

solving linear programs constructed over the original state space. This is the major con

tribution of the abstraction technique to the whole algorithm. Further, the only overhead

for the algorithm is the creating an abstract state space. Empirically, we found that this

overhead is quite small relative to the running time of the rest of the pruning algorithm. It

tends to grow with the size of the abstract state space, of course. Nevertheless, problem

4, our worst-case example, does not illustrate the worst-case overhead. This is because

the procedure CREATE-PARTITION has a useful and reasonable optimization; as soon

as the cardinality of the abstract state space is equal to the cardinality of the underlying

state space, it terminates. For CREATE-PARTITION to incur its worst-case overhead, in

other words, there must be at least some state abstraction. But this, in turn, can offset the

overhead.

The projection operation for POMDPs is very similar to the symbolic dynamic pro

gramming update for fully observable MDPs reviewed in Section 2.5.2. For this operation,

our results is consistent with those reported in [59]. We found that its worst-case overhead

can cause a symbolic projection to run up to ten times slower than a regular projection.

This is illustrated by problem 4. But also like [59], we found that symbolic projection can

run much faster than regular projection when there is sufficient state abstraction. This is

illustrated by problem 6 , in particular.

76

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5.5 Limitation of discrete state abstraction for POMDPs
The positive result reported in this chapter must be placed in perspective. The approach

described addresses POMDP difficulty that is due to the size of the state space. For com

pletely observable MDPs, the size of the state space is the principal source of problem

difficulty. For POMDPs, it is not. A POMDP with a large state space may have a small

optimal value function that can be found quickly. By contrast, a POMDP with a small state

space may have a large or unbounded value function that is computationally prohibitive

to compute. It is the size of the value function representing a solution, not the size of the

state space, that primarily reflects POMDP difficulty. Although the framework described

in this chapter for exploiting a symbolic state representation can be very beneficial, it does

not address this more important aspect of POMDP difficulty, which is the main topic of the

next chapter.

The fact that the symbolic representation mainly benefits the pruning operator but not

the projection operator suggests a simpler approach toward state abstraction for POMDPs

without using a symbolic representation (and therefore forgo the limited benefit it has on

the projection step). In [45], we report results on a simpler state abstraction algorithm that

does not rely on a symbolic representation. Instead, it uses a flat state representation, and

builds the partition by walking through the states one by one. As the results in [45] shows,

this resulted in more computational time on the projection operation and on creating the

abstract state space. However, it gives the same reduction to the pruning step. As a whole

the simpler abstraction algorithm still presents a significant speedup over algorithms that

does not exploit state abstraction at all.

The discrete state space and the size of value function representation is not completely

independent, either. By ignoring smaller differences among the state values in each vector,

more vectors can be pruned. This is essentially an approximate way of pruning by treating

non-dominated vectors as dominated if they only contribute small value differences. The

possibility of such approximation is suggested in [28, 17]. In [43,45], we show theoretical

77

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

and empirical evidence supporting this using both symbolic and non-symbolic approaches

toward state abstraction.

78

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

CHAPTER 6

REGION-BASED BELIEF STATE ABSTRACTION FOR POMDPS

Because of the difficulty in explicitly representing the uncountably infinite belief state

space, previous POMDP algorithms have relied on an implicit representation of the state

space which makes exploiting state abstraction difficult. This chapter introduces an ex

plicit, region-based representation of the belief state space. This representation allows us

to analyze the POMDP model and algorithms from a unique perspective, and enables us

to design new algorithms that are significantly faster than the previous best algorithms. In

particular, the cross-sum operation, which is the bottle-neck of the DP update, can be im

proved exponentially [47]. The whole DP algorithm when integrated with the region-based

representation enjoys orders of magnitudes of speedup over previous algorithms [48].

6.1 Pruning revisited
Recall that the DP update for POMDPs can be computed in three steps using the vector

representation (Section 2.6.2):

ya>2 G V}; (6.1)

PE{©*eZVa’2}; (6.2)

V' = PR{Ua6 AVa} (6.3)

where the individual vectors va,z'% in Equation 6.1 is computed by the projection

(6.4)

79

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The PK operator, applied in all three steps, is the pruning operator that reduces a set of vec

tors to its minimal form by removing dominated vectors. Equation 6.1 is called projection

pruning', Equation 6.2 is called cross-sum pruning', and Equation 6.3 is called maximization

pruning.

There are two tests for dominated vectors. The simpler method is to remove any vector

u that is point-wise dominated by another vector w. That is, u(s) < w(s) for all s £ S.

The procedure POINTWISE-DOMINATE in Table 6.1 performs this operation. Although

this method of detecting dominated vectors is fast, it cannot detect all dominated vectors.

There is a linear programming method that can detect all dominated vectors. Given a

vector w and a set of vectors U that does not include w, the linear program in procedure LP-

DOMINATE of Table 6.1 determines whether adding w to U improves the value function

represented by U for any belief state b. If it does, the variable d optimized by the linear

program is the maximum amount by which the value function is improved, and b is the

belief state that optimizes d. If it does not, that is, if d < 0, then w is dominated by U.

The algorithm summarized in Table 6.1 uses these two tests for dominated vectors to

prune a set of vectors to its minimum size. The symbol <iex in the pseudo-code denotes

lexicographic ordering [70].

Since the linear programming method takes up most of the computation time in the

pruning, to simplify our discussion, we will omit analyzing the point-wise domination test

in the rest of the paper. We can assume either that the point-wise domination test is always

performed before pruning since it takes little computation time, or that we don’t use the

point-wise domination test at all since it can only detect a small number of dominated

vectors.

As we can see from the table, to prune a vector set W, we need to solve a linear program

for each vector in W. In other words, to prune the set W we need to solve |W| LPs. Here

the cross-sum pruning (6 .1) presents a major bottleneck because the size of the cross-sum

is the product of the inputs:

80

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

procedure POINTWISE-DOMINATEO, V)
1 . for each ueT>
2. if w(s) < u(s), Vs £ S then return true
3. return false
procedure LP-DOMINATE(u>, V)
4. solve the following linear program

variables: d, b(s) Vs E S
maximize d
subject to the constraints

b ■ (w — u) > d, Vu E V
£ s€s fe(s) = 1

5. if d > 0 then return b
6 . else return nil
procedure BEST(6 , W)
7. max < oo
8 . for each u eYV
9. if (b ■ u > max) or ((b ■ u = max) and (u <iex w))
1 0 . w <— u
1 1 . max <— b ■ u
1 2 . return w
procedure PM(W)
13.1? <- 0
14. while W 7̂ 0
15. w <— any element in W
16. if POINTWISE-DOMENATE(u;, V) = true
17. W 4- W - M
18. else
19. b *- LP-DOMINATE(w;, V)
2 0 . if b — nil then
2 1 .
2 2 . else
23. w i - BEST(6 , W)
24. V <— V U {w}
25. W W - {u;}
26. return V

Table 6.1. Algorithm for pruning a set of vectors W.

81

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

|W©W| = \ U \ X |W|.

As a result, it is necessary to process I Va,z\ vectors in computing V°. This translates into

solving |V°,Z| LPs. Incremental pruning (IP) [25] is designed to specifically addresses

this problem. It exploits the fact that the P R and © operators can be interleaved:

FR(U © V © W) = PR(W © PR (V © W)). (6.5)

Thus Equation (6.1) can be computed as follows:

V °=PR (V a’21© P R (V a'22© •••PR(V“’2fc- 1© Va'Zk) •-)), (6.6)

which is what the IP algorithm does. The benefit of IP is the reduction of the number of

LPs that need to be solved. This can best be understood when Equation (6 .6) is viewed as

a form of dynamic programming: Instead of pruning the cross-sum (BzezVa,z directly, IP

breaks it down by recursively computing PR (© £=2Va,2i) first, and then prune the cross-sum

V“’21 © PR(©*L2Va’2i).

Because the size of PR(©^L2Va’2i) is potentially much smaller than I l i=2 1^“’% the num

ber of LPs needed to prune ®zezVa,z is reduced from \ Va'z\ to

|Va’2l| x |P R (© t2Va’2*)|.

Note that this argument applies equally to the recursive step PR(©-L2Va,2i). In general, the

total number of LPs used by IP and its variants in computing Equation (6.1) is asymptoti

cally |Va | Yhz \Va,z\ [26]. Note that for typical POMDPs, |Va | is usually smaller than, but

nevertheless on the same order as, n j v “i.

82

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Another bottleneck in computing Equation (6.1) is caused by the number of constraints

in each of the linear programs that needs to be solved. From the procedure LP-DOMINATE

in Table 6.1, each linear program solved has \V\ inequality constraints, where \V\ eventu

ally approaches |V“| when computing Equation (6.1). Again, this is exponential in the size

of the previous value function. Although IP can effectively reduce the number of linear

programs that need to be solved, it does not address the issue of the number of constraints.

