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Preface

Since my first encounter with a computer, | was fascinated by the possibility of writing programs that could
really “think.” A few weeks after my first BASIC lesson, | remember writing programs that could play and
win simple games such as Nim and Mastermind. But those programs did not think. They were designed to
follow awinning strategy that could be calculated by a simple formula. The computer’s fast information
retrieval and speed of computationwere asubstitutefor thinking and left open the question of how to devel op
aprogram that could truly reason about its domain.

Years later, when | joined the Ph.D. program at Berkeley, | knew that my research was going to
beinthe area of automated reasoning. Believing that the answer to thisfundamental problem lay within the
realm of mathematical logic, | started ajourney, in the words of Leibnitz, into “the universal agebra of al
knowledge.” Gradually however, it became apparent to me that logic, as attractive and elegant as it may
seem, cannot capture the richness of practical reasoning. Practical reasoning is approximate, is resource
bounded, and is interruptible. Logical reasoning is precise, is intractable, and is non-interruptible. 1 also
found that classical decision theory that better deals with reasoning under uncertainty does not address
adequately the problem of practical reasoning.

Whileat Berkeley, | became familiar with thework of Stuart Russell and Eric Wefald on principles
of meta-reasoning. Thiswork offered a new framework for automated reasoning that addressed the problem
of limited computational resources. It suggested, likel. J. Good before, that practical reasoning should be
based on a certain kind of limited rationality that takes into account computational resources. The globa
optimization problem of decision quality, as Herbert Simon claimed in the late 1950's, should be “to find
the least-cost or best-return decision, net of computational costs.” Consequently, | started to work on the
construction of a practical model that would embody these principles. | was convinced that additional
architectural restrictions must be made before the principle could be put into efficient use.

Thework of Tom Dean and his students on time dependent planning triggered my inquiry into the
possibility of building large real-time decision making systems using anytime algorithms. | suggested that
building decision systems from anytime modules could be the architectural constraint. | felt that anytime
algorithms offered the flexibility needed to construct a general and practical model of limited rationality.
Anytime algorithms, or more generally, approximate agorithms, are as old as computer programming.
However, it was not until the late 1980's that it was suggested that decision-theoretic control of anytime
algorithms could be used for optimizing real-time problem solving. Thisidea, that met with considerable
initial skepticism, has now been embraced by the artificial intelligence community.

My centra research goal has been to bridge the gap between the simple task of developing
elementary anytime algorithms and the complex task of constructing large systems that offer a similar
tradeoff between computation time and quality of results. Thiseffort has culminated in the construction of a
model of “operational rationality.” However, the problem of constructing programsthat can really think still
remains. Intelligencetoday is still achieved largely by design, not by autonomous learning and adaptation.
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From my early naive attempts to make computers think, | have grown to appreciate the true complexity of
thistask. Now | find that it is precisely that complexity which stimulates me to continue this research.
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Chapter 1

| ntroduction

If the human brain was so simple that we could understand it, then we would be so simple that
we could not.

L. Watson

How can an artificial agent® react to a situation after performing the “right” amount of thinking? In
this dissertation | develop a theoretical framework and a new programming paradigm that provide the
answer to this question. The key component of the solution is the replacement of standard modules of a
program by more flexible computation elements that are called anytime algorithms [Dean and Boddy, 1988;
Horvitz, 1987]. In addition, the model includes an off-line compilation process and a run-time monitoring
component that guarantee that the agent i sperforming the right amount of thinkingin awell-defined, rigorous
sense.

1.1 Thecost of deliberation

Agents must limit the amount of thinking or deliberation since thinking has a cost associated with it. The
overall performance of artificial agents can be improved by control of deliberation time. Two factors
determine the cost of deliberation: the resources consumed by the process, primarily computation time,
and constant change in the environment that may decrease the relevance of the outcome and hence reduce
itsvaue. In artificial agent construction, the cost of deliberation can be drastically reduced if the agent’s
reaction to any possiblesituation can be calculated and stored in atable. Theresult isareactive agent whose
behavior is determined by the state of the environment and a relatively fast look-up operation in a table.
Asl arguein Section 2.1, this architecture is not redlistic for situationsin which a robot is performing any
“interesting” task in areal, physical environment. The size of the table required to guide the robot would be
enormous, too large to construct or store using any modern computer. | therefore assume that an agent must
perform some real-time problem solving and explicit deliberation, and is therefore a deliber ate agent.

An important aspect of intelligence, traditionally ignored in the development of artificial agents,
isthe capability of the agent to factor the cost of deliberation into the deliberation process. People do it al
thetime. When one plansatrip to Japan, for example, the plan isnot likely to include a specific action to be

! An agent can be thought of as a robot situated in a particular environment and capable of translating perceptual input into
actionsthat bring about a desired state. The notion of an artificial agent is defined and discussed in more detail in Chapter 3.
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taken in case the Shinkansen train from Tokyo to Osakais canceled. This possibility isnot part of the plan
becauseit isvery unlikely to happen given one's prior knowledge of trainsin Japan. Yet, itisnot impossible.
However the time needed to plan an alternative action can be better utilized. Obviously, a plan that includes
an aternative action for any possible problem is a better plan. 1t may help the agent reach the destination
faster in case of an unexpected event. However, if one tries to consider the range of all possible problems
that may occur on the trip, one would have to stay at home and plan forever. My primary research goal has
been to formalize an efficient model in which the tradeoff between continued deliberation and commitment
to action can be analyzed. Most people use common sense in order to decide on the “appropriate’” amount
of deliberation. Unfortunately, common sense reasoning isnot awell understood process. In order to enable
artificial agents to handle this problem, | develop in this dissertation a model that specifies the type of
knowledge and reasoning procedures that can mechanize and optimize this process.

The capability of a system to reason about its own decision-making component in order to
estimate the value of continued deliberation has been generally referred to as meta-reasoning [Batali, 1986;
Davis, 1980; Dean and Boddy, 1988; Doyle, 1988; Genesereth, 1983; Horvitz, 1987; Russell and Wefald,
1989b]. Meta-reasoning, or reasoning about reasoning, can be used in various ways in order to improve
the performance of a system: by selecting the most appropriate base level reasoning procedure in any
given situation, by controlling a base level search procedure, or by dynamic allocation of computational
resourcesto competing computation sequences. Inthemodel devel opedinthisdissertation, ameta-reasoning
component was devel oped for the purpose of controlling the deliberation time of the flexible components of
the base level.

1.2 Rationality in artificial agents

The search for a precise definition to the notion of “the right amount of thinking” leads naturally to the
theory of rational choice. The notion of rationality has been widely discussed in philosophy, economics and
artificial intelligence. In my work, | have used the decisi on-theoretic notion of rationality where probahilistic
information about the possi bl eoutcomes of actionstogether with knowledge on the payoffs of these outcomes
are used in order to make the best decision in terms of expected payoff. To compute the expected payoff,
decision theory uses utility functions that specify the desirability of certain configurations of the world.
The relationship between the given utility function and the behavior of the agent is the key question. Any
method used by the agent that suggeststhe “right action” to do, so as to maximize the utility function, can be
considered as atype of rationality. In thisdissertation | show how amodel based on compilation of anytime
algorithms can be used in order to successfully implement a certain kind of limited rationality. | aso show
that the alternative views of rationality as abasis for agent construction are ill-defined, unrealistic, or both.

1.2.1 Thefailureof classical decision theory

The notion of rationality that | usein this dissertation stems from the pioneering work of von Neumann and
Morgenstern [1947]. Thiswork laid the foundation of what is called statistical decision theory. According
to this theory, an agent faced with a choice of performing one out of several possible actions would select
the action that maximizes the expected payoff. In other words, the agent would select the action that is most
likely to transform the state of the world into a highly desired state according to the its utility function. An
agent that performs actions that satisfy thistheory is a perfectly rational agent. Since the theory alows for
uncertainty concerning the outcome of each action, a perfectly rational agent may reach undesirable states,
but in the long run, it would outperform any other agent in maximizing the utility function.
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Asattractive asit may seem, classical decision theory fails when used as the basic mechanism for
implementing an artificial agent. It suffers from the foll owing weaknesses:

1. Ignoring the cost of deliberation. Perfect rationality requires optimal decision making in virtualy no
time since, among other reasons, the world is changing while the agent is computing its next action.
Inaction causes loss of utility. By assuming a static world that is “waiting” for the agent to make its
optimal decision, the theory ignores amajor aspect of any realistic domain.

2. Exhaustive evaluation of all possible outcomes. Classical decision theory is based on exhaustive
evaluation of all the possible outcomes of all actions. Thisrequiresalot of unnecessary computation.
It is enough to establish the fact that one action is superior to all others without exact evaluation of
all the alternatives. Exhaustive consideration of all the possible outcomes is not only inefficient but
computationally impossible.

3. Optimizingindividual actions. Sincethe overall performance of theagent isimportant, not the outcome
of each individual action, it may be necessary to optimize over all possible sequences of actions over
acertain period of time. However, applying classical decision theory to sequences of actionsis too
complicated. The size of the decision tree grows exponentially and it cannot be completely evaluated
in any reasonable time.

4. Learning and exploration. An important aspect of any intelligent agent is the capability to improve
its performance component by learning and exploration. The utility of learning is hard to determine
in advance. Past experience can be used to estimate the effect of learning on performance. However
the objective of exploration and learning is to improve the agent and transform it into a new, better
system whose exact characteristics cannot be known in advance. The effect of learning may not be
noticeableimmediately, but rather in thelong run. Therefore, it ishard to characterize the desirability
of learning and exploration and to maintain the notion of perfect rationality.

As aresult of these weaknesses, perfect rationality requires an agent that follows a precal culated
optimal strategy?. It also requires that the agent retrieves the appropriate decision instantaneously. Unfor-
tunately, due to the computational limits of the designer and his imperfect knowledge, the requirement to
equip the agent with a perfect strategy is too strong and unrealistic. Therefore, artificial agents cannot be
perfectly rational. They cannot manifest the best possible behavior even in relatively simple domains such
as chess playing.

Thefailure of classical decisiontheory led the statistician|. J. Good [1971] to distinguish between
perfect rationality, which he called “typel” rationality, and “type 1" rationality which acknowledgesthe fact
that the agent must deliberate before it can act. Thistype of rationality requires that the agent maximize its
expected utility, taking into account the cost of deliberation. Similarly, referring to the problem of rational
decision making in the field of economics, Simon [1976] says that: “The global optimization problemis to
find the least-cost or best-return decision, net of computational costs.” But neither Good nor Simon tell us
how to achieve typell rationality. Moreover, whiletype Il rationality may be a more realistic goal, it does
not offer any simplification of the problem. In away, type Il rationdlity is simply more general and would
produce type | rationality if the computational power available to the agent is unlimited. Hence, achieving
type Il rationality is an even harder task.

%In some competitive environments it can be shown that no optimal strategies exist. However we restrict the discussion to a
single agent operating in a non-competitive environment.
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A number of researchers in Al have addressed the problem of deliberation cost by suggesting
various techniques that take into account the actual computational power of the agent. These techniques
are generally referred to as “limited” or “bounded” rationality. While perfectly rational agents cannot
be constructed at all, limited rationality can be constructed in principle. Just imagine al the possible
implementations of agents by programming a given machine. One of them must be superior to all the others
in maximizing the utility function and istherefore the desired implementation. However, direct construction
of such an optimal agent isimpossible under standard computer architectures since it transfers the problem
into the design level and requires that the designer have infinite resources of computation. Consider, for
example, a program that can play chess better than any other computer program or human being. Istherea
way to effectively check whether the program is or is not the best possible, given the machine capabilities?
If the program is modified so that one subroutine is running faster, is the latter program more “rationa”
just because of that? The conclusion is that even bounded rationality cannot be achieved in practice or
even be verified. Beside computational power, additional architectural constraints must be assumed before
a practical approach to rationality can be devel oped.

More recently, Russell, Subramanian and Parr proposed a definition of bounded optimality as
a property of programs that govern the behavior of an agent given a computational device and a certain
environment. To have this property, the expected utility of the program running on the device in the
environment must be at least as high as that of al other programs. For arestricted class of programs, that
consists of a sequence of decision procedures, a construction agorithm is proved to generate a bounded
optimal program. Russell, Subramanian and Parr acknowledge that the strict notion of bounded optimality
may be too strong to allow many interesting, general resultsto be obtained. Hence they suggest, just asin
complexity theory, to replace bounded optimality by asymptotic bounded optimality. Thelatter case requires
that the program just needs a faster machine to be as good as the best possible program on arbitrarily hard
problems.

Another approach to bounded rationality is based on a meta-reasoning that treats computations
as internal actions [Russell and Wefald, 1989b], as opposed to external actions that correspond to actual
interaction with the environment. According to this approach, the agent spends some time on estimating
the expected value of aternative computations. It then performs the best computation, provided that the
expected value of this computation exceedsits cost. If there is no such computation the algorithm suggests
the current best action based on previous computations. The evaluation of alternative computationsis an
internal problem that is solved in the same way using meta-meta-reasoning. The difficulty with such a
uniform meta-level architectureisthat any attempt to maximize the expected utility of the agent leadsto an
infinite regress problem [Batali, 1986; Doyle, 1988; Russell and Wefald, 1989b]. This problem arises as a
result of optimizing a process that involves self-reference and recursive eval uation of internal computations
without any justified way to truncate this recursive process and maintain overall optimality. However,
limiting the number of meta-levelscan be accepted asareasonablearchitectural constraint. Infact, anumber
of applicationsof this approach, that assume a single meta-level layer, have been devel oped.

Finally, an important technique that simplifies the control of deliberation time is based on any-
time [Dean and Boddy, 1988] or flexible [Horvitz, 1987] algorithms. To summarize its benefits, Figure 1.1
(based on [Russell and Wefald, 1991]) illustrates the differences between three alternative decision proce-
dures. It showsthe decision quality as a function of time for each method. In this particular example, the
decision quality measures the effect the decision would have on the utility of the agent if applied at the
current state. An idea decision procedure yields maximal quality in no time. Hence, it isillustrated by
a step function that rises to maximal quality at ¢ = 0. Traditional decision procedures are either quality
maximizing or time minimizing. That is, they either produce the maximal quality after a certain time or
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Figure 1.1: Idedl, traditional, and anytime decision procedures

produce an acceptable decision as fast as possible. The former case is illustrated by a step function that
rises to maximal quality at a certain timet > 0. Unfortunately, by that time the decision may have little
value due to change in the environment. The time cost function describes the expected loss of utility as a
function of time in the absence of adecision. In this example, the traditional decision procedure returnsits
result at a point where the time cost is very high, hence its comprehensive value is negative. Finaly, an
anytime decision procedure can generate sub-optimal decisionswhaose quality improvesas computationtime
increases. When the value of these decisions is combined with the cost of time, an optimal time allocation
can be determined that maximizes the comprehensive value.

It will become apparent to the reader hereinafter that the above description is somewhat oversim-
plified. The cost of timeis not so easily determined and may not be separable from the characteristics of
the decision procedure itself. However, the figure illustrates the main features of the three methods and the
motivation for anytime computation.

1.2.2 Operational rationality

In the face of theoretical and practical limitations in implementing both Type | and Type Il rationdlity, |
suggest amorerestricted, realisticmodel of rationality. Themodel isbased on optimizing resource allocation
toanytimealgorithms. In thistypeof rationality, the performance components of the agent are determined by
the designer of the system and are not themsel ves subject to the run-time optimization process. Optimization
isonly applied at the meta-level to control the deliberation time of the base-level performance components.
Hence | proposethe following definition:

Definition 1.1 An agent issaid to be operationally rational if it optimizesthe allocation of resourcesto its
performance components so as to maximizeits overall expected utility in a particular domain.

Operational rationality separates two, central aspects of agent construction: the devel opment of the perfor-
mance componentsand the optimi zation of performance. 1t makes algorithm devel opment adesignissue, not
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arun-timeissue. The principles of rationality are applied only at run-time, to control the deliberation time
of the performance components. In alternative approaches to rationality, these two aspects are inseparable.
As aresult, the task of rational agent construction becomes too complex3.

Operational rationality still allows individual agorithmsto be adaptive. The agent can learn and
improve its performance over time. However, the concrete algorithms used and the flow of information
between them are fixed and not part of the agent’s self-optimizing problem.

The definition of operational rationality does not tell us how to achieve it. Many questions are
left open. How can the deliberation time of the performance components be monitored? What types of
knowledgeand reasoning procedures are necessary to control the execution of the performance components?
These questionsform the core of the problem addressed by this dissertation.

1.3 Thesis

This section identifies the fundamental issues addressed by this dissertation. The main part — the thesis
statement — is presented in the form of five claims that will be validated in the remaining chapters.

1.3.1 Historical perspective

By no meanswas decisiontheory thefirst attempt at formalizing therules of reasoning. The mechanization of
thought using formal systemsevolved in the seventeenth century, long before the emergence of modern com-
puters. 1n 1650, the English philosopher, Thomas Hobbes, proposed the ideathat thinkingisacomputational
process, analogousto arithmetic. It was probably the philosopher Gottfried Wilhelm Leibnitz [1646 - 1716]
who envisioned for the first time the complete mechanization of intelligence. Leibnitz* published a book,
Dissertio de arte combinatorica (Leipzig, 1666), in which he expressed his vision of “a universal algebra
by which all knowledge, including moral and metaphysical truths, can some day be brought within asingle
deductivesystem.” It took another two centuriesbefore Gottlob Frege, in what is perhapsthe most important
singlework ever writtenin logic [Frege, 1879], formulated the basis of predicate calculus. Frege described
a system of logic in which derivations are carried out exclusively according to the form of expressions, an
ideathat became the basis of symboliclogic. Shortly after the devel opment of thefirst electronic computers
in the 1940's and 1950's, the founders of Al wrote programs that could perform elementary reasoning tasks,
such as proving simple mathematical theorems and answering simple questions.

But, despite the fact that mathematical logic had aready been well-formalized in the 1930's, it
did not provide an effective framework for knowledge representation and reasoning in practical domains.
Problems such as the intractability of automated theorem proving, the monotonicity of logica reasoning,
and itsinability to deal with uncertainty made it apparent that logic, as attractive and elegant asit may seem,
cannot capture the richness of practical reasoning.

As a result, researchers tried several remedies: limiting knowledge expressibility in order to
increase the efficiency of reasoning [Levesque, 1986]; formulating non-monotonic logics to overcome the
monotonicity problem [Reiter, 1987]; and adding various measures of uncertainty to knowledge [Zadeh,
1975]. Other researchers abandoned logic completely and tried to find alternative representations and
reasoning procedures such as Bayesian Networks [Pearl, 1988]. However, regardless of the method being

3Recall that the problems of program verification and program optimization are intractable. Any type of rationality that requires
solving such problems is therefore impractical.
*See [Gardner, 1968], page 3.
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used, what characterized artificial intelligence research on reasoning and planning systems over the past
three decades was the development of systems whose complexity imposed a severe barrier on the size of
the domains they could handle. From the early development of GPS and STRIPS through TWEAK and
PRODIGY and more recent planning techniques®, systems have been applied mainly to toy-worlds and
could not be scaled up beyond that to handle real-world situations.

1.3.2 Thesis statement

Themodel that | will present in the following chapters has been primarily motivated by the observation that
many Al systems suffer from lack of control over deliberation time. The failure of artificial intelligence
to deliver expandable reasoning and planning systemsis largely due to this problem. In the past, artificial
intelligence systems had little control over the quality of their results and could not explicitly compromise
accuracy in order to perform faster deliberation®. Such compromise, | argue, is essential for any rational
decision making process.

Control of deliberation timeis a key aspect that is missing in most Al systems and that
limit their applicability.

In an effort to overcome the barrier imposed by the complexity of reasoning, | have developed a model for
intelligent control of deliberation. The model has successfully validated the following five claims:

Claim 1. Existence There existsan effective aternativeto traditional algorithms, namely anytime compu-
tation, that offers a tradeoff between deliberation time and quality of results. This claim has been
aready validated by the work of Boddy and Dean, Horvitz, and Russell and Zilberstein in the area of
automated reasoning, aswell as by thework of Lesser, Pavlin and Durfee, Vrbsky, Liu and Smith, and
othersin the area of approximate computation. Thiswork is presented in Chapters 2 and 4.

Claim 2. Feasibility Anytime algorithms can be efficiently constructed using standard programming tech-
niques. This claim has been partly validated by a number of applicationsand is further discussed in
Chapter 4.

Claim 3. Composability The principlesof modularity can be applied to anytime computation. Large real-
time systems can be composed of anytime components. The problem of time allocation within such
systems can be handled by a specia compilation technique. The validation of this claim constitutes
the main contribution of thiswork. It is presented in Chapter 5.

Claim 4. Operational Rationality The performance of an agent composed of anytime agorithms can be
efficiently optimized toyield an operationally rational agent. A meta-reasoner whose domain includes
utility functions, domain descriptions, and performance profiles, can solvethe optimizationtask. This
claim has been partly validated by applications developed by Boddy and Dean that involve a small
number of anytime algorithms. The validity of the claim with respect to large systems composed of
anytime algorithmsis presented in Chapter 6.

