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ABSTRACT

EXPLOITING STRUCTURE IN DECENTRALIZED
MARKOV DECISION PROCESSES

SEPTEMBER 2006

RAPHEN BECKER

B.A., GRINNELL COLLEGE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Victor Lesser and Professor Shlomo Zilberstein

While formal, decision-theoretic models such as the Markov Decision Process

(MDP) have greatly advanced the field of single-agent control, application of similar

ideas to multi-agent domains has proven problematic. The advantages of such an

approach over traditional heuristic and experimental models of multi-agent systems

include a more accurate representation of the underlying problem, a more easily

defined notion of optimality and the potential for significantly better solutions. The

difficulty often comes from the tradeoff between the expressiveness of the model and

the complexity of finding an optimal solution. Much of the research in this area has

focused on the extremes of this tradeoff. At one extreme are models where each agent

has a global view of the world, and solving these problems is no harder than solving

single-agent problems. At the other extreme lie very general, decentralized models,

which are also nearly impossible to solve optimally.
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The work proposed here explores the middle-ground by starting with a general

decentralized Markov decision process and introducing structure that can be exploited

to reduce the complexity. I present two decision-theoretic models that structure the

interactions between agents in two different ways. In the first model the agents are

independent except for an extra reward signal that depends on each of the agents’

histories. In the second model the agents have independent rewards but there is a

structured interaction between their transition probabilities. Both of these models

can be optimally and approximately solved using my Coverage Set Algorithm. I also

extend the first model by allowing the agents to communicate and I introduce an

algorithm that finds an optimal joint communication policy for a fixed joint domain-

level policy.
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CHAPTER 1

INTRODUCTION

There are as many definitions of what constitutes an agent as there are agent

researchers. The view ranges from a simple entity that performs a task when acti-

vated, perhaps nothing more than a function in a program, to sophisticated entities

that observe the world around them and make intelligent decisions based upon those

observations. The view of an agent taken in this dissertation is closer to the latter

rather than the former. One of the key requirements is autonomy, whereby an agent

does not simply react, but has the ability to act and does so based upon its local

information.

Within the human experience, human agents rarely act in isolation. Instead we

form cooperative and competitive multi-agent systems at many different levels, from

the macroscopic levels of countries, societies and economies to the microscopic levels

of companies, families and sports. When designing an artificial system to address or

solve a particular problem, the designers are often faced with a choice to design a

system with a single autonomous agent (assuming that autonomy is appropriate and

desired for this problem) or to have multiple autonomous agents. Multi-agent systems

are appropriate in competitive settings where the different competing interests each

need representation, like an auction where each party involved is trying to maximize

the value of goods they buy while minimizing the price they pay. They are also

appropriate in cooperative settings where the information necessary to solving the

problem is distributed spatially or geographically and centralizing the information is

not practical. Even when the information is centrally located, a multi-agent solution
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may still provide a way of adapting to changes in the environment given an ability to

swap agents in and out, or enabling scaling to larger problems given their numerous

processors, sensors and effectors.

The research presented in this dissertation is entirely focused on cooperative multi-

agent systems. It assumes that using a collection of autonomous agents has already

been deemed an appropriate, preferred or only solution to the problem. It also applies

only to cooperative problems, which means that all of the agents share the same goals

or are trying to maximize a social utility instead of an individual, personal utility.

1.1 Cooperative Multi-Agent Systems

The field of cooperative multi-agent systems has made significant progress in the

past few decades, yet it has not kept pace with the progress of research on single-

agent systems. This is not surprising given that single-agent systems are a special

case of multi-agent systems, and therefore much simpler to understand and model.

Consider rover exploration of Mars. The goal is to gather information about Mars by

sending semi-autonomous rovers there to explore and beam information back to us on

Earth. To date, every rover sent to Mars has been part of a single-agent system. The

most recent landing involved two rovers, but they were placed on different sides of

the world and have no interaction. Thus they form two single-agent systems instead

of one two-agent system.

There are many reasons why having multiple rovers close enough to interact is

beneficial. For example, it may be valuable to have two pictures taken of the same

object from different angles simultaneously. One rover could observe another rover to

help determine its exact location, to help it navigate, or to help diagnose problems.

One rover could relay information to and from another rover exploring places where

geography limits its communication range. Multiple heterogenous rovers can expand
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the type of information collected, and having multiple rovers increases the redundancy

and reduces the chance of catastrophic failure.

However, multiple rovers also increases the complexity of the system. Due to that

complexity, most traditional research in multi-agent systems has taken a heuristic or

approximate approach that restricts the space of possible agent behaviors a priori,

for example GRATE*[39], the contract net protocol [66], GPGP/TAEMS [41] and

STEAM [69]. All four frameworks have been used very successfully in multi-agent

systems, yet each of them only approximate the underlying problem and most solu-

tions only find approximate answers within the framework. There is no guarantee

on the quality of the solution and performance is usually measured relative to other

approximate answers.

Recently, a number of researchers have been looking at the success of formal,

decision-theoretic models in single agent systems like the Markov Decision Process

(MDP) and are attempting to migrate those ideas to systems with two or more

agents. The major advantage of the decision-theoretic models is that they have the

potential to lead to significantly better solutions. They are both a much more accurate

representation of the underlying problem and the notion of optimal solutions is easily

defined within them.

Within the multi-agent decision-theoretic community, the research has been in two

primary directions. On one side is a direct attempt to modify the MDP for multiple

agents. A classic example of this is Boutilier’s Multi-agent Markov Decision Process

(MMDP) [9]. The assumption used in the MMDP is that each agent observes the

entire state of the world. Solving this problem is no more difficult than solving an

MDP, but it has the disadvantage of being restricted to solving only fully observable

problems or problems with free communication.

The other direction uses the much more general assumption that each agent

does not have complete knowledge of the world state. This is more of an exten-
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sion of Partially Observable Markov Decision Processes (POMDPs) [40] to multiple

agents. One example is Bernstein et al.’s Decentralized POMDP (DEC-POMDP)

[6]. This assumption is much more widely applicable to multi-agent systems, but

it also significantly increases the complexity. Just as POMDPs (PSPACE-complete)

[48, 56] are much more difficult to solve than MDPs (P-complete) [56], DEC-POMDPs

(NEXP-complete) [6] are significantly more complicated than MMDPs (P-complete)

[9]. These and other related models will be discussed in detail in Chapter 2.

Understanding these two dichotomies (heuristic vs. decision-theoretic, and fully

observable vs. partially observable) is central to understanding the importance of

this work. Most of the existing work is found at the extremes of these dichotomies.

Heuristic models have the advantage of being easily solved and widely applicable but

at the cost of no guarantee on the quality of the solution. The decision-theoretic mod-

els have quality guarantees, but the fully observable models are not widely applicable

and the partially observable models are not tractable. This work is an attempt to

identify and solve models of multi-agent systems that lie in the middle and incorporate

the advantages of each.

1.2 Contributions

An example of the classes of problems I am focusing on in this work can be found

by looking at the Mars rover exploration problem in more detail. There are three

homogeneous rovers exploring Mars, R1, R2 and R3 (see Figure 1.1). Each is given

a region of space that it is responsible for exploring. Each rover has a number of

interesting locations to visit and collect data from, but there is not enough time in

the day to do them all. Additionally, some of the locations are on the border between

regions and can be explored by multiple rovers. Having two rovers collect data at the

same location can either be beneficial (complementary data) or wasteful (redundant

data). The decision problem concerns which locations to visit. The difficulty is that
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Figure 1.1. Illustration of the Mars rover example.

there is uncertainty in travel time between locations and in the time it takes to collect

the data. The goal is to maximize the value of all of the collected information from

the three rovers.

When the rovers are not allowed to communicate, the interaction between them

is only through the global reward function being maximized. The actions each rover

takes does not affect and is unaffected by the actions taken by the other rovers. This

class of problems is called Transition Independent DEC-MDPs (TI-DEC-MDPs) and

is formally defined in Chapter 3. This problem is more general than the MMDP be-

cause the agents have different and incomplete views of the world. It is also more spe-

cific than the DEC-MDP because the interaction between the agents is only through

the reward function. The complexity of problems in this class is NP-complete, which

is also harder than the MMDP but much easier than the general DEC-MDP.

I also investigate other types of interactions between agents. Instead of allowing

the agents to interact through the reward function, the agents interact through the

transition function using a mechanism I call event-driven interactions. The global
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reward being maximized is just the sum of the rewards accumulated by each agent

individually, but the actions taken by one agent can affect actions taken by another

agent. For example, one rover may carry equipment needed by another and it could

deposit the equipment at a prespecified location. The other rover can detect the

existence of the equipment when it arrives at that location. This model is called De-

centralized MDPs with Event-Driven Interactions and is formally defined in Chapter

5.

Identifying a class of problems by itself is not useful unless there exists a good

algorithm to find solutions. To this end, Chapter 4 describes an algorithm I developed

called the Coverage Set Algorithm (CSA), which returns an optimal solution to the

TI-DEC-MDP and the DEC-MDP with Event Driven Interactions. A simple hill-

climbing algorithm for these types of problems would converge to a local maxima. The

CSA gets around this problem by efficiently searching for all of the local maxima. In

general, the number of local maxima is significantly fewer than the number of policies

so the algorithm can prune a majority of the policies. The algorithm can also return

the best of the local maxima found at any point, making it an anytime algorithm. It

has performed very well in experimental work both as an exact algorithm and as an

anytime solution.

Neither of the two models I have discussed allow a general form of communication

between the agents. This is because finding optimal solutions with communication is

significantly more difficult than without, even though certain communication proto-

cols have the same worst-case complexity [28]. Chapter 6 extends the TI-DEC-MDP

to allow communication between the agents. I then illustrate how the common myopic

assumptions used to deal with communication can lead to undesirable behavior in the

agents. Finally, I present a new algorithm that addresses these sources of error and

produces significantly better results. This new algorithm finds the optimal communi-
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cation policy for fixed domain-level policies. An efficient algorithm to simultaneously

find optimal communication and domain policies remains an open problem.

The work presented here will affect the state-of-the-art in multi-agent systems in

four primary ways. First, the three classes of problems expand the body of knowledge

about multi-agent systems in an area that is currently quite scarce. It identifies

structure in many real multi-agent problems that can be exploited to reduce the

complexity of finding optimal solutions. It also grounds problems that were previously

solved heuristically in a more formal decision-theoretic framework.

The second effect is that the Coverage Set Algorithm is one of the first practical

algorithms to solve optimally a general class of decentralized multi-agent systems.

This leads the way for new and innovative solutions for optimal control of multiple

agents.

The third impact this work will have is to further the work on approximation

algorithms for multi-agent systems. While all heuristic algorithms for multi-agent

systems are approximations, approximate algorithms grounded in decision theory are

quite new and have the potential to significantly outperform the ad-hoc, heuristic

ones. However, very few existing approximate algorithms for multi-agent systems

provide any guarantees on the solution outcome. The CSA has the distinction of

guaranteeing convergence on the optimal solution.

Finally, I present an analysis of two ways a myopic assumption commonly used

to deal with communication can negatively affect the agents’ behavior. The algo-

rithm I present to address the errors finds the optimal communication policy given

a fixed domain policy. This is the first algorithm that can efficiently find optimal

communication policies for problems of this size and complexity.

This dissertation is organized as follows. Chapter 2 introduces the foundational

work this proposal builds on in addition to placing this work in the context of related

works. Chapter 3 presents the first model, Transition Independent DEC-MDPs. The
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Coverage Set Algorithm is discussed in Chapter 4 along with some experimental

results from using it to solve TI-DEC-MDPs. The next model, DEC-MDPs with

Event Driven Interactions, is the topic of Chapter 5, and Chapter 6 examines adding

communication and shows how to find optimal communication policies. Chapter 7

will summarize and conclude the dissertation.
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CHAPTER 2

RELATED WORK

The work presented here addresses one of the fundamental challenges within multi-

agent systems–coordination. There are many definitions for what coordination is, and

the one that I am adopting is the process in which an agent takes into account other

agents when making its decisions. Coordination does not imply cooperation, however,

in this work I am only considering systems of cooperative agents. In this case, the

agents are coordinating for their mutual benefit.

A framework for coordination can be divided into two components: 1) a repre-

sentation of the space of coordinated behaviors, and 2) a mechanism or algorithm

for searching that space and selecting a particular set of coordinated behaviors. The

traditional approaches to coordination are to find approximate but efficient represen-

tations of the space of behaviors and then to do an incomplete but fast heuristic-

guided search of that space. The recent decision-theoretic models take the opposite

approach of an exact but less efficient representation of the space and perform a more

complete, but slower search through that space.

2.1 Traditional Approaches to Coordination

Multi-agent coordination is an extremely complex problem, and a natural way to

approach it is to simplify the problem. Traditionally, researchers have done just that

by introducing heuristics/assumptions, imposing structure, and settling for satisficing

solutions. When viewing coordination as a distributed search process through the

space of possible agent behaviors, these approaches correspond to pruning the search
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space and halting before the entire space has been searched. Indeed, Durfee goes as far

as claiming that the bulk of coordination research has been in developing techniques to

make agents more ignorant about their situation instead of less [19]. That counter-

intuitive claim flies in the face of information theory, which says that additional

(correct) information always has a non-negative value. However, in situations where

an agent does not have the computational capacity to make the perfect decision,

giving it more correct but irrelevant information causes some of that scarce capacity

to be taken away from the more relevant data leading to a worse decision. There are

other situations in which additional data can distract an agent and actively lead it to

pursue a bad line of reasoning, resulting in a worse decision [13, 22, 64].

A popular framework for control of a single agent is the belief-desire-intention(BDI)

model [14, 11]. The BDI model is inspired by a philosophical model of reasoning in

humans, which characterizes the state of an agent by its beliefs about the world, their

long-term goals that they desire to achieve, and their short-term goals that they in-

tend to actively work towards. This framework has been extended to multiple agents

by the additions of joint intentions[42] and SharedPlans[29]. Two specific implemen-

tations of this approach into a general model for teamwork-based coordination are

STEAM and GRATE*.

Both STEAM[69] and GRATE*[39] are rule-based systems, where the space of

coordination behaviors are represented and highly constrained by a set of logical

rules. These rules are chosen because they make intuitive sense and have resulted in

the desired behavior during experimentation, not because they have been evaluated in

a quantitative way. Search through this space is done with an inference engine, which

selects a set of rules (behaviors) that will achieve the goal, and is generally qualitative

in nature. However, STEAM and an extension to it STEAM-L[70] both include a

decision-theoretic component that allow pieces of the problem to be quantitatively

evaluated and maximized.
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Another framework for coordination is the contract net protocol [66]. Interaction

between the agents happens through an auction mechanism and is applicable in both

cooperative and competitive settings. When one agent needs assistance, it announces

its request to other agents. The other agents bid on how well they can do the job

and the originating agent awards the contract to its favorite bidder. The space of

coordination between the agents is limited to this auction mechanism, and the process

of finding an allocation of tasks to agents is very short sighted and the decisions are

made with essentially no non-local information. There is no inherent mechanism to

handle multi-link negotiations and get the agents to all agree to work towards one

goal, which can lead to no goals being accomplished. A contract net protocol is best

suited for problems that are naturally decomposable and not tightly constrained.

GPGP/TAEMS [41] is a general model for distributed coordination. TAEMS is a

powerful hierarchical task description language that can quantitatively and efficiently

describe a set of tasks, decompositions, and logical and temporal constraints among

the activities. GPGP is the coordination module, and a copy resides in each agent.

When there is an interdependency between two agents (e.g. a subtask for one agent

facilitates or hinders a subtask done by another agent, or they both are a part of the

same quality accumulation function) the GPGP modules attempt to coordinate the

agents’ behavior. The coordination space GPGP searches through is represented by

commitments one agent makes to another, e.g. an agent may commit to finish its

subtask by a particular deadline. This representation is limited by the incomplete

knowledge one agent receives about the other agent through this commitment, for

example the commitment represents a hard deadline when the task will be completed

instead of a more accurate distribution over possible completion times. To address this

Ping and Lesser [79] introduced a more sophisticated commitment that incorporated

uncertainty.
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Given this partial global view, the GPGP component in the agent calls a lo-

cal scheduler that quantitatively evaluates the quality of the solution achieved with

this commitment. The scheduler can also make recommendation about alternative

commitments that would lead to a better solution, which GPGP uses to guide the

negotiation with the other agent. GPGP chooses from a suite of negotiation strate-

gies the one that best matches the situation. This search is not complete because it

is being performed online in a distributed process, subject to communication costs

and limited computational power. Due to these limitations GPGP does not ana-

lyze all contingencies, does not find the optimal schedule given the constraints, and

does not exhaustively search the space of constraints. However, when unexpected

contingencies arise it can plan how to handle them on the fly.

To contrast with these approaches, the models introduced in this work use a com-

plete but less efficient representation of the space of coordination behaviors. The two

algorithms presented here quantitatively search the complete space of domain actions

or communicative actions (but not both simultaneously) to find optimal solutions.

However, they are designed to be used offline and they perform a centralized search

for a distributed coordination strategy and therefore are not as concerned with the

tradeoff between computation time and solution quality, nor the issue of communica-

tion bandwidth while planning.

2.2 Decision-Theoretic Models

The work presented here builds on a solid foundation of decision theory, and is

related to other multi-agent, decision-theoretic work. The two primary single-agent

models, the Markov Decision Process (MDP) and the Partially Observable MDP

(POMDP) serve as the foundation to all of the multi-agent models, including those

I present in this dissertation. I will categorize the existing models into two classes:

one is an extension of MDPs and the other an extension of POMDPs. These two
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classes have a number of differences, most notably complexity and generality. The

multi-agent extension to POMDPs is much more general, but also more complex than

the other. The models presented in this dissertation fall between these two extremes

and are attempts to strike a balance between complexity and generality, as well as to

present more efficient solutions to several structured classes of multi-agent systems.

2.2.1 Single-Agent Models

There has been a lot of highly successful work in decision-theoretic control of

single agent systems. The most successful is the Markov Decision Process (MDP).

The MDP is a simple yet powerful model that serves as the basis for this entire field

of research. The basic idea is to describe a sequential decision problem as a finite set

of distinct states of the world, S. Each state includes all of the information available

to the agent making the decision that is necessary for it to make the best possible

decision. When an agent makes its decision, known as taking an action from the

set of possible actions A, the state changes to a new state according to a known

probability distribution P and the agent receives a reward (or penalty) R. When the

entire model is known (states, actions, transition probabilities, and reward) the agent

can easily compute its optimal choice of actions for each state, which is the action

that maximizes the agent’s expected cumulative reward. This mapping from states

to actions is the policy π. This is a P-complete problem for both the finite-horizon

and the discounted infinite-horizon cases [56].

While the MDP can capture a diverse array of problems, many problems contain

additional uncertainty that is not easily represented. One type is uncertainty about

the current state. Instead of observing the new state after each action, the agent

may receive a noisy observation about the new state. This leaves the agent with a

probability distribution over the states as its belief about the current state. These

noisy observations can be caused by many factors, such as a robot’s noisy sensors
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returning imperfect information, or an inability to sense parts of the environment.

Consider, for example, a robot attempting to locate itself in a building using only

a video camera and an internal map of the building [71]. It starts in a hallway,

but there may be many such hallways in its mental map and it initially has no

way to distinguish them. As it moves around and discovers intersections and other

distinguishing features, it can slowly narrow down its possible locations. However, as

interpreting video footage is not perfect, it may never be one-hundred percent certain

about its location.

The Partially Observable MDP (POMDP) handles this uncertainty about the

current state. At each step the agent receives an observation o ∈ Ω, which changes

its belief about the current state. While the problem still has the Markov property

(the probability of the next state only depends on the current state and action taken)

the agent no longer has direct access to the Markov state. Instead, it must make

its decisions based on the information available to it: the sequence of observations

made. The agent’s policy is now a mapping from a sequence of observations to an

action. This creates an exponential increase in the size of the policy, and is a much

harder problem to solve: PSPACE-complete for the finite-horizon case [48, 56], and

undecidable for the infinite-horizon version [44].

2.2.2 Centralized Multi-Agent Models

I classify the multi-agent decision problems into two groups depending on whether

they are extensions of MDPs or POMDPs. The characteristic difference between the

two groups is the same partial observability that distinguishes MDPs from POMDPs.