As a result, when using IP to solve POMDPs, especially those with a large number of

observations, the large number of linear programs is usually not the first obstacle that we

encounter. Instead, what we usually observe is that the program gets stuck solving one of

the linear programs, because it has too large a number of constraints. Our main contribution

is to show how the number of constraints can be reduced dramatically without affecting the

solution quality, while at the same time maintaining the same number of linear programs

as IP.

6.2 Witness region
Recall that the value function of a POMDP is piece-wise linear and convex (PWLC),

and there is a unique and minimal vector representation for a PWLC function. Figure 6.1

shows an example of a value function minimally represented by three vectors. In such a

representation, each vector u e U defines a witness region By over which u dominates all

other vectors in U [71]:

By = {b\b ■ (u — u') > 0, Vti' G U - {u}}. (6.7)

For simplicity of notation, we use Bu to refer to a belief region defined by some vector in

U, when the specific vector is irrelevant or understood from the context. We also use B to

refer to some region when the vector and vector set are irrelevant or understood from the

context.

83

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

u

Figure 6.1. Witness region

Note that each inequality in Equation (6.7) can be represented by a vector, (u — u'), over

the state space. We call the inequality associated with such a vector a region constraint,

and use the notation L (By) := {(« — u')\u' e U — {u}} to represent the set of region

constraints defining By. Note that for any two regions By and B ^ ,

H®u n Bft) = L(fl£) U L(Bft). (6 .8)

For each value function, there is an associated set of witness-regions that represents a

partition of the belief-state space. Throughout the dynamic programming process, the value

function is always finite, giving us a finite number of regions as well. We call this repre

sentation of the belief-state space a region-based representation. Note that the region-based

representation is always associated with a vector representation of the value function and

no new data structure is required to represent it. Therefore the region-based representation

is more of a change of perspective when looking at the value functions of a POMDP. As I

will show in this chapter, this change in perspective brings a dramatic improvement to the

algorithm.

84

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

6.3 Region-based cross-sum pruning
In this section, we show how the explicit region-based belief-state representation can

be exploited to greatly increase the performance of the cross-sum pruning operation. To

simplify the notation, we drop the a and z superscripts in the cross-sum pruning Equation

(6 .1), and refer to the computation as

V = P R i e ^ V i) . (6.9)

Furthermore, we omit specifying the range of i when the range is from 1 to k.

Consider the cross-sum set U © W, where U and W are assumed to be minimal. It has

been observed that [26]:

Theorem 2 Let u G U and w G W. Then (u + w) G P R (U © W) if and only if By fl B^f

0.

Proof If (u + w) e PR(W © W), then 36 G B such that V(?/ + « /)eWffi W,

if (u + w) ^ (u' + w'), then (u + w) ■ b > (u' + w') • b.

It follows that

Vt/ ^ u EU, (u + w) • b > (u' + w) • b,

therefore u ■ b > u' ■ b and b G B y . Similarly, b e B ^ , . Thus b G B% D B ^ , which implies

If By fl Byfc f 0 , then 36 G By n B^f, and so 6 G By and 6 G Bfj. Thus

Mu' ^ u GU, u ■ b > u' ■ b,

and

Vu/ ^ w G W, u • b > u' ■ b.

85

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

procedure LP-INTERSECT^ . . . ,B^kJ
1 . construct the following linear program:

variables: b(s) Vs G S
maximize 0
subject to the constraints

b- (vi — v) > 0, Vv £ Vi — {r»i}
b- (v2 — w) > 0 , Vw £ V2 — {^2}

b ■ (vk - v) > 0 , \/v £ Vk - {̂ fc}
^ 2 s e s K s) = 1

2. if the linear program is feasible, return TRUE
3. else return FALSE

Table 6.2. Linear programming test for region intersection.

It follows that

V(u" + w") 7̂ (u + w) € U © W , (u + w) • b > (u" + w") ■ b.

Thus (u + w) £ PR(W © W). ■

This conclusion can be easily generalized to the cross-sum of more than two sets:

Corollary 1 Let V*, i £ [1, k] be sets of vectors. Let v, £ Vj. Then X)f=i vi £ V*)

if and only if C\̂ =1BVl f d>.

With the region-based representation for the belief state space, testing for region in

tersection can easily be accomplished by solving a linear program to test if the individual

regions share a common belief point. The linear program is listed in the procedure LP-

INTERSECT in Table 6.2. We call this linear program the intersection LP. The constraints

of the intersection LP are simply the combination of the region constraints of each region,

plus the simplex constraint of the belief state b. In other words, the size of the intersection

LP is E t i | V i | + l.

86

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

6.3.1 Intersection-based incremental pruning

Corollary 1 suggests that the problem of computing PM(©iVJ) is equivalent to finding

all intersecting regions defined by the different vector sets. We introduce the operator

I({Vj}) that takes as input a set of vector sets and produces a list of intersecting regions

defined by those vector sets:

i(Vi„. . . , Vi.) = { (s ^ ,...,8^)1 n‘=1 eg. ± 0}

Pruning of the cross-sums can then be expressed as

: V i) = £ ’ (B S e 5) € i (v , v © (6 .1 0))
A naive approach to compute I({V*}) is to enumerate all possible combinations of {B^},

and test them for intersection using the intersection LP. This requires a total of 11* 1^ I LPs,

but each LP has only Yli |V*| constraints. A better approach would be to use an incremental

process similar to IP: To compute I(Vi, V2, . . . , 14), we test if

LP-INTERSECT(£Vl, BVi, . . . , BVk)

is true for all combinations of By 1 and (#v2> ■ • •, Byk), where

(BV2, . ByJ € 1(14,.. •, Vfe),

and I(V2, . . . , Vfe) is computed recursively in the same manner. The recursion stops at

I(Vfc_i, Vfe), at which point the naive approach is used to compute the results. We call this

algorithm for computing I and subsequently PR(©jV*) the intersection-based incremental

pruning (IBIP).

87

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Surprisingly, IBIP solves the exact same number of LPs as IP (and the RR variants). To

see this, consider the top level of the recursion. The total number of combinations between

Byl and (Sy2, . . . , ByJ, and hence the number of LPs needed, is

|Vi| x |I(V2 Vfc)| = |Vi| x |PM(©*L2Vi)|,

which is also the number of LPs needed at the top recursion of IP (see end of Section 3).

Similarly the same numbers of LPs are solved at all recursive steps. It follows that the total

numbers of LPs of the two approaches are the same: |V| ^ |V,|-

However, all the LPs used in computing I have at most X)i=i 1̂ *1 constraints. In partic

ular, when computing 1(14,..., 14), the number of constraints ranges between Y^i=t+i 1̂ *1

and J2i=t |Vi|. Thus, to compute PM(©lVl), the IBIP algorithm requires the same number

of LPs but with possibly an exponential reduction in the number of constraints compared

to IP. The number of constraints does not depend on the size of the output set, as with IP

and RR.

6.3.2 Region-based incremental pruning

In this section, we show how the number of constraints in IBIP can be further reduced.

To make a direct comparison with the recursion in IBIP, we will start from 14: To com

pute I(Vi, 14, • • •, 14), we first fix a region in 14, call it BVk, and find all the elements in

1(14, • • •, 14_i) that intersect with Bvk. We repeat this for all the regions in 14.

To find all the regions in 1(14, • • •, 14_i) that intersect with BVk, we first find all regions

in each Vi(l < i < k — 1) that intersect with Bvk • Recall that each such region corresponds

to a vector in the vector set, and the set of intersecting regions corresponds to some subset

of vectors V' C 14. V- can be precisely computed by the region-based pruning, V) =

WR{Bvk, Vi). Once all V' are computed, we then recursively compute 1(14, • • ■ > H-i)> by

fixing a Bv>k i and then find all the elements in 1(14, • ■ • > K - 2) that intersect BVk D #v' .

88

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

procedure I* (B, {V*|i G [1 , t]})
1. /C < - 0
2. if f = 1
3. K ^ { B ^ \ v e m (B , V !) }
4. else
5. for each v G Vt
6. V' <- PR(B n B£t, V;), i G [1, t - 1]
7. if 3* G [1, t — 1] such that V' = 4>
8. continue
9. V * - l * (B n B%t,{Vi\i g [1, i - 1]})
10. / C ^ / C u { (^ v 1, - , ^ _ 1, ^ t) | (^v1, . . . , ^v t_1) e P }
11. return K
procedure I(Vi, V2, . . . , 14)
12. return I*(B, {Vi\i G [1, k] })

Table 6.3. Region-based pruning for computing I.

Note that the I operator serves only as a conceptual place-holder in this process; all the

computations are carried out using the region-based pruning operator.

Table 6.3 shows the algorithm that finds the set of intersecting regions using this pro

cess. We call the algorithm that computes PR(®jV,) using Table 6.3 and Equation (6.10)

the region-based incremental pruning (RBIP) algorithm.