5For a survey of artificial intelligence planning systems and techniques see [Hendler et al., 1990].
6 Several exceptionswill be described in Chapter 2.
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Claim 5. Effectiveness Operationa rationality is apowerful model that can effectively simplify the devel-
opment of complex real-time systems. Thisisanimmediateresult of the previous claimsand the major
simplification they introduceinto real-time system construction. Thisissueis discussed in Chapters 8
and 9.

1.4 Achieving operational rationality

This section outlines the model of operationa rationality and the main problems that were raised by its
implementation.

141 Anytimealgorithms, compilation and monitoring

The fundamental property of an operationally rational agent is the capability to vary its deliberation time
according to “time pressure.” In order to achieve this capability, traditional algorithms, whose expected
run-time is normally fixed, must be replaced by more flexible computation modules, namely anytime
algorithms. Anytime a gorithms are algorithms whose quality of resultsimproves gradually as computation
time increases. They introduce a continuous tradeoff between deliberation time and quality of results.
The idea that such a tradeoff can be used in order to optimize the performance of real-time systems was
independently developed by Dean and Boddy [1988], by Horvitz [1987], and by Lin et al. [1987]. In
order to optimally control this degree of freedom, Boddy and Dean [1988] used performance profiles that
characterize the dependency of output quality on run-time. | have extended this performance description by
introducing conditional performance profilesthat give a probabilistic description of the quality of theresults
of an agorithm as afunction of run-time and input quality (or any set of input properties).

Conditiona performance profiles are essential in order to project the effect of performance degra-
dation within a system. Consider, for example, an anytime hierarchical planner whose quality of resultsis
measured by the level of specificity of the plan. Obviously, the specificity of a plan affects its execution
time and hence has influence on the efficiency of the agent. The performance of the planner depends on
two factors: time allocation and the quality of itsinput, that is, the precision of the domain description. The
conditional performance profile of this agorithm describes this dependency.

Some of the first applications of anytime algorithms were introduced by Boddy and Dean [1989]
in solving a path planning problem, and by Horvitz [1987] in real-time decision making in the health care
domain. TheAl community reacted to thiswork with consi derable skepticism, partly because of thedifficulty
of building large systems using anytime modules. In thisdissertation | will introduce techniquesthat extend
the use of anytime algorithmsto the construction of complex real-time agents. It isunlikely that a complex
system would be developed by implementing one, large, anytime algorithm. Systems are normally built
from components that are developed and tested separately. In standard agorithms, the expected quality of
the output is fixed, so composition can be implemented by a simple call-return mechanism. However, when
algorithms have resource al ocation as adegree of freedom, run-time scheduling and monitoring are required
to guarantee optimal utilization of resources.

Figure 1.2 illustratesthe composition of two anytime algorithms. 1t showsthe performance profile
of an anytime path planning algorithm that receives its input from an anytime vision module. The quality
of vision is measured in terms of the precision of the domain description. The quality of path planning
is measured in terms of specificity of the suggested plan. A special compilation scheme combines these
two modulesinto one optimal anytime path planning algorithm that can automatically distribute any given
amount of time between the two components so as to maximize the overall quality of the results.
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Figure 1.2: Path planning example
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ANYTIME ALGORITHMS

Figure 1.3: The conceptual layers of the model

Compilation produces contract algorithms which require the determination of the total run-time
when activated. However, some real-time domains require interruptible algorithms whose total run-timeis
unknown in advance. Thisproblem issolved by a standard techniqueto construct an interruptiblealgorithm
once a contract a gorithm is compiled.

Once a complete system is compiled into one anytime algorithm, the monitoring component of
the run-time system is responsible for controlling the deliberation time of the system when operating in a
particular environment. The complete model has three conceptual layers that are illustrated in Figure 1.3:
anytime algorithms, off-line compilation that optimally combines anytime a gorithms, and a run-time moni-
toring system that all ocates resources to the components so as to optimizethe utility of the complete system.
These layers are described in detail in the following chapters.

This model of operational rationality introduces a new methodology to design complex real-time
system. Instead of trying to design a system that would meet a specific set of time constraints, the design
problem involves two orthogonal issues: decomposition of the total system into particular performance
components and implementation of each basic component as an anytime algorithm. 1t will be shownin the
following chapters that this approach greatly simplifies the construction of complex real-time systems.

1.42 Themain problemsaddressed by thiswork

Theimplementation of the model of operational rationality as describe above was based on the solutionsto
the following key problems:

1. Developing anytime algorithms.
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The use of anytime algorithms as basic blocks of complex systems calls for a new approach to
algorithm construction. In human behavior and human problem solving, almost every activity has an
anytime nature in the sense that we never commit ourselves to solving a problem without constantly
reconsidering our methods and interrupting our activities. This kind of introspection is hard to
formalize and mechanize. Existing software development techniques do not address this aspect of
computation.

2. Finding the performance profile of elementary anytime algorithms.

Performance profiles form the crucial meta-level knowledge needed for implementing operational
rationadity. Unfortunately, finding the performance profile of an elementary anytime algorithm” can
be difficult and may require an extensive computation effort especially when it isbased on simulation
of the algorithm. In some cases, such as numerical anaysis agorithms, the performance profile can
be derived by direct analysis of the algorithm, but the general case is more complicated. Even more
complicated is the task of finding conditional performance profiles that capture the dependency of
output quality on run-time as well as on input quality. Finaly, in most anytime algorithmsthereisa
certain degree of uncertainty regarding the actual quality of results. Characterizing and representing
this uncertainty is an important aspect of performance profiles.

3. Compiling anytime algorithms

Toalow modular system devel opment, the performance profil e of complex modules must be cal cul ated
based on the performance profiles of thecomponents. Computing the best possibleperformance profile
for the complete system involves solving a complex time allocation problem. Thisis anew kind of
optimization problem that the compiler has to solve. A primary goal of this work was to mechanize
the compilation of anytime algorithms and to solveit efficiently for large programs. Since the global
optimization problemis shown to be NP-compl etein the strong sense, local techniquesmust be utilized
to reduce complexity. Establishing the optimality of such efficient local compilation techniques was
an important part of thiswork.

4. Anytime sensing and anytime actions

Since this dissertation is concerned with the development of artificial agents, the theory of anytime
computation must be extended to deal with two additional key aspects of agent construction, namely
sensing and action. Sensing, like computation, can be viewed an an information gathering act whose
value can be modeled using similar tools. The modeling of actions as anytime interruptible activities
is more complicated. In most existing systems, actions (such as: (put on A B)) are considered
to be simple primitives, whose execution time is an insignificant constant. In practice, however, the
execution time of an action is important and in many cases ® actions have the property of graceful
degradation of quality as a function of execution time. In that sense, actions are similar to anytime
algorithms. The inclusion of anytime sensing and action in the model is an important step toward a
definition of an architecture for artificial agent construction.

5. Real-time scheduling and monitoring

When using anytime algorithms to control an artificial agent operating in a dynamic environment,
the time allocation mechanism must take into account two sources of uncertainty. On the one hand,

7 An elementary anytime algorithm is an anytime algorithm that does not use another anytime algorithm as a component.
8 For example, when a“macro” action is actually implemented by alternating between computation and “ micro” actions.
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there is the uncertainty regarding the actual quality of the results produced by each component. The
performance profile provides only probabilistic information on this aspect. On the other hand, there
is the uncertainty regarding the state of the domain. The model of the environment used by the
meta-level control is aso probabilistic and there is dways a possibility of a drastic change in time
pressure. As aresult, it is not enough to adopt a strategy of pre-determined fixed time allocation.
Run-time scheduling and monitoring are necessary.

6. Anytimealgorithmsand parallel computation

Since anytime agorithms are primarily designed to deal with complex real-time problems, it is only
natural to utilize paralel machines for their implementation. The design of anytime algorithms
using multi-processor systems introduces many open guestions most of which deal with possible
scheduling schemes. One such scheduling problem is to find the best scheduling scheme of a given
non-interruptible algorithm on a machine with p processors to produce an interruptible algorithm
with the best performance profile. Another scheduling problem is defined by using a multi-processor
machine in order to run in parallel two different agorithms that solve the same problem: one with
lower expected performance but a small possible deviation (i.e. the expected performance is almost
guaranteed); the other with higher expected performance but a large possible deviation (i.e. the
actual performance may be much worse than expected). By running these |ow-performance-low-risk
and high-performance-high-risk algorithmsin parallel, one can have the high expected performance
together with a guarantee of areasonable minimal performance.

1.5 Dissertation organization

In thefollowing chapters| describe the detail sof the model of operational rationality and itsimplementation.
In Chapter 2, | describe previous work on real-time decision making in the fields of artificial intelligence,
control theory, economicsand engineering. Chapter 3 definesthe problem of constructing utility-drivenreal -
time agents. In Chapter 4, | describe programming techniquesto devel op elementary anytime algorithmsand
their properties. Animportant distinctionismadebetween contract and interruptibleanytimeal gorithms. The
chapter includes also the reduction theorem that shows how contract algorithms can be made interruptible.
This important result allows us to solve the compilation problem in terms of contract algorithms and thus
greatly simplify the problem. The centra parts of the model are developed in Chapters 5 and 6. Chapter 5
focuses on the compilation process that automates the composition of anytime algorithms. Its main result
is the development of an efficient local compilation technique whose complexity is linear in the size of
the program. Local compilation is proved to yield globa optimality for a large set of program structures.
Chapter 6 describes the run-time monitoring component. In Chapter 7, | extend the notion of gradual
improvement of quality to sensing and action. The application of the model and its eval uation are discussed
in Chapter 8. Finally, in Chapter 9, | summarize the resultsand contributionsof thiswork and identify three
possible directions for further work. A brief glossary of specialized terminology appears at the end of the
dissertation.
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Chapter 2

Background: Real-Time Decision Making

“Now! Now!” cried the Queen. “Faster! Faster!”
Lewis Carrol, Alice's Adventuresin Wonderland

A considerable amount of work has been done on real-time decision making in the fields of artificial
intelligence, decision theory, economics and engineering. In this chapter | will examine this work and
identify the strengths and weaknesses of existing models. The focus of the analysisis on real-time decision
making as a component of an architecture for artificial agent construction.

How do most Al systems cope with time constraints? In a comprehensive survey of rea-time
Al [Laffey et al., 1988] that covered 48 systems, the authors claimed that “ Currently, ad hoc techniques are
used for making a system produce a response within a specified timeinterval.” Unfortunately, not much has
been changed since that survey was conducted. The primary method for achieving real-time performance
is based in many cases on speeding up individua algorithmsin a generate-and-test manner. This method
slows down the development of real-time systems and makes them inefficient when operating in dynamic
environments. Thewidevariability of time pressurein dynamic environments makesit undesirableto design
systems according to the worst case scenario. With the problem of artificial agent constructioninmind, | will
analyze each model concentrating onitspotential to scale up and to handl e successfully real-world situations.
| start in Section 2.1 with an examination of the basic assumption that explicit deliberation and run-time
problem solving are indeed necessary in real-time systems. Section 2.2 describes the work of Russell and
Wefald on decision-theoretic control of inference. In many ways, the model developed in thisdissertationis
arefinement of Russell and Wefald's framework. In Section 2.3, | describe several applications of anytime
algorithms. Most notably, | discuss the work of Boddy and Dean, Horvitz, Lesser, Pavlin and Durfee, and
Jane Liu who devel oped independently the first applications of such agorithms at atime when the notion of
imprecise computation faced alarge degree of scepticism. A closely related approach, Garvey and Lesser’s
design-to-time scheduling, is presented in Section 2.4. Section 2.5 describes several related resultsin the
area of real-time problem solving and Section 2.6 describes some experimental work on system support for
approximate computation.

2.1 Reactive systemsand universal planning

In an attempt to address the complexity of reasoning and planningin artificial intelligence, some researchers
have proposed to limit the extent of run-time deliberation by using approaches such as reactive planning and
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universal planning. According to these approaches, explicit reasoning, problem solving and maintaining
a world model are too complicated to handle at run-time and should be completely abandoned. Instead,
believing that the world is its own best model, these researchers propose agents that are equipped with a
mechanism that generates actions as an immediate response to interaction with the physical world.

Reactive planning [Brooks, 1986; Agre and Chapman, 1987] is the general approach of building
systems that make the “right” decision by design. Agents based on these ideas are normally built from
combinatorial circuits plus a small timing circuitry. The combinatoria circuitry may be adaptive, as
in [Brooks, 1989], with the capability to converge on the desired behavior after a certain training period of
interaction with the environment.

Universal planning [Schoppers, 1987] is a similar approach which is, in a sense, more restrictive
than reactive planning sinceit does not allow for emergence of the desired behavior through interaction with
the environment. Agentsbased on thisapproach determine what to do next by finding the current situationin
alarge table where the best action to be taken is stored. Thisleads to the following definition of a universal
plan [Ginsberg, 1989]:

Definition 2.1 A universal planisa function,  : § — A, fromthe set of possible situations S into the set
of primitiveactions .A.

Both reactive planningand universal planning tend to transfer the compl exity of planning to the design phase,
thusignoring the computational limitsof the designer. Whilereactive planning can adaptively converge and
produce some ordinary low-level behavior, it cannot be scaled up to deal with long-term planning in complex
domains. As the complexity of the agent grows, the circuitry necessary to generate the correct response
becomestoo large and too complex tolearn. Isit conceivablethat chess-playing, medical diagnosis, or even
path-planning for robot navigation could be performed by interaction with the environment aone, without
any run-time deliberation? Will high-level strategic planning emerge “without reason”?

My dissertation is based on the assumption that some degree of real-time problem solving is
unavoidable. This opinion is strongly supported by many researchers. Ginsberg [1989], for example,
analyzed this problem and concluded that:

“... even if the compile-time costs of the analysis are ignored, the size of the table must, in
general, grow exponentially with the complexity of the domain. This growth makesit unlikely
that this approach to planning will be able to deal with problems of an interesting size; one
really needs the ability to do some amount of inference at run time.”

A similar argument was presented years earlier by Herbert Simon referring to alternative views of
rationality in the fields of economics and psychology. Simon made a distinction between substantiveratio-
nality and procedural rationality. Behavior is substantively rationa if it is appropriate to the achievement
of given gods in a particular environment. Like reactive planning, given a set of goals, the behavior is
determined entirely by the characteristics of the environment. Behavior is procedurally rational when it is
the outcome of appropriate deliberation. Its procedural rationality depends on the process that generated it.
Simon* claims that:

“... thereis no point in prescribing a particular substantively rational solution if there exists
no procedure for finding that solution with an acceptable amount of computing effort. So,

! See [Simon, 1982], page 428.
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for example, athough there exist optimal (substantively rational) solutions for combinatoria
problems of the traveling-salesman type, and although these solutions can be discovered by a
finite enumeration of alternatives, actual computation of the optimum isinfeasiblefor problems
of any size and complexity. The combinatorial explosion of such problems simply outraces the
capacities of computers, present and prospective.”

Some researchers have proposed what may seem to be a natural synthesis of the two extremes. a
system that would be reactive under high time pressure and would use classical reasoning methods when
time is available. However, having to choose between the two extremes — between performing classical
planning and not performing any planning at all —does not add much power to a system. Chapman [1989],
for example, claimsthat:

“As currently understood, planning is so inherently expensive —and reactive systems so inher-
ently myopic —that even in combination they are useless.”

Previouswork on anytimeal gorithmsand themodel of operational rationality presented hereextend
the tradeoff that is offered by a simple synthesis of traditional and reactive planning. The reactive system
and the fully deliberative one become two extreme points on a continuous scale of possible computational
time offered by anytime algorithms.

2.2 Meta-level control of computation

Russell and Wefald [1989a, 1989b] developed a normative decision-theoretic approach for control of in-
ference. The agent’s objective isto maximize a given utility function defined over the states of the world:
U:Q — R. The agent has a set, A, of possible base-level actions that transform the environment. The
outcome of a particular action, A, performed in statew isdenoted by [A, w] or simply [A] if w isthe current
state. The agent’s current default ‘intention’, typically the external action considered to have the highest
utility, is denoted by «. The set S includes a sequence of computation actions that can be used to revisethe
agent’s decision. At any given time, the agent has to choose whether to perform what is believed to be the
best external action «, or to perform one of the computational actions, Sy, ..., Si that affect only theinternal
state of the agent. Since computation takes time, the net value of computation is the difference between the
utility of the state resulting from the computation and the utility of the state resulting from performing the
default external action o:

V(8;) = U(S;)) - U([a)) (21)

If S; isacomplete computation, resulting in arevised assessment of the best action, a,, and a commitment
to perform this action, then

U([55]) = U(les;: [S5]]) (22)

where [as,, [S;]] indicates the outcome of the action as, in the state following the computation S;. In the
general case however S; can be a partial computation affecting only the internal state but not immediately
revising the assessment of the best action. In this case,

U([S;1) = >_ Pr(T)U([er, [S;.T1]) (23)

where T' ranges over al possible complete computations following S;, S;.T denotes the computation
corresponding to S; immediately followed by T', and Pr(T') is the probability that the agent will perform
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(a) terminate (b) terminate (c) continue

Figure 2.1: Termination condition using rational meta-reasoning

the computation sequence 7' subsequent to S;. A perfectly rational agent would select the computation
that maximizes U ([ar, [S;.T]], and this sequence would have probability 1. However, having limited
computational resources, the agent cannot calculate the exact utilities and probabilities and must estimate
them using some computational resources. Let Q° denote the agent’s estimate of quantity Q following a
computation S, typically based on the evidence produced by the computation. Then,

US55 ([S;]) = Yo Pr” (1) 0 ([a, [5;.T) @4

where S isthe total computation preceding S;, and
U5 ([az, [S;-T1)) = max U7 ([4;, [S,.T7) (2.5)

where A; ranges over al possible base-level actionsin .A. Then the estimated net value of computation S;,
that is used by the meta-reasoning to decide whether further deliberation is valuable, becomes:

VS.SJ- (S]) _ US.Sj([Sj]) B US.Sj([a]) (26)

Of course, before the computation S; is performed, V(S]-) isarandom variable. The agent cannot
know ahead of time what the exact value of V' (.S;) will be, but the agent can estimate its expectation:

E[V®5(8;)] = E[U%%([S;])] - E[U*([o])] 2.7)

Under certain assumptions, it is possibleto capture the dependence of utility on time by a separate
notion of the cost of time, so that the consideration of the quality of an action can be separated from
considerations of time pressure. In such a case, the value of an action is measured by itsintrinsic utility.
The overal utility of astate is defined as the difference between the two:

U([4:,[S5]]) = Ur([Ai]) - TC(IS51) (2.8)

where T'C' isthe time cost function that depends only on |S;|, the length (in elapsed time) of S;.

Since there is a considerable uncertainty concerning the value of each action, the meta-reasoning
component must be able to select among alternative actionswithout knowing their exact utilities. When the
degree of uncertainty istoo large to determine the best action, the meta-reasoning component may decide on
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additional deliberation to improve the utility estimates. Figure 2.1 [Russell and Wefald, 1989b] illustrates
the three major situationsthat arise in evaluating the expected utility of two alternative actions. In case
(), one action is clearly superior to the other hence no more deliberation is necessary. In case (b), one
action appears to be superior and the small possible difference between the utilities of the actions makes it
undesirable to continue the computation. In case (c), one action appears to be superior, however the large
uncertainty makesit desirable to continue the computation.

Russell and Wefald make several assumptions to simplify the analysis. First, they make the
meta-greedy assumption, that the agent considers only single computation steps and chooses the one that
appears to have the highest benefit. This computation may not be the optimal one considering a sequence of
computation steps. Second, they make the single-step assumption that the agent will take at most one more
search step. Their third assumption isthe subtree-independence assumption, that a computational action can
affect the expected utility estimatefor exactly onebase-level action. Under these assumptions, several search
algorithms were developed, most notably MGSS*, and were proved superior to the best human-designed
search algorithmsfor several games, such as Othello.

How does this model of rational meta-reasoning relate to the model of operational rationality?
Russell and Wefald propose a rather general framework for meta-level control of reasoning. Operational
rationality is more specific in terms of the type of metalevel knowledge that it uses, in terms of the
characteristics of the computational elements, and in terms of the optimization problem that it defines.
General meta-reasoning leaves some of these aspects to be decided in the context of the problem domain.
It reasons about computational actions that must be identified in each particular domain. To summarize,
operational rationality offers a more specific type of meta-level control of computation and one that is also
easier to apply.

2.3 Anytimealgorithms

The term “anytime algorithm” was coined by Tom Dean in the late 1980's as part of his work on time
dependent planning. There has been a considerable amount of work on designing and using algorithms
that offer gradual improvement of quality of results, both before and after Dean’s coining of the term
“anytime.” Nevertheless, very little work has capitalized on the additiona degree of freedom offered by
anytime algorithms—freedom in the very general sense that the algorithm offersto fulfill an entire spectrum
of input-output specifications, over the full range of run-times, rather than just a single specification. In this
section | describe five early applications of anytime algorithms and relate them to the model of operational
rationality. | start with a description of Dean and Boddy’s work that identify some of the fundamental
elements of my model, most notably, scheduling deliberation processes using expectations in the form of
performance profiles. In addition, their work raised many of the problems that this dissertation addresses.