The first group is exemplified by Boutilier’s Multi-agent Markov Decision Process

(MMDP) [9]. The MMDP is a straightforward extension of the MDP to multiple

agents. The only change to the model is to factor the action space into actions for

each of the agents. The transition and reward functions then become mappings from
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states and joint actions to a next state and reward, respectively. The expressive

power of the MMDP is the same as the MDP and its complexity is also polynomial

in the number of states and actions. The same algorithms used for the single agent

MDPs can be used to find the optimal joint policy for the MMDP, such as dynamic

programming [36], linear programming [46, 16], and LAO* [34]. There has also been

some significant work done in multi-agent reinforcement learning (RL) [10, 23, 74].

However, while the change to the model is fairly simple, there are two implications

that may not be entirely obvious. First, the action space is now exponential in the

number of agents. Second, even though the agents share the state space and it cannot

necessarily be factored into a component for each agent, in many problems adding

additional agents results in an exponential increase in the number of states.

This curse of dimensionality is a problem for single agent MDPs and POMDPs

too, since the state space is exponential in the number of state features. One approach

developed for use with MDPs is to use a factored representation of the state space [31].

Some researchers have successfully extended that representation to the MMDP to

handle larger numbers of agents [17, 30, 32]. Other researchers have approached the

problem using hierarchies, in particular hierarchical reinforcement learning for single

agents [2] and for centralized multi-agent problems [24].

The disadvantage of the MMDP and related approaches is that it makes an im-

portant assumption that renders it inappropriate for many multi-agent systems. This

is that each agent has the same (complete) world view. Agents can have the same

world view because their sensors let them directly see all of the relevant information,

or because communication is free and the agents share their observations at each step.

I call these models centralized multi-agent models because the optimal solution can be

easily found through centralizing the views of each agent. These models are different

than the ones I present in this dissertation in that I do not assume communication
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is free. Instead, it is either not possible or it has a cost and must be reasoned about

explicitly before being used.

Ooi and Wornell [53] studied a variation where all of the agents automatically

share their state information every K time steps. They developed a dynamic pro-

gramming algorithm to derive optimal policies for this case, though the state space

for the algorithm grows doubly exponentially with K. A more tractable algorithm

was developed by Hsu and Marcus [38] under the assumption that the agents share

state information every time step, though it can take a time step for the information

to propagate. Both of these models are still centralized models because, even though

the information is not always synchronized, the synchronization happens in a fixed

way and is not influenced by or subject to the decisions of the agents.

2.2.3 Distributed POMDPs

Adding partial observability to the MMDP (or extending the POMDP to multiple

agents) brings us to the realm of distributed POMDPs. These models are much more

general because they allow each agent to make their own partial observations of the

world instead of forcing them to share the same complete world view. There are

two general classes of distributed POMDPs in common use and a few subclasses that

exploit structure in the problems.

2.2.3.1 Decentralized POMDPs

The first of the two general classes of distributed POMDPs is composed of a num-

ber of different models. In general, they do to the POMDP what the MMDP did

to the MDP: factor the action and observation spaces into an action and observa-

tion for each agent, and define the transition, reward and observation functions over

the joint actions and joint observations. One particular model is Bernstein et al.’s

Decentralized POMDP (DEC-POMDP) [6].
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Definition 1 An n-agent DEC-POMDP is defined by a tuple 〈S, A, P,R, Ω, O〉,

where

• S is a finite set of world states, with a distinguished initial state s0.

• A = A1 × A2 × . . . × An is a finite set of joint actions. Ai indicates the set of

actions that can be taken by agent i.

• P : S × A × S → [0, 1] is the transition function. P (s′|s, (a1...an)) is the

probability of the outcome state s′ when the joint action (a1...an) is taken in

state s.

• R : S × A × S → < is the reward function. R(s, (a1...an), s′) is the reward

obtained from taking joint action (a1...an) in state s and transitioning to state

s′.

• Ω = Ω1 × Ω2 × . . . × Ωn is a finite set of joint observations. Ωi is the set of

observations for agent i.

• O : S×A×S×Ω→ [0, 1] is the observation function. O(s, (a1...an), s′, (o1...on))

is the probability of agents 1 through n seeing observations o1 through on (agent

i sees oi) after the sequence s, (a1...an), s′ occurs.

• Joint partial observability: the n-tuple of observations made by the agents to-

gether does not (necessarily) fully determine the current state.

The policy π for a DEC-POMDP is a joint policy composed of a local policy πi

for each agent, π = (π1...πn). Each local policy is similar to a policy for a POMDP,

it is a mapping from sequences of observations to an action, πi : Ω̄i → Ai. The goal

is to find a joint policy that maximizes the expected reward for the system (see [6]

for the value function).

While the MDP and the MMDP were very similar, the fact that the agents have

different partial views introduces a significant new source of complexity over the
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POMDP. In a POMDP, the single agent maintains a belief about the current state.

In the DEC-POMDP, each agent maintains its own different belief about the current

state as well as maintaining a belief about the beliefs of each other agent. This belief

of beliefs complicates the problem significantly, giving it a complexity of NEXP-

complete [6], compared to the POMDP’s PSPACE-complete.

Early work in this area identified two characteristics that the models were dif-

ferentiated by. The first characteristic is joint partial observability versus joint full

observability. Joint partial observability is where the set of observations made at time

t together would not (necessarily) identify the current world state. This is the case of

the DEC-POMDP (see Definition 1). With joint full observability the set of observa-

tions together do identify the current world state: if O(s, a1...an, s
′, o1...on) > 0 then

P (s′|o1...on) = 1. The Decentralized MDP (DEC-MDP) is defined identically to the

DEC-POMDP except that it has joint full observability instead of joint partial ob-

servability. The differences between the DEC-MDP and the DEC-POMDP comes out

if we allow free communication between the agents or reduce the number of agents.

A DEC-MDP with free communication or only one agent reduces to an MDP. The

DEC-POMDP in those cases reduces to a POMDP.

It turns out that this distinction, while potentially useful when adding additional

restrictions to the class, does not change the expressiveness of the models. The

DEC-MDP is trivially a subclass of the DEC-POMDP because joint full observability

is a special case of joint partial observability. Similarly, one can take an arbitrary

DEC-POMDP and convert it to an equivalent DEC-MDP by adding an additional

agent that observes everything and does nothing–there is now joint full observability.

Essentially, an n-agent DEC-POMDP is equivalent to an n + 1-agent DEC-MDP.

The question was whether a 2-agent DEC-MDP was easier to solve than a 2-agent

DEC-POMDP. Unfortunately, it is just as difficult.
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Implicit Explicit
Communication Communication

Joint Full DEC-MDP [6] Dec-MDP-Com [28]
Observability Xuan Model [76]

DEC-POMDP [6] Dec-POMDP-Com [28]
Joint Partial MTDP [59] Com-MTPD [59]
Observability POIPSG [58]

RMTDP [49]

Table 2.1. Equivalent distributed POMDP models sorted by characteristics.

The second characteristic is how communication between agents is handled. In

some models like the DEC-MDP and DEC-POMDP, there is no explicit communi-

cation. To address this perceived shortcoming, new models like the Dec-POMDP-

Com [28] and the Com-MTDP [59] were developed. In these models, explicit com-

munication is handled by adding the language of communication Σ, and the cost for

sending a message CΣ. The decision process is then broken up into two phases. First,

the agents all take an action (sometimes called a domain action to distinguish it from

communication actions). Then the state transitions based on the joint actions of the

agents and they recieve their observations. In the next phase, the agents decide what

to communicate, with ε denoting an empty message (no communication). The agents

all receive the messages sent to them and then the next step starts with phase one.

Like the previous characteristic this distinction does not change the expressiveness

of the models. A communication action can be represented by a domain action that

just changes the observation received by the receiving agents (see [62] for a proof).

However, an explicit representation of communication can be very useful in that

it allows one to specify different properties of domain-level actions that communica-

tive acts would violate. Worth mentioning specifically is RMTDP [49], which takes

a similar approach but with a different type of coordination action based on role

allocation.
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There are a number of equivalent models that fall into these four categories, see

Table 2.1. Generally, the models within a category are trivially equivalent. See [28,

62, 61] for equivalence results of the various models in different categories.

2.2.3.2 Interactive POMDPs

Interactive POMDPs (I-POMDPs) [25] are another attempt to extend POMDPs

to multiple agents, however it takes a very different approach from the models like

the DEC-POMDP. The basic idea is to not only represent an agent’s belief about

the world, like in a POMDP, but to also explicitly represent its beliefs about other

agents in the world. Given these beliefs, the agent can locally compute its optimal

action. This approach is more general than the DEC-POMDP in that it can model

self-interested agents. However, it also has some limitations which make it more of

an approximation for cooperative problems.

Models of other agents can be classified into levels. A level-0 model is essentially

having no model of the other agent. A level-1 model assumes the other agent has a

level-0 model of this agent. In general, a level-n model of an agent assumes that the

modeled agent only has level-n − 1 models in its beliefs about other agents. Trying

to model an agent assuming it is of the same level leads to level-∞ agents because of

the self-reference.

Level-∞ models are not directly computable. However, some coordination prob-

lems require it to find the optimal solution. For example, consider a fully observable

coordination problem in which the coordinated action risky has high value if both

agents do it and extreme negative value if only one attempts it. A level-0 agent

would assume that there is some chance of failure and take the safe action. A level-1

agent would assume that the other agent is a level-0 agent, which chooses safe, and

therefore it would also choose safe. By induction, a level-n agent will always choose

safe. When a joint policy is evaluated in a DEC-POMDP it is irrelevant to any level
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of modeling in the agents, which would make it analogous to level-∞ agents. In other

words, I believe that there exist problems for which the best computable solution in

an I-POMDP are arbitrarily bad. However, since optimal solutions are intractable for

all but small toy problems, I-POMDPs may be able to provide competitive approxi-

mate solutions [18] within a reasonable time compared to other distributed POMDP

models and algorithms, and therefore it should not be dismissed.

They claim the complexity of exactly solving an I-POMDP to be equivalent to

solving O(M l) POMDPs, where M is a bound on the number of models of the other

agent and l is the level of the agent. Since M is at least as large as the number of

policies of the other agent, the complexity is worse than a brute-force search over the

policies in a DEC-POMDP. I suspect this is because the model and solution are more

general to also handle competitive problems. This suggests that approaches tailored

to cooperative problems may perform significantly better on cooperative problems

than more general approaches.

2.2.3.3 Subclasses of DEC-POMDPs

An important approach to solving multi-agent problems is to identify significant

subclasses with a lower complexity. We do this by identifying structure in the problem

that we can exploit in the search for an optimal policy. This is the primary approach

taken in this dissertation. The two primary models I present here, Transition Inde-

pendent DEC-MDP (TI-DEC-MDP) and DEC-MDP with Event Driven Interactions

(DEC-MDP-EDI) can be found in detail in chapters 3 and 5. Here, I will mention the

related models that came before, as well as how others have built on these models or

used some of the same structure to define their own models.

Xuan et al. [77] did some important early work with agents that interact only

through a global reward function. This is an equivalent class of problems to the

TI-DEC-MDP, which I formally defined relative to the DEC-MDP, and proved its
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complexity to be NP-complete [4, 5]. I defined a set of independence relationships

which describe naturally occurring structure in many multi-agent systems. The Net-

worked Distributed POMDP (ND-POMDP) [52] uses the same structure but assumes

joint partial observability instead of joint full observability. This change, however,

increases the complexity to PSPACE-hard (since a single agent ND-POMDP reduces

to a POMDP).

The second model I present, DEC-MDP-EDI, can represent more sophisticated in-

teractions between agents, including the interactions found in GPGP. However, as the

expressiveness of this model is greater than the TI-DEC-MDP, so is the complexity–

NEXP in the number of interactions between the agents. Beynier et al. [7, 8] have

applied this model to additional problems.

The final set of subclasses is based on Goal-Oriented DEC-MDPs (GO-Dec-MDP).

A GO-Dec-MDP is a DEC-MDP with a set of goal states. For every step the agents

receive a negative reward until they reach a goal, where they receive an additional

(presumably positive) reward. Goldman et al. [28] examines the complexity of a

number of subclasses of GO-Dec-MDPs.

2.2.3.4 Algorithms for Distributed POMDPs

The general models for distributed POMDPs have a very high complexity for

finding an optimal joint policy, NEXP-complete [6]. There are only three known

algorithms to optimally solve these models: Hansen et al.’s Dynamic Programming

(DP) for DEC-POMDPs [33], Szer et al.’s Multi-Agent A* (MAA*) [67] and brute-

force policy search. DP for DEC-POMDPs can prune regions of the policy space that

are dominated by other policies, similar to DP for POMDPs, though the rules for

domination are more complex. Its performance has not yet been extensively studied,

however at best it will not be able to outperform DP on POMDPs, which has received

significant attention and is quite difficult.
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MAA* is a heuristic search algorithm based on the well-known A* algorithm. It

relies on having an admissible heuristic to prune branches in the search tree. They

present several domain-independent heuristics: using the underlying centralized MDP,

the underlying POMDP, and recursive calls to MAA* itself. They found in comparing

it to DP that it considered more policy pairs than DP, but that it required significantly

less memory than DP. Thus, it was able to solve problems in which DP runs out of

memory (4 states, 2 actions, 2 observations and a horizon of 4).

Optimal algorithms for the subclasses of DEC-POMDPs are also very few. In

chapter 4 I present the Coverage Set Algorithm (CSA), which finds optimal solu-

tions to both the TI-DEC-MDP and the DEC-MDP-EDI using an anytime approach,

making it fairly versatile. Goldman and Zilberstein [28] show that for some highly

structured GO-Dec-MDPs the problem is P-complete and their OptNGoals algorithm

will find the optimal solution.

Due to the complexity of the problems, there are many more approximate algo-

rithms than optimal ones. We can categorize the approximate algorithms into four

general classes of algorithms: iterative, decomposition, centralized and reinforcement

learning. The first three categories of algorithms are primarily designed to be run

offline in a centralized fashion (with a few exceptions). However, the policies gener-

ated are distributed, meaning that they generate a local policy for each agent that

is a mapping from its observation(s) to an action, while not knowing exactly what

action the other agents are taking. Many of these algorithms can be adapted for

either running online or in a distributed way, but they were designed as offline, cen-

tralized algorithms. The RL algorithms, however, are designed to be run online and

distributed, which means that each agent is computing its own policy based on its

past experience.

Iterative Algorithm
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By far the most common class of approximate algorithms are the iterative algorithms.

The basic idea is that if all of the agents but one are assigned an arbitrary policy,

computing that agent’s optimal corresponding policy reduces to an easier problem (a

POMDP if the original problem was a DEC-MDP or DEC-POMDP or equivalent).

That agent then fixes its policy and another agent finds its corresponding optimal

policy. This process repeats until no agent can change its policy to improve the

expected value. This process is guaranteed to converge because at each iteration the

expected value of the joint policy is either increased or stays the same. If it increases,

it will have to stop increasing when it reaches the expected value of the optimal joint

policy. If it stays the same for all agents it has converged to a Nash equilibrium,

which in this case is a local maxima.

Researchers have published a number of variations of this iterative algorithm for

the DEC-POMDP class of distributed problems [12, 63, 20, 21]. Nair et al. [51] pre-

sented a family of iterative algorithms known as JESP, for which they have published

many extensions. For example, DP-JESP [51] uses dynamic programming to find

the agents’ optimal corresponding policy, Communicative DP-JESP [50] uses com-

munication to reduce the convergence time and improve the quality of the solution,

CS-JESP [72] runs on continuous spaces, and LID-JESP [52] exploits the locality of

interaction when not every agent interacts with every other agent.

Peshkin et al. [58] presented an algorithm that is a little different than the typical

iterative approach called joint gradient descent. In it each of the agents runs a gradient

descent algorithm in parallel. While it is not technically an iterative algorithm since

the agents are not iterating their improvement, it is performing a similar type of

search.

Decomposition Algorithms

Decomposition algorithms use a mechanism to decompose the search process into a
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separate search for each agent, typically represented as an MDP or a POMDP. The

agents can then easily compute their optimal policy using single agent algorithms

like dynamic programming for MDPs. Xuan et al. [77] and Goldman et al. [27] both

worked on goal oriented problems where finding a common goal for the agents to work

towards decomposes their control processes, for example the agent meeting problem.

In that problem the agents would mutually decide on a location to meet and given

that location there was no interaction between them until one agent decides that they

should change the goal. This approach works well for those problems in which good

goals can be easily computed.

Beynier et al. [7, 8] used the idea of opportunity cost to decompose the agents

local decision processes. The opportunity cost represents the loss in expected reward

for taking different actions due to non-local effects. This makes the most sense in

problems like the DEC-MDP-EDI where the global reward function is the sum of

local reward functions, one for each agent. If agent 1 uses all of some shared resource,

its local expected reward may go up, but at the same time the local reward of agent 2

may go down. The opportunity cost reflects this loss in reward so agent 1 can make a

more informed decision about using the resource. Computing the correct opportunity

cost function that will completely decompose the agents is no easier than solving the

original problem. However, efficient approximations of the opportunity cost can result

in good joint solutions.

Centralized to Decentralized Algorithms

This class of algorithms reduces the distributed problem to a centralized problem like

an MMDP or POMDP and finds the centralized solution. It then presents a way of

converting this centralized algorithm back into a distributed algorithm. The typical

way of generating the centralized solution is to assume the agents can communicate

freely at each step. Xuan et al. [76] starts with that centralized policy and reduces
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unnecessary communication by having the agents communicate only when the optimal

action they should take is ambiguous without communication. That policy conforms

to the original centralized policy but with less than complete communication. They

also provide a series of non-conforming transformations that allows them to reduce

the amount of communication but at the cost of also reducing the reward.

Shen et al. [63] take a different approach. Instead of using the centralized policy

directly, they use the values of the states given that policy. The agents compute their

best actions given their current belief state by taking the sum of the expected value

of the action in each state times the agent’s belief that it is in that state.

Roth et al. [60] have yet another approach. They have each agent compute the

same tree of possible joint beliefs, ignoring the actual observations that the agents

made. The joint action is chosen from this tree and the centralized policy. The agents

then decide whether or not to communicate depending on whether the observation

they did make would suggest them to take a different action.

The algorithm I present in Chapter 6 takes an opposite approach in that I assume

no communication between the agents and compute their optimal corresponding poli-

cies. Then I add communication back in by examining the expected increase in value

if they do communicate. This algorithm also does not fall into the category of de-

composition algorithms because even though the agents are not communicating, they

still interact through the reward function.

Reinforcement Learning Algorithms

Another approach to solving distributed POMDPs is reinforcement learning (RL) [24,

1, 65]. The three previous categories of algorithms generally use an offline, centralized

computation of a distributed policy, however, RL allows the agents to learn policies

online in a distributed way. There are a number of advantages and disadvantages

to using RL. Some advantages are that RL algorithms generally do not require a
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model of the problem, and they can take advantage of the distributed resources of

the multiple agents.

On the down side, it is difficult to guarantee that the agents will not jump off the

cliff, metaphorically speaking, as they explore the space. It has also been difficult

to provide strong theoretical convergence guarantees like those found in single-agent

cases and in the fully observable multi-agent case. The best convergence guaran-

tees have only been found in restricted circumstances [1]. This is because from the

perspective of each learning agent, the problem is non-stationary due to the other

learning agents changing their behavior. While in practice the partially observable

multi-agent RL algorithms tend to converge, very few have theoretical proofs of con-

vergence to a local maxima, and to the best of my knowledge, no one has proven

convergence to the globally optimal solution.

2.3 Hybrid Approaches

Distributed POMDPs have such a high complexity that it is not clear that they are

even feasible for approximating real world sized problems. However, a very promising

way for them to impact real systems is in hybrid approaches [68]. A hybrid approach

is one that combines the traditional approach to multi-agent systems, which is good

at dealing with high complexity, with a distributed POMDP, which excels at finding

quantitatively good solutions. The basic idea is to use the traditional approach to

handle the complexity of the problem, and to model a smaller, critical component of

the whole with a distributed POMDP.