The main motivation for RBIP is to further reduce the number of constraints. As Ta

ble 6.3 shows, all pruning in RBIP is of the form P R (B , Vt). In line 3, the pruning corre

sponds to testing some B ^ with some (B y 2 , . . . , B y fc) for intersection in IBIP. The number

of constraints in IBIP is from X)t=2 1̂ *1 t0 S t= i l̂ »l* The number of constraints in RBIP

ranges between 2 |V*| and ^ t= i IH*I> where V* is V* pruned multiple times previously

in line 6. Because of the region-based pruning, |V,*| could be much smaller than j V*| and

this is where the savings come from. The analysis of the pruning in line 6 follows similarly.

In addition to reducing the number of constraints, RBIP can also reduce the number

of linear programs. In Table 6.3, during each recursive call to I*(), the sizes of input sets

V■ are already reduced by pruning. Thus each subsequent problem that P () solves can be

progressively smaller. However, without assuming any special restriction on the geometric

89

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

form of the value function, it is also possible that the region-based pruning in line 6 may

not prune any vector at all. In this case there is no saving in the number of constraints as

compared to IBIP. Further, if every region-based pruning falls in this worst-case scenario,

the total number of LPs solved by RBIP will be |Z||V| |Vs|>or \Z\ times that of IBIP. It

remains an open question whether this happens in realistic POMDPs. In all the experiments

we have performed so far, we observed substantial savings in terms of both the number of

LPs and the number of constraints using RBIP. We present these results in the next section.

6.3.3 Empirical evaluation

In this section, we present experimental results comparing the performance of IBIP,

RBIP, and the GIP algorithms which is the most efficient version of the original incremental

pruning algorithm [25]. We used the POMDP code by Cassandra [27] as the basis of our

implementation, and used his implementation of the GIP algorithm for comparison.

6.3.3.1 Problems from the literature

We first tested the algorithms on a set of problems from the literature that are publicly

available from [27]. These problems are listed in Table 6.4. “4x3” is a navigation problem

in a 4x3 maze, originally described in [90]; “Shuttle” models the problem of transport

ing supplies between two space stations using a shuttle [29]; “Maze20” is an augmented

navigation problem in a 5x4 maze [56]; “Iff” models the problem of determining if an

approaching aircraft is a threat or not [26]. Cassandra’s thesis contains a good overall

description of all these problems [26],

Note that our algorithm addresses the exponential blow-up associated with the number

of observations. With 2 observations, our algorithms are essentially the same as the GIP

algorithm. Thus we chose problems that have more than 2 observations. In many such

problems, the number of observations in the problem description is usually larger than the

number of actual observations - observations that are possible in any given state. This

actual number is the number of vector sets whose cross-sum needs to be pruned. We

90

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

problem Z z* T algorithm time LP C

4x3 6 2 10
GIP

IBIP
RBIP

19.50
11.91
11.11

14.38
14.38
14.38

0.78
0.78
0.78

Shuttle 5 3 10
GIP

IBIP
RBIP

9.86
7.58
7.65

10.07
10.07
10.41

0.59
0.56
0.56

Maze20 8 4 3
GIP

IBIP
RBIP

>10hr
30649.68

6540.66

na
3545.58

914.09

na
1559.97
238.43

Iff 22 20 2
GIP

IBIP
RBIP

>10hr
400.11
329.07

na
608.41
759.32

na
22.00
12.45

Table 6.4. Test results on problems from the literature. Times are shown in seconds except
where noted.

show the total number of observations in each problem in column “Z”, and the maximal

number of actual observations for any action in column “Z*”. Column “T” is the number

of iterations of DP ran to collect the data. Only data for the pruning of the cross-sums are

shown, because that is the only part affected by our algorithms. The column under “time”

is the time spent on the pruning of the cross-sums, in CPU seconds. The column “LP” is

the total number of linear programs solved during the pruning, in 103, and the column “C”

is the total number of constraints in those linear programs, in 106. A limit of 10 hours was

set for all the algorithms in these tests, after which they were terminated.

For each problem, we list the results for the GIP algorithm in the top row, followed by

IBIP and then RBIP. As we can see, for the 4x3 problem, where only 2 sets of vectors are

cross-summed, there is no difference in the number of LPs and the number of constraints.

Even so, the time used by GIP is slightly longer. We conjecture that this is due to the

different LP formations used by the different algorithms.

For the problem “Shuttle”, where there are 3 actual observations, our algorithms begin

to show their advantage in terms of the number of constraints. For the two larger problems

“Maze20” and “Iff’, GIP cannot finish the cross-sum pruning for all actions within the 10

91

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

10000

GIP.1000

IBIP
RBIP

100U>■oc
ou<u(0
<u
E

3
Q-O

0.1

0.01
102 3 4 5 6 7 8 9

k

Figure 6.2. Timing result for problem set (k, 10)

hour limit. On “Maze20”, GIP did not finish the pruning of a single set of the cross-sums

involving 4 vector sets. On “Iff”, GIP did finish the pruning of 2 of the 4 sets of cross-sums

at the end of the 10-hour period (36572.52 seconds). Thus RBIP is at least 110 times faster

than GIP on this problem. For the 2 sets processed, GIP solved 61.14 x 103 LPs, with a total

of 28.96 x 106 constraints, which is already more than twice the total number of constraints

solved by RBIP on all 4 sets.

On the two larger problems, RBIP uses significantly fewer constraints than IBIP. This

is due to the region-based pruning. In “Shuttle” and “Iff”, RBIP needs to solve slightly

more LPs than IBIP, while in “Maze20”, RBIP solves significantly fewer LPs than IBIP. In

all cases, RBIP is at least as fast as IBIP, and in many cases a lot faster.

6.3.3.2 Artificial problems

Because of the lack of data collected for GIP on the larger problems from the literature,

we present a special experiment to better demonstrate the scalability of our algorithms. We

construct a set of random vector sets {Vi,. . . , 14} and feed it directly to the algorithms to

92

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1e+07

1e+06

tn£2 100000o>2
O-
asa>
c 10000

o
sn
E3
2

1000

100

8 9 105 6 72 3 4
k

Figure 6.3. Number of linear programs solved for problem set (k, 10)

compute PR(®f=1Vj). This way, we can easily vary the number of sets k and the size of

the input sets involved in the cross-sum.

Random vector sets, all with 10 states, are created as follows. The set V; is initial

ized with a random vector, which is generated by drawing 10 numbers uniformly from

[—100.0,100.0]. Then, additional random vectors are generated and added to the set pro

vided that they are not dominated. The procedure LP-DOMINATE(u, Vi) is used to deter

mine if a new vector v is dominated. This process is repeated until the number of vectors

in Vi reaches n. A test problem is thus specified by the pair (k , n).

It is hard to to determine whether vector sets created this way represent vector sets

encountered in typical POMDPs. However we do note that it is easy to “reverse-engineer”

a POMDP given an arbitrary set of vectors such that after one step of DP the exact same

vectors are created. Hence each random test set corresponds to some POMDP.

We first illustrate the performance of the different algorithms on a problem set (k, 10),

where k ranges from 2 to 10. Figure 6.2 plots the running time (in log scale) against k, the

number of observations. It shows that both IBIP and RBIP outperforms GIP by orders of

93

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1e+09

1e+08

cm
«coo
B
<5■Oa3c

1e+07 RBIP

1e+06

100000<o
BH

10000

1000
9 106 7 82 3 4 5

k
Figure 6.4. Total number of constraints for problem set (A;, 10)

magnitude. For example, with 6 observations (k — 6), GIP needs about an hour (3665.81

seconds) to finish pruning the cross-sum, while IBIP and RBIP only use less than 1 minute

(31.72 seconds and 25.66 seconds, respectively.) Beyond 6 observations, GIP cannot finish

the pruning within 10 hours, while IBIP and RBIP finish the pruning for k = 10 in about 45

minutes (2738.04 seconds) and 30 minutes (1802.65 seconds), respectively. Also note that,

except for k = 2 and k = 3, RBIP consistently outperforms IBIP by a sizeable margin.

Figure 6.3 shows the number of linear programs solved by the three algorithms, plotted

in log scale. Note for GIP, only data for k < 6 are available, and except for k = 2, they

are identical to data for IBIP. This matches the analysis we provide in Section 6.3.1. For

the case of k = 2, GIP solved 80 linear programs, while both IBIP and RBIP solved 100.

This is because GIP is specifically optimized for the case k = 2. For larger number of

observations, the number of linear programs solved by RBIP is significantly less than that

of IBIP. For k = 10, the number for RBIP is 1.11 millions, while the number of IBIP is

2.10 millions.