2.3.1 Anytime path planning

Boddy and Dean [1989] used anytime algorithmsin order to solve a path planning probleminvolvingarobot
courier assigned the task of delivering packages to a set of locations. The robot operatesin a domain, the
gridworld, where each pointisalocation that may be occupied by therobot or by an obstacle. The robot can
only move on to one of the four neighbors of its current position, provided that that neighbor is not already
occupied. The rabot has a map of the world that it can use for path planning. The utility of the robot’'s
performance is defined in terms of the time required to complete the entire set of deliveries.
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Figure 2.2: Performance profiles of tour improvement and path planning

Therobot hasto determinethe order in which to visit thelocations, referred to asatour, and, given
atour, it must plan paths between consecutive locationsin the tour. To simplify the analysis, it is assumed
that therobot’s only concern istime; it seeks to minimize the total amount of time consumed both in sitting
idle deliberating about what to do next and in actually moving about the environment. Furthermore, it is
assumed that thereisno advantageto therobot in starting off in somedirection until it knowsthefirst location
to be visited on its tour, and, while the robot can deliberate about any subsequent paths while traversing a
path, it must complete the planning for a given path before starting to traverseit.

The two primary components of the decision making process involve generating the tour and
planning the paths between consecutive locations in the tour. The first is referred to as tour improvement
and the second as path planning. Boddy and Dean employ iterative refinement approximation routines for
solving each of these problems. For example, thealgorithm for tour improvement is based on edge-exchange
as suggested by Lin and Kernighan [1973]. It produces toursthat are progressively closer to an optimal tour
by exchanging small sets of edges such that thelength of the overall tour decreases. The mean improvement
in tour length after & exchanges can be approximated by a function of the form f(k) = 1 — e=**, where A
depends on the size of thetour. The performance profile of thisagorithm is derived by gathering statistics
on its performance with random test cases. The complete algorithm starts out with an initial, randomly
selected tour. Given the length of some initia tour and the expected reduction in length as a function of
time spent in tour improvement and some assumptions on the performance of path planning, the algorithm
can find exactly how much time to devote to tour improvement in order to minimizeitsoverall time spent in
stationary deliberation and combined deliberation and traversal.

Figure 2.2.a[Boddy and Dean, 1989] shows how the expected savingsin travel time increases as
afunction of time spent in path planning. Figure 2.2.b shows how the expected length of the tour decreases
as a fraction of the shortest tour for a given amount of time spent in tour improvement. In this context,
Boddy and Dean introduced the term performance profile that describes the expected quality of the results
of an anytime algorithm as a function of run-time.

Boddy and Dean's work demonstrates the applicability of anytime algorithms to solve time-
dependent planning problems. Their work has inspired my initia interest in using anytime agorithms as
the components of large real-time systems. Their anaysis, however, does not provide answers to several
important aspects of anytime computation that are essential for operationa rationality, most notably, the
genera issue of composition of dependent anytime components. Boddy and Dean raise this as an unsolved
problem. They admit that, in their example, “combining expectations for the two planning algorithms is
straightforward. Other problems and other decompositionswill require combining expectationsin different
ways.” Referring to the same problem, Dean and Wellman [1991] conclude that:
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“thereis currently no general theory of combining anytime agorithms. For cases in which the
decision problems are dependent, there isnot agreat deal that we can say.”

Composahility of anytime computation is the most fundamenta issue in my work. The compilation of
anytime al gorithms presented in Chapter 5 addresses exactly this problem of combining dependent anytime
algorithms.

2.3.2 Flexible computations

Horvitz [1987] suggested a decision procedure that uses an anytime agorithm or what he calls flexible
computation asitsmain problem solver. Aswith anytime algorithms, the value of the results produced using
flexible computation is a function of the time spent on the computation. Horvitz separates the notion of
object-related value from the notion of comprehensive value. The former is a measure of the value of the
resultsapart fromtheir particular useinthe system whilethelatter refersto the overall utility of the response.

Horvitz demonstratesthe use of flexible computation inthe health care domain. Giveninformation
regarding a particular patient, he produces a graph that maps computation time to the precision of the
distribution for a set of possible diagnoses. The object-related value is determined by considering the
expected utility of the treatment based on inexact diagnosis of a particular quality. Using thisinformation
together with information on the reduction of object-related value as afunction of thedelay in administering
treatment, one can derive the comprehensive value of computation. The comprehensive value has a global
maximum at a particular time. This is the period of time the system should spend reasoning about the
diagnosis so as to maximize the value of its conclusion to the patient. Although spending additional time on
the problem may further increase the precision, the comprehensive value to the user will begin to decrease.

Horvitz and Breese [1990] generalized thisapproach to the problem of optimizing the performance
of an agent presented with asinglereal-time problem. In thefollowing description of their work, | borrowed
the improved notation of [Dean and Wellman, 1991]. The value of the agent’s responseis determined by the
quality of the answer and the total amount of time that it took to produce the answer, represented as:

tb+tp+t.s

where t; is the deliberation time of the base level problem solver, ¢, is the preparation time for base-level
reasoning spent on such activities as algorithm selection or problem reformulation, and ¢, is the time spent
on scheduling the base-level preparation module and base-level problem solver.

Sincet, issome small constant, the comprehensive value, V, and the object-related value, V,, are
functions of the total time spent on preparation and base-level problem solving. The cost of time associated
with the delay in decision making, V3, isan arbitrary function depending on thedomain. The comprehensive
valueis simply the difference between the object-related value and the cost of time. The meta-level control
is designed to maximize the comprehensive val ue finding the appropriate t, and ¢,.

max Ve(ty, ) = max[Vo(tp, ts) = Va(ts +1, + 1)) (29)

For example, Figure 2.3 [Horvitz and Breese, 1990] shows the comprehensive value in two cases where
the object-related value is modeled by a negative exponentia function and the cost of timeis modeled by a
linear function. t; isthe optimal allocation of time to the base-level problem solver in each case.

The mode of operational rationality adds a number of important features to Horvitz and Breese's
model of flexible computation. These features are summarized below:



CHAPTER 2. BACKGROUND: REAL-TIME DECISION MAKING 19

 ——

Vc

Y

Vd

Figure 2.3: Optimal time allocation to base-level computation

1. The model of flexible computation does not address the genera issue of composition of anytime
algorithms. Even though it separates the preparation phase from problem solving, the model does not
analyzethe case where each component is an anytime algorithm and the possible effect that the quality
of preparation might have on the quality of problem solving. As| mentioned earlier, it isnot realistic
to assume that large complex systems would be constructed based on one anytime algorithm. Hence
solving the composition problem is essential for implementing any model of anytime computation.

2. The model of flexible computation assumes that the cost of delay, V;, can be defined by a function
that isindependent of the other parts of the system. It uses subjectivejudgment in order to select such
afunction for any particular domain. This assumption ignores an important component of the cost of
delay, what economists call the opportunity cost, which is the cost of choosing one course of action
(continued deliberation in this case) over another (executing the current best action). The model of
operational rationality does not require this assumption of a separate cost function. Its more general
approach to factoring the time pressure into the deliberati on process takesinto account the opportunity
cost.

3. Horvitz and Breese do not provide the run-time monitoring?® mechanism that would re-evaluate the
initial resource alocation in the context of the actual state of the world. The characterization of the
object-related value of an algorithm and the cost of delay are al probabilisticand it is possiblethat a
dynamic environment would require afaster response than originally anticipated (for example, due to
unexpected deterioration in the patient’s condition). It isalso possiblefor the anytime problem solver
to derive an optimal solution much faster than expected. To properly monitor resource alocation in
such cases, the model of operational rationality includes a run-time monitoring component that may
adjust resource allocation in response to such events.

2.3.3 Approximate processing

Lesser, Pavlin and Durfee [1988] proposed an approach for meeting real-time constraintsin Al systemsthat
is based on the following three observations:

2More recently, a monitoring component was added to the model by Horvitz and Rutledge [1991]. However, the monitoring
problem addressed by this dissertation is more complicated becauseit may involve alarge number of anytime components.
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1. Time can betreated as a resource when making control decisions.
2. Plans can be used as ways of expressing control decisions.

3. Approximate processing can be used as away of satisfying time constraints that cannot be achieved
through normal processing.

Under this approach, a real-time problem solver estimates the time required to generate solutions and their
quality. This estimate permits the system to anticipate whether the current objectives will be met in time.
The system can then take corrective actions and form lower-quality solutions within the time constraints.
These actions can involve modifying existing plans or forming different plans that utilize only rough data
characteristics and approximate knowledge to achieve the desired speedup. A decision about how to
change processing is situation dependent, based on the current state of processing and the domain-dependent
solution criteria. The authors present anumber of experimentsthat show how approximate processing helps
a vehicle-monitoring problem solver meet its deadlines.

Lesser, Pavlin and Durfee suggest a number of genera approximation techniques that offer a
tradeoff between quality of results and computation time, similar to anytime algorithms. These techniques
include: approximate search strategiesthat use corroboration and competition as criteriafor pruning inferior
aternativesin the search space, dataapproximationthat limit the number of processing aternativesby taking
an abstract view of data, and knowledge approximation that uses a single, less discriminating knowledge
source to summarize several sources of knowledge.

Operational rationality complements this work by adding two important components: conditional
performance profiles, that allow for better predictions of performance and better treatment of uncertainty,
and efficient off-line compilation, that allows for better control of large systems. In addition, operational
rationality offers an optimization mechanism rather than a*“ satisficing” criterion to measure problem-solving
success.

234 Incremental approximate planning

Elkan [1990] suggested an abductive strategy for discovering and revising plausible plans. In his approach,
candidate plansare found quickly by allowing them to depend on assumptions. Hisformalism makesexplicit
which antecedents of rules have the status of default conditions. Candidate plans are refined incrementally
by trying to justify the assumptions on which they depend. This model was implemented by replacing the
standard depth-first exploration strategy of Prolog with an iterative-deepening version. The result is an
anytime algorithm for incremental approximate planning.

Elkan's approach is hard to compare to the model of operational rationality devel oped here since
he does not provide any quantitative analysis of his method. Such anaysis would require generating the
performance profile of the planner with respect to a specific problem domain®. The quality of an approximate
plan can be measured in variousways: the probability of its correctness, the expected number of corrections
needed to fix it, the expected cost of fixingit, or the expected time needed to achieve the goal using thisplan.
However, in Elkan's system, that uses pure logic, it is hard to deal with such quality measures. Another
problem with this approach isthe fact that candidate plansthat are found to be based on wrong assumptions

3Note that only one anytime algorithm isimplemented, that is, the theorem prover. The performance profile of atheorem prover
is inherently hard to find since it depends mostly on the input (what to prove) and the background theory (the current knowledge).
A general theorem prover does not appear to be a good candidate to serve as an anytime component of a system.
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Table2.1: Approximate relational algebra operations

Approximate Operation Cr Pr

Union: Ry = R U R, Cr=C,UC(C, PT:(P1UP2)—CT

Difference: RT:R]_—RZ CTzcl—Rz PT:(Pl—Rz)U(PzﬂRl)

weCt: RT - o'att:-ualRl CT - o'att:-ualcl PT - Uatt:valpl
Project: Ry = w4 Ry Cr = 7 C1 Pr = ma Py
Cart. PrOd:RT:R;lXRz CT201X02 PT:(Rlsz)—CT

are eliminated, without any process of “debugging,” and therefore the computation time that was spent on
refining those plansis completely lost.

235 Anytimequery answering in relational databases

Smith and Liu [1989] proposed a monotone query processi ng a gorithm which derives approximate answers
directly from relational algebra query expressions. Formally, an approximate relation R of a standard
relation S isasubset of the Cartesian product of all thedomainsof S that can be partitioned into two blocks,
the certain set C' and the possible set P such that:

(1)CccCcS and (2) R=CUPDS (2.10)

The algorithm assumes that the information stored in the database is complete and that the input data is
precise. Anincomplete answer to aquery isgenerated when thereis not enough timeto complete processing
the query, or because some relation that must be read to get the exact answer is not accessible. Thealgorithm
works within the framework provided by a standard relational algebra query language and is based on an
approximate relational data model.

Given a set of all approximate relations of a standard relation S, a partia order relation > can be
defined over the set as follows: the approximate relation R; = (C;, P;) is better than or equal to another
approximate relation R; = (Cj, P;), denoted as R; > R;, if P, C P; and C; 2 C;. Standard relational
algebraisreplaced by approximaterel ational algebrathat operates over approximaterelations. Thecomplete
set of operations appear in Table 2.1. In the table, the Cr and Pr columns show the certain component and
the possible component of the approximate result Rr. The operatorsin Table 2.1 are monotone, that is, the
result of the operation is better when its operands are better [Vrbsky et al., 1990].

Vrbsky and Liu have implemented the approximate query processing algorithmin a system called
APPROXIMATE [Vrbsky and Liu, 1992]. The monotone query processing algorithm represents the query
as a tree whose nodes represent relational operations. The operation associated with each leaf node of the
treeisan approximate-read that returns asegment of the requested relation at atime. Approximaterelational
algebrais used in order to evaluate the tree. Initidly, the certain set is empty for every approximate object
and the possible set is the complete range of values for the particular object. After each approximate-read,
abetter approximate answer to the query is produced. The exact answer isreturned if the system isalowed
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to run to completion. The latest, best available approximate answer is returned if query processing must be
terminated beforeit is completed, hence the agorithmisinterruptible.

APPROXIMATE demonstrates how anytime agorithms can be used for information retrieval.
However, aswith Elkan’s approximate planning, it is difficult to derive the performance profile of the system
due to its dependence on the contents of the database and the complexity of the query. It is also hard to
evaluate the quality of an approximate relation and represent it quantitatively. For example, suppose that
the system is presented with the query “How many free seats are available on flight EL AL 0017’ and its
approximate answer is“4 to 8. What is the quality of this approximate answer? Further work is required
to define appropriate quality measures that would enable the construction of the performance profile of
APPROXIMATE.

2.4 Design-to-time scheduling

Garvey and Lesser [1993] have devel oped areal-time scheduling approach called design-to-time scheduling.
The methodol ogy advocates generating the best possiblesolution under time pressure. In that sense, it shares
the goals of operational rationality. Design-to-time aso includes a monitoring component to handle the
uncertainty regarding the actual quality of results produced so far. Design-to-time scheduling isbased on a
predefined set of solution methods with discrete duration and quality values, similar to the design-to-time
algorithmsproposed by D’ Ambrosio [1989]. The overall problemisrepresented as atask structure in which
every task may have a multiple set of dependent subtasks that can be combined to solveit. Each such set
is considered as a method for solving the task. Two forms of approximate computation can be represented
by a task structure: iterative refinement, where an approximate solution is generated quickly and can be
refined through a number of iterations, and multiple methods, where a number of different algorithms are
available for atask, each of which is generating a solution of a different quality. Each task group has a
quality function associated with it that is based on the subtask relationship. Given atask structure, Garvey
and L esser devel oped a scheduling a gorithm that finds execution methodsfor each task in thetask structure,
trying to maximize quality within the avail able time.

Design-to-time scheduling shares many of the underlying assumptions and techniques used by
operational rationality. The differences are more in emphasis than in principles: design-to-time emphasizes
a problem structure involving many different tasks and the solution is based on run-time scheduling.
Operational rationality concentrates on a single task but it seems to handle task decomposition in a more
informative manner. In particular, the use of conditiona performance profiles alow for better predictions
regarding the effect of approximate resultsin the componentson the overall quality of the task. In addition,
operationa rationality solves the control problem by a combination of off-line compilation and run-time
scheduling and monitoring.

An integration of the two approaches can be achieved in a number of ways. For example, the
efficient compilation method, that will be presented in Chapter 5, can be used to derive an optimal contract
algorithm for a task represented as a composite anytime module. Then, the design-to-time scheduler can
be used with a number of alternative methods, each generated by a certain fixed allocation to the contract
algorithm. Thisway, the resulting system can have the advantages of both approaches: the superior handling
of interdependencies between modules and the efficient compilation of operational rationaity, and the
superior handling of multipletaskswith distinct temporal constraints of design-to-time scheduling. Another
advantage of such integration is the reduction, through off-line compil ation, of the number of tasks handled
at run-time by the design-to-time scheduler.
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2.5 Real-time problem solving

Real-time systems must not only produce correct results but also meet certain timing constraints. In
traditional real-time systems, the timing constraints impose a fixed time allocation to the problem solving
component so that the system can meet a certain deadline. For example, Laffey et al. [1988] definereal-time
systems by the capability to “guarantee a response after a fixed time has elapsed, where the fixed time is
provided as part of the problem statement.” This conservative approach leadsto inflexible systemsthat may
be under-utilized since in many domainsthere are no clear, rigid deadlines. Instead, the value of the results
drops gradually over time and is situation-dependent. Operational rationality is based on a more genera
view of real-time systems, defined in Chapter 3, that is characterized by a time-dependent utility function.
In this section | summarize related work on real-time problem solving and compare it to the operationa
rationality model.

251 Real-timeheuristic search

Heuristic search is a fundamental problem-solving method in artificia intelligence. A single-agent search
problem is characterized by an initial state, a set of possible actions whose application to a state generates
the successors of that state, a goal test function that determines whether a particular state matches the goal,
and a heuristic function that provides an estimate of the cost of reaching a goal state from any given state.
The best known single-agent heuristic search algorithmis A*. It is a best-first search algorithm where the
merit of anode, f(n), isthe sum of the actual cost of reaching that node from the initial state, g(n), and
the estimated cost of reaching agod state from that node, h(n). A* always finds the optimal solution if the
heuristic function never overestimates the actual solution cost. Iterative-Deepening-A* (IDA*) [Korf, 1985]
is a modification of A* that reduces its space complexity. Both A* and IDA*, however, take exponential
timeto runin practice. Thiscost of obtaining optimal solutionsrestrict the applicability of these a gorithms.

Motivated by the observation that existing single-agent heuristic agorithms cannot be used in
large-scale, real-time applications, Korf [1987, 1988, 1990] extended the standard A* agorithm so that its
execution time can be controlled. The basic ideawas to limit the search horizon so that the algorithm can
commit to action in constant time, just like the minimax procedure is used in two-player games. In the
single-agent case, the value of aninternal nodein the search treeisthe minimum of al the heuristic estimates
of itssuccessors. Korf called this back-up procedure minimin and the pruning mechanism al pha pruning by
analogy to alpha-beta pruning. The question now is how to use the minimin procedure in order to arrive at
asolution. Real-Time-A* (RTA*) solvesthe problem using the following strategy: it uses minimin to select
individual moves and backtracksto a previously visited state when the estimate of solving the problem from
that state plus the cost of returning to that state is less than the estimated cost of going forward from the
current state. RTA* is guaranteed to eventually find a solution under the following conditions:

Theorem 2.2 (Korf) In a finite problem space with positive edge costs and finite heuristic values, in which
a goal stateisreachable fromevery state, RTA* will find a solution.

Animproved version of thealgorithm, DTA*, was devel oped by Russell and Wefald[1991]. Bothagorithms,
however, involve a fixed depth limit as a parameter that controls the search. The constant time of move
sel ection makes the algorithm react in “real-time.” However, it does not provide any information about the
quality of each step and about the time necessary to reach asolution. Therefore, real-time search algorithms
can be embedded as modulesin a larger system governed by an appropriate meta-reasoning component.
Real-time search by itself does not provide any particular optimizing mechanism.
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252 Soft real-time

Severd researchers have examined the scheduling problem of real-time tasks that must meet certain timing
requirements. Shih, Liu and Chung [1989, 1991] proposed a model of impreci se computation inwhich each
task is decomposed into a mandatory subtask and an optional subtask. The mandatory subtask must be
executed to produce results of any value; the optiona subtask may be executed to increase the value of the
results. Thismodel is sometimes referred to as “soft real-time”’ as opposed to “hard real-time” where each
task has arigid deadline. Shih, Liu and Chung derived scheduling agorithmsfor this model assuming that
the precision of the resultsimproves either linearly or by stepsthrough the execution of the optional subtask.

Alexander, Lim, Liu and Zhao [1992] have examined the performance of various scheduling
policies for managing transient overload in an impreci se computation system. They use the sameimprecise
computation model. If theload on the computation systemislow, the scheduler is designed to provide some
prescribed balance of accuracy and response time. If the load is high, the scheduler is designed to keep
response time bounded by sacrificing accuracy. The performance of the scheduler is measured using two
metrics: normalized mean waiting time and normalized mean overload duration. Thiswork demonstrates
how anytime computation can be used to enable a system to maintain short waiting times when transient
increasein load occurs.

Moiin and Smith [1992] generalized the imprecise computation model by allowing non-linear
functionsto describe theimprovement of precisionover time. They usean arbitrary precision-valuefunction
to model the precision of the results of an agorithm as a function of time. Another function, the time-value
function, definesthe value of achieving atask as afunction of time. Moiin and Smith provideacase anaysis
of three particular functionsto describe time-value (linear, quadratic and exponentia decay) in conjunction
with two functions to describe precision-value (linear and exponential improvement of precision). They
give an approximate solution to the problem of finding an optimal scheduleto a given set of tasks.