Nair and Tambe [49] took a BDI approach and added a Role-based Markov

Team Decision Problem (RMTDP) to quantitatively analyze the allocation of roles to

agents. In their approach, the BDI team plans are able to provide initial, incomplete

RMTDP policies, which reduces the search space of the distributed POMDP. Their

hybrid approach significantly outperformed the pure BDI approach.
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Pynadath and Tambe [59] show another use of distributed POMDPs: evaluating

the performance of traditional approaches. They evaluate the communication de-

cisions made by STEAM and GRATE*. Analysis of heuristics allows us to better

understand when and why they succeed and fail, and can guide us towards designing

better heuristics.
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CHAPTER 3

TRANSITION INDEPENDENT DECENTRALIZED MDPS

This section will discuss one direction for reducing the complexity of multi-agent

problems. Many traditional models of multi-agent systems make a clear distinction

between the local decision problems for the agents and the more global coordination

problem. For example, GPGP includes a coordination module that communicates

with other agents to negotiate constraints over behavior for the agents. The agents

take those constraints and do local planning and scheduling to estimate how well

those constraints work for the agent. GPGP’s approach, then, is coming from the

single agent perspective. It starts with multiple single agents, each with their own

local tasks to complete. The agents coordinate because their local problems interact

and the expected utility can be increased through coordination.

When a problem is modeled by a DEC-MDP it loses the distinction between the

local decision problems and the global coordination problems because there is only

one world state that encompasses all of the agents. There is no distinction made

between an action that only directly affects one agent (local problem) and one that

directly affects all agents (global coordination problem). While some models like the

COM-MTDP explicitly represent communication, the domain actions have not been

restricted in a way that precludes direct communication between the agents and thus

they see no computational benefit. The ideas presented in this section start with a

DEC-MDP and add back in a notion of local problems for the agents that is separate

from the global coordination problem. This new structure can be exploited to reduce

the complexity of the problem.
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3.1 Relation Between an n-agent DEC-MDP and n MDPs

To understand where an agent’s local problem fits into the DEC-MDP one first

needs to understand the relationship between an n-agent DEC-MDP and n single-

agent MDPs. I will start with an n-agent DEC-MDP and detail the additional struc-

ture necessary to turn it into n separate MDPs. A DEC-MDP has the same definition

as a DEC-POMDP, as described in the previous section, with the addition that there

is joint full observability. This simply means that the set of observations the agents

make at each step can collectively identify the current world state. The first structure

the problem must have is a factored state space.

Definition 2 A factored, n-agent DEC-MDP is a DEC-MDP such that the world

state can be factored into n + 1 components, S = S0 × S1 × ... × Sn.

Factoring the state space of a DEC-MDP could be done in many ways. The

intention of such a factorization is a separation of features of the world state that

belong to one agent from those of the others and from the external features. This

separation is strict, meaning that no feature of the world state may belong to more

than one group. S0 refers to external features, which are parts of the state that the

agents may observe and be affected by but do not affect themselves, such as weather

or time. Si refers to the set of state features for agent i, which is the part of the world

state that an agent observes and affects. This will be made clearer by the following

definitions.

I refer to ŝi ∈ Si×S0 as the local state, ai ∈ Ai as the local action, and oi ∈ Ωi as

the local observation for agent i. Since the agent is affected by the external features

its local state must include them. Just as in a DEC-MDP, a local policy (or just

policy) for one agent is a mapping from sequences of observations to local actions (I

will simplify this later). A joint policy, (π1...πn), is a set of policies, one for each

agent.
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Let us illustrate this with the rover exploration problem introduced previously.

There are two rovers, each exploring adjacent areas. The global state is composed

of each rovers’ location, the information collected so far (including the agent that

collected it), and the time left in the day. This state can be factored into a local

state for each agent containing that rover’s location, the information collected by

that rover, and the time left in the day. The action each of the rovers can take is a

movement action or an information collection action.

Definition 3 A factored, n-agent DEC-MDP is said to be transition independent

if there exist P0 through Pn such that

P (s′i|(s0...sn), (a1...an), (s′0...s′i−1, s
′
i+1...s′n)) =


P0(s

′
0|s0) i = 0

Pi(s
′
i|ŝi, ai, s

′
0) 1 ≤ i ≤ n

That is, the new local state of each agent depends only on its previous local

state, the action taken by that agent, and the current external features. The external

features change based only on the previous external features. This implies that

P ((s′0...s′n)|(s0...sn), (a1...an)) =
∏n

i=0 Pi(·).

Definition 4 A factored, n-agent DEC-MDP is said to be observation indepen-

dent if there exist O1 through On such that ∀oi ∈ Oi

P (oi|(s0...sn), (a1...an), (s′0...s′n), (o1...oi−1, oi+1...on)) = P (oi|ŝi, ai, ŝ
′
i)

That is, the observation an agent sees depends only on that agent’s current and

next local state and current action.

Definition 5 A factored, n-agent DEC-MDP is said to be locally fully observable

if ∀oi ∃ŝi : P (ŝi|oi) = 1.
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That is, each agent fully observes its own local state at each step. While local full

observability and observation independence are related, it is possible for one to be true

without the other. However, when both are true then Ω and O in the definition of a

factored n-agent DEC-MDP are redundant and can be removed. This also simplifies

the policies. Instead of a local policy being a mapping from a sequence of observations

to actions, it is a mapping of local states to actions just like in an MDP.

Definition 6 A factored, n-agent DEC-MDP is said to be reward independent if

there exist f and R1 through Rn such that

R ((s0...sn), (a1...an), (s′0...s′n)) = f (R1(ŝ1, a1, ŝ
′
1)...Rn(ŝn, an, ŝ

′
n))

and

Ri(ŝi, ai, ŝ
′
i) ≤ Ri(ŝi, a

′
i, ŝ

′′
i ) ⇔

f (R1...Ri(ŝi, ai, ŝ
′
i)...Rn) ≤ f (R1...Ri(ŝi, a

′
i, ŝ

′′
i )...Rn)

That is, the overall reward is composed of a function of the local reward functions,

each of which depends only on the local state and local action of one of the agents.

This function is such that maximizing each of the local reward functions individually

maximizes the function itself. An example function is f(R1...Rn) =
∑

i Ri.

An n-agent factored DEC-MDP with the three independence relationships be-

tween the agents and local full observability is equivalent to n separate MDPs of

the form 〈S0 × Si, Ai, Pi, Ri〉. Each of the three independence relations detaches one

component of the agents from each other: transitions, observations, and reward. The

local full observability simplifies the policy to be a function of local states. The de-

cision problem is correspondingly easier to solve, consisting of n smaller polynomial

problems instead of one monolithic NEXP problem.

32



However, a problem so partitioned is no longer a multi-agent system. The space

of problems I am examining falls in the middle. As a first step I assume each of those

definitions hold except for the reward independence. This means that the agents are

independent of one another except for the reward, which is still a function of all agents.

There is also no communication between the agents because that would violate several

of the assumptions, for example observation independence (the observation an agent

sees would depend on the message sent by another agent). Communication will be

added as a future step.

3.2 Zero Communication

The class of problems studied in this paper is characterized by two or more coop-

erative agents solving (mostly) independent local problems. The actions taken by one

agent can not affect any other agents’ observation or local state. Consequently, an

agent can not observe the other agents’ states and actions and can not communicate

with them. The interaction between the agents happens through a global value func-

tion that is not simply a sum of the values obtained through each of the agents’ local

problems. The non-linear rewards combined with the decentralized view of the agents

make the problem more difficult to solve than the MMDP, while the independence

of the local problems make it easier to solve than the general DEC-MDP. I call this

class of problems Transition Independent DEC-MDPs.

I am looking at problems where the value of an activity performed by one agent

may depend on the activities of other agents. One example is information collection,

which includes taking a picture, performing an experiment and performing complex

calculations on data. The information collected may be complementary (e.g., different

pictures of the same area can assist in building a 3D model), or they may be redundant

(e.g., computing the same result wasting valuable time). Both complementary and

redundant information present a problem: the global utility function is no longer
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additive over the agents. When experiments provide redundant information there is

little additional value to completing both so the global value is subadditive. When

experiments are complementary, completing just one may have little value so the

global value is superadditive. I am generally not looking at temporal constraints

between agents or the information they collect, however, some temporal constraints

can be captured by my model (see Section 3.3.3).

I motivate this class of problems with two examples. The first example is the

problem of controlling the operation of multiple planetary exploration rovers, such as

the ones used by NASA to explore the surface of Mars [75]. Periodically, the rovers

are in communication with a ground control center. During that time, the rovers

transmit the scientific data they have collected and receive a new mission for the next

period. Each rover has its own area to explore, and a mission consists of a set of

sites at which a rover could take pictures, conduct experiments, and in general collect

data. Some of these sites are overlapping sites (lie on the border between two or more

rovers’ area) and multiple rovers can visit them.

The rovers must operate autonomously (without communication between them)

until communication with the control center is feasible. Because the rovers have

limited resources (computing power, electricity, memory, and time) and because there

is uncertainty about the amount of resources that are consumed at each site, a rover

may not be able to complete all of its objectives. The overall goal is to maximize

the value of the information received by ground control. However, this is not the

same as maximizing the value of the information collected by each rover individually

because two rovers performing experiments at overlapping sites produce redundant

information. Zilberstein et al. [81] shows how to model and solve the single rover

control problem by creating a corresponding MDP.

My second motivating example is UAVs (unmanned aerial vehicles) performing

reconnaissance in a combat environment. Here, communication between the UAVs
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is too costly because it would reveal their location to the enemy. The UAVs are

sent out to collect information from a number of locations and then to return to

safety. The information sought by a UAV may depend on other information that it

has collected. For example, if it discovers something interesting at one location it

may spend additional time there collecting more detailed information and choose to

skip other locations.

Independence between the local problems holds true in many domains, and in oth-

ers it serves as an approximation. In the Mars rover example the rovers are operating

in distinctly separate areas. For example, NASA’s Mars Exploration Rover mission

landed Spirit and Opportunity on separate sides of the planet1. An “overlapping site”

could consist of similar geographic structures that lie on opposite sides of the planet.

Given the rovers distance from each other there is no possibility of interaction of the

local decision problems other than through the value of the information they collect,

nor is direct communication feasible. The rover example used throughout this paper

is an abstraction of this idea.

The UAV example illustrates a different type of situation where the local problems

are independent except for the reward. Here the agents are highly mobile, but the

level of abstraction used to represent this planning problem allows them to coexist

in the same airspace. Essentially, one square of the grid world represents a mile of

airspace so there is no problem with many UAVs traveling through it simultaneously,

and the actions of one agent will not interfere with those of another agent.

The Transition Independent DEC-MDP is defined by the general class of factored

n-agent DEC-MDPs that exhibit transition and observation independence, and local

full observability, but not reward independence. Instead, the reward function is di-

vided into two components. The first component is a set of local reward functions

1http://marsrovers.jpl.nasa.gov/home/
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that are reward independent. The second component is a reward signal the system

receives (not any individual agent) that depends on the actions of multiple agents

and is therefore not reward independent. It is defined by the joint reward structure

and is captured in the global value function being maximized.

The types of problems that I am looking to solve are those in which the agents

are not tightly integrated through the reward function. I take advantage of that by

using a different representation of the reward, called the Joint Reward Structure.

Intuitively, the difference between the general reward function and the joint reward

structure is similar to the difference between common representations for matrices

and sparse matrices. In addition, this new representation explicitly illustrates how

the agents are interacting.

3.2.1 Joint Reward Structure

I now introduce further structure into the global reward function. To define it, I

need to introduce the notion of an occurrence of an event during the execution of a

local policy.

Definition 7 A history for agent i, Φi = [ŝ0
i , a

0
i , ŝ

1
i , a

1
i , ...] is a valid execution se-

quence that records all of the local states and actions for one agent, beginning with

the local starting state for that agent, ŝ0
i .

Definition 8 A primitive event, e = (ŝi, ai, ŝi) is a tuple that includes a local state,

an action, and an outcome state. An event E = {e1, e2, ..., eh} is a set of primitive

events.

Definition 9 A primitive event e = (ŝi, ai, ŝ
′
i) occurs in history Φi, denoted Φi |= e

iff the tuple (ŝi, ai, ŝ
′
i) appears as a sub-sequence of Φi. An event E = {e1, e2, ..., eh}

occurs in history Φi, denoted Φi |= E iff

∃e ∈ E : Φi |= e.
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Events are used to capture the fact that an agent accomplished some task. In some

cases a single local state may be sufficient to signify the completion of a task. But

because of the uncertainty in the domain and because tasks could be accomplished

in many different ways, I generally need a set of primitive events to capture the

completion of a task.

In the rover example, the events I want to capture represent an agent collecting

data at a particular site. This event will take many primitive events to describe

because time is part of the local state. For example, the event Collect Data at Site

4 can be accomplished by the primitive event where the agent executes the collect

action at site 4 starting at time 6 (and ending at any possible next state). It can

also be accomplished by a similar primitive event where the agent starts collecting at

time 8 instead of time 6. More formally, the event can be described by the following

set of primitive events:

{ (〈l, t〉, a, 〈l′, t′〉) | 〈l, t〉 = 〈4, ∗〉, a = collect, 〈l′, t′〉 = 〈∗, < t〉 } ,

where the local state is 〈l, t〉; l is the current location and t is the time left in the day.

Definition 10 A primitive event is said to be proper if it can occur at most once

in each possible history of a given MDP. That is:

∀Φi = Φ1
i eΦ

2
i : ¬(Φ1

i |= e) ∧ ¬(Φ2
i |= e)

Definition 11 An event E = {e1, e2, ..., eh} is said to be proper if it consists of

mutually exclusive proper primitive events with respect to some given MDP. Mutually

exclusive means:

∀Φi ¬∃x 6= y : ex ∈ E ∧ ey ∈ E ∧ Φi |= ex ∧ Φi |= ey
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The event Collect Data at Site 4 described earlier can easily be turned into a proper

event. First, because time is part of the local state, no single primitive event could

happen more than once — time only flows in one direction. Time is not a necessary

condition, but in this example it suffices. Second, it is not difficult to restrict a rover

from collecting data more than once at a particular site, either through additional

bits in the state or through a fixed acyclic ordering for visiting the sites built into the

structure of the MDP.

I limit the discussion in this paper to proper events. They are sufficiently expres-

sive for the rover domain and for the other applications I consider, while simplifying

the discussion. Later I show how some non-proper events can be modeled in this

framework.

The joint reward structure can be viewed as a list of x constraints between the

agents that describe how interactions between their local policies affect the global

value of the system. A particular constraint k exists between some subset of agents

Gk, where |Gk| ≥ 2. The semantics of constraint k, (Egk1
k , Egk2

k ...E
gk|Gk|
k , ck), is that

each agent involved must satisfy its part of the constraint for the constraint to be

satisfied. Agent gki satisfies its part of constraint k if event Egki
k occurs in that agent’s

history Φgki
. If each agent in a constraint does this, then the system would receive an

additional ck reward. There is no restriction on the number of the constraints that

can be satisfied.

Definition 12 Let Φ1 through Φn be histories for n agents. Let G1 through Gx be

subsets of the n agents. Each set Gk contains |Gk| agents gk1 through gk|Gk|. A joint

reward structure

ρ = [(E
g1,1

1 , E
g1,2

1 ...E
g1|G1|
1 , c1), ...., (E

gx1
x , Egx2

x ...E
gx|Gx|
x , cx)],
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specifies the reward (or penalty) ck that is added to the global value function if Φgk1
|=

Egk1
k and Φgk2

|= Egk2
k and ... and Φgk|Gk| |= E

gk|Gk|
k .

This section focuses on factored DEC-MDPs that are transition independent, ob-

servation independent with full local observability and whose global reward function

R is composed of a local reward function for each agent R1 through Rn plus a joint

reward structure ρ. This allows us to define n underlying MDPs, 〈Si × S0, Ai, Pi, Ri〉

even though the problem is not reward independent. These processes are indeed

Markov, meaning that the local policies are mappings from local states to actions

instead of histories to actions as with DEC-MDPs. A local state was proved to be

a sufficient statistic for the history of observations sensed by an agent controlling a

decentralized MDP with independent transitions and observations [28]. Therefore,

the optimal local policy of such an agent can be expressed as a mapping from local

states to actions.

Given a local policy, πi, the probability that a particular primitive event e =

(ŝi, ai, ŝ
′
i) will occur during any execution of πi, denoted P (e|πi), can be expressed as:

P (e|πi) = φ
∞∑

v=0

Pv(ŝi|πi)Pi(ŝ
′
i|ŝi, ai), φ =


1 πi(ŝi) = ai

0 otherwise

where Pv(ŝi|πi) is the probability of being in state ŝi at time step v. Pv(ŝi|πi) can

be easily computed for a given MDP from its transition model, and Pi(ŝ
′
i|ŝi, ai) is

simply the transition probability. φ sets the probability to zero if the primitive event

e is inconsistent with the policy πi. Similarly, the probability that a proper event

E = {e1, e2, ..., em} will occur is:

P (E|πi) =
∑
e∈E

P (e|πi).
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I can sum the probabilities over the primitive events in E because they are mutually

exclusive.

Definition 13 Given a joint policy (π1...πn) and a joint reward structure ρ, the joint

value is:

JV (ρ|π1...πn) =
|ρ|∑

k=1

ck

|Gk|∏
i=1

P (Egki
k |πgki

)

Definition 14 The global value function of a transition independent decentralized

MDP with respect to a joint policy (π1...πn) is:

GV (π1...πn) =
n∑

i=1

Vπi
(ŝ0

i ) + JV (ρ|π1...πn)

where Vπi
(ŝ0

i ) is the standard value of the underlying MDP for agent i at starting state

ŝ0
i given policy πi.

While Vπ(s) is generally interpreted to be the value of state s given policy π, I will

sometimes refer to it as the value of π because I am only interested in the value of the

initial state given π. Similarly, the global value function GV is defined over policies

and not states because the interest is in the expected value of the starting state only.

The goal is to find a joint policy that maximizes the global value function.

Definition 15 An optimal joint policy, denoted (π1...πn)∗, is a set of local policies

that maximize the global value function, that is:

(π1...πn)∗ = argmaxπ′
1... π′

n
GV (π′1...π′n).

To summarize, a problem in my transition independent decentralized MDP frame-

work is defined by n underlying MDPs, 〈S1×S0, A1, P1, R1〉 through 〈Sn×S0, An, Pn, Rn〉,

and a joint reward structure ρ.
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3.3 Expressiveness of the Model

Transition independent DEC-MDPs with a joint reward structure may seem to

represent a small set of domains, but it turns out that the class of problems I address

is quite general. The joint reward structure ρ is just another way of representing

the general reward function over all of the agents, R((s0...sn)(a1...an)(s′0...s′n)). How

efficient a representation the joint reward structure is of the general reward function

depends on the level of independence in the reward function. Intuitively it is similar

to the difference between standard matrix representations and the representations for

sparse matrices.

Often if a problem meets the independence and observability requirements but

does not obviously have a properly structured reward function, it can be represented

by adding extra information (in the form of a bit) to the local state or by modifying

the state in some way. In many cases these bits are already necessary to represent

the problem as a DEC-MDP and do not cause an increase in the size of the state

space to represent in the joint reward structure. Since MDPs suffer from the curse

of dimensionality the size of the state space grows exponentially with the number of

bits added.

This section will discuss several properties of the joint reward structure and how

problems can be modified to fit. It will also show how some temporal constraints can

be represented by this class of problems.

3.3.1 Mutual Exclusion

One property that some problems do not naturally adhere to is the mutual exclu-

sion among primitive events. The mutual exclusion property guarantees that at most

one primitive event within an event set can occur. This section presents three alter-

natives. For each of them, the bits mentioned are already present in the DEC-MDP

representation of the problem.
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At least one primitive event – Suppose that multiple primitive events within

an event set can occur and that an additional reward is added when at least one

of them does occur. In this case the state can be augmented with one bit, initially

set to 0. When a primitive event in the set occurs, the bit is set to 1. If I redefine

each primitive event to include the bit switching from 0 to 1, then the event set is

now proper because the bit is toggled from 0 to 1 only on the first primitive event

encountered.

All primitive events – Suppose that an event is composed of x primitive events,

all of which must occur to trigger the extra reward. In this case, each local state

must be augmented with x bits (one per primitive event), which start at 0 and are

toggled to 1 when the corresponding primitive event occurs (ordering constraints

among primitive events could reduce the number of bits necessary). The new event

set occurs when the last bit still 0 is flipped.

Counting occurrences – Suppose that an event is based on a primitive event (or

another event set) repeating at least x times. Here, the local state can be augmented

with log x bits to be used as a counter. The extra reward is triggered when the desired

number of occurrences is reached, at which point the counting stops.

3.3.2 All Events

Another property of the joint reward structure is that every event in a constraint

must occur for the system to receive the extra reward. Other useful constraints that

one may wish to express may involve the occurrence of at most x events, exactly x

events, or at least x events. These can be represented by creating new constraints, one

for each possible way of solving the existing constraint. For example, suppose there is

a constraint between three agents (events E1, E2, E3), and the constraint is satisfied

(extra reward received) if exactly two of the three events occur. This constraint can
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be represented by three new constraints with the semantics of all events must occur:

E1E2¬E3, E1¬E2E3, ¬E1E2E3.