94

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

10000

<nc
2 1000 GIP«coo
o
o
<5■Q
E3C
X(05

100

IBIP 4°___

- ' " " ' r b IP 45
60

9 103 4 5 6 7 82
k

Figure 6.5. Max number of constraints for problem set (k, 10)

Figure 6.4 shows the total number of constraints in the linear programs solved by the

three algorithms, and Figure 6.5 shows the maximal number of constraints in the linear

programs, all plotted in log scale. Figure 6.5 shows clearly the drawback of GIP and the

advantage of IBIP and RBIP. For GIP, the number of maximal constraints grows exponen

tially as the number of observations increases, while for IBIP and RBIP, the number only

grows linearly. Although the asymptotic number of linear programs solved by all three

algorithms are the same, IBIP and RBIP solve these linear programs exponentially faster

than GIP. For large problems, GIP usually gets stuck solving just one of the linear pro

grams. Note that curves for IBIP and RBIP are largely overlapping. The actual numbers,

when they differ, are shown in the graph. As we can see, the maximal number of constraints

in RBIP is always less than or equal to that in IBIP. This, combined with the fact that RBIP

also solves fewer linear programs than IBIP, gives RBIP a clear advantage in performance

over IBIP.

Finally, Table 6.5 presents data showing the speed-up factor of IBIP and RBIP over GIP

on a range of problems (fc, n), where k ranges from 2 to 6, and n ranges from 15 to 35. The

95

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

k 15 20
n

25 30 35
2 1.17 1.21 1.10 1.23 1.14

1.17 1.21 1.14 1.23 1.13
3 2.98 4.08 4.53 4.78 4.22

3.28 4.83 5.96 7.02 8.46
4 18.23 18.99 23.48 17.72 11.50

23.35 30.78 31.98 53.85 39.27
5 78.28 81.77 [216.39] [476.60] [680.51]

131.49 123.27 [83.21] [111.63] [171.11]
6 [200.53] [456.26] [669.45] [2009.74] [3696.99]

[143.10] [176.36] [238.38] [433.55] [655.01]

Table 6.5. Speed-up factors compared to GIP on a range of problems (k ,n).

numbers in the table show the ratio between the time used by GIP for the pruning, and the

time used by IBIP and RBIP. For each problem, data for IBIP is shown on the top row, and

data for RBIP is shown on the bottom row. Numbers in brackets are actual running times

(in CPU seconds) for the algorithms; no data is available from GIP to compute the speed-up

factor on these problems, because GIP did not finish within the 10 hour limit. From this

table, we can see that the performance gain depends mostly on the number of observations

(fc), and is relatively independent of the size of the state space (n).

6.4 Region-based maximization pruning

The maximization pruning presents yet another bottleneck in the DP process, since it

needs to prune the union of the cross-sum value functions for all actions, and each cross

sum Va can be exponential in the size of the previous value function V. There has been

relatively little work addressing maximization pruning, partly because the cross-sum prun

ing was the major bottle-neck that come before the maximization pruning step. With an

exponential speedup to the cross-sum pruning, we are at a good position to address the

maximization pruning step.

96

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

This section presents a simple algorithm for selecting constraints for the linear programs

used in the maximization pruning stage. It exploits the locality structure of the belief state

space. Again the region-based representation makes it possible to reason explicitly about

these structures.

6.4.1 Projection pruning

Given the input value function V, the linear programs in the projection pruning (Equa

tion 6.2) have worst case number of constraints of \Va'z\. In the worst case, \Va,z\ = |V|.

However, for many practical domains, Va,z is usually much smaller than V. In particular, a

problem usually exhibits the following local structure:

• Reachability: from state s, only a limited number of states s' can be reachable

through action a.

• Observability: for observation 2, there are only a limited number of states in which

z is observable after action a is taken.

As a result, the belief update for a particular (a, z) pair usually maps the whole belief space

B into a small subset T Z(B). Effectively, only values of V over this belief subset need to

be backed up in the back projection in Equation 6.4. The number of vectors needed to

represent V over this subset can be much smaller, and the projection pruning can in fact be

seen as a way of finding the minimal subset of V that represents the same value function

over T Z(B). We will exploit this property in our algorithm, by shifting some of the pruning

in the maximization stage to the projection stage of the next DP update.

6.4.2 Locality in belief space

Let

(v\ + ■ ■ ■ + Vk) G (Va’21 ® • • • © Va’Zk)

91

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

refer to a vector in the cross-sum, implying G Va’Zi. From Corollary 1 ,Y h ivi € V“ if

and only if Bya,zt f <f>. Note that the witness region of v = V{ G Va is exactly this

intersection:

This gives us a way of relating the vectors in the output of the cross-sum stage, Va, to the

regions defined by the vectors in the input vector sets {Va,2i}. For each v G Va, there is a

corresponding list of vectors {vi, u 2 , . . . , v^}, where vt G Va'Zi, such that v — '%2i vi and

fliByajZi f 4>. We denote this list parent(v).

Proposition 1 The witness region of v is a subset o f the witness region o f any parent w,:

Conversely, for each Vi £ Va,2i, there is a corresponding lists of vectors v1, v2, . . . , vm G

V“, such that Vi G parent(vj),Vj. We denote this list child(vi).

Proposition 2 The witness region of v; is the same as the union of its children’s witness

regions:

The construction of the parent and child lists only requires some simple bookkeeping

during the cross-sum stage. They will be the main building blocks of our algorithm.

6.4.3 Region-based maximization

Recall that in the maximization stage, the set W = UaVa is pruned, where each V“ is

obtained from the cross-sum pruning stage:

Let us examine the process of pmning W using procedure P R in Table 6 .1 (Page 8 1) .

In the w h i l e loop at line 1 4 , an arbitrary vector w G W is picked to compare with the

(6.11)

(6 .12)

Va = P R (© j V a,2i) .

9 8

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

current minimal set V. As the size of T> increases, the number of constraints in the linear

programs approaches the size of the final result, |V'|, leading to very large linear programs.

However, to determine if some vector w G W is dominated or not, we do not have to

compare it with V. Let w G V“ and v G Va' for some a and a'.

Theorem 3 If a ^ a! and Bya D Bvya, = 0 , then w is dominated by W if and only if w is

dominated by W — v.

Proof: If w is dominated by W, that is, V6 G B, 3u G W such that w ^ u and w-b <u-b.

If W — v does not dominate w, then 36' € B^a, such that W € W — v, w ■ b' > v' • b'.

Since a f a', \/v" ^ w e V°, w • b' > v" ■ b' and therefore b' G Bya. This contradicts the

premise that Bya fl B^a, = 0 . Therefore w must be dominated by W — v.

If w is dominated by W — v, then trivially it is also dominated by W.B

Corollary 2 I f a = a! and B fa fl B^a,_w = 0 , then w is dominated by W if and only if w

is dominated byW — v.

Intuitively, to test dominance for w, we only need to compare it with vectors that have a

witness region overlapping with the witness region of w. (Although we frame the theorem

for the case of maximization pruning, it can be easily generalized to the pruning of any

set of vectors.) However, finding these overlapping vectors in general can be just as hard

as the original pruning problem, if not harder. So this result does not translate to a useful

algorithm in general. Fortunately, for maximization pruning, the special setting in which

the union of some previously cross-summed vectors are pruned allows us to perform a close

approximation of this idea efficiently. We present a simple algorithm for doing so next.

6.4.4 Algorithm

We start by finding vectors in Va — w that have a witness region overlapping with the

witness region of w. From Equation 6.11, each vector G parent(w) has a witness region

99

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Bya.z, that fully covers the witness region of w. From Equation 6.12, each witness region

Bya.z, is composed of witness regions of child(vi). Therefore the set

V(w) — {v|u € child(vi), e parent(w)} (6.13)

most likely contains vectors in Va that have witness regions surrounding that of w, and

their witness regions in the set Va — w will overlap with the witness region of w.

Next we build a set of vectors in Va‘ a a' that overlaps with the witness region of w.

First, let b(w) be the belief state that proved w is not dominated in Va. This belief state is

obtained from solving the linear program during the cross-sum pruning stage. We can find

in the vector set Va' a vector va> that has a witness region containing b(w), using procedure

BEST in Table 6.1:

tv =BEST (b(w),Va').

By construction, va> and w share at least a common belief state, b(w). Now we use the

same procedure as Equation 6.13 to build a set of vectors that covers the witness region of

V a '-

'D(va') = £ child(vi),Vi G parent(var)}

Finally, we put together all these vectors:

V = T>(w) U (J V(va>),
a '^ a

and use it to replace the set V at line 19 in Table 6.1 during maximization pruning. As a

simple optimization, we replace V only when \V'\ < \T>\. The rest of the pruning algorithm

remains the same.

Note that both V(w) and V(va') are incomplete. For T>{w), it contains vectors that

share a common parent with w, but there can be vectors that touch the boundary of the

witness region of w but don’t share the same parent with it. For V(va>), besides the same

100

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

problem, the witness region of va> may only partially overlap with that of w. Therefore

the set V constructed above does not guarantee that a dominated vector can be always

detected. This does not affect the correctness of the dynamic programming algorithm,

however, because the resulting value function still accurately represents the true value,

albeit with extra useless vectors. These useless vectors will be included as the input to the

next DP update step, in which their projections (Equation 6.4) will be removed during the

projection pruning stage (Equation 6.2). At the cross-sum stage (Equation 6.1), the input

vectors become the same as those produced by a regular DP algorithm that does not use our

maximization pruning technique. Therefore the extra computation caused by the inaccurate

pruning of our algorithm in the previous DP step happens at the projection pruning stage

only.