How does the work on soft real-time relate to the model of operationa rationality? Optimal
scheduling of agiven set of independent jobs, each having amandatory part and an optional part, isasimple
case of anytime computation. In that sense, soft real-time addresses a small subset of the compositional
language used to combine anytime algorithms. However, it is important to emphasize that scheduling
imprecise computation, when the computational elements themselves arrive randomly at a certain rate, is
beyondthe scope of operational rationality. Inoperational rationality, the anytime computational components
are part of a pre-determined program.

To summarize, hereare the main advantagesof operational rationality in solvingthetimeallocation
problem:

1. Objective quality measures

The proposed “precision value” functions of the imprecise computation model are subjective. They
are specified by the user and do not have a well-defined meaning. In contrast, performance profiles
measure aconcrete, well-defined aspect of the quality of theresults. They are probability distributions
calculated using concrete metrics rather than human intuition.

2. Separationof quality and utility

Inthemodel of operational rationality, quality of resultsand utility are separate entities. While quality
is an objective measure of the performance of an algorithm, utility is an arbitrary subjectivefunction.
Utility can depend on the state of the environment as well as on the quality of results. For example,
a plan for reaching a moving target has a value that depends on the new location of the target. If
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the target disappears, the value of the plan drops even if it is otherwise a high-quality plan. Maiin
and Smith’'s model replaces the notion of utility by a simple “overal vaue of a task” which is a
multiplication of the time-value, the precision-value, and, possibly, aweighting factor. Thisapproach
does not alow the overal valueto be context-dependent.

3. Composability

The imprecise computation model does not address the issue of composition of anytime modules.
Instead, it deals with individual, independent tasks. Since the problem definition imposes timing
constraintson the tasks, it allows the tasks to be temporally dependent, but it assumes that the results
of each task and their qualities are independent. Thisis amajor simplification that cannot be made
when dealing with anytime algorithms as the components of a program to guide an artificial agent.
Thisissueis addressed in Chapter 5.

4. Run-time monitoring

The model of imprecise computation does not address the issue of uncertainty regarding the quality
of theresults of each imprecisetask. Asaresult of thisuncertainty, run-time monitoring isrequired to
modify the optimal schedule as a response to the actual quality of results produced so far. Thisissue
isaddressed in Chapter 6.

5. Sensing and action

Anytime sensing and anytime action are more complicated to analyze than anytime computation.
They require an extension of the model of task execution used by Moiin and Smith. In particular, their
model doesnot takeinto account the possibleinteraction between task execution and the environment.
Thisissueis addressed in Chapter 7.

6. Maximizing utility over history

Finally, further generalization of theimprecise computation model is needed to deal with optimization
of performance over a “history” of execution of similar tasks, not just a singletask or a given set of
tasks. Thework of Alexander et al. isafirst step in this direction, however it addresses the case of
independent tasks only. Optimization over history is another reason for active run-time monitoring.
Thisissueis addressed in Chapter 7.

To summarize, soft real-time shares some of our motivation and goals. It solves a similar
optimization problem: the problem of optimizing the execution value of a set of tasks based on subjective
knowledge on their performance. Several simplifying assumptionslimit the scope of soft real-time models.
Most restricting is probably the assumption that there is no interaction between the tasks, and between
the tasks and the environment. As a result, the model becomes inappropriate even when applied to the
domain suggested in [Moiin and Smith, 1992]: acommand and control system for threat analysisand target
assignment. The radar component, designed to track objects, and the planning component, designed to
perform target assignment, are clearly interdependent: the quality of the first clearly affects the quality of
the second. The use of conditional performance profiles and dynamic scheduling seems essential for solving
such problems.
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Figure 2.4: Concord process structure

2.6 System support for approximate computation

Thewide-spread use of approximate computationwill only happen whenit becomes integrated into standard
software engineering techniques. Given the importance of approximate computation in computer science
in genera, it is somewhat surprising that so little has been done to provide system support for models
of imprecise computation. This issue was raised recently in the First IEEE Workshop on Imprecise and
Approximate Computation (December 1992), and attracted much attention among thereal -time programming
community.

The Concord system, developed by Lin, Natargjan, Liu and Krauskopf [Linet al., 1987], is one of
the few early attempts to address the issue of system support for approximate computations. A description
of the system concludes this chapter.

The Concord system

Concord is a programming language that supports approximate computations. The run-time of each sub-
routine is controlled by the consumer of the results. Its development was motivated, like the model of
operationa rationality, by the problem of optimizing performance given limited computationa resources.
The basi c assumption made by the devel opers of the system is that:

“It is often enough to introduce the environment as a parameter of a computation and assume
that it is unchanged throughout the computation.”

Hence, a genera parameter, E, is defined to be the subset of the environmental state which may
affect the execution of a program P. A computation C is an instantiation of P by the following transition
function:

C:IXSxXxE—-0OxS (2.11)

where S isthe set of states of the program P, I isthe set of input values, and O isthe set of output values.
The main design issues involve the run-time environment structures needed to support flexible
procedure calls. For this purpose, two new language primitives are defined. Impresult is used by the caller
to define a handler for imprecise results and impreturn is used by the callee to return imprecise results.
Figure 2.4 shows the data flow between the main components: the client that includes the caller and the
result handler, and the server that includes the callee and its supervisor. For each procedure, a supervisor
is used to record values of the approximate results obtained to date, together with a set of error indicators.
When aprocedureisterminated, itssupervisor returnsthe best result found. Intermediate resultsare handled
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by the caller using a mechanism similar to exception handling. The handlersfor imprecise results determine
whether aresult is acceptable or not; thisdecisionislocal to the caller, rather than being made in the context
of aglobal utility function. In this sense, Concord actually performs some kind of satisficing rather than
optimization.

The Concord model has several important disadvantages compared to the model of operational
rationality. It leaves to the programmer the decision of what quality of results is acceptable; it does not
mechanize the scheduling process but only provides tools for the programmer to perform this task; and
it does not provide for simple cumulative development of more complex real-time systems. Nevertheless,
Concord represents a pioneering project in the area of approximate computation. It isone of thefirst attempts
to devel op standard programming tool s to support approximate computation.

2.7 Summary

Using the latest technology available today, rea-time systems are hard to develop. Real-time Al is even
harder. Thisview of the problem is expressed also by Laffey, Cox, Schmidt, Kao and Read [Laffey et al.,
1988] in their comprehensive survey of rea-time Al. In their closing remarks, the authors of the survey say:

“We concluded that one of the main reasons for thissituation is that expert systems developers
have often tried to apply traditional tools to applications for which they are not well suited.
Tools specifically built for real-time monitoring and control applications need to be built. An
immediate goal should be the development of high-performance inference engines that can
guarantee response times.”

These kind of tools for rea-time programming and monitoring are offered by the mode of
operational rationality that | have developed. This chapter shows that some aspects of the model, such as
individual applicationsof anytimealgorithmsand control mechanismsfor i mprecise computation, have been
developed independently. However, the survey of previous work shows also that none of these existing
models attempted to put together all the aspects of operationa rationality. The most central aspect of
operational rationality, the composition of larger systems using anytime a gorithms as components, has not
been addressed at all. Thiscapability, that | will present in detail in Chapter 5, isin my view a precondition
to the wide spread use of anytime computation and to the simplification of the construction of real-time
systemsin general.
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Chapter 3

Utility-Driven Real-Time Agents

Artificial intelligence is the discipline that is concerned with programming computers to do
clever, humanoid things— but not necessarily to do them in a humanoid way.

Herbert A. Simon, Models of Bounded Rationality

What makesasystemintelligent? Isititsexpert-level performanceinaparticular domainoritsability tolearn
and improve its performance in any domain? Isit the system’s body of knowledge and reasoning capability?
Intelligence, asiswell known, is easier to recognize than to define. | adopt the view of intelligent systems
as agents whose intelligence is determined by the quality of their interaction with the environment. This
view emphasizesthe quality of the behavior of the system rather than its structure and internal mechanisms.
Thisisthe fundamental difference between artificia intelligence and cognitive science which isthe study of
the particular mechanisms of intelligent human behavior. In that sense, “artificial intelligenceisanormative
science of procedura rationality [while] cognitive science is a positive study of procedura rationality”
[Simon, 1982]. My focus is therefore on the behavior of a system with respect to its goals. Intelligence
becomes an objective measure of two factors: (1) the degree to which the system is maximizing its utility;
and (2) the complexity of the environment in which the system is operating. In this chapter | spell out the
fundamental problem addressed by the model of operationa rationality: the construction of utility-driven
real-time agents. | show how utility functions can be used for both guidance and evaluation of intelligent
behavior.

3.1 Artificial agents

Any system can be viewed as an abstract artificial agent making decisions and acting in some physical
or logical domain. An artificial agent is characterized by the capability to translate perceptual input into
effective action that transforms the environment into a particular desired state. The set of al possible states
of the environment in which the agent operates is designated by Q2. The desired states are also referred to
as goal states. Input to the agent can be provided by an external user or it can be autonomously acquired.
In both cases, the agent cab use its sensorsin order to get information about the state of the environment.
Based on this input, and its knowledge and reasoning capabilities, the agent selects a particular course of
action that transforms the state of the environment so as to maximize the level of goal achievement.
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Figure 3.1: Artificial agents

Agent categories

Agents can be categorized according to their structure, that is, according to the mechanism used for action
selection. If the agent follows a pre-determined strategy that states which base-level action to perform as
afunction of the state of the environment, then it is a reactive agent. If the agent uses any computational
decision procedure, other than information retrieval, for selecting its actions, it is a deliberative agent. A
deliberativeagent that considersthe outcome of actionsand derivesaset of constraintson future statesbefore
committing itself to an individua action is considered a planning agent. As the complexity of the domain
of operation increases, deliberation and planning become essential parts of effective agent construction.

The distinction between reactive and deliberative agents is not aways easy to define. On the
borderline between the two types of agents one can find certain types of production systems that use a set
of condition-action rules to generate their behavior. The rule interpreter carries out a matching operation
to determine the next rule to be activated. When matching isfast and when it returns immediately the best
external action, the system may be considered areactive agent. The control structure of a production system
becomes less reactive and more deliberative as matching cost grows, multiplerule matching is allowed, and
certain policies are used to resolve conflicts between rules.

Russell [1989] presents auniform view of agent deliberation that identifiessix typesof knowledge
that agents can use. These classes of knowledge range from fully declarative to fully compiled representa-
tions. Figure 3.2 [Russell, 1989] showsthe six typesof knowledge, denotedby: A, B,C, D, Eand F. Type
A rules specify information that can be deduced about the current state. Type B rules specify information
about the results of actions and their effect on the current state. Type C' rules specify information regarding
the utility of states. Type D rules specify the best action to be taken in certain situations. Type E rules
specify utility of actions as a function of the current state. Type F' rules specify the best action to be taken
based on the results of actions. In addition, the decision-theoretic principle, labeled DT, uses knowledge of
the utility of actions to conclude that oneis the best. Based on the types of knowledge used by a particular
agent, one can characterize its execution architecture. For example, a production system uses type D rules,
and a goal-based system uses knowledge of type B and F. The combination of a number of execution
architectures offers a tradeoff between execution time and decision quality [Ogasawara and Russell, 1993].
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Figure 3.2: Forms of compiled and uncompiled knowledge

3.2 Goalsversusutility functions

How can intelligence be measured or evaluated? Or to be more precise, given a particular agent, how can
the degree of goa achievement be measured? A simple approach is based on counting the number of goals
that are satisfied. For example, suppose that the set of goalsincludesi n( box1, r oon¥’) , which means
that the object named box1 should be in the room named r oonv. Then the god is achieved in any state
of the environment for which the predicate is true. This has been the standard approach in early planning
systems such as STRIPS and many of its descendants. With thisapproach there can be no partial satisfaction
of agoal. An agent can either achieve agoal completely or fail to do so. Thisrigid approach isnot suitable
for complex situations where partial satisfaction of goals may be sufficient and even desirable given the
cost of complete satisfaction. Consider, for example, the problem of finding a parking spot at a place one
visitsfor thefirst time. Theinitial goal may be to find afree, unlimited parking space that is within a short
walking distance from that place. Normally, after ashort exploration period that yields no result, one settles
for partial fulfillment of this goa rather than prolonging the exploration. In general, complete satisfaction
may be either infeasible or uneconomical.

3.21 Partial goal satisfaction

Many reasons contributeto the fact that partial goal satisfaction might be preferred to compl ete satisfaction.
The following list summarizes these reasons:

1. Problem complexity — given the agent’s computational resources, the problem complexity makes it
too hard to find the best solution.

2. Cost of time—time pressureimposed on the agent does not allow enough timeto find the best solution.

3. Uncertainty regarding thestate of the environment —the agent cannot determine with absol ute certainty
that the goal was achieved because its perception of the environment provides only an approximation
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of the current state.

4. Godl conflict —the desired goal imposes severa constraintson the environment that cannot be satisfied
simultaneously.

Since complete satisfaction of goalsis not always possible, agents need a method for measuring
partial satisfaction of goals so that they can maximize the degree of goal achievement. Such measure
is provided by the use of utility functions. A utility function is a mapping from the set of states of the
environment, 2, into the set of real numbers. The utility of each state, measured in arbitrary units sometimes
called utils, is a numeric evaluation of the degree of goa achievement in that state. For example, if the
agent’s goal isto deliver packages, its utility function may be:

" Value(P;, T;) (3.1)

P;eDP

where T; is the delivery time of package P;, DP isthe set of al delivered packages, and Value determines
the time-dependent delivery value of each package.

Utility functions generalize the notion of goal achievement by allowing each goal to be achieved
to acertain degree. The agent’s set of goasisreplaced by a new single goal which isto maximize itsutility
function. This approach solves the difficulties mentioned above, such as goal conflict, because even when
two goals cannot be achieved together, the utility function can be maximized by partial satisfaction of both.

3.2.2 Explicit and implicit utility

Utility functions express the level of goa achievement for each possible state of the environment. An
important distinction, that has been largely ignored in the past, should be made between explicit and implicit
utility which are defined below:

Definition 3.1 An explicit utility function over a set of states(2, U.,, : 2 — R, isafunction that measures
the degree of goal achievement in a state assuming that it isa terminal state.

Definition 3.2 Animplicit utility function over a set of statesQ, U, : Q@ — R, isafunction that measures
the degree of goal achievement in a state assuming that it is an intermediate state in a problem solving
episode.

To understand the difference between explicit and implicit utility functions imagine an agent whose only
goal isto get to from Berkeley to San Francisco. In theinitia state, wo, the agent has $100 and a car that
has only 1/8 of agallon of fuel. Consider the state w; in which the agent is still in Berkeley, having the
same amount of money and amap of local gas stations. The explicit utility of w, iszero, sincethe agent has
not advanced toward its final destination. When considered as atermina state, w; has no extra value due
to the fact that the agent acquired the map. However, the implicit utility of w, is high, because, having so
littlefuel, the agent must go directly to a gas station before it can do anything else. When considered as an
intermediate state, w;, has some extra utility due to the fact that the agent acquired the map.

While explicit utility can be determined by a simple evaluation of certain, immediate features of
the domain, such asthe distanceto San Francisco, implicit utility is hard to estimate. Implicit utility depends
not only on the environment but also on the agent’s capabilities and intentions. For example, the value of
the map of local gas stations depends on the agent’s capability to read a map and on its intention to get



CHAPTER 3. UTILITY-DRIVEN REAL-TIME AGENTS 32

fuel before heading to San Francisco. Therefore, estimating the implicit utility of a given state may require
complex planning and problem solving. | assume that normally only the explicit utility function is given
as part of the problem definition. Computing the implicit utility is regarded as part of the problem solving
process, not the problem definition.

Implicit utility is, in principle, aderivative of the explicit utility. For each intermediate state, the
agent has expectations regarding the timing of the termination of the task and thelevel of goa achievement.
The explicit utility of that expected termination state defines the implicit utility of anintermediate state. The
utility of a particular action at any given time can aso be estimated by the net effect it has on the implicit
utility of the resulting state. Having made the distinction between implicit and explicit utility, | can now
define the notion of a utility-driven agent.

Definition 3.3 A utility-driven agent is an agent whose behavior is designed to maximize a given explicit
utility function.

Given an explicit utility function, as long as the agent has the capability to compute the possible effects
of each action, the optimization of a single action is relatively ssimple. However, in order to optimize the
agent’s behavior over a certain segment of time, implicit utility must be computed and the task becomes
more complicated. In the next chapter | will show how conditional performance profiles can simplify the
task of projecting the quality of certain courses of action. Therest of thischapter discussestherole of utility
functionsin both guidance and evaluation of intelligent agents. Unless otherwise mentioned, theterm utility
will be used to indicate explicit utility.

3.3 Real-timeagents

Having established a framework that evaluates intelligent agents using utility functions, I now turn to the
notion of real-time agents. The classical definition of real-time systems emphasizes the capability of a
system to produceits results after afixed time has elapsed. In thiswork | have adopted a more general view
of real-time systemsthat is based on the notion of time-dependent utility functions.

3.3.1 Time-dependent utility

Utility functions can be used as a rich language to describe the level of “time pressure” and its dependence
on the situation. For example, a deadline can be imposed on the run-time of a system by having a sharp
drop in utility at a certain point of time. If the value of aresult » of a system in state s of the environment
is defined by the function V'(r, s), and itsfixed deadlineis at T, then the following utility function can be
used to capture both aspects:

Vir,s) ift<Tp

—00 otherwise (3.2)

U(r,s,t)= {
In addition to the capability to capture the notion of adeadline, utility functionsallow for other typesof time
pressure to be described. Moreover, they allow for gradual decrease in the value of the results as a function
of time. To describe this property, the following definition is used:

Definition 3.4 A utility function U(r, s, t), that measures the value of a result r in situation s at time, is
said to be time-dependent if
ar, s, t1, 8 U(r, s,t1) £ U(r, s, t2)
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Time-dependent utility generalizes the traditional notion of adeadline and is sometimes referred to as a soft
deadline. This approach has been used by several investigators [Horvitz, 1987; Boddy and Dean, 1989;
Russell and Wefald, 1989b]. In some cases the utility function evaluates actions rather than states. For
example, Horvitz and Rutledge[1991] introducea system, Protos, to solvetime-pressured medical problems.
Protos can suggest a treatment by propagating observations about a patient’s symptoms through a belief
network. A time-dependent utility function, u(A4; H;, t), is used to specify the value of action A; taken at
timet when state H; istrue. Horvitz and Rutledge use linear and exponential functionsto model the utility
change over time:
u(A;Hj,t) = u(A;Hj, to)e

’LL(A,L'H]', t) = ’LL(A,L'H]', to) — Cbt

where k, and ¢, are parameter constants derived through fitting a series of assessmentsto afunctiona form
or through direct assessment. The use of time-dependent utility leadsto the following definition of real-time
agents:

Definition 3.5 A utility-driven agent is said to be a real-time agent if its utility function is time-dependent.

Thisdefinition unifiesthe analysis of all the systems operating under any type of time constraints, both with
or without strict deadlines. Time-dependent utility provides agood mechanism to describe the time pressure
in many computational tasks, for example, the computation of the next move in chess, path planning for
robot control, reentry navigation for a space shuittle, financial planning and trading, and medical diagnosis
in an intensive care unit. In many real-time domains there is no fixed deadline that should be imposed on
the system. A traditional programming approach to rea -time problem solving, that imposes on the system a
strict deadline, must use a deadline that covers the worst case. But in many Al problem solving techniques
there is a wide variance in computational effort between the best case and the worst case. For example, a
medical diagnosis system may need to respond within 30 seconds when the patient isin critical condition
but the same system may have 30 minutes if the patient condition is stabilized. Deadlines that are defined
based on the worst case impose unnecessary constraints on such systems. Replacing deadlines by utility
functions thus eliminates this deficiency.

3.3.2 Thecost of time

An important aspect in real-time agent control is the cost of time [Russell and Wefald, 1989b]. It reflects
the loss of utility dueto deliberation and delay in action. The cost of timeis determined by several factors:
the agent’s reasoning capabilities, the state of the environment, and the time-dependent utility function of
the agent. In other words, the cost of time is not just the cost of computational time — it also reflects the
expected utility gain due to the agent’s deliberation and the expected utility loss due to the dynamics of the
environment. Suppose that the function U (r, s, t) isthe utility of result r in situation s at time¢. And let r,
be the result at time ¢ and s; be the state of the environment at time ¢. Then the cost of time is defined as
follows:

Definition 3.6 Given a utility function U(r, s, t), the cost of time, C(t), is:
C(t) =Ul(ry, 50,0) — U(ry, 51, 8)

In other words, the cost of time is the difference between the value of aresult, assuming that it is available
a the current state, and its value at the time it is actually produced by the system. Obviously there is a
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large degree of uncertainty regarding the state of the environment and the actual result generated by the
system. This uncertainty is characterized respectively by the model of the environment and the conditional
performance profile of the system. Hence, the expected cost of time can be estimated.