The event ¬Ex represents the original event Ex not occurring. This event can

be represented by adding two additional bits to the state space. One bit represents

whether the original event has occurred and the other represents whether the original

event could occur in the future. The new event ¬Ex occurs when the original event

has not occurred and the cannot-occur-in-the-future bit flips to true.

There is also the possibility that the algorithm presented in Section 4 could be

modified to handle these other constraints more directly and efficiently. This remains

the topic of future work.

3.3.3 Temporal Constraints

So far I have focused on global reward structures that do not impose any temporal

constraints on the agents. Other types of constraints are soft temporal constraints

like facilitates and hinders [15]. A facilitates constraint between activities A and

B means that if A is finished before B is started, then execution of B is somehow

facilitated. Facilitation can take many forms like reduced consumption of resources,

less time to execute, higher reward received. The hinders constraint is similar, but

instead involves making the execution of B more costly.

Soft temporal constraints that just involve a change in the expected reward can

be represented in this framework if time is enumerated as part of the local states.

For example, suppose that event E1 in agent 1 facilitates/hinders event E2 in agent

2, that is, the occurrence of E1 before E2 leads to an extra reward c. To properly

define ρ, I need to create new events E1
i and E2

i for all 1 ≤ i ≤ maxTime, and ci = c.

E1
i represents E1 occurring at time i and E2

i represents E2 occurring after i. If both

E1
i and E2

i occur, then reward c is gained because E1 happened before E2. ρ now

becomes [(E1
1 , E

2
1 , c), (E

1
2 , E

2
2 , c)... (E1

maxTime, E
2
maxTime, c)].
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Figure 3.1. Exponential-sized vs. Polynomial-sized Policies.

There are a couple of important limitations for temporal constraints. First is that

not all types of temporal constraints can be handled. The temporal constraints are

limited to affecting the reward and not the duration (or any other characteristic of

the facilitated/hindered event that the agent observes) because that would violate the

transition independence assumption. Second, representing a temporal constraint is

not very practical because one temporal constraint gets represented as maxTime non-

temporal constraints in ρ. A more compact representation of temporal constraints

remains the subject of future research.

To summarize, there is a wide range of practical problems that can be represented

within my framework. Non-temporal constraints have a more natural, compact rep-

resentation, but some temporal constraints can also be captured.

3.4 Complexity Analysis

It is known that solving optimally a general DEC-MDP is NEXP-complete [6].

The leftmost diagram in Figure 3.1 illustrates this result by showing that a local

policy of a general DEC-MDP is exponential in the size of the observations. Each
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local policy is a mapping from sequences of observations to actions. Therefore, there

are |Ai||Ω|
T

policies for agent i, where T is the horizon. Each agent j needs to build

a belief-state MDP for each one of agent i’s local policies. The number of states in

this MDP is exponential in the size of Ωj. This results in an algorithm that will

solve optimally a DEC-MDP problem using a complete search algorithm in double

exponential time2.

The class of DEC-MDPs studied in this paper is characterized by having inde-

pendent transitions and observations and being locally fully observable. Because the

current local view of a single agent is a sufficient statistic for the past history of ob-

servations of agent i (see [28]) a local policy for agent i is a mapping from its local

states to its possible actions, i.e., πi : Si × S0 → Ai (see the rightmost diagram in

Figure 3.1). This results in agents’ policies being of size polynomial in the number

of local states (as opposed to exponential in the size of the observation set as in the

general case). Theorem 1 (adapted from [28]) shows that the complexity of solving

optimally such a DEC-MDP is easier than solving the general case.

Theorem 1 Deciding a DEC-MDP with independent transitions and observations,

local full observability, and joint reward structure ρ is NP-complete.

Proof. Since the current local state of agent i is a sufficient statistic, a local policy for

that agent is of size polynomial in |Si × S0|. There are |Ai||Si×S0| policies (mappings

from Si×S0 to Ai). The number of states in each agent i’s belief-state MDP is poly-

nomial in |Si×S0| (for a fixed and known policy for the other agents). Evaluating one

such local policy can be done in polynomial time (by running dynamic programming

on the belief-state MDP), but there are exponentially many such policies for which

2Assuming that the finite horizon T is similar in size to the number of global states of the system
|S|. This assumption is necessary for the complexity of the general DEC-MDP, but not for the
complexity of the class of problems dealt with in this paper.
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Figure 3.2. DTEAM reduces to an MDP of this form.

this should be done. Therefore, the upper bound for the decision problem stated in

this theorem is NP.

To prove the lower bound I will reduce the NP-complete problem DTEAM [54, 55]

to this problem for two agents, which is sufficient for a lower bound. DTEAM is a

single-step discrete team decision problem. There are two agents. Agent i, i = 1, 2,

observes a random integer ki, 1 ≤ ki ≤ N , and takes an action γi(ki) ∈ {1, ... , M}.

Their actions incur cost c(k1, k2, γ1(k1), γ2(k2)). The problem is to find policies γ1

and γ2 that minimize the expected cost:

N∑
k1=1

N∑
k2=1

c(k1, k2, γ1(k1), γ2(k2)).

The reduction is quite straightforward. The local MDP for agent i consists of

an initial state (ŝ0
i ), N intermediate states (ŝ1

i ... ŝN
i ), and a single final state (ŝf

i ), see

Figure 3.2. The observation is the current state. There is one action (a0) available

in the initial state, and M actions (a1
...aM) in the intermediate states. The local

rewards are always 0. The joint reward ρ includes an entry for every combination of

intermediate state and action taken by the agents:

ρ = [ ( {(ŝ1
1, a

1, ŝf
1)}, {(ŝ1

2, a
1, ŝf

2)}, −c(1, 1, 1, 1) ),

( {(ŝ1
1, a

1, ŝf
1)}, {(ŝ1

2, a
2, ŝf

2)}, −c(1, 1, 1, 2) ),

. . .
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Site t(x) r(x) Total
x Value
1 10 6 r(1)
2 12 5 3r(2)
3 8 7 r(3)
4 11 9 r(4)
5 13 8 1.5r(5)
6 9 6 r(6)
7 14 7 r(7)

Figure 3.3. Illustration of the Mars rover example. Each of the rovers can collect
data from sites within their region. Sites 2, 4 and 5 fall on the boundaries and can
be visited by two rovers each. The table entries in bold are the shared tasks.

( {(ŝN
1 , aM , ŝf

1)}, {(ŝN
2 , aM , ŝf

2)}, −c(N, M, N, M) ) ]

Finding the joint policy that maximizes the expected reward will be the same policy

that minimizes the expected cost in the original problem.

3.5 Example

This example is an instance of the rover problem presented earlier. There are three

rovers, each with their own region of space to explore, as shown in Figure 3.3. Each

site x has a value for the data collected there, r(x), and a time to collect the data,

t(x). The local state for rover 1 is composed of the current location l, the time left in

the day t, and the data to be collected d1, d2, d4 (0 if not collected, 1 if collected).

The available actions are collect and go to site x. The transition on a collect action,

when at site x, is from 〈l = x, t, da, db, dx = 0〉 to 〈l = x, t− t(x), da, db, dx = 1〉. The

reward received is r(x) if t − t(x) ≥ 0, otherwise 0. The transition on a go to site x

action when at site y is from 〈l = y, t, d1, d2, d4〉 to 〈l = x, t − t(y, x), d1, d2, d4〉 and
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a reward of 0. t(y, x) is the time it takes to move from site y to site x. The joint

reward structure is:

ρ =
[

(E1
2 , E

2
2 , r(2)), (E1

4 , E
3
4 ,−r(4)), (E2

5 , E
3
5 ,−0.5r(5))

]
.

Event Ei
x is an event that represents agent i collecting data at site x. This event

is composed of primitive events of the form:

{(ŝ, a, ŝ′)|ŝ=〈l=x, t, da, db, dx =0〉, a=collect, ŝ′=〈l=x, t− t(x), da, db, dx =1〉}.

Each agent locally receives r(x) when it collects at site x. The Total Value column

in Figure 3.3 lists the total reward received by the system for each site. For sites

x = {2, 4, 5} this is the reward received after both agents collect there. The difference

between the total value and 2r(x) is put into ρ as the extra reward the system

receives for site x for those sites that overlap two agents. For example, for x = 5,

1.5r(5) − 2r(5) = −0.5r(5). When rover 1 collects data at site 5 it receives r(5).

When rover 2 collects data there it receives r(5). The system also receives a penalty

of −0.5r(5) because both rovers collected that data. The net reward received by the

system is 1.5r(5).
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CHAPTER 4

COVERAGE SET ALGORITHM

This section presents a novel algorithm to find optimal joint policies for transi-

tion independent decentralized MDPs. To the best of my knowledge this is the first

algorithm to tractably and optimally solve a significant subclass of DEC-MDPs. I

have also applied it to a different class of problems in which the agents were reward

independent but not transition independent [3], which demonstrates that it is not

limited to the class of problems described in this paper. Most other work on dis-

tributed problems have used approximate solutions, such as heuristic policy search

and gradient descent e.g., [58], or assumed complete communication at every step or

when the optimal action is ambiguous e.g.,[9, 76]. The former are not guaranteed to

converge on the optimal solution and the latter are not practical when communication

is not possible or very expensive.

While the formal problem description deals with n agents, for clarity the descrip-

tion of the algorithm will only deal with two agents (i and j). Section 3.5 discusses

the n-agent extension of the algorithm.

The algorithm is divided up into three major parts:

1. Create augmented MDPs. An augmented MDP represents one agent’s underly-

ing MDP with an augmented reward function.

2. Find the optimal coverage set for the augmented MDPs, which is the set of

all optimal policies for one agent that correspond to any possible policy of the

other agent. As I show below, this set can be represented compactly.
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3. Find for each policy in the optimal coverage set the corresponding best policy

for the other agent. Return the best among this set of joint policies, which is

the optimal joint policy.

Pseudo-code for the coverage set algorithm is shown in Figure 4.1. The main

function, CSA, takes a transition independent DEC-MDP (as described in Section 2)

as input, and returns an optimal joint policy. The remaining functions are described

in detail below.

4.1 Creating Augmented MDPs

The first part of the algorithm is to create the augmented MDPs, which are

essentially the underlying MDPs for each agent with an augmented reward function.

The new reward is calculated from the original reward, the joint reward structure

and the policy of the other agent. The influence of the other agent’s policy on the

augmented MDP can be captured by a vector of probabilities, which is a point in the

parameter space.

An augmented MDP has three properties. First, an augmented MDP is an MDP

defined over the states and actions for agent i given a policy πj for agent j. The

transition function and reward function can depend on πj.

Second, the augmented MDP maximizes the global value of the system for a given

policy for agent j. This means that the policy for agent j can be evaluated indepen-

dently of the policy agent i adopts, and the global value is equal to the independent

expected value of agent j’s policy plus the expected value of the augmented MDP

given both policies: GV (πi, πj) = Vπj
(ŝ0

j) + V
πj
πi (ŝ0

i ).

The third and final property of the augmented MDP is that the value function of

the augmented MDP, V
πj
πi (ŝ0

i ), must be a linear combination of a set of parameters

computed from the policy for agent j. Note that any nonlinear function can be made

linear by adding additional parameters.
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function CSA(MDP1, MDP2, ρ)
returns the optimal joint policy
inputs: MDP1, underlying MDP for agent 1

MDP2, underlying MDP for agent 2
ρ, joint reward structure

optset← COVERAGE-SET(MDP1, ρ)
value← −∞
jointpolicy ← {}
/* find best joint optimal policy */
for each policy1 in optset

policy2 ← SOLVE(AUGMENT(MDP2, policy1, ρ))
v ← GV({policy1, policy2},MDP1,MDP2, ρ)
if (v > value)

then value← v
jointpolicy ← {policy1, policy2}

return jointpolicy

function COVERAGE-SET(MDP , ρ)
returns set of all optimal policies with respect to ρ
inputs: MDP , underlying MDP

ρ, joint reward structure

planes← {} /* planes are equivalent to policies */
points← {}
/* initialize boundaries of parameter space */
for n← 1 to |ρ|

boundaries← boundaries ∪ {xn = 0, xn = 1}
/* loop until no new optimal policies found */
do

newplanes← {}
points← INTERSECT(planes ∪ boundaries)
/* get optimal plane at each point */
for each point in points

plane← SOLVE(AUGMENT(MDP , point, ρ)
if plane not in planes

then newplanes← newplanes ∪ {plane}
planes← planes ∪ newplanes

while |newplanes| > 0
return planes

Figure 4.1. Coverage Set Algorithm
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If an augmented MDP can be created for a problem, then the CSA can find the

optimal joint policy for that problem.

Definition 16 The parameter space is a |ρ| dimensional space where each dimen-

sion has a range of [0, 1]. Each policy πj has a corresponding point in the parameter

space, x̄πj
, which measures the probabilities that each one of the events in ρ will occur

when agent j follows policy πj:

x̄πj
= [P (Ej

1|πj), P (Ej
2|πj), ..., P (Ej

|ρ||πj)].

Given a point in the parameter space, x̄πj
, agent i can define a decision problem

that accurately represents the global value instead of just its local value. It can do

this because both the joint reward structure and agent j’s policy are fixed. This new

decision problem is defined as an augmented MDP.

Definition 17 An augmented MDP, MDP
x̄πj

i , is defined as

〈Si×S0, Ai, Pi, R
′
i, x̄πj

, ρ〉, where x̄πj
is a point in the parameter space computed from

the policy for agent j, ρ is the joint reward structure and R′
i is:

R′
i(e) = Ri(e) +

|ρ|∑
k=1

φkP (Ej
k|πj)ck, φk =


1 e ∈ Ei

k

0 otherwise

Note that e = (ŝ, a, ŝ′) so R(e) is the same as R(ŝ, a, ŝ′).

An intuitive way to think about the augmented MDPs is in terms of a credit

assignment problem. The system receives an extra reward if an event occurs for both

agents. However, instead of giving that reward to the system, the reward could be

divided up between the agents. An augmented MDP for agent i represents giving all

of the credit (extra expected reward) to agent i.
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Theorem 2 The value of a policy πi over MDP
x̄πj

i is:

V
x̄πj
πi (ŝ0

i ) = Vπi
(ŝ0

i ) + JV (ρ|πi, πj).

Proof. The value of an MDP given a policy can be calculated by summing over all

time steps t and all events e, the probability of seeing e after exactly t steps, times

the reward gained from e:

V
x̄πj
πi (ŝ0

i ) =
∞∑

v=0

∑
e

Pv(e|πi)R
′(e)

=
∞∑

v=0

∑
e

Pv(e|πi)

Ri(e) +
|ρ|∑

k=1

φkP (Ej
k|πj)ck


=

∞∑
v=0

∑
e

Pv(e|πi)Ri(e) +

∞∑
v=0

∑
e

|ρ|∑
k=1

φkPv(e|πi)P (Ej
k|πj)ck

= Vπi
(ŝ0

i ) +
|ρ|∑

k=1

P (Ej
k|πj)ck

∞∑
v=0

∑
e∈Ei

k

Pv(e|πi)

= Vπi
(ŝ0

i ) +
|ρ|∑

k=1

P (Ej
k|πj)P (Ei

k|πi)ck

= Vπi
(ŝ0

i ) + JV (ρ|πi, πj).

The function AUGMENT in Figure 4.1 takes an MDP, a policy and a joint reward

structure and returns an augmented MDP according to Definition 17.

Since the joint value function has been neatly folded into the value of an augmented

MDP, the global value function can be rewritten as:

GV (π1, π2) = V x̄π2
π1

(ŝ0
1) + Vπ2(ŝ

0
2) = Vπ1(ŝ

0
1) + V x̄π1

π2
(ŝ0

2) (4.1)

From this it is easy to show that an optimal joint policy is a Nash equilibrium.
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Proposition 1 An optimal joint policy (π1, π2)
∗ is a Nash equilibrium over the aug-

mented MDPs:

V x̄π2
π1

= max
π′
1

V
x̄π2

π′
1

(ŝ0
1)

V x̄π1
π2

= max
π′
2

V
x̄π1

π′
2

(ŝ0
2).

Proof. Assume ∃π′1 6= π1 : V
x̄π2

π′
1

(ŝ0
1) > V

x̄π2
π1 (ŝ0

1).

From Equation 4.1:

GV (π′1, π2) = V
x̄π2

π′
1

(ŝ0
1) + Vπ2(ŝ

0
2)

GV (π1, π2) = V x̄π2
π1

(ŝ0
1) + Vπ2(ŝ

0
2)

Therefore, GV (π′1, π2) > GV (π1, π2). This contradicts (π1, π2)
∗. By symmetry, I can

show the same for π2. Therefore, the optimal joint policy is a Nash equilibrium over

augmented MDPs.

This naturally suggests an iterative hill-climbing algorithm where the policy for

one agent is fixed and the optimal policy for the other agent’s augmented MDP is

computed. Then the new policy is fixed and a new optimal policy for the first agent

is computed. Repeating this process will converge upon a locally optimal solution,

and with random restarts it becomes an attractive approximation algorithm. Nair et

al. [51], and Shen et al. [63] study applications of this approximation algorithm to

DEC-POMDPs.

The problem is that it provides no guarantees. No matter how long it is run,

there is always the possibility that it will not find the optimal joint policy. The

CSA circumvents this problem by finding all of the local maxima. In the problems

I experimented with this is feasible because the number of local maxima is orders of
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magnitude fewer than the number of policies (though a problem could probably be

crafted in which this is not the case).

4.2 Finding the Optimal Coverage Set

An augmented MDP is defined over a point in the parameter space, which is a

continuous space. This means that for both agents, there are an infinite number of

augmented MDPs, however, only a finite number of them are potentially meaningful:

the ones where the point in parameter space corresponds to a policy of the other

agent. Additionally, most of these augmented MDPs have the same optimal policies,

so the set of all optimal policies for all of the augmented MDPs for one agent is quite

small. This set is what I call the optimal coverage set.

Definition 18 The optimal coverage set, Oi, is the set of optimal policies for

MDP x̄
i given any point in parameter space, x̄:

Oi = {πi | ∃x̄, πi = argmaxπ′
i
V x̄

π′
i
(ŝ0

i )}.

Another way to look at the optimal coverage set is to examine the geometric

representation of a policy over the parameter space. The value of a policy πi, given

in Theorem 2, is a linear equation. If |x̄πj
| = 1, then the value function is a line in

two dimensions. When |x̄πj
| = 2, the value function is a plane in three dimensions.

In general, |x̄πj
| = n and the value function is a hyperplane in n + 1 dimensions.

The optimal coverage set, then, is the set of hyperplanes that are highest in the

n+1 dimension for all points in the parameter space (first n dimensions). The upper

surface that I am interested in is a piecewise-linear and convex function formed by

these hyperplanes. First I examine the one dimensional case (one constraint). Figure

4.2 shows a graph of the parameter space (x-axis) versus expected value of a policy.

On this graph I plot the equation shown in Theorem 2 for particular policies. For
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Figure 4.2. Search process in one dimension.

every point in the parameter space, the optimal policy of the augmented MDP that

corresponds to that point is a policy in the optimal coverage set.

The algorithm starts by finding the optimal policies in the corners of the parameter

space, which in this example are x = 0.0 and x = 1.0. This yields two optimal policies,

π1 for x = 0.0 and π2 for x = 1.0, whose value functions are graphed in Figure 4.2 (a).

Those two lines intersect at x = 0.5, which is then chosen as the next point. The

optimal policy of that point, π3, is added in Figure 4.2 (b). New points in the top

surface are found by intersecting the new line with the previous lines, x = 0.4 and

x = 0.6. If new policies are found at either of those points, those lines are added and

new intersections selected. This repeats until all of the current intersection points

have optimal policies represented on the graph. That set of policies form the optimal

coverage set. In the example no new policies were found at x = 0.4 or x = 0.6 so

Figure 4.2 (c) shows the piecewise-linear and convex surface I am searching for, and

those three policies form the optimal coverage set for one agent.