As we will see in the next section, this extra computation is usually insignificant com

pared to the savings obtained from the maximization step. This may seem counterintuitive

because the pruning of those undetected dominated vectors is not avoided, but merely de

layed to the next step of the DP update. However, as explain earlier, the projection usually

maps into a small region of the belief space, resulting in a larger number of vectors being

pruned from the projection. As a result, the linear programs in the projection pruning are

usually much smaller than the ones in the previous maximization pruning stage.

6.4.5 Empirical evaluation

In this section, we present experimental results on the maximization pruning algorithm

implemented on top of the RBIP algorithm of Section 6.3.2. We call our algorithm RBIP-

M, and compare its performance against RBIP. Note however that the region-based max

imization algorithm only affects the maximization step of the standard DP update. There

are many POMDP algorithms that use this standard DP update as a component. For ex

ample, [53, 101, 43, 102]. All these algorithms can be easily modified to incorporate the

improvement offered by the region-based maximization algorithm.

101

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Reproduced
with

perm
ission

of the
copyright owner.

Further reproduction
prohibited

without perm
ission.

Time #LP proj Average #C proj #LP max Average #C max
problem \s\ \z\ RBIP-M RBIP RBIP-M RBIP RBIP-M RBIP RBIP-M RBIP RBIP-M RBIP
tiger 2 3 2 20.28 20.39 7292 5446 19.81 19.11 4535 4527 11.26 19.04
paint 4 4 2 27.55 27.72 5033 2736 14.15 13.86 3325 2820 6.40 15.96
shuttle 8 3 5 681.39 608.43 58937 58533 28.49 29.64 84086 86500 200.36 219.38
network 7 4 2 1367.68 1992.16 128132 118749 25.24 25.47 207909 204708 103.31 283.63
4x3 11 4 7 5529.90 41567.91 11622 10765 58.31 63.32 31828 36155 636.25 6646.32

Table 6.6. Comparisons between RBIP-M and RBIP.

We test the algorithms on a set of benchmark problems from the literature. The number

of states |SI, number of actions |A| and number of observation states \Z\ of each prob

lem are listed in Table 6.6. These problems are obtained from Cassandra’s online repos

itory [27]. All tests use a numerical precision of 10~6. The algorithm is considered con

verged when the error bound is less than 0.01, except for problem 4x3 (see below).

Our algorithm relies on two kinds of structures in a problem to perform well. First, the

reachability and observability structure should be sparse so that the projection pruning can

be much more efficient than the maximization pruning. The columns “Average #C proj” and

“Average #C max” in Table 6.6 reflect this property. Second, the local structure of the belief

regions defined by the vectors should allow neighboring relations among the regions to be

adequately and efficiently captured by the parent and child lists. The adequacy is reflected

by the “#LP proj” column, showing the extra number of linear programs that RBIP-M has

to solve as a result of the undetected dominated vectors in the maximization stage. The

efficiency is reflected by the reduction in the number of constraints in the maximization

stage, shown in column “Average #C max”.

For the problems n e tw o rk and 4x3, RBIP-M is significantly faster than RBIP. (Co

incidentally, these two problems are generally considered to be the harder problems in the

literature.) This is because both structures are present in these problems. For example, in

4x3, the average number of constraints in the projection pruning is about 60, much smaller

than the number of constraints in the maximization stage. In addition, our algorithm is

able to identify a much smaller set of vectors for use in the maximization linear programs

(636.25 vs. 6646.32), while still effectively pruning most of the dominated vectors, re

sulting in only a small increase in the number of linear programs (from 10765 to 11622)

solved during the projection stage. Combining these two factors gives our algorithm a great

advantage. Note that for 4x3, the data shown in Table 6.6 only represents the first 14 DP

steps in both algorithms. At the end of the 14th iteration, RBIP already uses over 10 hours

and is terminated. At this point RBIP-M is about 8 times faster than RBIP. The Bellman

103

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

50000
45000
40000

M 35000
§ 30000
§ 25000
 ̂ 20000

° 15000
10000
5000

0
0 5 10 15 20 25 30

iterations

Figure 6.6. Running time comparison on problem 4x3.

residual at this point is 0.06. We continue to run RBIP-M on the problem for another 16

steps, reducing the Bellman residual to 0.03 using about the same amount of time required

for the 14 steps of RBIP. The running time of these steps are plotted in Figure 6.6, and the

average number of constraints in the maximization pruning is plotted in Figure 6.7. From

these figures, we infer that the actual speedup of RBIP-M over RBIP on this problem can

be much greater.

For the other three problems, one of the two structures is absent, leading to little per

formance improvement. In t i g e r and p a i n t , the first structure is missing, as reflected

by the number of constraints during the projection pruning being comparable to that during

the maximization pruning. As a result, even though the maximization pruning deals with

much smaller linear programs, the saving is offset by the extra cost incurred during the

subsequent projection pruning. In the problem s h u t t l e , the second structure is missing,

as reflected by the fact that the number of constraints in RBIP-M (200.36) is only slightly

smaller than that in RBIP (219.38). Therefore there is not much saving gained in the max

imization pruning step and RBIP-M runs slower than RBIP in this case due to the extra

linear programs solved in the projection stage.

104

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

C/3•*-»C

CDco

_Q
E
3

CDO)
2
CD

I

6000 RBIP — h
RBIP-M - - X -

5000

4000

3000

2000

1000

0
50 10 15 20 25 30

iterations

Figure 6.7. Average number of constraints in problem 4x3.

6.5 Summary
The main contribution of this chapter is the demonstration that there can be significant

performance improvement to exact POMDP algorithms when the proper representations

are used to exploit state abstraction in the belief space. The algorithms represent a major

breakthrough in POMDP research over the past decade. This in turn leads to many new

opportunities in POMDP research, which I will describe in detail in the next chapter.

105

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

7.1 Summary of contributions
Solving fully observable MDPs in general is unscalable because of the exponential

growth of the state space. Solving partially observable MDPs in general is intractable be

cause of the exponential growth of size of the vector representation of the value function

over the uncountable belief state space. The main contribution of this thesis is in demon

strating the special structures that can be exploited to create more scalable and tractable

algorithms for these models. There are two types of structures considered in this thesis:

• Domain specific state abstraction: This includes the discrete state abstraction con

sidered in Chapter 3 and Chapter 5, and the continuous state abstraction considered

in Chapter 4. There is strong evidence that many practical applications will contain

those structure, and when they do, the representations and algorithms presented in

this thesis are able to take advantage of the structures to solve the problems effi

ciently.

• Model specific state abstraction: This is the structure in the belief space of a POMDP

described in Chapter 6. This is a stronger structure since it exists in all POMDPs,

and the exponential speed-up by the IBIP algorithm (Section 6.3.1) over previous

algorithms is guaranteed for all problem instances.

The two technical contributions of this thesis are:

1. New algorithms for fully observable MDPs that are expanding the limit on how large

a problem can be realistically solved. The symbolic LAO* algorithm and symbolic

106

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

RTDP algorithm in Chapter 3, and the structured DP algorithm in Chapter 4 are all

considered to be practical algorithms that can be applied to problems with billions of

states.

2. Better understanding of the belief space structure for POMDPs. It was generally

conceived that there could be no significant improvement to exact algorithms for

POMDPs, and as a result, recent studies on POMDPs have mainly focused on ap

proximation algorithms. We have shown that there are indeed significant (exponen

tial) improvements possible. The new algorithms provide us with better tools to

studies these complex models, and hopefully to discover new structures that can be

exploited for further improvements.

7.2 Future directions

There are a number of exciting directions to build on the work presented in this thesis.

7.2.1 Heuristic search in the space of belief regions

Chapter 3 demonstrated the power of combining heuristic search techniques with state

abstractions. The search component in that chapter can be easily extended to the continuous

MDP model considered in Chapter 4. Here the search will happen in the space of rectangle

regions in the continuous space. There has already been some work geared toward this

direction [77].

More interestingly is to extend the search method to POMDPs using a region based

representation. Search algorithm for POMDPs have been studied before [52, 57, 86]. In

these previous work, the search happens in the space of unique belief states, that is, each

node in the search tree is a single belief point. The size of the search tree grows exponen

tially in the number of actions and observations. However, many of these belief states may

belong to the same witness region, and there is no need to distinguish them for the purpose

107

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

of dynamic programming. Therefore searching in the space of belief regions could be more

efficient than searching in the space of belief states.