In many domainsitiseasier to estimate the cost of time directly rather than to construct acomplete
model of the environment. In such domains, the utility of the agent in afuture state can be expressed by:

U(re, 8¢, t) = U(re, 50,0) — C(2) (3.3

Hence, direct estimation of the cost of time can greatly simplify the meta-reasoning component. Thisissue
is further discussed in Chapter 6.

3.4 Evaluating utility-driven agents

Utility functions are not only the key mechanism to define the desired behavior of an agent, but also the
metric used to evaluate the quality of its actual behavior. Consider an agent A that is presented with an
individual problem instance taken from a certain domain. Each problem instance includes a description
of the initia state of the environment, w;. The agent transforms the environment, through a sequence of
actions, into afina state, w;. | assume that if the utility function depends on time, the necessary temporal
information is included in the state. A medical diagnosis program is an example of such an agent. The
quality of the behavior is determined in this case by the expected utility of the final state over al possible
problem instances:

Q(A) = ZPT(I(%))ZP?"(F(wf)II(wi))U(wf) (34)

where I (w) indicatesthat w istheinitial state and F'(w) indicatesthat w isthefinal state. U (w) istheexplicit
utility of w. Note that this formula does not provide an effective method for agent evaluation. Further
analysisisrequired to evaluate the probabilitiesthat appear in the formula.

Theabove approachisuseful when eval uating an agent based on asingle problem solvinginstance.
In many cases, however, it is more interesting to measure the performance of the agent over alonger period.
Suppose that an agent is required to solve a sequence of problems. The total utility gain over a set of
problemsisimportant, not the utility gain from each individua probleminstance. A robot performing loca
path planning as it navigates toward a certain destination is an example of such an agent. Another example
isan agent that has along term task, such as “to keep the room clean and organized.” Evaluating the agent
on asingleaction basismay not betheright thingto do. Finally, consider an agent that operatesin aninfinite
loop or an agent whose operation timeis unlimited in principle. A robot that delivers packages to different
clientsin abuilding is an example of such agent. Since packages are added to the delivery list all the time,
the robot does not finish its job at any particular point. Assuming that the utility function depends on the
value and urgency of each package, the quality of the behavior in this case can be measured by the average
utility gain per time unit. A unifying approach to handle these cases is based on the definition of the utility
over “histories’ that describe the state of the environment over a particular period of time. The value of the
agent depends then on its effect on the history of the environment. This approach to evaluate utility-driven
agentsis further discussed in Chapters6 and 7.

In conclusion, this chapter shows how utility functions can replace simple goals in specifying the
desired behavior of an agent. Furthermore, utility functions can be used to capture the time pressure in any
domain and to evaluate the quality of the behavior produced by a particular agent.
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Chapter 4

Anytime Computation

Intelligenceis not to make no mistakes but quickly to see how to make them good.
Bertolt Brecht, The Measures Taken

Anytime algorithms expand upon the traditional view of a computational procedure as they offer to fulfill
an entire spectrum of input-output specifications, over the full range of run-times, rather than just asingle
specification. Normally, the quality of the results of an anytime algorithm grows as computation time
increases, hence anytime computation offers a tradeoff between resource consumption and output quality.
This tradeoff plays a central role in the model of operational rationality. In this chapter | show how to
develop anytime algorithms, how to calculate and represent the relationship between time allocation and
quality of results, and how to actually execute them on a standard computer.

4.1 Anytimealgorithms

Anytime algorithms generalize the standard call-return mechanism in computer programming. A standard
procedure can be viewed as an implementation of a mapping from a set of inputsinto a set of outputs. For
each input that specifiesaprobleminstancethereisaparticular e ement inthe output set that isconsidered the
correct solution to be returned by the procedure. Anytime algorithms can be viewed as an implementation
of a mapping from a set of inputs and time allocation into a set of outputs. For each input that specifies a
problem instance there is a set of possible solutions, each associated with a particular time alocation. The
advantage of this generalization is that the computation can be interrupted at any time and still produce
results of a certain quality, hence the name “anytime algorithm.” The notion of interrupted computation is
almost as old as computation itself. However, in the past, interruption was used primarily for two purposes:
aborting the execution of an agorithm whose results are no longer necessary, or suspending the execution
of an agorithm for a short time because a computation of higher priority must be performed. Anytime
algorithms offer athird type of interruption: interruption of the execution of an agorithm whose resultsare
considered “good enough” by their consumer.

Althoughtheresultsproduced by an anytimeal gorithm may be very useful, they are not considered
“correct” in the traditional sense. The binary property of correctness must be replaced by a more flexible
measure that characterizes the quality of each result.
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Figure 4.1: Typical performance profiles

411 Measuring quality of results

The quality of the results produced by an anytime algorithm is characterized by its performance profile?,
which describes how the quality of the results depends on run-time. Any algorithm — both standard and
anytime— hasaperformance profile. Figure4.1 showsatypical performance profile of an anytime algorithm
(a) and of astandard algorithm (b). The performance profile of the anytime algorithm showsthat the quality
of the results improves gradually over time, while with the standard algorithm, no results are available
until its termination at which point the exact result is returned. Obviously, this example represents an ideal
situation. In practice, the improvement in quality of an anytime algorithm may look like a step function, as
inFigure4.1 (c), rather than asmooth curve. In addition, there may be some uncertainty regarding the actual
quality of the results for any particular time allocation. These issues and other aspects of representation of
performance profiles are discussed in Section 4.2.

In order to draw performance profiles, objective metrics for measuring the quality of the output
must be defined. Such quality measures specify the difference between the approximate result and the exact
result. They are “objective’ in the sense that they are a property of the algorithm itself, independent of its
possible applications. Objective quality measures should not be confused with subjective utility functions
that are also used in our model. The former are used to characterize the performance of an algorithm in
absolute terms and the latter are used to define the desirability of the output of the complete system with
respect to its design goals. Since the results of one anytime agorithm can be used as the input of another
algorithm, the same quality measures that are attached to the results are used to characterize the possible
variability in input quality.

From a pragmatic point of view, it may seem useful to defineasingletype of quality measureto be
applied to al anytime algorithms. Such a unifying approach may simplify the meta-level control. However,
in practice, different types of anytime agorithms tend to approach the exact result in completely different
ways. Quality measures must match the nature of the algorithm they describe. As aresult, the model of
operational rationality allows arbitrary quality metrics to be used. In particular, the following three metrics
where found useful:

1. Certainty — Thismetric reflects the degree of certainty that aresult iscorrect. The degree of certainty
can be expressed using probabilities, fuzzy set membership, or any other method of expressing
uncertainty. For example, consider an anytime diagnosis agorithm that is based on combining more
and more evidence as computation timeincreases. The certainty that the diagnosisis correct increases
as afunction of run-time. With thistype of anytime algorithms, there is always a possibility that the
correct results are completely different from the ones generated by the algorithm.

! An exact definition of performance profileswill be given later in this chapter.
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2. Accuracy — This metric reflects the degree of accuracy or how close is the approximate result to the
exact answer. Normally with such algorithms, high quality provides a guarantee that the error is
below a certain small upper bound. For example, Taylor series can be used for calculating the value
of a certain function. The basic ideais to approximate the function by a polynomial in such a way
that the resulting error is within some specified tolerance. Lagrange’s remainder formula can be used
to determine an upper bound on the error as a function of the iteration number. This error estimate
determinesthe quality of the results.

3. Specificity — This metric reflects the level of detail of the result. In this case, the anytime algorithm
always produces correct results, but the level of detail isincreased over time. For example, consider
ahierarchical planning algorithm that first returns a high level abstract plan. Each step in the abstract
planisa“macro” step that needs to be refined by further planning. As computation time increases,
the level of detail in increased until the plan is composed of base-level steps only that can be easily
followed. A detailed plan can be executed faster than an abstract plan and has higher quality.

When a particular anytime algorithm is constructed, it is often hard to classify uniquely its quality
measure. Accuracy is typically used to measure quality in numerical domains and specificity in symbolic
domains, but the former can be seen as a specia case of the latter; an inaccurate numerical solution is
very specific but incorrect, and could be mapped to an equally useful, correct statement that the solution
lieswithin a certain interval. In addition, anytime a gorithms can have multidimensional quality measures.
For example, PAC agorithms for inductive learning are characterized by an uncertainty measure, 4, and a
precision measure, . The advantage of the use of conditiona performance profiles, as described in the next
chapter, isthat they allow for a uniform treatment of anytime a gorithms, regardless of the particular type of
their quality measure.

4.1.2 Interruptibleversuscontract algorithms

An important distinction should be made between two types of anytime algorithms: interruptiblea gorithms
and contract algorithms. Interruptible algorithms produce results of the “advertised quality” even when
interrupted unexpectedly; whereas contract algorithms, although capabl e of producing results whose quality
varies with time allocation, must be given a particular time allocation in advance. If a contract algorithmis
interrupted at any time shorter than the contract time, it may yield no useful results. Both interruptible and
contract algorithms have been used in the past. Dean and Boddy’s [1988] definition of anytime algorithms
refers to the interruptible case. Korf’s RTA* [1988] performs a depth-first or best-first search within a
predetermined search horizon that is computed from the time allocation provided, and can therefore be
considered a contract algorithm. Although this algorithm can produce resultsfor any given time alocation,
if it isinterrupted before the expiration of the alocation, it may yield no results.

In general, every interruptible algorithm is trivialy a contract algorithm, but the converse is
not true. Intuitively, one tends to think about anytime agorithms as interruptible, whereas the greater
freedom of design makes it easier to construct contract algorithms than interruptible ones. In the case of
functional composition, for example, the construction of optimal contract algorithms can be solved by an
efficient compilation process, while the construction of interruptible algorithms is much harder. Since in
many domains with high time pressure the main decision component of an agent must be interruptible, the
following reduction theorem is essential for the model of operational rationality. The reduction theorem
allows for the construction of contract agorithms as an intermediate step, before the system is made
interruptible.
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Figure 4.2: Performance profiles of interruptible and contract algorithms

Theorem 4.1 (Reduction) For any contract algorithm A, an interruptiblealgorithm B can be constructed
such that for any particular input gz (4t) > ga(t).

Proof: Construct B by running .A repeatedly with exponentially increasing timelimits. If interrupted, return
the best result generated so far. Let the sequence of run-time segments be 7, 27, ..., 2'r, ..., and assume that
the time overhead of the code required to control thisloop can beignored. Notealsothat 37} 2¢ = 27 — 1.
The worst case situation occurs when B isinterrupted after almost (2" — 1)7 time units, just before the last
iteration terminates and the returned result is based on the previous iteration with a run-time of 2 =27 time
units. Since 2.=1 < 4, the factor of 4 results. If one replaces the multiplier of time intervals by a, one

2an—2

gets atime ratio of: an_"f_ﬁ The lower bound of thisexpressionis4, for & = 2, hence 2 isthe optimal
multiplier under this strategy. O

Note that = may be arbitrarily small and should be in general the shortest run-time for which
there is any improvement in the quality of the resultsof .A. Note also that the reduction theorem makes no
assumption about the timing of theinterrupt. When such informationis available, for example if run-timeis
evenly distributed between 5 and 15 seconds, then a different scheduling scheme might be better.

Figure4.2 showsatypica performance profilefor the contract algorithm A, and the corresponding
performance profile for the constructed interruptible algorithm B, reduced a ong the time axis by afactor of

4,

As an example, consider the application of this construction method to Korf’s RTA*, a contract
algorithm. Asthetime alocation isincreased exponentialy, the algorithm will increase its depth bound by
a constant; the construction therefore generates an iterative deepening search automatically.

4.1.3 Theanytimetraveling salesman

I now turn to an example of a particular anytime algorithm for solving awell-known combinatorial problem.
Thetraveling salesman problem (T SP) involvesasalesman that must visit n cities. If theproblemismodeled
as a complete graph with n vertices, the solution becomes a tour, or Hamiltonian cycle, visiting each city
exactly once, starting and finishing at the same city. The cost function, Cost(z, 5), defines the cost of
traveling directly from city z to city 7. The problem isto find an optimal tour, that is, a tour with minimal
total cost. The TSPisknownto be NP-complete [Garey and Johnson, 1979]. Sinceall theknown algorithms
for solving this problem require exponential time in the worst casg, it isimpossibleto find an optimal tour
when the problem includes a large number of cities. Several efficient approximate algorithms have been
devel oped for the TSP. Some, based on finding a minimum spanning tree, do not have the property of gradual
improvement. Others are based on iterative gradual improvement. Such an interruptible anytime algorithm
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Figure 4.3: The operation of randomized tour improvement

is described below.

The anytime traveling salesman agorithm is a randomized agorithm that repeatedly tries to
perform a tour improvement step [Lin and Kernighan, 1973; Lawler et al., 1987]. In the general case of
tour improvement procedures, r edges in a feasible tour are exchanged for » edges not in that solution as
long as the result remains a tour and the cost of that tour is less than the cost of the previous tour. | have
implemented the algorithm for the casewherer = 2. Figure 4.3 demonstrates one step of tour improvement.
An existing tour, shown in part (a), visitsthe vertices in the following order: a, b, c, d, e, f. The algorithm
selects two random edges of the graph, (b, ¢) and ( f, a) in this example, and checks whether the following
condition holds:

Cost(a,c) + Cost(f,b) < Cost(b, c) + Cost(f,a) (4.1)

If this condition holds, the existing tour is replaced by the new tour, shownin part (b), a, ¢, d, e, f, b, a. The
improvement condition guarantees that the new path has alower cost. The agorithm starts with a random
tour that is generated by simply taking a random ordering of the cities. Then the algorithm tries to reduce
the cost by a sequence of random improvements. The result is an interruptible anytime algorithm shown in
Figure 4.4. The performance profile of thisagorithm will be presented in the following section.
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ANYTIME-TSP(V, iter)
Tour < INITIAL-TOUR(V)
cost «+— Cosrt(Tour)
REGISTER-RESULT(Tour)
for ¢ < 1toiter
e, + RANDOM-EDGE(Tour)
e; + RANDOM-EDGE(Tour)
é + CosT(Tour) — CosT(SwiTcH(Tour, ey, e3))
if 6§ > 0then
Tour < SwiTcH(Tour, ey, e5)
cost < cost — 4
REGISTER-RESULT(Tour)
SIGNAL(TERMINATION)
HALT

O©CoOoO~NOOULhA, WN P

e
WN RO

Figure 4.4: The anytime traveling salesman algorithm

4.2 Performanceprofiles

Performance profiles providethe crucial meta-level knowledgeinthemodel of operational rationality. When
an anytime agorithm is activated with a particular time alocation, the quality of its result falls within a
certain range of possiblevalues. The main reason for the uncertainty concerning the quality of the results,
especially with deterministic al gorithms, isthe fact that the particul ar input to thea gorithmisunknown. The
performance profile specifies the quality distributionfor any given time allocation. Thisquality distribution
should always be interpreted with respect to a particular probability distribution of input instances. An
algorithm may have severa performance profiles, each characterizing its performance when operatingin a
different environment. For example, a particular path planning agorithm may have different performance
profiles when applied to the corridors of a hospital and to a section of a warehouse. This section defines
three types of performance profiles and discusses methods for their cal culation and representation.

421 Categoriesof performance profiles

Given an anytime agorithm A, let g4(z,t) be the quality of results produced by A with input z and
computation time ¢; let g4 (t) be the expected quality of results with computation time ¢; and let p4,,(g) be
the probability (density function in the continuous case) that .A with computation time ¢ produces results of
quality ¢. Themost informativetype of performance profile used in thiswork isthe performance distribution
profile defined bel ow:

Definition 4.2 The performance distribution profile (PDP), of an algorithm A isa functionD 4 : Rt —
Pr(R) that maps computation time to a probability distribution of the quality of the results.

It may happen that the summation over all possibleinputsproducestoo widearange of qualitiesinwhich case
the information provided by the performance profile is too general. In that case, one can use a conditional
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performance profile by partitioning theinput domaininto classesand storing a separate profile for each input
class. The partitioning can be done using any attribute of the input that may influence performance, such as
size or a complexity measure. Input classes of similar performance can also be derived automatically using
Bayesian statistics by programs such as Autoclass [ Cheeseman et al., 1988]. Additional types of conditional
performance profiles, used for compilation purposes, are discussed in Chapter 5.

Definition 4.3 The expected performance profile (EPP), of an algorithm AisafunctionE4 : Rt - R
that maps computation time to the expected quality of the results.

An expected performance profile is the most compact representation of performance information. It isthe
kind of performance information that was used by Boddy and Dean [1989] and by Horvitz [1987]. Note
that:

Ea(t) =) pas(9)a=>_ Pr(z)qa(e,t) (4.2)

Expected performance profiles are especially useful when the variance of the quality distributionis small.
In such case,

F(E(q1), E(g2)) = E(f(a1, 22)) (4.3

hence expectations can be combined with high accuracy using expected performance profiles. In the specia
case where the variance of the distribution is zero (or infinitesimal), the anytime algorithm is said to has
a fixed performance. For such agorithms, an expected performance profile offers a complete, accurate
description of performance.

Definition 4.4 The performanceinterval profile (PIP), of analgorithmAisafunction/4 : Rt - Rx R
that maps computation time to the upper and lower bounds of the quality of the results.

Notethat if 14(t) = [L, U] then:
Ve : L < qu(z,t) <U (4.4)

Performance interval profiles offer a representation that is both compact and easy to manipulate. From the
lower bounds on the qualities of the results of two agorithms, one can normally find a lower bound on the
quality of their combined result. The same is not true of expected performance profiles. Hence, when a
compact representation is preferred and the variance of thedistributioniswide, performanceinterval profiles
are useful.

4.2.2 Propertiesof performance profiles

I now turn to the definition of some basic properties of anytime algorithms and their performance profiles.

Definition 4.5 The completion time of an anytimealgorithm A ist., if ¢. isthe minimal time for which:
VeVt :t >t — qa(z,t) = qa(z,t;)

Note that while the quality of results advertised by an expected performance profile is not guaranteed in
generd, it is guaranteed at completion time. Thisis an immediate consequence of the definition. It also
reflects the intuitive notion of the completion of a computation. If ¢ is the run-time for which the expected
quality is maximal, then a time allocation of ¢ + & is required in order to guarantee that quality, where é
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depends on the performance distribution of thea gorithm. Note a so that the quality of resultsachieved by an
algorithm at its completion time is not necessarily equivalent to the quality of an optimal solution. Anytime
algorithms are not required to return optimal solutionsfor a large, even infinite, time allocation. In many
cases the flexibility offered by the algorithm is achieved at the expense of termination with sub-optimal
results. For any given decidable problem, it is possible to “fix” an anytime algorithm so that it returns
an optimal result in the limit. This can be achieved by simply switching from the anytime algorithm to a
standard optimal agorithm after its termination (or at an earlier point). However, convergence to optimal
resultsin the limit has very limited relevance to the construction of real-time systems.

Definition 4.6 An anytime algorithm A is said to be pathological if its expected quality of resultsis not a
monotonic non-decreasing function. That is,

Elt]_ Eltz : t]_ < tz A EA(t]_) > EA(tz)

Unless otherwise mentioned, | assume that an agorithmis not pathol ogical. Pathology in anytime computa-
tion can be easily removed when the quality of the resultsissimpleto calculate. 1n such cases, thealgorithm
can be modified to return the best result generated so far instead of the most recent one. This modification
clearly makes the al gorithm non-pathol ogical . For example, consider apath planning algorithmin which the
quality of agenerated path is determined by itslength. Since the quality is simpleto compute, it is easy to
guarantee that the algorithmis not pathological. However, in chess playing programs, the quality of amove
isnot easily recognizable. That isexactly why extensive search is necessary to evaluate possible moves. In
such cases fixing a pathological algorithm is much harder [Nau, 1983].

Definition 4.7 A quality functionis said to be normalized if the quality of an optimal result is 1 and:
VeVt :0 < qu(z,t)<1

When the quality of results measures uncertainty using standard probahilities, the performance profile is
trivially normalized. Error bounds can be normalized using a relative rather than an absolute measure.
Levelsof specificity can be normalized by measuring their relative contributionto the quality of the optimal
(i.e. most specific) solution. Normalization of quality is sometimes useful for theorem proving purposes.
However, in practice there isnormally no need to limit an application to normalized performance profiles.

Definition 4.8 Let .A and B be two anytime algorithms that solve the same problem, then B is said to be
superior to A if for every input z and every time allocation ¢:

Ve YVt : gg(z,t) > qa(z,t)

Therelationship of superiority between anytime agorithmsis a partial order. Given two anytime algorithms
that solve a certain problem, it is possible that neither of them is superior to the other. For example, in
Figure 4.5, both performance profiles a and b are superior to ¢, but neither isa superior to & nor is b superior
to a. To decide which one is “better,” more knowledge on the distribution of time allocation is required.
Given such information, one can compute the expected quality over all possible allocations and use that
figure as a basis for comparison. Suppose that in a particular environment the function f() is the density
function for time allocations. That is,

Py <t < Tl = [ f(o)at (4.5)

T
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Figure 4.5: Superior performance profiles

Given such a density function, any two performance profiles can be compared:

Definition 4.9 Let A and B be two anytime algorithms that solve the same problem, then B is said to be
stochastically superior to A over thetimeinterval [T, T5] if:

T, T,
| 1as@de> [ 7 pe)aatyar
Definition 4.10 Let A and B be two anytime algorithms that solve the same problem, then B is said to be
e-superior to A if for every input z and every time allocation ¢:

VeVt : gg(z,t+€) > qa(z,t)

Definition 4.11 Let A and B be two anytime algorithms that solve the same problem, then B is said to be
equivalent to A, denoted B =~ A, if there existsa small constant e > 0 such that A ise-superior to B and B
is e-superior to A.