The intersection points of the lines are key because that is where the optimal

policy changes from one policy to a different policy. Intuitively, if a policy is optimal

at x = 0.6 and x = 1.0 then that same policy is optimal between those two points

because I am working with linear equations.
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Figure 4.3. Intersecting Planes. (a) The first iteration checks the corners of the
parameter space: (0, 0), (0, 1), (1, 0), (1, 1), which yields three planes. In the second
iteration one of the intersection points in the top surface is chosen (circled), and a
new optimal policy is found and added in (b). This process repeats until all fourteen
of the intersections on the top surface between known optimal policies (circled in (d) )
have been checked and no new optimal policies found. The six optimal policies in (d)
form the optimal coverage set based on these intersection points.

Figure 4.3 shows the same algorithm with a two dimensional parameter space (two

constraints). Here I am looking at planes in three dimensions. Figure 4.3 (a) shows

the three planes (optimal policies) found at the four corners of the parameter space.

57



The circled point is the next one selected and Figure 4.3 (b) shows the new plane

found at that point. If all of the points circled in Figure 4.3 (d) have been checked

and no new optimal policies found, then the algorithm terminates.

The next two theorems prove that the underlying idea for this step in the algorithm

is correct. The idea is that if a set of points has the same optimal policy, then any

point enclosed by those points also has that optimal policy because I am working

with linear functions.

Theorem 3 If two points x̄ and ȳ in n-dimensional parameter space have the same

corresponding optimal policy π, then all points on the line segment between x̄ and ȳ,

f(α) = x̄ + α(ȳ − x̄), 0 ≤ α ≤ 1, have optimal policy π.

Proof. Let π be the optimal policy at x̄ and ȳ, z̄ be a point on the line between x̄

and ȳ, and π′ be the optimal policy at z̄:

π = argmaxπV x̄
π (ŝ0

i ) = argmaxπV ȳ
π (ŝ0

i ),

z̄ = f(α0), 0 < α0 < 1, and

π′ = argmaxπ′V z̄
π′(ŝ0

i ).

Assume that at z̄ the value of the optimal policy π′ is strictly greater than the

value of π, V z̄
π′(ŝ0

i ) > V z̄
π (ŝ0

i ). I know V x̄
π (ŝ0

i ) ≥ V x̄
π′(ŝ0

i ) because π is optimal at x̄.

Since V (·) and f(·) are linear functions, I can calculate their value at f(1) = ȳ by

computing the unit slope.

V ȳ
π (ŝ0

i ) =
V z̄

π (ŝ0
i )− V x̄

π (ŝ0
i )

α0

+ V x̄
π (ŝ0

i )

=
1

α0

V z̄
π (ŝ0

i )−
(

1− α0

α0

)
V x̄

π (ŝ0
i )

≤ 1

α0

V z̄
π (ŝ0

i )−
(

1− α0

α0

)
V x̄

π′(ŝ0
i )

<
1

α0

V z̄
π′(ŝ0

i )−
(

1− α0

α0

)
V x̄

π′(ŝ0
i )

=
V z̄

π′(ŝ0
i )− V x̄

π′(ŝ0
i )

α0

+ V x̄
π′(ŝ0

i )
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< V ȳ
π′(ŝ0

i )

This contradicts that π is optimal at ȳ, therefore V z̄
π (ŝ0

i ) = V z̄
π′(ŝ0

i ) for any z̄ between

x̄ and ȳ.

A bounded polyhedron in n dimensions is composed of a set of faces, which are

bounded polyhedra in n − 1 dimensions. The corners of a bounded polyhedron are

the points (polyhedra in 0 dimensions) that the polyhedron recursively reduces to.

Theorem 3 shows that for a line segment (polyhedron in 1 dimension) with endpoints

with the same optimal policy, every point along that line also has the same optimal

policy. This can be inductively extended to higher dimensions because any point in

the interior falls on a line segment with endpoints on the edges of the polyhedron.

Corollary 1 Given a bounded polyhedron in n dimensions whose corners all have the

same corresponding optimal policy πi, any point on the surface or in the interior of

that polyhedron also has optimal policy πi.

There is some similarity between this step of the algorithm and other algorithms

that are trying to find a piecewise-linear and convex function, like dynamic program-

ming for POMDPs. In the POMDP case the function represents the optimal actions

over the belief states. In the coverage set algorithm it represents the optimal policies

over the parameter space. The primary difference between these two is that here I

can efficiently generate the optimal policy for a point in the parameter space, while

with a POMDP there is no way to efficiently generate the optimal action for a given

belief state. The pruning in dynamic programming for POMDPs is in response to

that inefficiency and is not relevant to the coverage set algorithm. Kaelbling et al.

[40] give a detailed description of a POMDP and accompanying algorithm.

The part of the algorithm discussed in this section is handled by the function

COVERAGE-SET in Figure 4.1. It takes an MDP and a joint reward structure and
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returns the optimal coverage set, based on Theorem 1. To illustrate how this works,

I will step through a small example.

Consider an instance of the Mars 2-rover problem with just two elements in

the joint reward structure: (E1
1 , E

2
1 , c1) and (E1

2 , E
2
2 , c2). The function CSA calls

COVERAGE-SET on MDP1 and ρ. The first thing that COVERAGE-SET does is

to create the boundaries of the parameter space. These are the hyperplanes that

enclose the parameter space. Since each dimension is a probability, it can range from

0 to 1, so in this case there are 4 boundary lines: x1 = 0, x1 = 1, x2 = 0, x2 = 1. The

algorithm then loops until no new planes are found.

In each loop, INTERSECT is called on the set of known boundary and policy

hyperplanes. INTERSECT takes a set of hyperplanes and returns a set of points that

represent the intersections of those hyperplanes. The simple implementation would

just return every intersection point, however many of those points are not useful —

those that lie outside the parameter space or lie below a known optimal plane. For

example, Figure 4.3(d) has six policy planes and the four boundaries of the parameter

space. The total number of points is approximately 84, but only the 14 visible points

are necessary to divide up the parameter space into the set of polygons.

After computing the set of points, the augmented MDP for each of those points

is created and the optimal policy for each of those augmented MDPs is computed by

SOLVE, which can use standard dynamic programming algorithms. The value of a

policy and a point in parameter space is

V x̄π2
π1

(ŝ0
1) = P (E1

1 |π1)P (E2
1 |π2)c1 +

P (E1
2 |π1)P (E2

2 |π2)c2 + Vπ1(ŝ
0
1).

For a given π1, the value function is a plane over the parameter space. The plane for

each of the new optimal policies will either be equivalent (different policy but same

value) or equal to a plane already in the coverage set, or it will be better than every
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other plane in the coverage set at this point in parameter space. If it is the latter

case, this new plane is added to the coverage set. If a complete iteration does not find

any new planes, then the loop terminates and the current coverage set is returned.

4.3 Selecting the Optimal Joint Policy

Given an optimal coverage set for agent i (considering the joint reward ρ), finding

the optimal joint policy is straightforward. From Proposition 1 and Definition 18 I

know that one of the policies in the optimal coverage set is a part of an optimal joint

policy. Therefore, finding the optimal joint policy reduces to policy search through

the optimal coverage set. For each policy in agent i’s optimal coverage set, create the

corresponding augmented MDP for agent j and find its optimal policy. The optimal

joint policy is the pair with the highest global value.

The function GV returns the global value as defined in Definition 14.

Theorem 4 The coverage set algorithm always returns the optimal value.

Proof. To prove that the coverage set algorithm always returns the optimal value,

I show that the algorithm terminates, it finds the optimal coverage set, and then it

returns the optimal joint policy.

1. Termination – Three of the four loops in this algorithm iterate over the

elements in finite, unmodified sets. The fourth loop is the do ... while |

newplanes |> 0. In every iteration, policies for the MDP are added to new-

planes only if they have not been added in a previous iteration. Since the set

of possible policies is finite, eventually there will be no policies to add and the

loop will terminate.

2. Optimal coverage set is found – All the planes/policies in the returned set

are derived by solving the corresponding MDP using dynamic programming
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and are therefore optimal. All the relevant point intersections between the

hyperplanes are found. This set of points divides the parameter space into a set

of polyhedra. From Theorem 1 if no new optimal policies are found from those

points, then the set of optimal policies is the optimal coverage set.

3. The optimal joint policy is returned – The set of joint policies created by

taking an optimal coverage set and finding the corresponding optimal policy for

the other agent includes all Nash equilibria. The algorithm returns the best of

those equilibria, which from Proposition 1 is the optimal joint policy.

4.4 Running Time

An analysis of the algorithm as presented is quite straightforward. Constructing

the augmented MDP in the function AUGMENT can be done in polynomial time

with efficient representations of ρ and the MDP. The resulting augmented MDP is

the same size as the original. SOLVE returns an optimal policy for an MDP, which

for dynamic programming is known to be polynomial. INTERSECT finds a set of

points. Each point involves solving a system of linear equations, which is polynomial

in |ρ|. However, the number of points, while polynomial in |OCS|, is exponential

in the number of dimensions |ρ|, O(|ocs||ρ|+1/(|ρ| + 1)!). For each point the optimal

policy is found, which is polynomial in the size of the state space.

4.5 Extension to n Agents

Extending the coverage set algorithm to n agents is fairly straightforward. The

reason is that the core of the algorithm, finding the optimal coverage set for agent i,

does not depend on any particular behavior for agent j. When there are n agents,

agent 1 can compute its optimal coverage set using the same algorithm by viewing
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ρ = [ (E1
1 , E

2
1 , E

4
1 , c1),

(E3
2 , E

5
2 , c2),

(E2
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3
3 , c3) ]
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Figure 4.4. (a) A joint reward structure ρ over five agents. (b) The constraint
graph. (c) The constraint graph after agents 1, 2, and 5 have found their optimal
coverage set. The remaining agents 3 and 4 are not connected.

the other n− 1 agents as one other agent. The only real change is that the notation

becomes much more difficult to read. A point in the parameter space (Definition 16)

for agent 1 becomes

x̄π2...πn =

|G1|∏
k=2

P (Eg1k
1 |πg1k

), ...,

|G|ρ||∏
k=2

P (E
g|ρ|k
|ρ| |πg|ρ|k)

 ,

assuming that g∗1 refers to agent 1. With two agents, dimension k represented the

probability that the other agent would satisfy its part of constraint k. With n agents,

dimension k represents the probability that the other n − 1 agents will satisfy their

parts of constraint k. Since the agents are independent, this is simply the product of

the probabilities of each of the other agents satisfying its part of constraint k. The

value of each dimension still ranges between 0 and 1, so this change does not affect the

computation of the optimal coverage set. The dimensionality of the parameter space

for agent i is no longer |ρ|, but is only the number of constraints agent i participates

in. For example, if agent i is only involved in three constraints then the dimensionality

of the search for the optimal coverage set for agent i is three, no matter how many

other constraints there are in ρ.

The interesting part of the algorithm that significantly changes is which agents

must compute their optimal coverage set. When there were only two agents, I had to
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find the optimal coverage set for only one of the two agents. With n agents, I now

have to find the optimal coverage set for some subset of the agents, possibly though

not necessarily n− 1 of them. For each constraint in the problem, at most one agent

involved in that constraint does not have to find its optimal coverage set. This can

easily be demonstrated by a simple reduction to a graph (see Figure 4.4). Let every

agent be represented by a vertex. Add an edge between every two vertices that share

a constraint (if there is not an edge there already). For example, for constraint 1,

G1 = {1, 2, 4}, add the edges E(1, 2), E(1, 4), and E(2, 4). The optimal coverage set

must be found for a subset of the agents such that when those vertices and all incident

edges are removed from the graph, the remaining vertices are completely disconnected

(no edges remain). Some valid subsets in this example are {1, 2, 5}, {2, 4, 5}, {1, 4, 3},

among others.

Given a valid subset of agents, the final step in the coverage set algorithm becomes

a search process through all combinations of those agents’ optimal policies. Given a

policy for each in the subset of agents, maximizing the global value reduces to solving

the corresponding augmented MDP for each of the remaining agents. As a distributed

search process it maps nicely into a DCOP (Distributed Constraint Optimization

Problem) [43, 80]. As a DCOP, each agent has one variable, which represents the

policy that agent adopts. The domain of that variable is the optimal coverage set for

that agent. There is a cost function for each of the agents’ local rewards, and one for

each constraint in ρ. Solving the DCOP finds the variable assignment that maximizes

the sum of the cost functions.

Choosing any subset of agents to find their optimal coverage set is easy, but

choosing the best subset is not. In fact, it is not entirely clear what best means in this

case. The smallest valid subset is not necessarily the one with the lowest worst case

complexity, which is not necessarily the one with the lowest average case complexity,

which is not necessarily the one that is easiest to distribute. The complexity of

64



finding the optimal coverage set is exponential in the number of constraints involved,

so choosing a valid subset of agents that minimizes the maximum dimensionality is

likely to be better than minimizing the number of agents. However, the complexity

also depends polynomially on the number of policies in the optimal coverage set. If a

particular local problem could be characterized in a way that indicates the expected

number of optimal policies, then that could affect which valid subset should be chosen.

Without this information, one possible solution is to work on finding all of the optimal

coverage sets in parallel (possibly distributed, with each agent solving their own local

problem) until a valid subset has been solved. Examining these issues in more depth

remains the topic of future work.

4.6 Experimental Results

I implemented a general version of this algorithm that works for any number of

dimensions. The implementation varied slightly from what is presented in Figure

4.1 to improve the efficiency. The primary change is instead of computing all of the

intersection points in the function INTERSECT(), I generate one at a time. Many

of the points returned by INTERSECT() can be discarded without the need to run

SOLVE() on the augmented MDP at that point. This is because many points lie

beneath other known optimal policies or because those points are out of bounds (> 1

or < 0 in some dimension of the parameter space).

The results were verified by independently checking that every policy in the opti-

mal coverage set was optimal for some point in the parameter space and by randomly

choosing points in the parameter space and verifying that its optimal policy was in

the set.
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Figure 4.5. (a) The percentage of problems that had fewer than 600 policies in the
optimal coverage set. Those with more than 600 were not solved. (b) The distribution
over the size of the optimal coverage set for 2, 3 and 4 constraints.

4.6.1 Rover Exploration Problem

I tested this algorithm on problem instances modeled after the Mars rover example

used throughout this paper. There are two rovers, each with an ordered set of sites to

visit and collect data. The state for each rover is composed of their current task and

the current time left in the day. The action for each state is to skip the current site

or to collect data at the current site. If the rover chooses skip, then it moves on to

the next site without wasting any time. The uncertainty in the problem is the length

of time it takes to execute the tasks.

The problem instances generated had a total time of 10 units, and 5 sites for each

rover. The original DEC-MDP had 250 world states (10 × 5 × 5), and both rovers’

local decision problem had 50 states (10 × 5). On average, each rover was able to

collect data at only half of its sites.

Some of the sites were shared between the two agents. These sites were assumed

to be half redundant, which means that if both rovers collect at that site then the

reward received by the system is 1.5 times that received if only one rover does. For

example, if rover 1 collects then it receives local reward r. Similarly, if rover 2 collects

it receives local reward r. Now if both rover 1 and rover 2 collect at that site, then
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they each receive r and the system receives a penalty of −0.5r for a net total global

reward of 1.5r.

Data was collected from 200 randomly generated problems. Each problem was

solved three times, once with sites 3 and 4 shared between the agents, once with

2, 3 and 4, and also with 1, 2, 3 and 4. Problems that had more than 600 policies

in their optimal coverage set were considered hard problems and skipped. Figure

4.5(a) shows the percentage of problems that were solved for the given number of

constraints. Figure 4.5(b) shows the distribution of the size of the optimal coverage

set. Of the problems solved, the average number of optimal policies in the optimal

coverage set was 59, 217 and 230 for 2, 3 and 4 constraints respectively. While only

76% of the problems with four constraints were solved in the available time, this

should be viewed in the context that complete policy search would not have been

able to solve a single one of these problems in that time.

To get a general idea about the length of time to solve these problems, with four

constraints the fastest problem had 23 optimal policies in the optimal coverage set

and took about 1.5 seconds on a 2.8GHz Pentium 4. The longest one took about 4

hours and had 597 optimal policies.

There are two measures of work that I use to evaluate the performance. First is

the number of times the planes are intersected. Each intersection represents solving

a system of linear equations. The second measure is the number of times dynamic

programming was used to solve an augmented MDP. The graphs were essentially the

same regardless which measure I used, so most will be presented with the number

of intersections as the measure of work. Figure 4.6 shows how the amount of work

required to solve a problem relates to the size of the optimal coverage set.

The difficulty in solving a particular instance depends on many characteristics of

the problem. The characteristic that I focus on here is the magnitude of the constant

rewards in ρ, c1...cx, as compared to the other rewards in the system. Intuitively, if
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Figure 4.6. The amount of work measured by the number of intersections increases
polynomially with the size of the optimal coverage set, |OCS|.

the value of a shared task is much greater or much less than the other tasks available

to an agent, then the difficulty to decide whether to do the shared task decreases.

This idea can be seen in Figure 4.7. When looking along either the x or y dimension,

the density of optimal policies is greatest around the middle, and much less at either

extreme.

Previously, I collected data on problems that were half redundant. The value of

the shared sites ranged from r to 0.5r, i.e., r+P × (−0.5r) where P is the probability

of the other agent collecting at that site. Instead consider a problem in which the

shared tasks were complementary. If either agent collects data it receives 0.5r, and if

they both collect data then the system receives an extra 0.5r for a total of 1.5r. The

values in this example range from 0.5r to r. The complexity of these two problems is

identical because the policies in the optimal coverage set are identical. However, the

optimal joint policy will be different because the problems are not identical but mirror

images of each other. Similarly, if I increase c then the new optimal coverage set is

a superset of the original and therefore more difficult to solve. Figure 4.7 illustrates

this relation.
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Figure 4.7. Illustration of the upper surface of the optimal coverage set for a 2
constraint problem. Each bounded region corresponds to one policy and the area over
which it is optimal. (a) Both constraints have a local reward of 0 and an additional
reward of 6. (b) Local reward is 1.5 and additional reward is 3. Notice how this set
of policies is equal to the middle area of (a). Problem (b) is a subset of (a).

The focus of the experimental results is primarily on step two of the algorithm

(finding the optimal coverage set) because that is where most of the computational

complexity lies. That changes, however, as the number of agents increases. Finding

the optimal coverage set is internal to each agent and depends on the number of

constraints that agent has, not the number of agents in the system. Therefore, as

the number of agents increase, the complexity of the third step (searching through

the optimal coverage sets for the optimal joint policy) becomes more important. The

third step is a distributed constraint optimization problem (DCOP), the evaluation

of which is out of the scope of this paper. Mailler and Lesser [45], and Modi et al.

[47] present state-of-the-art algorithms for solving DCOPs.

4.6.2 Approximation

While the complexity of transition independent decentralized MDPs is signifi-

cantly lower than models like the DEC-MDP, it is still intractable for large problems
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Figure 4.8. The value of the best known joint policy (as a percentage of the optimal
policy) as a function of the total work done.

and certain hard instances of small problems. Fortunately, it turns out that the

coverage set algorithm is naturally an anytime algorithm with some very nice char-

acteristics.

Figure 4.8 shows the anytime performance profile over the same set of problems

discussed earlier. The very first solution generated by the algorithm was better than

90% of optimal in nearly every problem. After only 1000 intersections, 88% of the

4-constraint problems had already found the optimal solution and the others were

within 99% of optimal. 1000 intersections is only a small fraction of the total work

done to solve one of those problems (average was 18 million).

There are several reasons for the excellent performance. First, each solution gen-

erated by the algorithm is a locally optimal solution. This means that agent 1 has

a belief about what agent 2 will do and generates its optimal corresponding policy.

Agent 2 then generates its optimal policy given agent 1’s policy. This pair of policies

is not a Nash equilibrium because Agent 1’s belief about Agent 2 and Agent 2’s actual

policy may be different. However, in these randomly generated problems it is usually

quite good.
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Figure 4.9. (a) As the number of constraints increase, the gap between the work
to discover new optimal policies and the work to prove the set is complete increases.
(b) The discovery of the optimal planes happens primarily in the beginning.

A second reason is that the amount of work required to discover the policies in

the optimal coverage set is significantly less than that required to prove that the set

is complete, as shown in Figure 4.9(a). As the number of constraints grows, the gap

between the discovery work and the proof work increases. In addition, the discovery

is front-loaded as seen in Figure 4.9(b). Finally, the more area over which a policy is

optimal, the more likely that policy will be discovered earlier and the more likely that

policy will be in the optimal joint policy (for randomly generated problems). Taken

together, this explains why the optimal joint policy was usually discovered after only

1000 intersections. For the 4-constraint problems, this is less than one hundredth of

one percent of the total work to solve the problem.