7.2.2 Implementation of Sondik’s policy iteration algorithm

The major difficulty with Sondik’s policy iteration algorithm [96] is the canonical rep

resentation of the policy as a mapping from belief states to actions. In particular, Sondik’s

algorithm needs an explicit representation of the belief regions by enumerating the “edges”

of the region. Hansen [52] circumvents this difficulty by representing the policy as a finite-

state controller, avoiding totally the issue of representing the belief region. Although there

are many advantages of such a representation, a major drawback is that the finite-state

controller needs to store memory states that corresponds to dominated vectors. Thus, an

equivalent policy in a canonical representation can be potentially much smaller, allowing

more efficient policy evaluation and improvement.

Based on the region-based representation, it is possible to carry out Sondik’s policy

iteration without an explicit representation of the belief region. Instead, we can use the

witness region implicitly defined by the set of vectors to represent a belief region. This

avoids the complexity of having to deal with representing the “edges” in a high dimensional

space.

As pointed out by Hansen, the class of policies that can be represented as a mapping

from belief states to actions is different from the class of policies that can be represented

as finite state controllers. The two classes only partially overlaps each other. Further, it can

be shown that a policy is optimal only if it can be represented as a stationary mapping from

belief to actions [11]. Therefore it is important to study Sondik’s policy iteration algorithm

and to understand what types of problems, if any, will lead to difficulties for Hansen’s

algorithm, and why.

108

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

7.2.3 Large Scale Distributed algorithms

The availability of large number of cheap computation platforms has prompted re

searchers with computational intensive applications to try to tap to this resource, by paral

lelizing their application. The best known example is probably the Seti@Home project [67],

where any computers on the Internet can participate in decoding random radio waves re

ceived across the world, in the hope to find meaningful messages presumably sent by intel

ligent lifes from outside the earth.

There is an obvious way to parallelizing the DP update for fully observable, discrete

state MDPs. In asynchronous DP, each state of the MDP can be updated in independent

processors, and the whole value function will eventually converge [8, 9]. How to divide

the computation is however a challenge in the face of very large state space. The state

abstraction formed by the algorithms presented in Chapter 3 and 4 may provide an easy

answer: to divide the computation across different abstract states.

The parallelization of POMDP algorithms is much harder, however. This is because

of the vector representation that must be used to represent the value function: each vector

spans across the whole belief state space. As reported in [88], a trivial parallelization leads

to large overhead. On the other hand, the region-based cross-sum pruning algorithm (Sec

tion 6.3.2) can readily be parallelized, by allocating the pruning in each region to separate

processes. Because the pruning within a particular region are completely independent to

the other regions, there is virtually no overhead from the parallelization. If the paralleliza

tion is implemented in a shared memory architecture, there is no communication overhead

as well. If the parallelization is implemented over a distributed architecture, then the only

overhead is sending the set of vectors to be cross-summed to remote processes over the net

work. Compared to the time used for solving the linear programs, it can be expected that

communication overhead will only be a small fraction of the overall computational time.

109

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

APPENDIX

BINARY SPACE PARTITION TREE

A.l Background
A general BSP (Binary Space Partition) tree is constructed as follow: We begin with an

initial region of space r (that supposedly encloses the space that we are interested into), and

choose some hyperplane h that intersects r. We then use h to induce a binary partitioning

on r, which gives two new regions: r.ge — r fl h>= and r.lt = r fl h<, where h>= stands

for the positive halfspace and hK the negative (open) halfspace. We then repeat this process

recursively on r.ge and r.lt.

Note that in some application one might choose to divide the space into three compo

nents, i.e., the open positive and negative halfspaces, and the dividing hyperplane itself.

For our purpose, it is sufficient to include the hyperplane in one of the sub-partition. In

addition, since we are only concerned about (hyper) rectangles, the hyperplanes that par

titions the space are always parallel to some dimemsion. This enables us to simplify the

intersection operation a lot.

Figure A.l shows an example of a partition and its BSP representation. Note several

things:

• The boundary of the whole region (in dashed-line) is not represented explicitly in the

BSP tree;

• Some rectangle is divided up into smaller pieces, (e.g. the one with value 1.0);

• The BSP representation is not unique;

110

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• In this example, the terminal cell contains a single float number. In general, it can

contain arbitrary data, e.g., the discretized transition probabilities, the reward and

value function represented by a list of alpha vectors, etc.

The algorithms and data structures described here are adapted from [82].

A.2 Data structure
A node in a BSP tree represents a region, a cutting plane, and its two sub-regions. In

the case of a terminal node, the cutting plane and the sub-regions are not defined. The data

structure for our BSP tree is really simple, it contains the following fields:

• dim: the dimension along which the cutting plane is aligned

• pos: the position of the cutting plane in the cutting dimension

• ge and It: the two sub-regions induces by the cutting plane

• data: this is a pointer to the actual data in the case when the node is a terminal node.

We will call this data structure BspNode.

A.3 Intersection algorithm
The basic idea of intersecting two BSPs defined over the same space is very simple:

we will break down one BSP at its root, and insert its cutting plane into the other BSP. We

then recursively process the two children of the root. So let’s first introduct the procedure

Partition, which takes as input a BSP tree T, and a cutting plane defined by the dimension

dim and the position pos, and output a new BSP tree that takes the input cutting plane as

the root cutting plane. In the simpliest implementation, one can just construct a new BSP

node with two copies of T as its children. This will be a correct BSP tree that represent

the answer. However, we can do better by simplifying each T since they are now in a

smaller space, one that’s divided from it’s original space by the input cutting plane. We

111

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

© ©
Figure A.l. BSP example

use the function positiveHalf and negativeHalf to represent such simplification process.

They basically travers the tree and compare the region that each tree node represent with

the halfspace defined by the cutting plane, and prune away any node that’s outside of the

halfplane. The partition is then implemented as follow:

Partition (T , dim, pos)

1. R.dim = dim, R.pos — pos

2. R.ge =positiveHalf(T.ge,dim,pos)

3. R.lt =negativeHalf(TJt, dim, pos)

4. return R

and the intersecting is implemented as follow:

Intersect (Tl , T2)

1. if T l or T 2 is terminal node

112

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2. return IntersectTerminal(Tl, T2);

3. P =Partition(T2,Tl.dira,Tl.pos)

4. R.d = Tl.d, R.pos = Tl.pos

5. R.ge =Intersect(Tl.lt, P.lt)

6. R.lt =Intersect(Tl.ge, P.ge)

7. return R

Here the function IntersectTerminal performs the actual computation such as addition

of maximization over the data stored at the terminal of the two BSP trees, which can be

constants or piece-wise linear functions.

113

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

BIBLIOGRAPHY

[1] Andre, David, Friedman, Nir, and Parr, Ronald. Generalized prioritized sweeping.
In Advances in Neural Information Processing Systems (1998), vol. 10, MIT Press:
Cambridge, MA.

[2] Astrom, Karl J. Optimal control of Markov decision processes with incomplete state
estimation. Journal of Mathematical Analysis and Applications 10 (1965), 174-205.

[3] Astrom, Karl. J. Optimal control of Markov processes with incomplete state infor
mation, II. Journal of Mathematical Analysis and Applications 26 (1969), 403-406.

[4] Bahar, R. Iris, Frohm, Erica A., Gaona, Charles M., Hachtel, Gary D., Macii, En
rico, Pardo, Abelardo, and Somenzi, Fabio. Algebraic Decision Diagrams and Their
Applications. In IEEE /ACM International Conference on CAD (Santa Clara, Cali
fornia, 1993), IEEE Computer Society Press, pp. 188-191.

[5] Barto, Andrew. G., Bradtke, Steven. J., and Singh, Satinder. P. Learning to act using
real-time dynamic programming. Artificial Intelligence 72 (1995), 81-138.

[6] Bellman, Richard E. Dynamic Programming. Princeton University Press, Princeton,
NJ, 1957.

[7] Bertoli, Piergiorgio, Cimatti, Alessandro, and Roveri, Marco. Heuristic search +
symbolic model checking = efficient conformant planning. In Proceedings of the
17th International Joint Conference on Artificial Intelligence (2001), pp. 467-472.

[8] Bertsekas, Dmitri P. Distributed dynamic programming. IEEE Transactions on
Automatic Control 27 (1982), 610-616.

[9] Bertsekas, Dmitri P. Distributed asynchronous computation of fixed points. Mathe
matical Programming 27 (1983), 107-120.

[10] Bertsekas, Dmitri P., and Tsitsiklis, John N. Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA, 1996.

[11] Blackwell, David. Discounted dynamic programming. Annals of Mathematical
Statistics, 36 (1965), 226-235.

[12] Blum, Avrim L., and Furst, Merrick L. Fast planning through planning graph analy
sis. Artificial Intelligence, 90 (1997), 281-300.

114

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[13] Boutilier, Craig, Brafman, Ronen I., and Geib, Christopher. Structured reachability
analysis for Markov decision processes. In Proceedings of the 14th International
Conference on Uncertainty in Artificial Intelligence (1998), pp. 24-32.