Proposition 4.12 Let A and B be two anytime algorithms that solve the same problem with fixed perfor-
mance. If neither algorithmissuperior to the other, then there exists a contract anytime algorithm¢ that is
e-superior to both A and B. C is called the merger of A and B.

Proof: Construct C as follows;

(2)
t + GET-TIME-LIMIT
if ga(t) > gs(t)
then AT(A(z), CONTRACT, t)
else AT(B(z), CONTRACT, t)

A WONEOQ

Themerger algorithm C checksfirst which algorithm produces a better result for the particular contract time.
This decision is made based on the expected performance profiles of A and B. Then it simply activates the
better algorithm for that particular alocation. Since both A and B have fixed performances, C is guaranteed
to produce results superior to both. O

Notethat A and B can be either contract or interruptible a gorithms since they are activated by C
in contract mode. The reason why C is only e-superior to .A and B is because of the short additional time
necessary to determine which algorithm should be activated.
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Figure 4.6: The quality map of the TSP algorithm

4.2.3 Findingthe performance profile of an algorithm

Suppose that a certain anytime algorithm isimplemented on a certain machine. How can one determine its
performance profile? In some cases, the performance profile can be calculated by performing a structural
analysisof the algorithm. For example, in many iterative algorithms, such as Newton's method, the error in
the result is bounded by a function that depends on the number of iterations. In such cases, the performance
profile can be calculated once the run-time of a single iteration is determined. In general, however, such
structural analysis of the code is hard because the improvement in quality in each iteration and itsrun-time
may be unpredictable. The randomized tour improvement algorithm from the previous section illustrates
this problem. To overcome this difficulty, a general simulation method can be used. It isbased on gathering
statistics on the performance of the algorithm in many representative cases?. A third adaptive method
combines simulation and learning. The system starts with an approximate performance profile that is
determined using simulation with a limited number of examples. Then, as the system interacts with the
environment, it updates the performance profile based on its experience. The advantage of this method
isthat it is automatically biased to measure the performance of the algorithm in the context of the actual
application domain and using real input instances.

A quality map of an anytime algorithm summarizes the results of running the algorithm with
randomly generated input instances. For example, Figure 4.6 showsthe quality map of the randomized TSP
agorithm. Each point (¢, ¢) represents an instance for which quality ¢ was achieved with run-time ¢. The
quality of resultsin this experiment measures the percentage of tour length reduction with respect to the
initial tour.

These statistics form the basis for the construction of the performance profile of the agorithm.
Theresulting expected performance profileis shownin Figure 4.7. Table 4.1 showsatabular representation
of the probability distribution profile of the algorithm.

2 Representative problem instances are randomly generated based on prior knowledge of the problem domain.
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Figure 4.7: The expected performance profile of the TSP algorithm

4.24 Representation of performance profiles

Performance profiles can be represented either by a closed formula or as a table of discrete entries. This
section discusses the two alternative representations.

Closed formula representation

Since performance profiles are normally monotone functions of time, they can be approximated using a
certain family of functions. Once the quality map is known, the performance information can be derived by
various curve fitting techniques. For example, Boddy and Dean [1989] used the function: Q(t) = 1 — e~**
to model the expected performance of their anytime planner. Performance distribution profiles can be
approximated using a similar method by using a certain family of distributions. For example, if the normal
distribution is used, one can apply the same curve fitting techniques to approximate the mean and variance
of the distribution as a function of time.

The advantage of using a closed formula representation of performance profiles is that symbolic
compilation can be performed once a parametric representation of each profileis given. The result of such
compilation can be used each time members of that family are compiled.

Closed formula representation has two major disadvantages:

1. It introduces error in performance information that is caused by the bias toward a certain family of
functions.

2. Itishard to maintain closure under the compilation operation.

The problem of closure under compilation is especialy important. The closure property requires that the
result of compilation of two (or more) performance profiles that belong to a certain family would be a
member of the same family (or at least it could be approximated by afunctionin that family). For example,
when compiling two linear performance profiles one gets a non-linear performance profile and a linear
approximation may not be sufficient (see Chapter 5). Hence, linear performance profiles are not closed
under compilation. Asaresult of the disadvantages of closed formularepresentation, | prefer the use of the
more flexible, discrete representation.
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Table 4.1: The performance distribution profile of the TSP algorithm

quality
time || 025 | .075 | .125] .175| .225| .275 | .325 | .375 | 425 | 475 | 525 | 575
00 [ 100
0.2 [ 002|030 | 048|0.16 | 0.04
0.4 0.04 | 012 | 0.24 | 0.36 | 0.24
0.6 0.04 [ 010 | 0.30 | 0.34 | 0.22
0.8 0.02 | 0.16 | 0.34 | 0.30 | 0.14 | 0.04
1.0 0.02 ] 018 ] 038 | 0.26 | 0.16
12 0.06 [ 0.24 | 040 | 0.28 | 0.02
14 0.10 | 0.40 | 042 | 0.08
16 0.04 [ 0.30 | 044 [ 0.20 | 0.02
18 0.10 | 054 | 0.32 | 0.04
20 0.44 | 048 | 0.08
2.2 0.28 | 052 | 0.18 | 0.02
24 0.16 | 0.50 | 0.30 | 0.04

Discrete representation

The discrete representation of performance profilesis based on atablethat specifies the discrete probability
distribution of quality for certain possibletime allocations. For this purpose, the complete range of qualities
hasto bedividedinto discretequalitiesqy, ..., ¢,. Theentry ¢, j in thetablerepresentsthe discrete probability
that with time allocation ¢; the actual output quality ¢ would be in the range [¢; — 4, ¢; + 8]. The size of
the table is a system parameter that controls the accuracy of performance information. Linear interpolation
is used to find the quality when the run-time does not match exactly one of the table entries. For example,
Table 4.1 shows the performance distribution profile of the randomized TSP algorithm.

425 Thelibrary of performance profiles

The development of an anytime agorithm is not considered complete before its performance profile is
calculated and stored in the anytime library. Thislibrary keeps the meta-level information that is essential
both for off-line compilation and for run-time monitoring. The construction of a standard anytime package
that comes with alibrary of performance profilesisan important first step toward the integration of anytime
computation into standard software engineering techniques. Behind such alibrary lies avision of the wide-
spread use of standard anytime algorithms for essentially every basic computational problem from sorting
and searching to graph agorithms. The anytime library offers a set of reusable real-time programs, a notion
that is almost self-contradictory with respect to current methodologies of developing rea-time systems.
Together with automatic compilation and monitoring, such alibrary can greatly simplify and accelerate the
devel opment of real-time systems.

Severa important implementation issues regarding the construction of the anytime library have
been ignored in the prototype implementation of the model. These issues include naming conventions
and interface specification. Proper naming conventions are needed so that performance profiles are easily
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matched with the algorithms that they describe. Performance profiles in the library should be machine
independent. They should specify performance with respect to a standard virtual machine. The library
must aso include information about relative performance of various computer systems so that the generic
performance profile from the library can be stretched to describe the actual performance on a particular
system. In addition, a standard set of interface operations should be defined for modification, information
retrieval, and display of the entries of thelibrary. The particular detailsof the implementation depend on the
programming environment used and are beyond the scope of this dissertation.

4.3 Model of execution

How can an anytime algorithm be executed on a standard computer with minimal programmer intervention?
In this section | define amodel of execution for anytime computation that solvesthis problem. The crucial
part of the model is the capability to communicate with a running algorithm, examine the quality of its
results, and control its run-time accordingly. | limit the discussion to the execution of elementary anytime
algorithmsthat do not include anytime algorithms as components. The treatment of compound algorithms
is based on compilation and monitoring methods that are described in the following chapters.

431 Design goals

The mode of execution was devel oped with the following design godls:

1. Anytime programs should include a minimal amount of “specia code” to support the model. Such
special code may be necessary in order to have accessto the status and results of an algorithmwhileit
isrunning, to activate an algorithm with a particular time allocation, to interrupt an algorithm and use
its best result, or to find the performance profile. The minimal extra code should not make anytime
programs hard to read and understand. Whenever possible, code to support specia operations should
be inserted automatically when an anytime algorithm is defined.

2. The programmer should not be responsible for inserting the code for time measurements or time
alocation. All measurements should be performed automatically by the system. The responsibility
of the programmer should be limited to qualitative aspects of algorithm development while the
guantitative aspects of control and performance evaluation would be automatic.

3. The programmer should have to develop only one version of the program. None of the operations
mentioned above, such as finding the performance profile of an e ementary anytime algorithm, should
require the programmer to alter the source code. Such modifications of code should be performed,
whenever necessary, by automatic tools.

4. The programmer should be able to test individual anytime a gorithmswithout activating the complete
system. Therun-time monitor devel oped to control the compl ete system should a so be ableto control
individual algorithms. Thismay require the programmer to define an appropriate context that includes
autility function and a degenerate environment. Thisissuewill be discussed in Chapter 6.

4.3.2 Assumptions about the programming environment

Themodel that is presented here can berealized in any programming environment that satisfiesthefollowing
requirements:
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1. The underlying programming language, P L, must support the following features:

(8 Functionsarefirst class objects.
(b) Functions can take optional and keyword arguments.

(c) Execution is deterministic over time. That is, the run-time of any deterministic function is
consistent over repeated activations with the same input.

2. The programming environment must include a rea-time operating system, OS, that supports the
following operations:

(8 A program can create processes and control their execution.

(b) The scheduling of processesis based on priorities. At each point of time the process with the
highest priority among all the ready processesisrunning.

() The system maintains a real-time clock.

(d) A processcan sleep until a certain event occurs. The process becomes ready immediately when
the event occurs.

(e) Eventscan betriggered by any process or by the real-time clock.
3. Thescheduler of processes must have the following properties:

(& It is an event-driven scheduler. If no event occurs, the process with highest priority remains
active. If two ready processes have the same priority, one of them is randomly selected for
execution.

(b) When a processis running and a process with higher priority becomes ready, the latter becomes
immediately active.

(o) Theeffect of the overhead of the schedul er on the performance profiles of the running algorithms
isnegligible.

Note that while the simulated prototype of the model was implemented in Allegro Common Lisp, the actual
model cannot be implemented in that language because it fails to satisfy the following assumptions: 1.c,
2.b, 2.d, 3.3, and 3.b. Obviously, the built-in garbage collection mechanism of Lisp makesit difficult to use
that language for time-critical applications. Several existing programming environments, such as the Spring
kernel [ Stankovic and Ramamritham, 1989], that were especially designed for real -time applications, satisfy
the requirements listed above.

4.3.3 Running elementary anytime algorithms

I now turn to adescription of the model of execution with respect to the development of elementary anytime
algorithms. As| mentioned earlier, the discussion here is limited to elementary anytime algorithms defined
asfollows:

Definition 4.13 An elementary anytime algorithmis an anytime algorithmwhose i mplementation does not
use any other anytime algorithm as a component. A non-elementary anytime algorithmis also called a
compound algorithm.
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Foo(Input)

Result < INITIALIZATION-STEP(Input)

REGISTER-RESULT(Result)

while CONTINUATION-CONDITION do
Result <+~ IMPROVEMENT-STEP(Result)
REGISTER-RESULT(Result)

SIGNAL(TERMINATION)

HALT

No o~ owWDN PR

Figure 4.8: Typica implementation of an interruptible anytime algorithm

Elementary anytime algorithms are standard programsin P L. What makes them anytime algorithmsis the
mode of activation and the use of the special function: REGISTER-RESULT(Result) whenever anew resultis
generated. Thisfunction records the new result so that it becomes availablein case of interruption. It also
updates the status of the anytime algorithm. The registration operation is a fast atomic (non-interruptible)
operation since interruption may create an inconsistent situation in which only part of the new result has
been copied.

Practical experience showsthat most el ementary anytimea gorithmsare devel oped using ageneral
interruptible scheme. Figure 4.8 shows the typical structure of such algorithms. After performing some
initial computation, the algorithm register thefirst result. Then it enters aloop that repeatedly improvesthe
result. At the end of each iteration, the algorithm updates the result. Once the algorithm terminates, and
assuming it was not aborted earlier because of timeout or interrupt, it signalsthe fact that the computation
is done.

Elementary contract algorithms have a different structure. In principle, they need to register a
result just once, before the expiration of the contract. In order to guarantee that they generate aresult before
the expiration of the contract, these algorithms start with a call to INIT-CONTROL-PARAMS. This procedure
sets up the values of certain local parameters that determine the execution time of the algorithm. The
parameters must be identified by the programmer and can limit, for example, the number of iterations, the
search horizon, or the depth of graph exploration. How does a contract a gorithm computethe mapping from
contract timeto these control parameters? The desired situation would be to use an automatic programming
tool to perform thistask, although no such tool is currently available.

Activation

While the programmer normally activates an elementary anytime algorithm just as if it were a standard
algorithm, the model includes a special function that is actually used to control the execution time. Every
activation of an elementary anytime algorithmin aprogram is replaced by the compiler (see Chapter 5) with
acal tothefollowing specia function:

AT (anytime-function-call,
activation-mode,
time-limit,



CHAPTER 4. ANYTIME COMPUTATION 50

AT (anytime-function-call, activation-mode, time-limit, desired-quality)
PID <+ CREATE-PROCESS (anytime-function-call, AT-PRIORITY)
SET-DESIRED-QUALITY(PID, desired-quality)
INITIALIZE-TIMER(RT, time-limit)
if activation-mode = INTERRUPTIBLE then
ENABLE(EXT-INTERRUPT)
wait for event in [EXT-INTERRUPT or RT-EXPIRED or
QUAL-ACHIEVED or TERMINATION]
Result +— CURRENT-BEST-RESULT(PID)
kill PID
9 return Result

OO0, WN P

oo ~

Figure 4.9: The control of anytime computation

desired-quality)

where anytime-function-call is the original function to be activated (including its arguments), activation-
modeiseither CONTRACT or INTERRUPTIBLE, time-limitistheamount of timeallocated (i.e. the contract
time for a contract algorithm or a certain run-time limit for an interruptible algorithm), and desired-quality
isthe quality of resultsthat is considered satisfactory by the consumer and, when reached, should cause the
termination of the computation. Both time-limit and desired-quality are optiona parameters.

Figure 4.9 shows the implementation of the AT function. It creates a process that runs the actual
anytime algorithm and remains active as acontrol mechanism until the termination of the anytime algorithm.
The termination can be signaled by any one of the following events: an external interrupt, expiration of the
contract time, reaching the desired quality of results, or by a natural termination of the anytime algorithm.

To summarize, hereis an example of an activation of a TSP algorithm as a contract algorithm with
time limit of 1000 msec and desired quality of 0.78. The input to the agorithm is a random map of 200
cities:

MAP <— CREATE-MAP(Size = 200)

AT(ANYTIME-TSP(MAP,
activation-mode = CONTRACT,
time-limit = 1000,
desired-quality = 0.78)

4.4 Programming techniques

Since elementary anytime algorithms serve as the basic blocks of the model of operational rationality, the
success of the model largely depends on the capability to develop alarge number of anytime algorithmsthat
solveawiderange of problems. But, does anytime computation requirearadical changein program design?
Doesit require a completely new set of programming techniques? | suggest that alarge number of existing
programming techniques offer a good basis for anytime computation.
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To conclude this chapter, | show how several existing programming techniques can be used to
develop anytime algorithms. | characterize these techniques as indirect programming techniques in the
sense that they produce a sequence of approximate results rather than directly cal culating the exact answer.
Traditionally, such indirect programming techniqueswere motivated primarily by thefact that some problems
do not have a closed form solution. In order to solve such problems, search and other indirect techniques
must be used. The main difference between indirect computation in general and anytime computationisthe
emphasis of thelatter on the value of producing a sequence of results, not as ameansto reaching a satisfying
solution, but as an end in itself. This difference in motivation means that some minor modifications might
be necessary when using existing programming techniques to make it possible for intermediate results to
become the final results of the computation.

Search algorithms

Search is the genera problem solving technique that is based on systematic exploration of the space of
possible solutions until a satisfying solutionis reached. Search procedures differ in the order in which they
explore the search space. As long as the search space is small, existing search procedures, such as A*,
can find an optimal solution. However, in most practical problems the search space is too large for finding
optimal solutions. Thus, when using search as a basic mechanism for agent construction, the purpose of the
search procedure becomes gathering information. Such information can be used in order to make a good
selection of actions in a process that eventually converges on a solution. The run-time of each step can be
controlled by limiting the search horizon. In principle, thisformsthebasisfor an anytime a gorithmsincethe
more time is available for each step, the more information can be gathered before an action is selected and
executed. However, monotonic increasing quality of results as a function of search effort is not guaranteed
with many popular search procedures®. The RTA* agorithm presented in Section 2.5 is an example of a
search procedure that guarantees improved quality of results as a function of run-time when the quality is
measured in terms of error bounds.

Randomized algorithms

In a wide range of applications, randomization offers an extremely important tool for the construction of
algorithms [Karp, 1990]. There are two principal types of advantages that randomized algorithms often
have. First, their execution time and space requirement can be smaller than that of the best deterministic
algorithm known for the problem. But even more strikingly, they are simple to understand and implement.
Many existing randomization techniques can be used to construct anytime agorithms whose quality of
resultsimprovesin terms of degree of certainty.

A general randomized techniquethat has thisproperty is sometimes call ed abundance of witnesses.
It involvesdeciding whether theinput data possessesa certain property: for example, whether aninteger can
befactored. Often, itispossibleto establishthe property by finding a certain object called awitness. Whileit
may be hard to find awitness deterministicaly, it is often possibleto show that witnessesare quite abundant
in a certain probability space, and thus one can search efficiently for awitness by repeatedly sampling from
the probability space. If the property holds, then awitnessisvery likely to be found withinafew trials; thus,
thefailure of thealgorithmto find awitnessin along series of trial sgives strong evidence that the input does
not have the required property. Two important types of algorithmsfall under this category. A Las Vegas

3The problem of decreased quality of results in spite of increased search effort has been studied by Nau [1985] and others. It is
frequently referred to as pathology of search procedures.
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algorithm provides a solution with probability greater than 0.5 and never gives an incorrect solution. A
weaker type of algorithm, known as Monte Carlo algorithm, can be used for situationswhere the algorithm
makes a decision, and its output is either yes or no. A Monte Carlo agorithm is a randomized algorithm
such that, if the answer is yes, the algorithm confirms it with probability larger than 0.5, but if the answer
isno, it simply remains silent. Thus, on an input for which the answer is no, the algorithm will never give
adefinitive result. An anytime algorithm can be constructed in this case by repeating the activation of the
trial phase. For example, there are several Monte Carlo agorithmsfor problems such as testing whether a
given integer is composite, testing polynomial identities, or testing whether a graph has a perfect matching.

Another randomized programming technique that can be used to construct anytime algorithmsis
fingerprinting. Thisisatechniquefor representing alarge data object by a short “fingerprint” computed for
it. Under certain conditions, the fact that two objects have the same fingerprint is strong evidence that they
areinfact identical. Thiscan be used to solve pattern matching problems where the anytime algorithm uses
severa different fingerprints. As more and more fingerprints are generated and compared, the probability
that the objects are identical increases.

Automated reasoning algorithms

Many useful algorithms for automated reasoning are based on accumulation of evidence. Such algorithms
calculatethe support of each candidate hypothesisbased on observed evidence. Thelevel of support replaces
amore rigid binary truth value. This approach alows a system to accumulate evidence to support or reject
a hypothesisin an incremental manner.

One approach, called bounded conditioning, is presented in Horvitz et al. [1989a]. Bounded
conditioningmonotonical ly refinestheboundson posterior probabilitiesin abelief network with computation
and converges on fina probabilitiesof interest. The approach allows a reasoner to exchange computational
resources for incremental gainsin inference quality. The agorithm solves a probabilisticinference problem
in complex belief networks by breaking the problem into a set of mutually exclusive, tractable subproblems
and ordering their solutions by the expected effect that each subproblem will have on the final answer.

Another approach, variable precision logic [Michalski and Winston, 1986], is concerned with
problems of reasoning with incompleteinformation and resource constraints. Variable precision logic offers
mechanisms for handling trade-offs between the precision of inferences and the computational efficiency of
deriving them. Michalski and Winston address primarily the issue of variable certainty level and employ
censored production rules as an underlying representational and computational mechanism. These censored
production rules are created by augmenting ordinary production rules with an exception condition and are
written in the form “if A then B unless C,” where C is the exception condition. Systems using censored
production rules are free to ignore the exception conditions when resources are tight. Given more time,
the exception conditions are examined, lending credibility to high-speed answers or changing them. Some
degree of quantitativeanalysisis added by augmenting censored rules with two parameters that indicate the
certainty of theimplication “if A then B.” The parameter § represents the certainty when the truth value of
C isunknown, while v isthe certainty when C isknown to befase.