While these anytime results are promising, I have not yet addressed the issue

of whether they are due to characteristics in the class of problems or the particular

domain. To answer this question I plan to implement other domains as well as examine

larger problems.

71



CHAPTER 5

DECENTRALIZED MDPS WITH EVENT-DRIVEN
INTERACTIONS

The transition independent DEC-MDP represented domains whose local decision

problems are tied only through the reward function. This section will present a new

model that allows a limited form of direct interaction between the local problems.

The interactions are called event-driven interactions and consist of events in one

agent that affect the transition probabilities of another agent.

This interaction allows the outcome of actions performed by one agent to depend

on the completion of certain tasks by the other agent. This form of interaction has

been studied extensively within the multi-agent community [39, 69]. Some instances

of this type of interaction that have been previously studied are enables/facilitates

interrelationships, whereby one agent executing a task enables the other agent to

execute another task, or it may increase the likelihood of success. Another example

is a non-consumable resource, which one agent can lock and thus prevent the other

agent from using.

To find the optimal solution to this class of problems I show how to construct

an augmented MDP for the agents. Using this augmented MDP the Coverage Set

Algorithm will find an optimal joint policy.

Intuitively, the special class of problems I focus on involves two agents, each having

a “local” decision problem or task that can be modeled as a standard MDP. This local

decision problem is fully observable by the agent. The agents interact with each other

via a set of structured transition dependencies. That is, some actions taken by one

agent may affect the transition function of the other agent.
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Figure 5.1. An example TAEMS task structure

To illustrate this concretely, I present a problem in TAEMS [15]. TAEMS is a

hierarchical task modeling language that has been used successfully in a number of

real systems [73]. Figure 5.1 is an example task structure. In it, the two agents

each have one task: T1 for agent 1 and T2 for agent 2. Both of those tasks can

be decomposed into two subtasks, i.e. T1 → T 1
1 and T 2

1 . Each of the subtasks is

decomposed into two methods, i.e. T 1
1 → M1

1 and M2
1 . Methods are the atomic

units of a task and the agents can execute them. Executing a method takes time and

produces quality, over some distribution. A quality of 0 represents a method that

has not been successfully executed. Tasks accumulate quality from their children in

many different ways. Two are shown in the example: sum and max. The quality of

T 1
1 is the sum of the qualities of its children, and the quality of T1 is the max quality

of its children. The goal of the system is to maximize the sum of the qualities of the

highest level tasks in both agents before the deadline.

The two agents do not operate independently, however. TAEMS has three different

types of interrelationships between agents, only one of which is used in this example:

facilitates/enables. This type of interrelation is a temporal constraint: M4
1 must be

executed successfully before M4
2 is executed for M4

2 to produce a nonzero quality.

Facilitates is similar though less severe. If M3
2 is successfully executed before M2

1 ,
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then M2
1 is more likely to produce a higher quality than if it was not facilitated.

These are examples of the type of dependencies allowed between agents in our model,

though it is not limited to interrelations of this nature.

5.1 Formal Definition of the Model

The formal description of the model borrows many of the definitions from Chapter

3. The model is based on a 2-agent DEC-MDP with additional structure. The

state space is factored, and the problem exhibits local full observability and reward

independence. The only dependence between the agents is through the transition

function.

For example, a TAEMS problem can be represented as follows:

• The local state of each of the agents is composed of the current time and the

qualities of each of the methods.

• The actions for the agents are to execute one of their methods.

• The transition function is based on the time/quality distribution for the meth-

ods the agents choose to execute, taking into account the facilitates/enables

interrelationships.

• The reward is only received in a terminal state, and it represents the sum of

the qualities of the highest level tasks at that time.

• Each agent fully observes is own local state. In addition, when an agent at-

tempts to execute a constrained method it learns whether the interrelationship

was satisfied.

Next I define the interaction between the two agents as event-driven, meaning

that an event in one agent influences an event in the other agent.
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5.1.1 Event-Driven Interactions

In this section I will fully define the transition function. The basic idea is that

transitions can take two forms. First, many local transitions for one agent are inde-

pendent of the other agent, which means that they depend only on the local state

and action. However, the interrelationships between the agents mean that some tran-

sitions depend on the other agent. This interaction is described by a dependency and

the change in transitions that result when the dependency is satisfied.

The events used throughout this section are assumed to be proper. An example of

an event would be successfully executing M4
1 before time 10. It would be composed

of primitive events of the form (time < 10, q1
1, q

2
1, q

3
1, q

4
1 = 0), execute M4

1 , (time <

10, q1
1, q

2
1, q

3
1, q

4
1 > 0), where qk

i is the current quality of method Mk
i .

The event executing M4
1 before time 10 is proper because the primitive events that

compose the event include the transition from q4
1 = 0 to q4

1 > 0. Since the quality of

a task is always nondecreasing, this transition can never occur twice.

The interaction between the agents takes the form of a triggering event in agent

i and a set of state-action pairs for agent j that is affected. This interaction is called

a dependency.

Definition 19 A dependency dk
ij = 〈Ek

i , Dk
j 〉, where Ek

i is a proper event defined

over primitive events for agent i, and Dk
j is a set of unique state-action pairs for

agent j. Unique means ¬∃k, k′, ŝj, aj s.t. 〈ŝj, aj〉 ∈ Dk
j ∧ 〈ŝj, aj〉 ∈ Dk′

j ∧ k 6= k′.

Definition 20 A dependency dk
ij is satisfied when Φi |= Ek

i . Boolean variable bŝjaj

is true if the related dependency is satisfied and false if it is not satisfied or there is

not a related dependency:

bŝjaj
=


true ∃k, s.t. 〈ŝj, aj〉 ∈ Dk

j ∧ Φi |= Ek
i

false otherwise
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Definition 21 A transition function for event driven interactions is divided into

two functions, Pi and Pj. They define the distribution Pi(ŝ
′
i|ŝi, ai, bŝiai

).

When an agent takes an action that could be influenced by a dependency it learns

the status of that dependency, whether or not it was satisfied (i.e. whether the task

was facilitated). The idea is that an agent knows why things happened after they

do. For example, if an agent attempts to execute a task that has not been enabled,

it realizes that it does not have the data necessary for the task when it fails. An

argument can be made that the agent should be able to check whether it has the

available data before it attempts to execute the task. This can be accomplished by

a ‘free’ action that reveals the status of the dependency. Essentially, the dependency

modifies the transition for the free action in addition to facilitating the task.

Dependency d10
1,2 is the dependency that represents method M4

2 having been en-

abled when agent 2 attempts to execute it at time 10. The event E10
1 is the event

described earlier where the enabling method M4
1 has finished executing successfully

before time 10. D10
2 contains state-action pairs representing agent 2 attempting to

execute M4
2 at time 10. There is exactly one dependency of this type for each time

that agent 2 could attempt to execute method M4
2 . If agent 1 successfully executes

M4
1 at time 6, then all of the dependencies dt

1,2 where t > 6 will be satisfied (by the

same primitive event in agent 1), but each of those satisfied dependencies modify a

different set of probabilities in agent 2. Agent 2 can attempt M4
2 at time 10 and

again at time 14, and both times the method will be enabled but through different

dependencies (d10
1,2 and d14

1,2 respectively).

5.1.2 Defining the Policy

While I have defined a local state space, action space, transition function and

reward function for each agent, this unfortunately does not define a local MDP for

each agent. The reason is because the local state is not Markov. When an agent
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learns the status of a dependency, it changes its belief about the state of the other

agent and the impact of future dependencies. This information is contained within

the history of an agent, but not in the previously defined local state. Therefore, the

local state Si×S0 of agent i must be modified to include the dependency history (i.e.

at time t dependency dk
ij was satisfied). This modified local state is S ′

i. 〈S ′
i, Ai, Pi, Ri〉

does define a local MDP, and the local policy for agent i is πi : S ′
i → Ai.

When one of the TAEMS agents attempts a task with an incoming dependency, its

next observation includes whether that dependency was satisfied (i.e. was that task

enabled). That information is not stored in the local state of the agent that I defined

earlier because it was not necessary in the DEC-MDP (transitions in the DEC-MDP

are defined over world states not local states). However, that knowledge changes this

agent’s belief about the other agent’s local state, and that could influence a future

expectation of a method being enabled.

For outgoing dependencies it is sufficient to add one variable per facilitates/enables

interrelationship that represents the time the interrelationship was satisfied. The

agent knows the related dependencies before that time were not satisfied and the

ones afterward were. For the incoming dependencies, the state needs to store the

last time an interrelationship was not satisfied as well as the first time the agent

discovered it was satisfied.

In the TAEMS example, the additional variables to the local state is dependent

on the number of interrelationships, not the number of dependencies. This is not

true for all problems. In the worst case, the state may have to include the status of

a dependency and the state in which the agent discovered that status every time the

agent gains new information.
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5.1.3 Evaluating a Joint Policy

The value function that I am trying to maximize is the original value function for

the DEC-MDP. However, evaluating a pair of policies is much easier on a new DEC-

MDP constructed from the expanded local states and new transition function because

the policies are not defined over the same state space as the original DEC-MDP.

• The states S ′ = S ′
1 × S ′

2.

• The actions A = A1 × A2.

• The transition function P = P1 × P2.

• The reward function R = R1 + R2.

• The observations for each agent are its local component of the state.

The expected reward the system will receive given a pair of policies can be found

by running policy evaluation as if this was an MDP because there is a direct mapping

from world state to joint action.

5.2 Problem Complexity

An upper bound on the complexity of the DEC-MDP with event driven interac-

tions can be derived from the complexity of complete policy search.

Theorem 5 A DEC-MDP with event driven interactions has complexity exponential

in |S| and doubly exponential in the number of dependencies.

Proof In a DEC-MDP with event driven interactions, the number of joint policies

is exponential in the number of states because the policy is a mapping from states to

actions (unlike the DEC-MDP which is a mapping from sequences of observations to

actions). However, the number of states in the new DEC-MDP is exponentially larger

in the number of dependencies than the original state space. Therefore, the number
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of joint policies is exponential in the original state space and doubly exponential in

the number of dependencies.

Evaluating a policy can be done with standard policy evaluation for MDPs because

in the new DEC-MDP, the joint policy is a direct mapping from world states to joint

actions. Policy evaluation for MDPs is polynomial in the number of states, so this

does not raise the complexity.

Therefore, the DEC-MDP with event driven interactions has complexity exponen-

tial in |S| and doubly exponential in the number of dependencies.

The reason this class of problems is easier to solve than DEC-MDPs is because the

size of the policy space has been reduced. It was reduced by separating the part of

the history that is necessary to be memorized (interactions between the agents) from

the part that is not necessary (local state). Specific problems may have additional

structure that further reduces the complexity. For example, in TAEMS the complete

interaction history is not necessary to remember so the complexity is doubly expo-

nential in the number of facilitates/enables, not the number of dependencies. If the

problem is such that there is an ordering over the interactions and only the most

recent interaction must be memorized then the complexity drops to exponential.

5.3 Solving the Problem

Solving an exponential (or worse) problem using complete policy search is in-

tractable for all problems of moderate or larger size. The reason is that for complete

policy search, the worst case complexity is also the best case complexity. That means

for every problem, regardless of whether it has characteristics that make it a simple

problem, every policy must be evaluated. Suppose in the TAEMS example, M4
1 and

M4
2 have quality outcomes significantly higher than the other methods. A simple

analysis of the problem would indicate that nearly any policy that attempts both M4
1
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and M4
2 has a higher value than any policy that does not. This significantly reduces

the number of policies that must be searched.

While the worst case complexity of the Coverage Set Algorithm may be similar

to complete policy search, the best case is only polynomial in the state space and

exponential in the number of dependencies. The reason the Coverage Set Algorithm

has such a variance in complexity is that it is essentially performing a general analysis

of the problem. The more obvious a solution, the faster the algorithm runs. However,

in the worst case, no useful information is gained through the analysis and it will

perform slower than complete policy search due to extra overhead.

5.3.1 Constructing the Augmented MDP

To show that the CSA can be used for this problem, I must define an augmented

MDP.

Let MDPi = 〈S ′
i, Ai, Pi, Ri〉 represent the local MDP for agent i as defined ear-

lier. Let MDP
πj

i = 〈S ′
i, Ai, P

′
i , R

′
i〉 represent the augmented MDP for a given πj. The

states and actions do not change in the augmented MDP, but the transition function

and reward function do. The transition function changes to take into account the

incoming dependencies, dk
ji. It is modified by the likelihood that an incoming depen-

dency is satisfied in the other agent and the change in probability that dependency

incurs. The reward function is modified to incorporate the changes in expected value

the other agent receives when outgoing dependencies are satisfied.

Definition 22 P ′
i (ŝ

′
i|ŝi, ai) is the transition function for the augmented MDP. For the

probabilities not altered by an incoming dependency, P ′
i (ŝ

′
i|ŝi, ai) = Pi(ŝ

′
i|ŝi, ai, false).

For the others,

∀k, 〈ŝi, ai〉 ∈ Dk
i , P

′
i (ŝ

′
i|ŝi, ai) = Pi(ŝ

′
i|ŝi, ai, false)+
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P (dk
ji|ŝi) [Pi(ŝ

′
i|ŝi, ai, true)− Pi(ŝ

′
i|ŝi, ai, false)] ,

where P (dk
ji|ŝi) is the probability that dependency dk

ji is satisfied given that agent i is

in state ŝi.

Definition 23 R′
i(ŝi, ai, ŝ

′
i) is the reward function for the augmented MDP. For each

primitive event e = 〈ŝi, ai, ŝ
′
i〉 that does not satisfy an outgoing dependency, R′

i(ŝi, ai, ŝ
′
i) =

Ri(ŝi, ai, ŝ
′
i). For the others,

∀k, 〈ŝi, ai, ŝ
′
i〉 ∈ Ek

i , R′
i(ŝi, ai, ŝ

′
i) =

Ri(ŝi, ai, ŝ
′
i) + V ŝ′

i
πj

(ŝ0
j)− V ŝi

πj
(ŝ0

j),

where V ŝi
πj

(ŝ0
j) is the expected value of the start state of agent j’s local MDP given the

policy πj and the dependency history contained in ŝi.

The parameters from agent j’s policy and MDP take two forms, P (dk
ji|ŝi) and

V ŝi
πj

(ŝ0
j). Neither of these is difficult to compute, and they can be derived at the same

time. The value V can be obtained by running policy evaluation on the MDP obtained

by applying the dependencies satisfied in ŝi. At the same time, the probability of

reaching each state can be computed. P (dk
ji|ŝi) is the sum of the probabilities of all

primitive events in Ek
j that have a consistent dependency history with ŝi.

A value function for an MDP can be represented as the sum over all primitive

events in the MDP, the probability of that primitive event occurring times the re-

ward received at that primitive event. This function can be converted to the form

V = c0 + c1x1 + c2x2 + ... where xn is the product of one or more parameters i.e.,

P (d3
ji|ŝ6)P (d5

ji|ŝ13)P (d5
ji|ŝ16). Partially symbolic policy evaluation would generate a

value function with this form. While this function is not linear in the parameters, it

is linear in these combinations of parameters. Having a linear value function allows

the use of the Coverage Set Algorithm.
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Figure 5.2. The TAEMS problem structure for the experiments.

5.4 Experimental Results

To test the algorithm on this class of problems, I implemented the example prob-

lem shown in Figure 5.2. The agents had 6 time steps to execute their methods. Each

method took between 1 and 3 time steps to complete. Methods M1 and M2 produced

an integer quality between 0 and 2, while M3 produced a quality of 0, 2 or 4. The

method M3
2 took 1 time step and produced quality 0 if not enabled. After executing

M3
2 agent 2 knows whether it was enabled or not. The agents received a reward after

the time ran out equal to the final quality of their task. The global reward being

maximized is the sum of the local rewards: Max(q1
1 + q2

1, q
3
1)+Max(q1

2 + q2
2, q

3
2). This

section will examine a typical instance of this problem in detail.

The dimensionality of the search was different for the two agents because they are

on different sides of the dependencies. Agent 1, being the enabler, had parameters

that represented the expected value for agent 2 given that agent 1 enabled at time

t. There were four different times that agent 1 could enable agent 2 and another

parameter for when agent 2 was never enabled leading to a parameter space of size

five. Agent 2, being on the receiving end, depends on the probability that it was

enabled given the current time and the last time it learned it was not enabled. There

were ten probabilities, but the parameter space depended on combinations of those
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Figure 5.3. The optimal joint policy and an example execution.

probabilities and was much higher. Since agent 1 had a much lower dimensionality, I

chose to find its optimal coverage set.

Figure 5.3 shows an FSM representation of the optimal joint policy for one instance

of the problem. The optimal coverage set for agent 1 contained 141 policies and took

only a few hours to find on a modern desktop computer.

While the complexity of these decentralized MDPs with event-driven interactions

is significantly easier than models like the DEC-MDP, it is still intractable for large

problems and certain hard small problems. Fortunately, it turns out that the coverage

set algorithm is naturally an anytime algorithm with some very nice characteristics.

Finding an optimal or near optimal solution usually takes very little time. Proving

that the solution is optimal takes the majority of the computation. For example,

the expected value of the optimal joint policy in Figure 5.3 is 5.8289. The first joint

policy found had a value of 5.6062, or 96.2% of optimal. The optimal joint policy was

discovered after only 0.004% of the total computation. The result is a good anytime

solution to problems too large to solve optimally.
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5.5 Summary

The DEC-MDP framework has been proposed to model cooperative multi-agent

systems in which agents receive only partial information about the world. Computing

the optimal solution to the general class is NEXP-complete, and with the exception

of [33] the only known algorithm is brute force policy search. I have identified an

interesting subset of problems that allows for interaction between the two agents in

a fixed, structured way. This interaction could take the form of restricted commu-

nication. For this class of problems I have identified that the complexity reduces

from being doubly exponential in the state space to doubly exponential in the level of

interaction between the agents and only exponential in the state space. Since many

problems have a level of interaction significantly lower than the number of states, the

savings can be quite substantial.

I also provided a mapping to an algorithm that runs much faster than complete

policy search. While the high complexity still makes it intractable for large problems,

this work does facilitate finding optimal solutions for larger problems that have only a

limited amount of interaction between the agents. That can be useful in establishing

a baseline for evaluation of approximation algorithms.

The augmented MDP enables a simple yet powerful hill-climbing algorithm that

converges on a local optimum. In addition, the coverage set algorithm is also natu-

rally an anytime algorithm with some promising characteristics. Using these two ap-

proximations should facilitate finding good solutions to much larger problems. This

remains the subject of future work.
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CHAPTER 6

COMMUNICATION

The work presented so far is just beginning to address the tradeoff between compu-

tational complexity and general applicability of decision-theoretic multi-agent frame-

works. The transition independent DEC-MDP verifies the intuition that significant

computational savings can be gained when the local problems are largely indepen-

dent. When the interaction between the agents is strictly through the global value

function being maximized then the complexity drops to NP-complete. However, not

all forms of limited interaction are easy to solve. An upper bound for the event-driven

interactions puts the complexity at doubly exponential in the level of interaction and

exponential in the state space. This is a significant savings over the DEC-MDP, how-

ever, it still represents an intractable problem. While both of the models presented

so far represent useful and interesting classes of problems, there is one common char-

acteristic of multi-agent systems that is not represented—communication.

Deciding when to communicate is a fundamental challenge in multi-agent sys-

tems, and finding the optimal communication policy is usually intractable in de-

centralized problems when communication has a cost, ranging from NP-complete to

NEXP-complete [28, 59]. This decision can be formulated as a value of information

problem. The value of the information collected and disseminated can be measured

by the difference between the improvement in the agents’ performance and the costs

associated with communication, regardless whether communication takes the form of

state information, intentions or commitments. The optimal communication policy
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involves the agents choosing the communicative act at each step that maximizes the

expected future utility, much like choosing an optimal action in an MDP.

Information value theory [37] is an important component of decision making, and

it has been used to calculate the value of information in different settings, for example

the expected value of computation [35]. However, even in the single-agent contexts

where information value theory has been extensively used, finding the exact value is

very difficult. The typical approach to dealing with this complexity is to approximate

it with two myopic assumptions: each source of information is evaluated in isolation

and they are evaluated with a 1-step horizon [57].

Others [26, 27, 69] have extended these myopic assumptions to multiple agents in

order to generate communication policies. Frequently, however, the exact assumptions

being made are not clearly stated. Additionally, a careful analysis of the impact of

these assumptions on the quality of the resulting communication policy has not been

made. While the myopic assumptions may be an appropriate way to approximate the

value of information in the single-agent case, it is not obvious that they remain so for

the multi-agent case.