[14] Boutilier, Craig, Dean, Thomas, and Hanks, Steve. Decision-theoretic planning:
Structural assumptions and computational leverage. Journal o f Artificial Intelligence
Research (1999), 1-94.

[15] Boutilier, Craig, Dearden, Richard, and Goldszmidt, Moises. Exploiting structure in
policy construction. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence (IJCAI-95) (Montreal, Canada, 1995), pp. 1104-1 111.

[16] Boutilier, Craig, Dearden, Richard, and Goldszmidt, Moises. Stochastic dynamic
programming with factored representations. Artificial Intelligence 121 (2001).

[17] Boutilier, Craig, and Poole, David. Computing optimal policies for partially ob
servable decision processes using compact representations. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence (AAAI-96) (Portland, OR,
1996), pp. 1168-1175.

[18] Boutilier, Craig, Reiter, Ray, and Price, Bob. Symbolic dynamic programming for
first-order mdps. In Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence (IJCAI-01) (Seattle,WA, 2001), pp. 690-697.

[19] Boyan, Justin A. Learning Evaluation Functions for Global Optimization. PhD
thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1998.

[20] Boyan, Justin A., and Littman, Michael L. Exact solutions to time-dependent MDPs.
In NIPS 13. 2000, pp. 1-7.

[21] Boyan, Justin A., and Moore, Andrew W. Generalization in reinforcement learning:
Safely approximating the value function. In NIPS 7 (1995), pp. 369-376.

[22] Brafman, Ronen I. A heuristic variable grid solution method for POMDPs. In
Proceedings of the 14th National Conference on Artificial Intelligence (AAAI-97)
(Providence, RI, 1997).

[23] Bresina, John, Dearden, Richard, Meuleau, Nicolas, Smith, David, and Washington,
Rich. Planning under continuous time and resource uncertainty: A challenge for AI.
In Proc. of UAI-2002 (2002).

[24] Bryant, Randal E. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. C-35, 8 (Aug. 1986), 677-691.

[25] Cassandra, Anthony, Littman, Michael L., and Zhang, Nevin L. Incremental prun
ing: A simple, fast, exact method for partially observable Markov decision pro
cesses. In Proceedings of the Thirteenth Annual Conference on Uncertainty in Arti
ficial Intelligence (1997), pp. 54-61.

115

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[26] Cassandra, Anthony R. Exact and Approximate Algorithms for Partially Observable
Markov Decision Processes. PhD thesis, Brown University, 1998.

[27] Cassandra, Anthony R., 1999. http://www.cs.brown.edu/research/ai/pomdp/.

[28] Cheng, H. Algorithms for Partially Observable Markov Decision Processes. PhD
thesis, University of British Columbia, 1988.

[29] Chrisman, Lonnie. Reinforcement learning with perceptual aliasing: The perceptual
distinctions approach. In Proceedings of the 10th National Conference on Artificial
Intelligence (1992), pp. 183-188.

[30] Cimatti, Alessandro, Roveri, Marco, and Bertoli, Piergiorgio. Conformant planning
via symbolic model checking and heuristic search. Artificial Intelligence 159, 1-2
(2004), 127-206.

[31] Cimatti, Alessandro, Roveri, Marco, and Traverso, Paolo. Automatic OBDD-based
generation of universal plans in non-deterministic domains. In Proceedings o f the
15th National Conference on Artificial Intelligence (1998), pp. 875-881.

[32] Clarke, E.M., Emerson, E.A., and Sistla, A.P. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro
gramming Languages and Systems 8, 2 (1986), 244- 263.

[33] Daniele, Marco, Traverso, Paolo, and Vardi, Moshe Y. Strong cyclic planning revis
ited. In Proceedings o f the 5th European Conference on Planning (1999).

[34] Dean, Thomas, and Givan, Robert. Model minimization in markov decision pro
cesses. In AAA1/IAAI (1997), pp. 106-111.

[35] Dean, Thomas, Kaelbling, Leslie Pack, Kirman, Jak, and Nicholson, Ann. Planning
under time constraints in stochastic domains. Artificial Intelligence 76 (1995), 35-
74.

[36] Dearden, Richard. Structured prioritised sweeping. In The Eighteenth International
Conference on Machine Learning (2001).

[37] Dearden, Richard, and Boutilier, Craig. Abstraction and approximate decision-
theoretic planning. Artificial Intelligence 89 (1997), 219-283.

[38] Dietterich, Thomas G., and Flann, Nicholas S. Explanation-based learning and rein
forcement learning: A unified view. Machine Learning 28 (1997), 169-214.

[39] Drake, A. Observation of Markov Process Through a Noisy Channel. PhD thesis,
Electrical Engineering Department, MIT., 1962.

[40] Draper, Denise, Hanks, Steve, and Weld, Daniel. Probabilistic planning with in
formation gathering and contingent execution. In Proceedings of the Second Inter
national Conference on Artificial Intelligence Planning Systems (AIPS-94) (1994),
pp. 31-36.

116

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

http://www.cs.brown.edu/research/ai/pomdp/

[41] Edelkamp, Stefan, and Reffel, Frank. OBDDs in heuristic search. In German Con
ference on Artificial Intelligence (KI) (1998), pp. 81-92.

[42] Feng, Zhengzhu, Dearden, Richard, Meuleau, Nicolas, and Washington, Richard.
Dynamic programming for structured continuous markov decision problems. In Pro
ceedings of the 20th Conference on Uncertainty in Artificial Intelligence (UAI-2004)
(2004).

[43] Feng, Zhengzhu, and Hansen, Eric A. Approximate planning for factored POMDPs.
In Proceedings of the 6th European Conference on Planning (ECP-01) (2001).

[44] Feng, Zhengzhu, and Hansen, Eric A. Symbolic heuristic search for factored markov
decision processes. In Proceedings of the Eighteenth National Conference on Artifi
cial Intelligence (AAAI-02) (2002).

[45] Feng, Zhengzhu, and Hansen, Eric A. An approach to state aggregation for
POMDPs. In Proceedings of the 2004 AAAI workshop on learning and planning
in Markov processes - Advances and challenges. (San Jose, CA, 2004).

[46] Feng, Zhengzhu, Hansen, Eric A., and Zilberstein, Shlomo. Symbolic generaliza
tion for on-line planning. In Proceedings o f the 19th Conference on Uncertainty in
Articial Intelligence (UAI-2003) (2003).

[47] Feng, Zhengzhu, and Zilberstein, Shlomo. Region-based incremental pruning for
POMDPs. In Proceedings of the 20th Conference on Uncertainty in Artificial Intel
ligence (UAI-2004) (2004).

[48] Feng, Zhengzhu, and Zilberstein, Shlomo. Efficient maximization in solving
pomdps. In Proceedings of the Twentieth of the Nineteenth National Conference
on Artificial Intelligence (AAAI-05) (Pittsburgh, PA, 2005).

[49] Friedman, J.H., Bentley, J.L., and Finkel, R.A. An algorithm for finding best
matches in logarithmic expected time. ACM Trans. Mathematical Software 3(3)
(1977), 209-226.

[50] Friedman, Nir, and Goldszmidt, Moises. Learning bayesian networks with local
structure. In Learning in Graphical Models, Michael I. Jordan, Ed. MIT Press,
1999, pp. 421-460.

[51] Gordon, Geoffrey J. Stable function approximation in dynamic programming. In
Proc. 12th Intl. Conf. on Machine Learning (1995), pp. 261-268.

[52] Hansen, Eric A. Finite-memory control of partially observable systems. PhD thesis,
Department of Computer Science, University of Massachusetts at Amherst, 1998.

[53] Hansen, Eric A. Solving POMDPs by searching in policy space. In Proceedings of
the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI-98) (Madi
son, WI, 1998), pp. 211-219.

117

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[54] Hansen, Eric A., and Zhou, Rong. Synthesis of hierarchical finite-state controllers
for POMDPs. In Proceedings o f the Thirteenth International Conference on Auto
mated Planning and Scheduling (2003).

[55] Hansen, Eric A., and Zilberstein, Shlomo. LAO*: A heuristic search algorithm that
finds solutions with loops. Artificial Intelligence 129 (2001), 35-62.

[56] Hauskrecht, Milos. Incremental methods for computing bounds in partially observ
able markov decision processes. In Proceedings of the 14th National Conference on
Artificial Intelligence (AAAI-97) (Providence, RI, 1997).

[57] Hauskrecht, Milos. Value-function approximations for partially observable Markov
decision processes. Journal of Artificial Intelligence Research 13 (2000), 33-94.

[58] Hernandez, Natalia, and Mahadevan, Sridhar. Hierarchical memory-based reinforce
ment learning. In Fifteenth International Conference on Neural Information Pro
cessing Systems (Nov. 2000).