I terative approximation methods

The category of iterative methods includes a large number of approximation agorithms that are based on
computing aseries of resultsthat get closer to the exact answer. Thesealgorithmsare obviously interruptible
and in many cases the error (or quality) is directly related to the number of iterations. A classical example
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is Newton’s method for finding the roots of an equation. Many basic iterative approximation methods can
be found in standard textsin numerical analysis such as in Ralston and Rabinowitz [1978].

4.5 Theoretical aspectsof approximate computation

The notion of approximate algorithms has been extensively analyzed by the theoretical computer science
community. In this section | will discuss several interesting results in this field and their implications
for the model of operationa rationality. It should be emphasized that the following theoretical results
refer to NP-complete problems only. They are motivated by the fact that NP-complete problems require
superpolynomial time to solve and hence an approximation scheme may be the only aternative when the
input size is large. The model of operational rationality, on the other hand, recognizes the fact that even
with problems of polynomial complexity, it may be beneficial to use an anytime algorithmin order to build
a more responsive rea-time system. Hence, the applicability of the model goes far beyond the capability
to deal with NP-completeness and intractability of computation. Nevertheless, theoretical results identify a
sub-class of NP-complete problems for which a reasonabl e approximation scheme can produce high quality
resultsin polynomial time.

A standard theoretical metric for the quality of an approximation agorithm is its worst-case
ratio [Johnson, 1992]. The nearness to optimality of a given solution can be expressed as a ratio of its
value to that of an optimal solution. The worst-case ratio for an approximation agorithm indicates just
how far from 1 that ratio can be for a solution it generates. It is normally assumed that the numerator
of the ratio is aways the larger of the two solution values, so that worst-case ratios are always greater
than or equal to 1 in both minimization and maximization problems. For many optimization problems,
agorithms with small worst-case ratios were found, for example, a 3/2 worst-case ratio for the Traveling
Salesman problem under the triangleinequality [Christofides, 1976]. The approximation algorithmis based
on solving aminimum wei ght perfect matching problem whose complexity isO(n3). A worst-caseratio of 2
isguaranteed by afaster approximation algorithmthat is based on solving aminimum spanning tree problem
whose complexity is O(nlogn). For other problems, intractability results were obtained. If the triangle
inequality is not assumed in the Traveling Salesman problem, for example, then guaranteeing a worst-case
ratio of ¢ for any constant c is just as hard as finding an optimal solution [Sahni and Gonzalez, 1976].

More recently, additional results regarding approximation algorithms were derived based on their
connection to multiple provers [Johnson, 1992]. An interesting question to ask is what is the best possible
ratio that can be guaranteed for a particular NP-complete problem in polynomia time, assuming that
P # N P. Thereare two possibleanswersto thisquestion. Either thereis an approximationthresholdc > 1
such that no polynomial time algorithm can guarantee a solution of quality ¢ unless P = N P, or for every
¢ > 1 there exists a polynomial time approximation agorithm with worst-case ratio c. In the later case, the
problemissaid to have apolynomial time approxi mation scheme. There are many examples of problemsthat
have such schemes, for instance the KNAPSACK problem and the restriction of the maximum independent
set problem to planar graphs.

Discussion

The relationship between these theoretical results and anytime computation is analogousto the relationship
between NP-completeness results and traditional computation. Theory can tell us that some problems can
be hard to approximate while others may have good polynomia approximation schemes. However, such
resultstell usvery little about the actual capability to develop a good anytime algorithm to solve a problem.



CHAPTER 4. ANYTIME COMPUTATION 54

One deficiency of these theoretical resultsis their reliance on the worst-case ratio as a quality metric. In
practice, the average-case quality with respect to a concrete probability distribution of input instances is
much moreimportant. Theaverage-case quality isunfortunately much harder to derive using analytical tools
and has not been much studied. Another deficiency of thetheoretical analysisrelatesto the choice of quality
measures. Asdefined in section 4.1, the quality measure of theresults of an anytime algorithm reflects some
important aspect of the output. Quality measures should directly relate to the usefulness of the results. The
theoretical analysisallowsarather arbitrary measure. Therefore, aworst-caseratio of ¢ may trandateinto a
much better or much worse ratio when amore informative quality measure is selected. To summarize, when
dealing with NP-compl ete problems, a theoretical analysis of approximate algorithms can save some work
by indicating, for example, that a fixed worst-case ratio for a certain algorithm cannot be achieved using a
polynomial time algorithm. But this kind of analysisis of very limited utility when the actual performance
of an anytime algorithm needs to be characterized. It offers no aternativesto the statistical methods that |

suggested earlier in constructing the performance profile of an algorithm.
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Chapter 5

Compilation of Anytime Algorithms

For the thingswe have to learn before we can do them, we learn by doing them.
Aristotle, Nicomachean Ethics

I now turn from the examination of individual anytime agorithms to the problem of building large systems
using anytime algorithms as components. Throughout this chapter, individual anytime algorithms will be
treated as black boxes, characterized only by their performance profiles. The compilation process plays a
central rolein making operational rationality amodular model of anytime computation. It isthe process that
takes a module — composed of several elementary anytime algorithms — and makes it an optimal anytime
algorithm. Thisprocessisillustrated in Figure 5.1. Theinput to the compiler includes a compound anytime
module, that is, a module composed of several elementary anytime agorithms that does not include time
allocation code and hence is not readily executable. In addition, the input includes the performance profiles
of the elementary algorithms. The result of the compilation process is an executable anytime module that
consists of a compiled version of the origina module, a pre-defined run-time monitor, and the performance
profile of the system that may include some auxiliary time alocation information. The compiled version
includes some additional code to control the activation of the elementary components with an appropriate
time allocation. Optimal scheduling of the elementary components may a so require run-time monitoring.
In fact, the complexity of the compilation task islargely determined by the choice of arun-time monitoring
scheme. Thisrelationship between compilation and monitoringisfurther examined in thefollowing chapter.
| begin with an explanation of the need for compilation followed by a section categorizing the
compilation problem. | then present a number of simple cases of compilation and their solutions. The
notion of local compilation, that is performed on a single program fragment at a time, is introduced as
a key mechanism to reduce the complexity of compilation of large programs. The complexity of the
compilation of arich compositional language is analyzed and proved to be NP-compl ete in the strong sense.
However, local compilation, whose complexity is linear in the program size, is shown to be both efficient
and optimal for alarge class of programs that satisfy three basic assumptions. A number of approximate
time allocation algorithms are shown to solve the compilation problem efficiently in the genera case of
functional composition. Finally, anumber of extensionsto the programming language are analyzed.

51 Why compilation?

Why isthe compilation process so important in any model of anytime computation? The key issue addressed
by the compilation process is the problem of alocating resources to the elementary components of a
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Figure 5.1: Compilation and monitoring

modul e so as to optimize its behavior as an anytime algorithm. Unlike the traditional use of compilationin
programming languages, the compilation of anytime algorithmsis not used just as a transl ation mechanism.
It fillsin the gap created by introducing time allocation as a degree of freedom in computation. The rest of
this section explains the importance of the compilation process and its design goals.

5.1.1 Modularity and anytime computation

Modularity is widely recognized as an important issuein system design and implementation. It allowsthe
designer to decompose a large system into small, well-defined modules that can be developed and tested
individually. Modularity also alows a separation between different aspects of the problem complexity, thus
simplifying the task of each development group and allowing different parts of a system to be developed
independently. Individual modules can be re-used in other systems to shorten the development time and
reduce the costs.

The very idea of using anytime agorithms introduces a new kind of modularity into real-time
system development. The modularity introduced by anytime algorithmsis based on the separation between
the development of the performance components and the optimization of their performance. In traditional
design of real-time systems, the performance components must meet certain time constraints that are not
always known at design time'. The result is a hand-tuning process that, hopefully, culminates with a
working system. Anytime computation offers an aternative to this approach. By developing performance
componentsthat are responsiveto awiderange of time allocations, one avoi dsthe commitment to aparticul ar
performance level that might fail the system.

The main problem with modular system development is the integration of the components into
one working system that meets its design goals. This integration problem is especially complex when

1While thetime constraints of the complete system are normally specified at design time, it is normally hard to derive from them
appropriate time constraints for the components of the system.
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dealing with anytime computation. In standard algorithms, the expected quality of the output of each
module is fixed, so composition can be implemented by a simple call-return mechanism. However, when
algorithms have resource all ocation as a degree of freedom, there ari ses the question of how to construct, for
example, the optimal composition of two anytime a gorithms, one of which feeds its output to the other. By
solving mechanically this integration problem, the compilation process extends the principle of procedural
abstraction and modul arity to anytime computation.

5.1.2 Minimizing theresponsbility of the programmer

Without the compilation process, the task of programming with anytime algorithmswould have added anew
difficulty to system devel opment. The problem involvestheactivation andinterruption of the components so
as to optimize the performance of the complete system, or at least to make it executable. An important goal
of the compilation process is to minimize the responsihility of the programmer regarding this optimization
problem. Ideally, the programmer would be able to use elementary anytime algorithms as if they were
standard algorithms, with all aspects of the scheduling problem solved by the compilation and monitoring
components. In thisrespect, my model is different from existing systems for imprecise computation, such
as Concord [Lin et al., 1987], in the sense that the programmer does not have to determine what quality of
resultsis desired in each situation or to schedul e the components to achieve that quality.

5.2 Thecompilation problem

In this section | will characterize more precisely the compilation problem and its complexity. What aspects
of anytime computation determine the complexity of compilation? To what extent can the compilation
process be discussed inisolation? As Figure 5.1 shows, the resulting compiled anytime module may include
amonitoring component. In fact, run-time monitoring is essential in many cases in order to guarantee the
optimal quality of results as advertised by the compiled performance profile. However, throughout this
chapter, | will examine the compilation process only, apart from the rest of the system. This separation
between compilation and monitoring isonly possibleunder certain assumptions. Inthissection| identify the
various factors that affect the complexity of the compilation problem. Then, a certain class of compilation
problems is defined that allowsto defer the discussion of monitoring until the next chapter.

1. Program structure—The structure of acompound anytimemoduleisaprimary factor that determines
the complexity of compilation and monitoring. Some programming structures, such as sequencing,
are easier to handle. Other structures, such as recursive function cals, are quite difficult to compile
and monitor. Aswith elementary anytimealgorithms, the designgoal isto minimizethe programmer’s
responsibilitiesand duties. Asaresult, an effort is made to define compilation methodsthat depend on
the semantics of the programming structure rather than on user provided information. This principle
serves as amajor guideline throughout this chapter.

2. Typeof performance profile—Thetype of performance profileand itsrepresentationlargely influence
thecompilation process. Highly informative performance profiles, such asthe performancedistribution
profile, are more difficult to compile and manipulate. The complexity of the compilationisincreased
due to the compl exity of the representation and the requirement that the resulting performance profile
providesthesamelevel of information. Simpleperformanceprofiles, such astheexpected performance
profile, are easier to handle but do not alwayshave the closure property under compilation. Theclosure
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property guarantees that the performance profile provides enough information to derive the same type
of performance profile for a composed module. An expected performance profile, for example, does
not have the closure property since, manipulation of aset of expected valuesdoesnot yield, in general,
the expected value of the result. In this respect, conditional performance profiles provide a useful,
modular representation that simplifies the compilation problem.

3. Typeof anytimealgorithm — Thetype of agorithm used asinput to the compiler and the desired type
of the resulting algorithm have a direct effect on the compilation process. Contract algorithms are
normally easier to construct both as elementary and as compound algorithms. Interruptiblealgorithms
are more complicated. One can, of course, construct first a contract algorithm and then use the
result of Theorem 4.1 to make it interruptible. However, with some programming structures it is
advantageous to generate an interruptible algorithm directly and avoid the constant slowdown of the
reduction theorem.

4. Quality of inter mediateresults—With bothinterruptibleand contract anytimeal gorithms, the monitor
can, in principle, examine the quality of intermediate resultsin order to modify the allocation of the
remaining time. However, this requires a capability to determine the actual quality of intermediate
results. The quality of intermediate results may be a simple aspect that can be quickly calcul ated.
For example, in the case of a bin packing program whose quality function is the proportion of the
container space filled with packages, the quality of an intermediate result can be easily calculated. In
other cases, such asachess playing program, the quality of arecommended moveis not apparent from
the move itself. Hence, the capability to determine the quality of intermediate resultsis an important
factor in compilation and monitoring.

Depending on these factors, different types of compilation and monitoring strategiesare needed. To simplify
the discussion in this chapter, | will concentrate on compilation and discuss monitoring in the following
chapter. However, compilation and monitoring have aready been shown to be interdependent processes.
In order to discuss them separately, the following distinction is made between two types of compilation
Processes:

Definition 5.1 Compilation of anytime algorithms — Type | is the process of deriving an optimal per-
formance profile and related scheduling information for a compound anytime module assuming passive
monitoring.

Passive monitoring means that meta-level time alocation decisions are made before the activation of the
anytime algorithms. Elementary algorithms are activated as contract algorithms only and allocation is not
reconsidered before thetermination of the contract or even by thetermination of each subcontract. Obviously,
the assumption of passive monitoring limits the capability to optimize the performance profile but it also
simplifiesthe problem and allows us to consider compilation as an isolated issue. In the next chapter, | will
expand the monitoring capability to allow active monitoring?.

Definition 5.2 Compilation of anytime algorithms — Type |1 is the process of deriving an optimal per-
formance profile and related scheduling information for a compound anytime module assuming active
monitoring.

2Both passive and active monitoring are defined more formally in the next chapter.
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Figure 5.2: Performance profiles of two contract a gorithms

Therest of this chapter concentrates on Type | Compilation. Throughout the chapter, the term compilation
refers to Type | only. | begin with an introductory analysis of simple compilation problems. Type II
compilation will be addressed in the next chapter.

5.3 Compilation examples

Before analyzing the general compilation problem, some basic examples will be examined. Starting with
the composition of two algorithms, | will analyze the basic principles of compilation. Finaly, an important
component of thiswork, the notion of local compilation, will be introduced.

5.3.1 Composition of two algorithms

To begin, consider the composition of two anytime algorithms. Suppose that one algorithm takes the input
and produces an intermediate result. Thisresult isthen used asinput to another anytime algorithmwhich, in
turn, producesthefinal result. Many systems can beimplemented by a composition of a sequence of two or
more agorithms. For example, an automated repair system can be composed of two algorithms: diagnosis
and treatment. This can be represented in genera by the following expression:

Output <+ Ay(A:(Input))

Supposethat the expressioniscomposed of two contract anytimeal gorithms, A, and .A,, whose performance
profiles are shown in Figure 5.2. The figure includes two sets of performance profiles that represent two



CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 60

separate cases. | start the analysiswith the assumption that the performance profiles are fixed, that is, there
is no uncertainty regarding the quality of the output for any given time allocation.

Case 1: Linear performance profiles

Figure 5.2(a) shows a set of two linear performance profiles. They start with an arbitrary initia quality g¢;
(that may be zero) and reach the maximal quality of 1 at time T;. Hence they can be represented by:

Q:1(t) =q1 + ast Q2(t) = g2 + st

Assumethat the output quality reflects the probability of producing correct resultsand that the success/failure
of each module is independent of the success/failure of the other. Hence, the overall quality is the multi-
plication of the quality of .A; and the quality of .A,. Since a contract algorithm is sought, the compilation
process has to create the mapping:

T:R" - Rt xR (5.1

and
PP:R" —[0,1] (5.2

The first mapping specifies for each total allocation the amount of time that should be alocated to each
algorithm so as to maximize the output quality®>. The second mapping is the performance profile of the
composed algorithm based on optimal time allocation.

For each total alocation, ¢, the compiler hasto find the optimal alocation, z, to thefirst algorithm
(whichimpliesallocationt — z to the second agorithm) such that the overall quality Q(z) is maximal.

Theorem 5.3 Given the performance profiles of A, and A,, the optimal time allocation mapping is:

Tiio (G- 24 8) e &2y (53)

(671 [67) 2 ay (&%)
Proof: Sincethe overall output quality is:
Q(z) = —oyopz’ + (1aat — qron + q20)T + 12 + qroat (54)

the maximal quality is achieved when 22 =
In other words:
— 20505z + ay05t — qrog + oy =0 (55)

The solution of this equation yields the above alocation. O
It should be noted that boundary conditionswereignoredin thisanalysis. Thefollowing correction
istherefore necessary to cover al cases:

1. If, as aresult of the above mapping function, an algorithm gets more run-time than necessary for
completion, the extratime should be alocated to the other algorithm (or ignored when both algorithms
terminate).

30nly the appropriate allocation to the first component is really necessary because the allocation to the second is simply the
remaining time.
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2. If thetime alocation to one algorithm is negative, al avail able time should go to the other algorithm
and the allocation to that algorithm should be zero.

It is interesting to note also that in the special case where ¢; = 0 (i.e. initial quality is zero), the optimal
mapping allocates exactly half of the total time to each module regardless of o; and .
Case 2: Exponential performance profiles

Figure 5.2(b) shows a set of two exponential performance profiles. These performance profiles are defined
by:
Ql(t) =1- e_)‘lt Qz(t) =1- e_)‘zt

Assume that the output quality is the sum of the quality of .A; and the quality of A,. Asin case 1, the
compilation process has to create the optimal time allocation mapping and performance profile.

Theorem 5.4 Given the performanceprofiles of .A; and A,, the optimal time allocation mapping is:

111)\1 — 111)\2 +A2t ln)\z — 111)\1 -I—)\]_t

T:t— , 5.6
( A1+ Ay A1+ A, ) (6
Proof: Sincethe overall output quality is:
Qz) =1—e ™= 41— g7 a(t-=) (5.7)
the maximal quality is achieved when 22 = 0.
In other words:
)\16_)‘”" - Aze_)‘2(t_z) =0 (58)

The solution of this equation yields the above alocation. O

The other task of the compiler is to insert code in the original expression for proper activation
of A; and A, as contract algorithms with the appropriate time allocation. This is done by replacing the
simplefunction call by an anytime function call as explained in the previous chapter. Thetime allocationis
determined by the total allocation and the compiled time allocation mapping. In thefuture, | will not aways
distinguish between the two mappings generated by the compilation process but will refer to both as the
compiled performance profile. In practice, the two mappings are both calculated and stored together.

Summary

The compilation of a simple example —the composition of two modules— has been analyzed. Thisexample
demonstrates several general issuesin compilation. To summarize these issues, two aspects of compilation
that are related to the representation of performance profiles are discussed below:

1. When performance profiles are represented using a certain formula, as in the above example, the
compilationprobleminvolvessolvingadifferentia equation. The complexity of theequation, interms
of both size and number of variables, grows as afunction of the number of el ementary a gorithmsthat
are compiled. If a different representation is used, such as tabular discrete approximation, then the
compilation problem becomes a search problem in a discrete domain whose size grows exponentially
with the number of modules. The problem of exponential growth in the compilation complexity is
addressed in the foll owing section.
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2. When performance profiles are represented using formulas, it is advantageous to use a homogeneous
representation by using one family of functions for representing the performance profiles of all the
elementary algorithms. If a homogeneous representation is used, the compilation problem can be
solved once for that family, thus accel erating the implementation. This raises the question of whether
the chosen family is closed under compilation, that is, whether the quality of a compiled moduleisa
function of the same family. The answer to this question depends not only on the family used, but also
on the programming construct and the way quality iscombined. In the example above, for instance,
linear performance profiles produced a compiled non-linear (quadratic) profile. So, the family of
linear functionsis not closed under compilation when multiplicative quality combinationisused. But
the family of polynomials (of unbounded degree) is obviously closed under compilation when any
polynomial is used as the quality combination function.

5.3.2 Linear composition of anytime algorithms

I now turn to an extension of the previous example where the program consists of a composition of n steps
A, ..., A,. Each step is an anytime contract algorithm whose performance profile isgiven. The goal of the
compiler isto derive an optimal contract algorithm for the complete expression:

Output + A,(...Az( A1 (Input)))

Now, the time allocation problem is to find, for each total alocation of time ¢, the dlocations: ¢4, ..., t,,
(t1 + ... + t, = t) that maximize the quality of the output.

If one assumes, like in the previous example, that the performance profiles are represented by a
certain family of functions, one can use calculus in order to find the optimal alocation. But, instead of
finding the global maxima of aquality function of onevariable, asin the two modul e case, one must handlea
quality function of n — 1 variables. The optimal allocation can be derived by solving a system of differential
equations of the form:

0Q _, . 99

3t1 N 3tn_1

Theall ocation problem becomes more complicated in the general case where adiscretetabul ar representation
isused for performance profiles. In that case, | assumethat time allocationisalso discrete. The optimization
problem becomes the problem of finding the best way to distributet time units between » modules so as to
maximize the overall quality function. The number of different possible time allocations to be considered
is:

=0

(t+n-1)
t(n — 1)!
which is exponential in both n and ¢. 1t istherefore important to find ways to reduce the complexity of the
global optimization problem, while preserving globa optimality whenever possible. A key mechanism for
achieving thisgoal islocal compilation. It ispresented in the following section.