This work attempts to improve the understanding of communication in multi-

agent systems by examining the implications of the myopic assumptions. First, I

clearly state the basic myopic assumptions and formally show how to compute the

optimal communication policy given these assumptions. I then identify and describe

two facets of the assumptions that introduce error, and I provide an improved way

to compute the communication policy that compensates for this bias.

I perform the analysis of communication using the Transition Independent De-

centralized MDP [5] as the underlying multi-agent framework extended to allow

communication between the agents. I chose this model for several reasons. First,

decision-theoretic models are a formal way of describing a problem and have natural

definitions of optimality. Second, in this framework each agent has a different, local
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view of the world. Their actions are based on their own local views, so an agent does

not know the actions of the other agents even if it knows the other agents’ policies.

Centralized models, like the MMDP [9], are not capable of (naturally) representing

this decentralized view. Third, this model also has a known algorithm to find the

optimal joint policy assuming zero communication. This guarantees that the results

of the analysis are not due to interactions between two heuristics.

This model also isolates the effect communication has on the expected value of a

problem by imposing a strict separation between domain-level actions and commu-

nicative acts. Most other decision-theoretic, multi-agent models allow domain-level

actions to include implicit forms of communication [6, 27, 59], which make analysis

difficult. Implicit communication occurs when one agent gains information about an-

other agent’s state through a non-communicative act. This communication is often

represented within the transition function and is difficult to quantify. For example, a

robot attempts to move forward and fails. The failure could be caused by the wheels

spinning in place or by another robot sitting in front of it. Therefore, its failure to

move forward changes its belief about the location of the other robot.

Many other researchers have studied different aspects of communication. Some

have worked with algorithms not based on myopic assumptions, like Reinforcement

Learning [24]. The advantage of using RL is that they do not need a complete model

of the problem, but they do their learning online and potentially make very bad

decisions until they learn better ones. Others have addressed different questions, like

what the agents should communicate [63] instead of when.

Xuan and Lesser [76] have worked toward understanding communication as a way

to reduce uncertainty. This work compliments and builds on their understanding of

communication by using the value of information as a quantitative measure of the

benefit of reducing uncertainty.
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6.1 Problem Description

In this section I will present an extension to the Transition Independent DEC-

MDP that adds communication. First, however, I will discuss some of the design

decisions.

Communicative acts can be represented explicitly or implicitly. For example,

the DEC-POMDP has an implicit representation of communication where an action

taken by one agent could be a communicative action, a non-communicative (domain)

action, or a mixture of the two. This is handled by the transition function, which is

a function of world states and joint actions. Xuan et al. [77], on the other hand, use

an explicit representation of communication where each step of the decision process

consists of a domain action and a communication action. The COM-MTDP [59] takes

a similar approach.

While there is no expressive difference between the DEC-POMDP and the COM-

MTDP, Xuan et al. demonstrates one advantage of explicit communication: the do-

main actions may have very different characteristics from the communication actions,

which can be exploited to simplify the problem. If communication is added implic-

itly to the model through generalizing the transition function, then any structural

difference between the two types of actions is lost. The explicit communication also

allows them to focus on the effects of different communication policies. For example,

the model I used without communication is a special case where the communication

policy is to never communicate. The communication policy of always communicate

complete information transforms the problem into an MMDP. In between these two

extremes are many other interesting policies for communication.

Adding communication to the Transition Independent DEC-MDP violates some of

the independence relationships. First, observation independence is violated because

part of the observations is the message that the agent receives, which is dependent

on an action taken by the sending agent. The second effect is that the policy is no
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longer a mapping of local states to actions unless the messages received are added

to the state, which would violate transition independence. However, with explicit

communication, the domain actions can maintain their independence properties and

that can be exploited to simplify the problem even though the agents themselves are

no longer independent.

The other issue is the language of communication. There are two types of informa-

tion that could be beneficial for the agents to communicate: observations and policy.

In this work I generate complete policies for all agents so it is not necessary for the

agents to transmit policy information. This leaves observations, which in the case of

the TI-DEC-MDP is just the local states of the agents. Goldman and Zilberstein [28]

showed that for a fixed communication cost, communicating their current local state

is sufficient to maximize the global value.

Shen et al. [63] take a different approach to communication. Instead of assuming

that the agents transmit their state information at a fixed cost, they allow the agents

to communicate components of their state information at reduced cost. The problem

they are solving, then, is not when to communicate but what to communicate.

The remainder of this chapter will use the Transition Independent DEC-MDP

framework extended with a synchronizing communication protocol. The model is

composed of n cooperative agents. Each agent i works on its own local subproblem

that is described by an MDP, 〈Si, Ai, Pi, Ri〉. The local subproblem for agent i is

completely independent of the local subproblems for the other agents, and completely

observable only by agent i. This means that at each step agent i takes action ai ∈ Ai

and transitions from state si ∈ Si to s′i ∈ Si with probability Pi(s
′
i|si, ai) and receives

reward Ri(s
′
i). The state of the world is just the collective local states of all of the

agents.

At each time step each agent first performs a domain-level action (one that af-

fects its local MDP) and then a communication action. The communication actions
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are simply communicate or not communicate. If at least one agent chooses to com-

municate, then every agent broadcasts its local state to every other agent. This

synchronizes the world view of the agents, providing each agent complete informa-

tion about the current world state. The cost of communication is C if at least one

agent initiates it, and it is treated as a negative reward. An optimal joint policy

for this problem is composed of a local policy for each agent. Each local policy is

a mapping from the current local state si ∈ Si, the last synchronized world state

〈s1...sn〉 ∈ 〈S1...Sn〉, and the time T since the last synchronization to a domain-level

action and a communication action, πi : Si × 〈S1...Sn〉 × T → Ai × {yes, no}. I will

occasionally refer to domain-level policies and communication policies as separate

entities, which is just a mapping to Ai and {yes, no} respectively.

In addition to the individual agents accruing rewards from their local subproblems,

the system also receives reward based on the joint states of the agents. This is

captured in the global reward function R : S1 × ...Sn → <. To the extent that the

global reward function depends on past history it must be included in the local states

of the agents just like the local rewards. The goal is to find a joint policy 〈π1...πn〉 that

maximizes the global value function V , which is the sum of the expected rewards from

the local subproblems and the expected reward the system receives from the global

reward function.

Definition 24 The global value function V (s1...sn) =

∑
s′
1... s′

n

n∏
i=1

Pi(s
′
i|si, ai)

[
n∑

i=1

Ri(s
′
i) + R(s′1...s′n) + V (s′1...s′n)

]
(6.1)

To summarize, the class of problems I am dealing with can be defined by n MDPs,

a global reward function R, and synchronizing communication between the agents

with a fixed cost C.
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Figure 6.1. Graphical depiction of an example decision problem. (left) A partially
ordered list of 5 sites. (right) A decision problem for one site with three potential
classes.

The complexity of the related decision problem to this class is NP-complete [28],

which is low for a decentralized problem with communication. A key structure in the

model that keeps the complexity at NP-complete is the synchronizing communication

protocol. When any information is transferred between the agents it is complete

information so only the last communication must be remembered. Without this, the

agents must remember the entire history of communication to make correct decisions,

which results in an exponential increase in the size of the policies and a doubly-

exponential increase in the solution time.

6.2 Example Application

I illustrate this class of problems with the following multi-agent data collection

example. This example can be viewed as an abstraction of many different types of

data collection problems, though I will present it as a rover exploration problem.

Consider n rovers exploring a landscape and collecting data. Each rover has its own

partially ordered list of sites it can visit, see Figure 6.1 (left). Each site contains a

particular class of information. This class is not known a priori, instead the rover

has a distribution over the classes for each site. See Figure 6.1 (right) for an example

decision problem of a site with three classes of information. Each site has a similar

decision problem associated with it. For example, the site could be an interesting rock
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formation. With 70% probability it could be (A) a sedimentary rock, 25% (B) an

igneous rock, and 5% (C) a fossil. The value of discovering and collecting data from

a fossil may be significantly higher than collecting data from yet another sedimentary

rock.

When a rover arrives at a site it has two choices. First, it can gather the infor-

mation through a Detailed Analysis (DA) without knowing what class of information

it is collecting. Alternatively, the rover can perform a Quick Analysis (QA) to deter-

mine the class of information available at the site before choosing whether to collect

the information. The rover is restricted from collecting information at every site due

to limited resources, like time and battery power.

The value of a DA comes from the information collected. The value of a QA is that

it consumes fewer resources than a DA and allows the rover to make a more informed

decision. The system receives reward based on the total information collected by all

of the rovers. Each class of information has a base value. If the information in a

particular class is redundant then the total value for collecting that class more than

once may be only slightly higher than the base value. Alternatively, a class could be

complementary, in which case the value for two pieces of information may be greater

than twice the base value. The values of the information are captured in the global

reward function.

6.3 Basic Myopic Approach

Using a myopic algorithm is a common way of dealing with the complexity inherent

in finding an optimal solution. I present an algorithm for determining when the agents

should communicate. This algorithm is optimal assuming that it must be initiated

by the current agent (agent i in the following description) and that the current step

is the only time communication is possible. For clarity the equations are presented
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for two agents i and j, but the approach easily extends to n agents. The complexity

results still include all n agents.

While the problems I am solving are distributed in nature (each agent chooses

an action based on its own local view) the algorithm I present here computes offline

the policies for each agent in a centralized location with a fully specified model of

the problem, and the individual policies are given to the agents to follow. This does

not trivialize the problem, nor does it reduce it to a single MDP since the solution

found is still a decentralized solution. I chose this approach for two reasons. First,

individual agents often lack the computational resources necessary to generate high

quality solutions. Second, individual agents often lack a global view of the problem,

which while not strictly necessary does simplify the solution process and reduces the

communication between the agents (which has a cost).

The basic idea is that each agent follows the optimal policy assuming no future

communication, which is obtained using the Coverage Set Algorithm (CSA) [5]. At

each state, the agent chooses whether to communicate by computing the Value of

Communication (VoC). If the VoC > 0 then the agent initiates communication

causing all of the agents to broadcast their local state. This synchronizes the local

views of all of the agents to the world state. The agents then compute a new optimal

policy assuming no future communication, using their synchronized world state as

the starting state. The domain-level actions the agents take always come from this

zero-communication policy.

The VoC from agent i’s perspective depends on i’s current local state si, the

previous synchronized world state (or original starting state) 〈s0
i , s

0
j〉, and the time

since the last synchronization t. It also implicitly depends on the optimal joint policy

assuming zero communication that the agents have been following since the previous

synchronization, 〈π0
i , π

0
j 〉.
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Definition 25 The Value of Communication (VoC) is the difference between the

expected value when communicating and the expected value for remaining silent.

VoC
(
si, 〈s0

i , s
0
j〉, t

)
=

∑
sj

P (sj|s0
j , t, π

0
j ) [V ∗(si, sj)− C − V (si, sj)] , (6.2)

where P (sj|s0
j , t, π

0
j ) is agent i’s belief about agent j’s current local state, V (si, sj)

is the expected value for following the current local policy, and V ∗(si, sj) − C is the

expected value if the agents communicate now and follow a new zero communication

policy after synchronizing.

The complexity of the VoC depends on the size of the local state space as well as

the number of agents.

Theorem 6 Computing the Value of Communication can be done in time polynomial

in the number of local states and exponential in the number of agents.

Proof. There are four components to computing the VoC that add to the complexity:

• P (sj|s0
j , t, π

0
j ) is the t-step transition function for agent j. Given the assumption

that j will never initiate communication,

P (sj|s0
j , t, π

0
j ) =

∑
s′
j

P (s′j|s0
j , t− 1, π0

j )P (sj|sj, π
0
j ). (6.3)

This takes O(|Sj|) if the values from t− 1 were cached from a previous call to

VoC and O(|Sj|2) to compute from scratch.

• V (si, sj) and V ∗(si, sj) are both expected values (see Definition 24). The only

difference is that they assume different domain-level policies. With dynamic

programming they can be solved in time polynomial in the number of world

states, which is exponential in the number of agents, O(|Si|n).
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• The difficult part of computing the VoC is finding the new optimal joint policy

with no communication for the different possible world states. I observed that

the CSA does not need to be run in its entirety each time. Instead, most of

the computation can be cached and only the final step of the algorithm must

be rerun for each world state. That step involves searching through a small

set of policies for each agent for the optimal joint policy. This step takes time

exponential in the number of agents.

• When there are n > 2 agents the summation in the VoC is over all possible local

states of the other agents. The loop, therefore, must be repeated O(|Sj|n−1)

times. However, it is useful to note that V ∗(si, sj)−V (si, sj) ≥ 0 and therefore

the summation can terminate as soon as it becomes greater than C instead of

looping through all possible next states.

The net result is a complexity polynomial in the number of local states for the

agents and exponential in the number of agents.

A final point about the complexity is the number of times VoC must be executed

to generate the joint communication policy. While the worst case appears to be quite

large, O(n|S|n+2), in practice it is not nearly that bad. The reason is that many of

the combinations of variables are not reachable. For example, if communication is

frequent, then the time since the last communication, t, will remain low. If commu-

nication is infrequent then the number of reachable synchronized world states 〈s0
i , s

0
j〉

remains low because the world state is only synchronized through communicating.

Additionally, there will be substantial overlap in computation between calls to VoC

and caching can greatly reduce the running time in practice.

6.4 Implications of the Myopic Assumption

The myopic assumption allows a simple, straightforward computation of the value

of communication. While this may be a good assumption for the single agent case,
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Figure 6.2. A simple example that illustrates how a simple model for the other
agent introduces error.

there are additional implications that may not be readily apparent in a multi-agent

setting. I examine these implications by identifying and analyzing two sources of

error in the basic myopic approach, and for each I illustrate it with a simple example.

6.4.1 Modelling the Other Agents

The Basic myopic approach (Definition 25) assumes the simplest of models for

the other agents–they never initiate communication. However, since every agent is

following a communication policy based on computing the value of communication

this is an inaccurate model. The first implication of an accurate model of the other

agents is that not communicating itself becomes a form of communication. The

distribution of states agent j can be in after t steps, P (sj|s0
j , t, π

0
j ), changes because

j is known to not have passed through states in which it would have communicated.

The second implication is that at the current step, agent i may not need to initiate

communication to acquire valuable information from agent j if j is already planning

to initiate if it has the information. Figure 6.2 illustrates this with a simple example

where agent 1 collects information valuable to agent 2. At site 1, agent 1 has an equal

chance of collecting an A or a B. If both agents collect A’s or B’s the system receives

reward 10. The system also receives a reward of 1 every time class C is collected. α1

is the communication point of interest.

The initial zero-communication policy is for agent 2 to collect data from site 2.

The only reason to communicate is if agent 1 collects a B, agent 2 needs to change
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Figure 6.3. Performance comparison of the Basic and Model approaches.

its policy to go to site 3. Based on the initial policy, 50% of the time the agents

will receive the maximum reward of 12 and 50% the minimum reward of 2. When

agent 1 collects a B, its VoC = −C + 1.0[12 − 2] = −C + 10. As long as the cost

C < 10, agent 1 will initiate communication. Agent 2 does not know what agent 1

has collected, so its VoC = −C + 0.5[12− 12] + 0.5[12− 2] = −C + 5. When the cost

of communication C < 5 agent 2 will communicate because its VoC > 0. Half of the

time this communication is unnecessary because agent 1 had collected an A. When

C ≥ 5 it is no longer valuable for agent 2 to initiate the communication and their

communication policies are optimal.

The Basic line in Figure 6.3 shows the performance of the basic myopic strategy.

As the cost of communication increases from 4.5 to 5 it exhibits a jump in value. This

undesirable behavior is caused by error introduced into the VoC by not accounting for

the other agent’s communication policy. This error can be removed from the approxi-

mation by computing an optimal joint communication policy for each step (assuming

no future communication) instead of an optimal local communication policy.

To compute the optimal joint communication policy for the current step, the

agents must maximize the expected value over all possible world states they could be

in. They do this by creating a table M with rows representing the possible states of
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1
2s  

2
2s  

3
2s  π1c 

 

 VoC 
1
1s  -1 0 -1  no  -2 
2
1s  4 -1 -1  yes  2 
3
1s  -2 -1 1  no  -2 

        

π2c yes no no     
        

VoC 1 -2 -1     
 

Figure 6.4. A Table M showing the expected gain in value for communicating for
each world state.

agent 1 and columns representing states of agent 2 for the current step (see Figure

6.4).1 The elements in the table are the value of communicating in that world state

weighted by the probability that it is the current world state,

Mxy = P
(
sx
1 |s0

1, t, π
0
1

)
P

(
sy
2|s0

2, t, π
0
2

)
[V ∗ (sx

1 , s
y
2)− C − V (sx

1 , s
y
2)] (6.4)

The Basic approach (π1c and π2c in Figure 6.4) represents building a communica-

tion policy for each agent by checking if the sum of a row or column is greater than 0.

This strategy double counts certain elements in the table and can result in choosing

a communication policy worse than not communicating at all! The expected value

of a joint communication policy for one step is the sum of all entries in the table

where communication happens (an entry is only counted once, even if both agents

initiate communication). In the example table, the Basic policy given has a value of

-1 (sum of the bold entries) because the valuable state M2,1 was counted twice for

determining the policies (once for each policy), but only once for determining the

value of the table. If agent 2 did not communicate in s1 then the value would be 2.

Never communicating (πic = {no, no, no}) will always have a value of 0.

1This table does not correspond to the problem in Figures 6.2 and 6.3.
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The optimal joint communication policy is the joint policy that maximizes the

value of this table. Finding the optimal joint policy is exponential in the size of the

table, while a simple hill-climbing algorithm can find a Nash equilibrium in polynomial

time. The line labeled Model in Figure 6.3 optimizes this table to eliminate the error,

resulting in the optimal policy for this example.

Creating the table costs no more than the original approach since each entry

represents a reachable world state.

6.4.2 Myopic View of the Future

The second facet of the myopic assumption is that no agent will communicate

in the future. This approximates the true value of communication by introducing

error in two ways. The first is due to the greedy nature of the algorithm. When

communicating immediately has a positive value, VoC > 0, the agent communicates

without considering whether the expected value would be even higher if it waited to

communicate until a future step. To compensate, the agents can compute the value

of (possibly) communicating after a 1-step delay:

VoCdelay

(
si, 〈s0

i , s
0
j〉, t

)
=

∑
s′
i

P (s′i|si, π
0
i )×max

(
0, VoC

(
s′i, 〈s0

i , s
0
j〉, t + 1

))
.

The agent will initiate communication when its VoC > VoCdelay. This does not imply

that the agent really will initiate communication in the next step because the same

comparison will be made at that time to later steps. As long as the expected value

for delaying one step is greater than the value of communicating immediately, the

agent will delay communication.

Figure 6.5 illustrates this with a simple example. If agent 1 collects A at site 1

then agent 2 should go to site 3, otherwise agent 2 should go to site 4. Similarly with
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Figure 6.5. A simple example that illustrates how delaying communication can
improve the expected value.
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Figure 6.6. The expected value and expected amount of communication as a function
of cost.

agent 2 collecting B at site 2. Like the previous example, two A’s or two B’s have a

reward of 10, and each C adds a reward of 1. α1 and α2 are the two communication

points. The Basic approach will always communicate at both α1 and α2 for low

communication cost (See Figure 6.6). When the cost increases to 0.5, the agents

will only communicate when they have valuable information. Agent 1 will initiate

communication 50% of the time at α1 and agent 2 will 50% of the time at α2, for

a total expected communication of 0.5 + 0.5 = 1.0. The Delay policy, on the other

hand, recognizes that waiting a step is beneficial and will only communicate at α2,

which reduces the communication without decreasing the expected reward, yielding

a higher expected value.

When the cost goes above 1, the Model approach realizes that it is more efficient

to have only one agent initiate communication when it has valuable information. This
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illustrates that the Model and Delay approaches address different sources of error and

neither dominates the other.

A second source of error in the assumption of no future communication is built in

to the policies generated by the CSA. These policies may avoid situations which are

valuable only when close coordination is possible. The optimal solution can exploit

the possibility of future communication, while the domain-level policies generated

here always assume no future communication. When the cost of communication is

high enough, this solution is optimal. It is our belief that as the cost decreases, the

solutions generated by this approach decline in quality compared to optimal. This

source of error can also be partially compensated for by extending the 1-step delay

to consider h-steps into the future.