[59] Hoey, Jesse, St-Aubin, Robert, Hu, Alan, and Boutilier, Craig. SPUDD: Stochastic
planning using decision diagrams. In Proceedings o f the Fifteenth Conference on
Uncertainty in Articial Intelligence (1999), pp. 279-288.

[60] Holldobler, Steffen, and Skvortsova, Olga. A Logic-Based Approach to Dynamic
Programming. In Learning and Planning in Markov Processes-Advances and Chal
lenges, Papers from the AAAI Workshop (July 2004), AAAI Press, Menlo Park, Cal
ifornia, pp. 31-36.

[61] Hong, Youpyo, Beerel, Peter A., Burch, Jerry R., and McMillan, Kenneth L. Safe
BDD minimization using don’t cares. In DAC ’97: Proceedings o f the 34th an
nual conference on Design automation (New York, NY, USA, 1997), ACM Press,
pp.208-213.

[62] Howard, Ronald A. Dynamic Programming and Markov Processes. MIT Press,
Cambridge, MA, 1960.

[63] Howard, Ronald A., and Matheson, James E., Eds. Readings on the Principles and
Applications of Decision Analysis. Strategic Decisions Group, Menlo Park, CA,
1984.

[64] Jensen, Rune M., Bryant, Randal E., and Veloso, Manuela M. Seta*: an efficient
bdd-based heuristic search algorithm. In Eighteenth national conference on Artifi
cial intelligence (Menlo Park, CA, USA, 2002), American Association for Artificial
Intelligence, pp. 668-673.

[65] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
Model Checking: 1020 States and Beyond. In Proceedings o f the Fifth Annual IEEE
Symposium on Logic in Computer Science (Washington, D.C., 1990), TF.EF, Com
puter Society Press, pp. 1-33.

118

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[66] Kaelbling, Leslie Pack, Littman, Michael L., and Cassandra, Anthony R. Planning
and acting in partially observable stochastic domains. Artificial Intelligence 101
(1998), 99-134.

[67] Korpela, E., Werthimer, D., Anderson, D., Cobb, J., and Leboisky, M. SETI@home-
massively distributed computing for SETI. Computing in Science & Engineering 3,
1 (2001).

[68] Larsen, K.G., and Skou, A. Bisimulation through probabilistic testing. Information
and Computation 94, 1 (1991), 1-28.

[69] Lind-Nielsen, Jom. Buddy - a binary decision diagram package.
http://www.itu.dk/people/jln/ (1996).

[70] Littman, Michael L. The witness algorithm: Solving partially observable markov de
cision processes. Tech. Rep. CS-94-40, Brown University Department of Computer
Science, 1994.

[71] Littman, Michael L., Cassandra, Anthony R., and Kaelbling, Leslie Pack. Efficient
dynamic-programming updates in partially observable markov decision processes.
Tech. Rep. CS-95-19, Brown University, Providence, RI, 1996.

[72] Littman, Michael L., Dean, Thomas L., and Kaelbling, Leslie Pack. On the com
plexity of solving Markov decision problems. In Proceedings of the Eleventh Annual
Conference on Uncertainty in Artificial Intelligence (UAI-95) (Montreal, Quebec,
Canada, 1995), pp. 394-402.

[73] Littman, Michael L., and Younes, Hakan L. The probabilis
tic planning track of the 2004 international planning competition.
http://www.cs.rutgers.edu/mlittman/topics/ipc04-pt/ (2004).

[74] Lovejoy, William S. Computationally feasible bounds for partially observed markov
decision processes. Operations Research 39 (1991), 162-175.

[75] Lusena, Christopher, Mundhenk, Martin, and Goldsmith, Judy. Nonapproximabil-
ity results for partially observable Markov decision processes. Journal o f Artificial
Intelligence Research 14 (2001), 83-103.

[76] Madani, Omid, Hanks, Steve, and Condon, Anne. On the undecidability of proba
bilistic planning and related stochastic optimization problems. Artificial Intelligence
147, 1-2 (2003), 5-34.

[77] Mausam, Benazera, E., Brafman, R., Meuleau, N., and Hansen, Eric. A. Plan
ning with continuous resources in stochastic domains. In Proceedings o f the Nine
teenth International Joint Conference on Artificial Intelligence (IJCAI-05) (Edin
burgh, Scotland, July 2005).

119

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

http://www.itu.dk/people/jln/
http://www.cs.rutgers.edu/mlittman/topics/ipc04-pt/

[78] Meuleau, Nicolas, Dearden, Richard, and Washington, Richard. Scaling up decision
theoretic planning to planetary rover problems. In Proceedings of the Workshop
on Learning and Planning in Markov Processes: Advances and Challenges (Menlo
Park, CA, 2004), AAAI Press, pp. 66-71.

[79] Monahan, George E. A survey of partially observable Markov decision processes:
Theory, models, and algorithms. Management Science 28 (1982), 1-16.

[80] Moore, Andrew W„ and Atkeson, Christopher G. Prioritized sweeping: Reinforce
ment learning with less data and less time. Machine Learning 13 (1993), 103-130.

[81] Munos, Remi, and Moore, Andrew. Variable resolution discretization in optimal
control. Machine Learning 49, 2-3 (2002), 291-323.

[82] Naylor, B., Amanatides, J., and Thibault, William. Merging BSP trees yields polyhe
dral set operations. Computer Graphics (SIGGRAPH’90 Proceedings) 24(4) (1990),
115-124.

[83] Papadimitriou, Christos H., and Tsitsiklis, John N. The complexity of Markov deci
sion processes. Mathematics of Operations Research 12, 3 (Aug. 1987), 441^450.

[84] Parr, Ronald, and Russell, Stuart. Approximating optimal policies for partially ob
servable stochastic domains. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (1995).

[85] Pearl, Judea. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, second ed. Morgan Kaufmann, 1988.

[86] Pineau, Joelle, Gordon, Geoff, and Thrun, Sebastian. Point-based value iteration:
An anytime algorithm for POMDPs. In Proceedings of the 2003 International joint
conferene on artigicial intelligence (IJCAI-2003) (2003).

[87] Puterman, Martin L. Markov Decision Processes—Discrete stochastic Dynamic Pro
gramming. John Wiley & Sons, Inc., New York, NY, 1994.

[88] Pyeatt, Larry D., and Howe, Adele E. A parallel algorithm for POMDP solution.
In Proceedings o f the 5th European Conference on Planning (ECP-99) (September
1999), pp. 73-83.

[89] Roy, Nicholas, and Gordon, Geoff. Exponential family PCA for belief compression
in POMDPs. In Advances in Neural Information Processing 15 (2003).

[90] Russell, Stuart, and Norvig, Peter. Artificial Intelligence: A Modern Approach.
Prentice Hall, Upper Saddle River, NJ, 1995.

[91] Saul, L.K., and Jordan, M.I. Mixed memory markov models: Decomposing complex
stochastic processes as mixture of simpler ones. Machine Learning 37 (1999), 75-
87.

120

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[92] Smallwood, Richard D., and Sondik, Edward J. The optimal control of partially ob
servable Markov processes over a finite horizon. Operations Research 21, 5 (1973),
1071-1088.

[93] Somenzi, Fabio. CUDD: CU decision diagram package.
http://vlsi. Colorado, edu/ fabio/ (1998).

[94] Somenzi, Fabio. Binary decision diagrams. In Calculational System Design,
M. Broy and R. Steinbruggen, Eds., vol. 173 of NATO Science Series F: Computer
and Systems Sciences. IOS Press, 1999, pp. 303-366.

[95] Sondik, Edward. J. The optimal control o f partially observable Markov processes.
PhD thesis, Stanford University, 1971.

[96] Sondik, Edward. J. The optimal control of partially observable Markov processes
over the infinite horizon: Discounted costs. Operations Research 26 (1978), 282-
304.

[97] St-Aubin, Robert, Hoey, Jesse, and Boutilier, Craig. APRICODD: Approximate
policy construction using decision diagrams. In Proceedings o f NIPS-2000 (2000).

[98] Sutton, Richard S., and Barto, Andrew G. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

[99] Thrun, Sebastian. Monte Carlo POMDPs. In Advances in Neural Information Pro
cessing (NIPS) 12 (2000), pp. 1064-1070.

[100] Yannakakis, Mihalis, and Lee, David. An efficient algorithm for minimizing real
time transition systems. In 5th International Conference Computer Aided Verifica
tion (CAV93) (1993).

[101] Zhang, Weihong, and Zhang, Nevin L. Solving informative partially observable
markov decision processes. In Proceedings of the 6th European conference on Plan
ning (ECP-01) (2001).

[102] Zhang, Weihong, and Zhang, Nevin L. Value iteration working with belief subset.
In Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-02)
(2002).

[103] Zhou, Rong, and Hansen, Eric A. An improved grid-based approximation algorithm
for POMDPs. In Proceedings o f the 17th International Joint Conference on Artificial
Intelligence (2001).

121

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

http://vlsi