6.5 Model-Lookahead Approach

This section demonstrates how the Model approach of 6.4.1 and the Delay approach

of 6.4.2 can be merged together and extended to consider further into the future.

The basic idea is an algorithm that makes optimal communication decisions within a

horizon h given fixed domain-level policies based on zero communication.

To start I introduce two new value functions. V h(si, sj) is the expected value of

not communicating in the current step, following an optimal communication policy

for the next h steps, and then not communicating again after h steps. V ∗h(si, sj)−C

is similar but starts with an immediate communication. When the horizon is 0 these

value functions are equivalent to the single-step value functions from Definition 25,

V 0(·) = V (·), V ∗0(·) = V ∗(·).

V h(si, sj) = (6.5)
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∑
s′
i,s

′
j∈Comm

P (s′i|si, π
0
i )P (s′j|sj, π

0
j )

[
R(s′i, s

′
j) + V ∗h−1(s′i, s

′
j)− C

]

+
∑

s′
i,s

′
j∈¬Comm

P (s′i|si, π
0
i )P (s′j|sj, π

0
j )

[
R(s′i, s

′
j) + V h−1(s′i, s

′
j)

]
where R is the sum of the reward functions, R(s′i, s

′
j) = Ri(s

′
i) + Rj(s

′
j) + R(s′i, s

′
j).

Comm is the set of states in which communication will take place. How it is computed

is not clear until I transform the equation. The derivation of Equations 6.5 and 6.6

can be found in Appendix A.

V h(si, sj) = V (si, sj) (6.6)

+
∑

s′
i,s

′
j∈Comm

P (s′i|si, πi)P (s′j|sj, πj)
[
V ∗h−1(s′i, s

′
j)− C − V h−1(s′i, s

′
j)

]

+
∑
s′
i,s

′
j

P (s′i|si, πi)P (s′j|sj, πj)
[
V h−1(s′i, s

′
j)− V (s′i, s

′
j)

]
The agents must find the set of communication states for the next step that

maximizes V h(si, sj). The next step communication policy only affects the second

line of Equation (6.6), which bears a remarkable similarity to Equation (6.4), except

that this is a recursive function. The same table algorithm can be applied to generate

optimal communication policies over the horizon.

Figure 6.7 illustrates the performance of this approach on a larger problem. The

two agents each had a local decision problem with 6 steps and more than 10,000

states. The Model-Lookahead approach performs significantly better than the original

Basic approach and demonstrates a smooth reduction of the expected value as the

cost for communication increases.

Figure 6.8 shows the running time of Model-Lookahead compared to Basic. The

Basic approach took about 11 seconds to generate the entire policy while Model-

Lookahead took 50% longer with a horizon of 0 due to the added cost of finding

the optimal communication policies of the tables. The worst case complexity of

102



Model with Lookahead

9

10

11

12

13

0 1 2 3 4 5

Cost of Communication

Ex
pe

ct
ed

 V
al

ue

Basic
Model-Lookahead

Figure 6.7. Performance of the Model-Lookahead Approach with horizon 2.

Model-Lookahead is exponential in the size of the horizon, but due to caching and the

structure of the problem, in practice this is not always the case. In this example, the

running time started out with an exponential curve but that changed as the horizon

approached the number of steps in the problem.

This approach does have its limitations. Even when the horizon is equal to the

number of steps in the decision problem, the policy generated is not the optimal joint

policy. This is because the domain-level actions taken by the agents are generated

assuming no future communication. This is effectively a horizon of 0 for choosing

domain-level actions. Future work will include extending this algorithm to a larger

domain-level action horizon.

6.6 Summary

This chapter addresses the problem of choosing when to communicate in a multi-

agent system. I formulate a condition for communication based on the value of

information. The standard assumption used to efficiently generate communication

policies is that communication is only possible at the present time. This is based on

the myopic assumption from information value theory.
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Figure 6.8. Comparison of the time to compute the policy for the Basic approach
versus the Model-Lookahead approach of various depths.

I show how to generate optimal joint policies under the myopic communication

assumption. I also examine the implications of the assumption and show that it can

lead to poor agent behavior. I identify two sources of error and provide modifications

to the original algorithm to address these problems. Together, these modifications

result in an improved algorithm for generating a decentralized joint policy. Moreover,

the computational overhead of our modifications is small compared to the original

algorithm, for a small horizon, and increasing the horizon adds flexibility in the

tradeoff between solution quality and computation time.

While the sources of error that I identify and the general approach to addressing

them are common to many multi-agent systems, the equations and specific algorithms

I present do rely on certain structure being present in the problem. The key struc-

ture in the model that reduces the complexity to NP-complete is the synchronizing

communication protocol. Without this, the agents must remember the entire history

of communication to make correct decisions, which results in an exponential increase

in the size of the policies and a doubly-exponential increase in the solution time.

There are two components that together allow the use of synchronizing communi-

cation as an exact model. First is the fixed cost of communication. If the agents can
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send partial state information at a reduced cost then the optimal solution may include

communication that does not synchronize the agents’ view of the world. Second is

the transition and observation independence between the domain-level actions. If the

agents are able to take domain-level actions that affect the observations or transitions

of another agent then the agents have a form of implicit communication and must

memorize the history to make correct decisions.

If a problem does not have synchronizing communication it can be added and the

algorithm presented here can be used as an approximation. I also hope that identifying

the sources of error common to many myopic approaches and the general approach I

took to address them will help others design better communication algorithms.
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CHAPTER 7

CONCLUSION

Cooperative multi-agent systems play an important role in solving many types

of problems. However, the complexity inherent to problems with a decentralized

view of the world have led researchers to focus on ways to approximate both the

representation of the space of coordination behaviors and the search through those

behaviors. These approximate approaches have shown themselves capable of handling

large real-world problems, but evaluating the quality of the solution is often difficult

and frequently relies on comparisons to other approximate solutions.

Recently, a number of researchers have been looking at the success of formal,

decision-theoretic models in single agent systems like the Markov Decision Process

(MDP) and are attempting to migrate those ideas to systems with two or more

agents. The major advantage of the decision-theoretic models is that they have the

potential to lead to significantly better solutions due to both a much more accurate

representation of the space of coordination behaviors and because the solutions are

quantitatively represented and searched as an optimization problem.

Within the multi-agent decision-theoretic community, the research has been in

two primary directions. On one side is a direct attempt to extend the MDP to

multiple agents. A classic example of this is the Multi-agent Markov Decision Process

(MMDP). The assumption used in the MMDP is that each agent observes the entire

state of the world. Solving this problem is no more difficult than solving an MDP, but

it has the disadvantage of being restricted to solving only fully observable problems

or problems with free communication.
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The other direction uses the much more general assumption that each agent does

not have complete knowledge of the world state. This is more of an extension of

Partially Observable Markov Decision Processes (POMDPs) to multiple agents, and

the many models in this area are collectively known as distributed POMDPs. This

assumption is much more widely applicable to multi-agent systems, but it also signif-

icantly increases the complexity of finding an optimal solution, NEXP-complete.

These two dichotomies (approximate vs. decision-theoretic, and fully observable

vs. partially observable) are central to understanding the importance of this work.

Most of the existing work is found at the extremes of these dichotomies. Heuristic

models have the advantage of being easily solved and widely applicable but at the cost

of no guarantee on the quality of the solution. The decision-theoretic models often

have quality guarantees, but the fully observable models are not widely applicable

and the partially observable models are not tractable. The work presented in this

dissertation identified several models and algorithms that fall in the middle of these

dichotomies and incorporate some of the advantages of each.

The first class of problems I presented is called Transition Independent DEC-MDP

(TI-DEC-MDP). This problem is more general than the MMDP because the agents

have different and incomplete views of the world. It is also more specific than the

DEC-MDP because the interaction between the agents is only through the reward

function. The complexity of problems in this class is NP-complete, which is also

harder than the MMDP but much easier than the general DEC-MDP. This model

naturally represents information collecting problems where the agents do not directly

interact, but collect information whose value could be complementary or redundant.

I also investigated other types of interactions between agents. Instead of allowing

the agents to interact through the reward function, the agents interact through the

transition function using a mechanism I call event-driven interactions. The global

reward being maximized is just the sum of the rewards accumulated by each agent
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individually, but the actions taken by one agent can affect actions taken by another

agent. For example, one rover may carry equipment needed by another and it could

deposit the equipment at a prespecified location. The other rover can detect the

existence of the equipment when it arrives at that location. This model is called

Decentralized MDPs with Event-Driven Interactions.

Identifying a class of problems by itself is not useful unless there exists a good

algorithm to find solutions. To this end, I developed an algorithm called the Coverage

Set Algorithm (CSA), which returns an optimal solution to the TI-DEC-MDP and

the DEC-MDP with Event Driven Interactions. A simple hill-climbing algorithm for

these types of problems would converge to a local maxima. The CSA gets around this

problem by efficiently searching for all of the local maxima. In general, the number of

local maxima is significantly fewer than the number of policies so the algorithm can

prune a majority of the policies. The algorithm can also return the best of the local

maxima found at any point, making it an anytime algorithm. It has performed very

well in experimental work both as an exact algorithm and as an anytime solution.

Neither of the two models I have discussed allow a general form of communication

between the agents. This is because finding optimal solutions with communication

is significantly more difficult than without, even though certain communication pro-

tocols have the same worst-case complexity. I extended the TI-DEC-MDP to allow

communication between the agents. I then illustrated how the common myopic as-

sumptions used to deal with communication can lead to undesirable behavior in the

agents. Finally, I presented a new algorithm that addressed these sources of error

and produced significantly better results. This new algorithm finds the optimal com-

munication policy for fixed domain-level policies.

The work presented here affects the state-of-the-art in multi-agent systems in four

primary ways. First, the three classes of problems expand the body of knowledge

about multi-agent systems in an area that is currently quite scarce. It identifies
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structure in many real multi-agent problems that can be exploited to reduce the

complexity of finding optimal solutions, for example the transition and observation

independence in Chapter 3. It also grounds problems that were previously solved

heuristically in a more formal decision-theoretic framework.

The second effect is that the Coverage Set Algorithm is one of the first practical

algorithms to solve optimally a general class of decentralized multi-agent systems.

This leads the way for new and innovative solutions for optimal control of multiple

agents. Chapter 4.6 shows the results of running the CSA on 600 problems that could

not be solved with any other algorithm. 85% of these problems took less than four

hours to solve.

The third impact this work will have is to further the work on approximation

algorithms for multi-agent systems. While all heuristic algorithms for multi-agent

systems are approximations, approximate algorithms grounded in decision theory are

quite new and have the potential to significantly outperform the ad-hoc, heuristic

ones. However, very few existing approximate algorithms for multi-agent systems

provide any guarantees on the solution outcome. The CSA has the distinction of

guaranteeing convergence on the optimal solution.

Finally, I presented an analysis of two ways a myopic assumption commonly used

to deal with communication can negatively affect the agents’ behavior. The Model-

Lookahead algorithm I presented in Chapter 6 to address those errors finds the optimal

communication policy given a fixed domain policy over a fixed horizon. This is the

first algorithm that can efficiently find optimal communication policies for problems

of this size and complexity. My experimental results show that in some cases it can

provide a significant improvement in solution quality without also taking significantly

longer to compute.

There are a number of interesting future directions I plan to pursue with this

work. First, I presented two different algorithms, one that finds optimal domain
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policies given no communication and another to find optimal communication policies

given fixed domain policies. Ideally, these two algorithms could be merged to find

globally optimal domain and communication policies, though a way to do that is not

immediately apparent. A first step may be to extend the CSA to allow arbitrary

communication policies instead of restricting it to no communication.

It is also time to start generating a testbed of problems designed to facilitate

comparing the various optimal and approximate distributed POMDP algorithms.

This testbed should include a range of problem types from transition and observation

independent, to structured agent interactions like event driven interactions, to general

distributed POMDPs that are not the topic of this dissertation. It should also include

a range of problem sizes, from toy problems just small enough to solve optimally

(perhaps with weeks of processing) to real-world sized problems with no hope of an

optimal solution to compare to.

There are two comparisons that are particularly interesting to pursue. First is

the recent work by Nair et al. [52] on Networked Distributed POMDPs. In that

work they present an approximate algorithm that combines their distributed POMDP

algorithm JESP with a DCOP algorithm. They also present an optimal algorithm that

essentially performs brute force policy search. It would be interesting to implement

and compare the CSA/DCOP combination mentioned in Chapter 4 to their approach.

The second comparison is the Model-Lookahead method of generating communi-

cation policies to work done by Xuan et al. [77, 78]. These approaches tackle the

problem from different perspectives. Model-Lookahead starts with no communication

and adds it in, while they start with complete communication and pare it down. My

sense is that these two approaches will each perform better on problems where the

globally optimal solution is closer to their starting points.

Perhaps the best use of distributed POMDPs in real world problems will come

from a merger with the more traditional approaches. In a hybrid system the tra-
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ditional approaches can handle the high complexity of the real world problem and

the distributed POMDPs can be used to optimize a small yet critical piece of the

whole. Existing frameworks like GPGP/TAEMS [41] and STEAM [69] already use

MDPs to optimize components of the coordination process, and RMTDP [49] mixes a

BDI approach with POMDPs. Perhaps these models can be extended to incorporate

distributed, decision-theoretic components to improve their performance.
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APPENDIX

DERIVING THE MODEL-LOOKAHEAD EQUATION

This Appendix shows how Equation 6.6 was derived. This is for two agents, i and

j. The current local states for the agents are si and sj. I always use s′i and s′j for

the next states. The previous synchronized world state is 〈s0
i , s

0
j〉, which happened

t steps earlier. When the agents communicate in si, sj, the new synchronized world

state becomes 〈si, sj〉, and t = 0. The agents take domain-level actions based on an

optimal policy assuming no future communication, 〈π〈s
0
i , s

0
j〉

i , π
〈s0

i , s
0
j〉

j 〉. C is the cost for

communicating. Comm′ is the set of world states in which the agents will communi-

cate. I will mention how this is computed at the end.

The global value function assuming no communication is:

V (si, sj, 〈s0
i , s

0
j〉, t) =

∑
s′
i,s

′
j

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

i )
[
Ri(s

′
i) + Rj(s

′
j) + R(s′i, s

′
j) + V (s′i, s

′
j, 〈s0

i , s
0
j〉, t + 1)

]

Note: The derivation is the same if you include a discount factor.

A superscript next to V represents the horizon in which communication is consid-

ered:

• V 0(si, sj, 〈s0
i , s

0
j〉, t) is the expected value of never communicating.

• V 0(si, sj, 〈si, sj〉, 0) − C is the expected value of communicating immediately

and never again.
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• V 1(si, sj, 〈s0
i , s

0
j〉, t) is the expected value of not communicating in the current

step, allowing communication if appropriate in the next step, and never com-

municating after the next step.

• V 1(si, sj, 〈si, sj〉, 0)−C is the expected value of communicating immediately, al-

lowing communication if appropriate in the next step, and never communicating

after the next step.

• V h(si, sj, 〈s0
i , s

0
j〉, t) is the expected value of not communicating in the current

step, allowing communication where appropriate for the next h steps, and never

communicating after that.

• V h(si, sj, 〈si, sj〉, 0) − C is the expected value of communicating immediately,

allowing communication where appropriate for the next h steps, and never com-

municating after that.

I will give an inductive definition of the value allowing communication over a

horizon. First is the base case, h = 0. V 0(si, sj, 〈s0
i , s

0
j〉, t) = V (si, sj, 〈s0

i , s
0
j〉, t). This

is just the global value function defined above.

Assume that V h−1(si, sj, 〈s0
i , s

0
j〉, t) is the expected value of not communicating

in the current step, allowing communication for the next h − 1 steps, and never

communicating after that. Also assume that V h−1(si, sj, 〈si, sj〉, 0)−C is the expected

value of communicating immediately, allowing communication for the next h−1 steps,

and never communicating after that.

To compute V h(·) we divide the next possible world states into two categories,

those in which the agents would choose to communicate, Comm′, and those in which

they would not, ¬Comm′. For both cases, it is the sum of the probability that the

agents transition to that world state times the immediate rewards plus the expected

value allowing future communication up to the original horizon.
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V h(si, sj, 〈s0
i , s

0
j〉, t) =

∑
s′
i,s

′
j∈Comm′

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
Ri(s

′
i) + Rj(s

′
j) + R(s′i, s

′
j) + V h−1(s′i, s

′
j, 〈s′i, s′j〉, 0)− C

]

+
∑

s′
i,s

′
j∈¬Comm′

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
Ri(s

′
i) + Rj(s

′
j) + R(s′i, s

′
j) + V h−1(s′i, s

′
j, 〈s0

i , s
0
j〉, t + 1)

]
.

In the next several steps I transform the equation. First I separate the rewards

from the expected values:

=
∑

s′
i,s

′
j∈Comm′

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
Ri(s

′
i) + Rj(s

′
j) + R(s′i, s

′
j)

]

+
∑

s′
i,s

′
j∈Comm′

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
V h−1(s′i, s

′
j, 〈s′i, s′j〉, 0)− C

]

+
∑

s′
i,s

′
j∈¬Comm′

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
Ri(s

′
i) + Rj(s

′
j) + R(s′i, s

′
j)

]

+
∑

s′
i,s

′
j∈¬Comm′

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
V h−1(s′i, s

′
j, 〈s0

i , s
0
j〉, t + 1)

]
.

Then I combine the rewards and add/subtract two new components, (A.4)/(A.5)

and (A.6)/(A.7):

=
∑
s′
i,s

′
j

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
Ri(s

′
i) + Rj(s

′
j) + R(s′i, s

′
j)

]
(A.1)

+
∑

s′
i,s

′
j∈Comm′

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
V h−1(s′i, s

′
j, 〈s′i, s′j〉, 0)− C

]
(A.2)
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+
∑

s′
i,s

′
j∈¬Comm′

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
V h−1(s′i, s

′
j, 〈s0

i , s
0
j〉, t + 1)

]
(A.3)

+
∑
s′
i,s

′
j

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
V (s′i, s

′
j, 〈s0

i , s
0
j〉, t + 1)

]
(A.4)

−
∑
s′
i,s

′
j

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
V (s′i, s

′
j, 〈s0

i , s
0
j〉, t + 1)

]
(A.5)

+
∑

s′
i,s

′
j∈Comm′

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
V h−1(s′i, s

′
j, 〈s0

i , s
0
j〉, t + 1)

]
(A.6)

−
∑

s′
i,s

′
j∈Comm′

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
V h−1(s′i, s

′
j, 〈s0

i , s
0
j〉, t + 1)

]
. (A.7)

Next I combine (A.1) with (A.4), (A.2) with (A.7), and (A.3) with (A.6) and then

with (A.5):

=
∑
s′
i,s

′
j

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
Ri(s

′
i) + Rj(s

′
j) + R(s′i, s

′
j) + V (s′i, s

′
j, 〈s0

i , s
0
j〉, t + 1)

]
(A.8)

+
∑

s′
i,s

′
j∈Comm′

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
V h−1(s′i, s

′
j, 〈s′i, s′j〉, 0)− C − V h−1(s′i, s

′
j, 〈s0

i , s
0
j〉, t + 1)

]

∑
s′
i,s

′
j

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
V h−1(s′i, s

′
j, 〈s0

i , s
0
j〉, t + 1)− V (s′i, s

′
j, 〈s0

i , s
0
j〉, t + 1)

]

Line (A.8) is simply the expected value with zero communication.

= V (si, sj, 〈s0
i , s

0
j〉, t) (A.9)

+
∑

s′
i,s

′
j∈Comm′

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
V h−1(s′i, s

′
j, 〈s′i, s′j〉, 0)− C − V h−1(s′i, s

′
j, 〈s0

i , s
0
j〉, t + 1)

]
(A.10)

+
∑
s′
i,s

′
j

P (s′i|si, π
〈s0

i , s
0
j〉

i )P (s′j|sj, π
〈s0

i , s
0
j〉

j )
[
V h−1(s′i, s

′
j, 〈s0

i , s
0
j〉, t + 1)− V (s′i, s

′
j, 〈s0

i , s
0
j〉, t + 1)

]
(A.11)
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This is Equation 6.6. I transformed the equation in this way because it is much

easier to use. This transformed equation also demonstrates how to compute the

communication policy for the next step. We want to find a joint communication

policy for the next step that maximizes this value function. Lines (A.9) and (A.11)

do not depend on the communication policy for the next step, so we just need to

maximize line (A.10). This is what the Model approach does.
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