Severa extensions of this linear composition example can be similarly analyzed. Consider, for
exampl e, the case where there is some uncertainty regarding the actual quality of results of each algorithm,
however, the performance profiles express only the expected quality as a function of time. In this case,
the above compilation scheme remains valid only when certain conditions are met. These conditions will
be examined later in this chapter. In addition, more general compilation and monitoring strategies will be
described in the next chapter.
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5.3.3 Local and global compilation

Thecompilation examples presented so far in thissection demonstrate afundamental problem of compilation,
that is, the complexity of the optimization problem tendsto grow exponentially with the size of the program.
In order to overcome this difficulty, | propose to replace the global optimization problem with a set of
local optimization problems whose complexity is polynomia or even constant. The number of simpler
optimization problems grows linearly with the size of the program being compiled, hence the total amount
of work becomes polynomial.

Definition 5.5 Local compilation isthe process of optimizing the quality of the output of each programming
construct by considering only the performance profiles of itsimmediate sub-components.

Loca compilation solvesthe same problem as global compilation except for the fact that its scopeislimited
to one programming structure at a time. While globa compilation derives the best time allocation to the
elementary components, local compilation treats the immediate sub-componentsas if they were elementary
anytime algorithms. If these components are not elementary, their performance profiles are derived using
local compilation aswell.

Since local compilation is much more efficient than globa compilation, and since the number
of times it needs to be performed is proportional to the size of the program, it offers a major reduction in
the complexity of compilation in general. In fact, it makes the whole concept of compilation of anytime
algorithmsrealistic for large programs. It aso raises the question of how the resulting performance profile
compares to the globally optimal performance profile.

Definition 5.6 Local compilation is said to be optimal with respect to a particular program structureif it
always achieves a globally optimal expected performance.

Preserving global optimality is a non-trivial property of local compilation. The following theorem asserts
the global optimality of local compilation with respect to thelinear composition structure that was examined
earlier in this section.

Theorem 5.7 Optimality of local compilation of linear composition: Let .A bea linear composition of the
anytimealgorithms: A, ..., A,, such that for any timeallocationt = ¢, + ... + t,:

Qa(t) = Q1(t1) o (Qa2(t2) o (.- 0 Qn(tn)))

where o is an arbitrary non-decreasing binary operation, then the performance profile derived by a series
of local compilationsis globally optimal.

Proof: Let Q[‘;',n] (t) bethe performance profile derived by global compilation of the algorithms A, ..., A,.
Similarly, let Q[Li,n](t) be the performance profile derived by local compilation. For global compilation, the
performance profiles of al the elementary components are considered. For local compilation, the only two
performance profiles that are considered are the performance profile of the additional algorithm, Q;_;(¢),
and the compiled performance profile of the rest, Q[Li,n].

Using this notation, the theorem asserts that:

in,n] (t) = Q[Gl,n] (t) (5.9)
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The proof is by induction on the number of algorithms. For one agorithm the claim is trivially
true. For two algorithms, local compilation is identical to global compilation and hence the claim is also
true. Now, assume that the claim is true for compilation of n — 1 algorithms and consider the compilation
of n agorithms.

Let t bethetota alocationand let ¢4, ..., t, be the alocations to the components based on global
compilation. Let »r = ¢, + ... + ¢, be the total alocation to al the algorithms except the first, then by
definition of the quality function:

Qim®) = Qi(ts)o (Qa(ta)o (.0 Qn(ta))) (5.10)

By monotonicity of o:

< Qi(ty)o Q[GZ,n](T) (5.11)
By theinduction hypothesis:

= Qi(t1) 0 Qf ny(7) (5.12)
By local compilation:

< Qf () (5.13)
By globa compilation:

< Q) (5.14)

Hence Qf; ;(t) = Qf ., (t) and the theorem is proved. O

Later in this chapter | will prove a stronger version of this theorem for tree-structured programs.
However, it isimportant to emphasize that even when local compilation is non-optimal, it hardly has any
aternative. For large programs, the global optimization problem becomes exceedingly hard to solve. This
fact necessitates the use of non-optimal time allocation techniques such as local compilation.

5.4 Conditional performance profiles

Do performance profiles provide all the necessary information for the compilation process? | suggest that
for some programming structures the dependency of performance on time alocation alone is insufficient.
In order to be able to properly combine anytime algorithms in general, one has to take into account that
the quality of the results of an algorithm depends not only on time alocation but aso on input quality.
In other words, by reducing the allocation of time to a certain module, one affects not only the quality of
the result of that module but also the quality of the output of any module that uses that result as input.
When standard programming operators are analyzed, this dependency could be automatically determined
by the semantics of the operator. But when user defined algorithms are used, the dependency may only
be determined empirically, based on an analysis of test cases. For example, a planning agorithm would
produce a better plan (in terms of reliability, correctness, and execution efficiency) if itsinput, the domain
description, ismore accurate or more detailed. In general, many input propertiesother than quality can affect
the quality of the results. For example, the quality of a plan is affected by the complexity of the domain,
even when a perfect domain description is assumed. Nevertheless, in the development of this model, | have
concentrated on the dependency on input quality since this property of theinput is typically determined by
the time allocation to other algorithms. Hence, it is directly controlled by the compilation process.

In this section, | introduce the notion of a conditiona performance profile that is used to capture
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the dependency of performance on input quality. The knowledge provided by conditional performance
profiles makes it possibleto analyze the cumulative effect of time allocation to a certain component on the
performance of the compl ete system.

A conditiona performance profile consists of a mapping from input quality and run-time to
probability distribution of output quality (or any other probahilistic characterization of the quality of the
output, as in the simple performance profil e case):

CPP : Qin X T — Pr(Qout) (5.15)

It should be noted that when an agorithm takes several inputswith varying quality, then @, is represented
as a vector of qualities, each corresponding to one input. A simplified form of conditional performance
profile may assume a single input quality measure regardless of the number of inputs. In such a case, the
single quality measure can relate to a certain function of the vector of qualities, for example their geometric
average. The justification of using one quality measure only, besides compact representation, is that the
purpose of the compiler isto all ocatetimeto the components so asto balance their qualitiesand contributions
to the performance of the system. This means that under time pressure al the components “suffer” to a
similar extent. Therefore, oneindication of input quality may be sufficient.

54.1 Special cases of conditional performance profiles

By definition, a conditional performance profile is a two dimensional mapping. However, it can be rep-
resented in some cases using a projection of a simple (one dimensional) performance profile that depends
on time alocation only. This representation simplifies the construction and use of conditional performance
profiles. Therest of this section describes several such cases.

Homogeneous algorithms

Definition 5.8 An anytime algorithmis said to be homogeneous if its output is represented the same way
asitsinput.

Homogeneous a gorithms can take their output as an input. The quality of the output generated in one run
becomes theinput quality for asuccessiverun. If it isassumed that the quality of the output isaways higher
than the quality of the input, the following property can be proved for homogeneous a gorithms:

Theorem 5.9 Let.A beahomogeneousalgorithmand let P P 4(t) be the performance profile of A when fed
with input whose quality is minimal. Then the conditional performance profile of A can be expressed by:

CPP4(q,t) = PPA(PP4'(g) +1) (5.16)

Proof: Any problem with initial input quality ¢ can be considered as the output of A generated for the
same problem with minimal initial input quality* and time allocation P P*(g). Note that since PP 4(q)
isastrictly increasing function, its inverse iswell defined. Therefore, the equivaent of activating .A with
initial quality ¢ and time allocation ¢ is activating the same algorithm with minimal initial quality but with
increased time allocation to bring it first to quality ¢. Hence the property holds. O

*Minimal initial input quality depends on the particular domain and on the quality measurethat is used. It is normally zero.
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Here are some exampl es of homogeneous anytime a gorithmsfor which the theorem above can be
used to capture the dependency on input quality:

Example 1: Anytime sorting

Consider an anytime sorting algorithm that isbased on the standard quicksort algorithm. Initially theinputis
represented as one segment of unsorted elements. The anytime algorithm performs repeatedly the following
step. It takes the largest unsorted segment and splitsit into two segments such that all the elementsin the
first are smaller than all the elementsin the second. Supposethat thequality of aresultis1 — (k/n) where k
isthetotal number of elementsin all unordered segmentsand n isthe total number of el ementsto be sorted.
Theinitial input is an unordered array. Its quality according to the above definition is zero. However, one
may want to allow a situation where the input is aready divided into several segments, some of which are
aready ordered. Clearly, a simple performance profile with the theorem above is sufficient to construct the
conditional performance profile of the algorithm.

Example 2: Anytime hierarchical planning

Consider an anytime algorithm that starts with a high level abstract plan. In each iteration, the algorithm
selects the worst segment of the plan and replaces it with two segments planned at alower level of abstrac-
tion whose concatenation is a refinement of the origina plan. Suppose that the quality of an abstract plan
correspondsto the abstraction level of all its parts. The result is a homogeneous planning algorithm.

Example 3: Anytimeiterative approximation

Consider an agorithm that computes an approximation of a certain mathematical operation by repeatedly
performing a computation step that reducesthe error in theresult: for instance, Newton’s method for finding
the simple roots of real equations. This method starts with an approximation z; to the root of F(z) = 0,
and cal culates successively better approximations by the following formula

 F(zw)
Fi(z,)

$n+1 = ZTn

In general, z,,, has more correct digitsthan z,, has. If one uses the number of consecutive correct digits
(from the left) as the quality, one gets a homogeneous anytime a gorithm.

M ultiplicative performance profiles

Definition 5.10 Let .A be an anytime algorithmand let P P 4(t) be the performance profile of .A when fed
withinput whose qualityismaximal. Then A issaid to have a multiplicative conditional performance profile
if its conditional performance profile can be expressed by the following product:

CPPA(4,t) = qPPa(t) (517)

Example 1: Probabilistic reasoning:

Supposethat an algorithmisfed with ahypothesi swhose quality measures the probability that the hypothesis
istrue. The anytime algorithm computes an action based on the assumption that the hypothesisis correct.
The performance profile of the al gorithm expresses the val ue of the action as afunction of time (assume that
the action has no value if the hypothesisis wrong and that the value of the action as a function of time is
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Figure 5.3: Conditiona performance profile of a TSP agorithm

independent of the hypothesis). In this case, the conditiona performance profile is multiplicative since:

CPPa(g,t) = qPPa(t) + (1 — q)0 = qPPa4(t) (5.18)

54.2 General conditional performance profiles

Unfortunately, most anytime algorithms are neither homogeneous nor do they have a multiplicative condi-
tional performance profile. The dependency of output quality on input quality is rather arbitrary and cannot
be analyzed by looking at the code of the algorithm. The only aternative left is to capture the dependency
using statistical methods similar to the methods used in order to capture the dependency on run-time in
constructing regular performance profiles.

Figure 5.3 shows the conditiona performance profile of the ANYTIME-TSP agorithm that was
introduced in Section 4.1.3. Each curve describesthe expected quality of the result as afunction of run-time
for a particular initia input quality. Input with a particular desired initial quality was generated using
a different TSP agorithm (“sequentia tour improvement”). Hence, the example is not an instance of a
homogeneous algorithm. Had | used the same a gorithm to generate problems of arbitrary initial quality, the
performance profile for initial quality zero could be used to represent the general conditional performance
profile and it would become a typical example of ahomogeneous a gorithm.

5.5 Compilation of functional composition

Having defined the notion of a conditional performance profile, I can now turn to the general compilation
problem of functional composition. In functional composition, each expression to be compiled is composed
of an anytime function whose arguments may beeither the result of functional compositionor input variables.
The compilation task involves finding for each total allocation ¢, the best way to schedule the components
S0 as to optimize the expected quality of the result of the compl ete expression.



CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 68

Let F beaset of anytime functions. Assume that all function parameters are passed by value and
that functions have no side-effects (as in pure functiona programming). Let Z be a set of input variables.
Then, the notion of a composite expression is defined as follows:

Definition 5.11 A composite expression over F withinputZ is:
1. Anexpression f(iy, ..., i) Where f € F isafunction of n argumentsand ¢4, ..., %, € Z.

2. An expression f(gi, ..., g.) Where f € F is a function of » arguments and each g; is a composite
expression or an input variable.

Suppose that each function f € F has aconditiona performance profile associated with it that specifiesthe
quality of its output as a function of time alocation to that function and the qualities of its inputs. | will
later show that the following results apply to a more genera definition of composite expressionsin which
some of the functionsare actually programming operators. The only requirement is that each operator has a
“standard” conditional performance profile associated withit that describesthe dependency of output quality
on time allocation and input quality. But, for the simplicity of the discussion, | will first restrict it to simple
composite expressions. | start this section with an anaysis of the complexity of the time all ocation problem.

55.1 Complexity results

The purpose of this section is to examine the computational complexity of compilation of composite
expressions. | will show that the general problem (i.e. when evaluation of repeated sub-expressions is
optimized) is NP-complete in the strong sense. This fact justifies the use of the approximate allocation
techniques of the previous section. The efficiency of local compilation and its global optimality do not
contradict this result since local compilation only applies to tree-structured expressions. In that case, the
strong NP-compl eteness result does not hold but a similar transformation to another problem showsthat the
compilation problem remains NP-compl ete but pseudo-polynomial. Infact, | show that thelocal compilation
techniqueisadynamic program that solvesthe global optimization problem for tree-structured expressions.

Strong NP-completeness

| start with ashort review of related definitionsfrom computational complexity (for acompl ete discussion of
these terms see [Garey and Johnson, 1979]). Given adecision problemIT, | et length(I) denote the number
of symbolsused to describe an instance I of II under areasonable encoding scheme, and let maz (/) denote
the largest number in 7. An algorithm that solvesTI is said to be pseudo-polynomial if itstime complexity
functionis bounded by apolynomial function of length(I) and maz(I). Pseudo-polynomid algorithmsare
very useful sincethey display “exponentia behavior” only when the input instancesinclude “exponentially
large” numbers. Otherwise, they may serve amost as well as polynomial time algorithms.

Givenapolynomial p (over theintegers), let IT,, denotethe subproblemof II obtained by restricting
I toonly thoseinstances I that satisfy maxz (1) < p(length(I)). If IL, isNP-completethan IT isNP-compl ete
inthestrong sense. If IT isNP-completein the strong sense, then it cannot be solved by a pseudo-polynomial
timealgorithmunless P = N P.
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Compilation as a decision problem

The compilation problem is normally defined as an optimization problem, that is, a problem of finding a
schedule of a set of components that would yield maximal output quality. But, in order to prove the NP-
completenessresults, itismore convenient torefer to the decision problem variant of the contract compilation
problem. Given a composite expression e, the conditional performance profiles of its components, and a
total alocation B, the decision problem is whether there exists a schedule of the components that yields
output quality greater than or equal to K. To begin, consider the general problem of global compilation of
composite expressions, or GCCE. Thefirst result asserts the following property:

Theorem 5.12 The GCCE problemis NP-completein the strong sense.

Proof: The GCCE problemisclearly NP since, given a particular allocation to the components, it is easy to
determinein linear time the output quality of the expression. Hence, the verification problem is polynomial
and thedecision problemis NP. Therest of the proof isby transformation from the PARTIALLY ORDERED
KNAPSACK problem, an NP-complete problem in the strong sense [Garey and Johnson, 1979] defined as
follows:

INSTANCE: Finiteset U, partia order < onU, foreachu € U asizes(u) € Z* and avauev(u) € Z+,
and positiveintegers B and K.

QUESTION: Isthereasubset U’ C U suchthat if u € U’ and v’ < u, then v’ € U’, and such that
Sucwr 5(1) < B and Y,y v(u) > K?

An instance of the PARTIALLY ORDERED KNAPSACK problem will be directly transformed
into a DAG representation of a composite expression. To define the construction of the DAG, the notion of
amaximal element in a partially ordered set must be defined:

Definition 5.13 Aneement« € U isa maximal eement of U if thereisno other element ' € U such that
u < u'.

The notion of aminimal element is defined in an analogous way. Every partially ordered set has
at least one maximal e ement and at |east one minima e ement. Now, the construction of the DAG can be
defined. For each u € U the DAG will contain a corresponding computational node. A direct arc goesfrom
u; to u, if and only if u; isamaximal element of the set {u|u < u,} of al elements smaller than u,. In
addition, theDAG hasa*“root” noder with adirected arc from every other nodew € U tor. The conditional
performance profileof anodew € U is:

ift > s(u)andVi:g; >0

otherwise (519)

Qult, g1, tn) = { S(U)

where g4, ..., ¢, &ethe qualitiesof the nodesthat have adirected arc to u. If thereisno such node, that is, u
isaminimal element of U, then its performance profileis simpler:

Q0 { 30tz o
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The conditional performance profile of » then becomes the following:

k

Q-(t g1, @) = Z g (5.21)

i=1

The overal output quality Q,.: isthe quality of the root noder.

It is easy to see that the construction of the DAG can be accomplished in polynomia time. All
that is|eft to show isthat the answer to the PARTIALLY ORDERED KNAPSACK problemis*“yes’ if and
only if the answer to the corresponding GCCE problemis*“yes.”

If the answer to the GCCE problem is positive (with contract time B and minimal output quality
K), than define U’ asthe set of nodesu' € U whose* output quality” inthe DAG ispositive. The sum of the
output qualities of all the modules, except the root, must be at least K. Each module can only contributeits
valuetotheoutput quality (whenitsallocationisat least itssize). In addition, the output quality of aninternal
node of the DAG is“enabled” only when al itsinputs have positive quality, that is, all the elements smaller
thanit areincluded. Thereforethe conditionthat v’ € U’ whenu € U’ and v’ < wissatisfied. Finaly, since
thetotal allocationis B, Y-, .+ s(u) < B, and since the output quality isat least K, >, .y v(u) > K, the
answer to the PARTIALLY ORDERED KNAPSACK problemis also positive.

If theanswer tothe PARTIALLY ORDERED KNAPSACK problemispositive(with knapsack size
B and minimal value K), then simply allocate to each computational nodeu’ € U’ an amount of time equal
toitssize. The definition of the PARTIALLY ORDERED KNAPSACK problem and the transformation to
the DAG guarantee that the output quality of each «' would be equal to its value s(u'). Hence a minimal
output quality of K isguaranteed and the answer to the GCCE problem is aso positive.

Now, since the PARTIALLY ORDERED KNAPSACK problem is NP-complete in the strong
sense, and since the above transformation is polynomial, the GCCE problem is NP-complete in the strong
sense. O

Notethat thestrong NP-compl eteresult impliesthat the general compilation problemisnot pseudo-
polynomial. Hence the approximate time allocation algorithms that | will present later in this section are
necessary to solvethe general compilation problem.

I now turn to the analysis of the tree-structured case of the compilation problem, referred to as
tree-structured GCCE. In this case, the graph representation of a composite expression is restricted to a
directed tree. This restriction does not allow any repetition of sub-expressions since any such repetition
changestherepresentation from adirected tree to adirected acyclic graph. | will show that thetree-structured
GCCE isNP-complete.

Theorem 5.14 The tree-structured GCCE problem is NP-compl ete.

Proof: The tree-structured GCCE problem is clearly NP since, given a particular allocation to the compo-
nents, it is easy to determinein linear time the output quality of the expression. The verification problemis
polynomial and hence the problem is NP. The rest of the NP-completeness proof is by transformation from
the KNAPSACK problem [Garey and Johnson, 1979; Karp, 1972], defined as follows:

INSTANCE: Finiteset U, foreachu € U asizes(u) € Z+ and avaluev(u) € Z*, and positiveintegers
Band K.
QUESTION: Isthereasubset U’ C U suchthat ), s(u) < Band ), . v(u) > K?
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Aninstance of the KNAPSACK problemwill betransformed into atree-structured GCCE problem
by constructing a binary tree whose leaves are the elements of U. Each element w € U corresponds to one
leaf of the tree (one can add leaf nodes of zero size and value to make the number of leaves an exact power
of 2). The performance profile of each leaf nodeis:

Qu(t) = { v(u) ift> s(u) (5.22)

0 otherwise

Now, O(|U|) internal nodes are added to construct a complete binary tree. The conditional performance
profile of each internal node w isthe sum of the qualities of its left and right branches:

Qw (t7 q1, QZ) =q1 ‘l’ q2 (523)

Note that internal nodes of the tree do not consume any computation time. The output quality Q..; iSthe
quality of theroot nodewhich isactually the sum of values of all the elements of U whose all ocation exceeds
their size.

It is easy to see that the construction of the tree can be accomplished in polynomia time. To
complete the proof, one needs to show that the answer to the KNAPSACK problemis“yes’ if and only if
the answer to the corresponding tree-structured GCCE problemis“yes.” Thisistrivialy true when one sets
the contract time to B and the minimal output quality to K. The exact proof isvery similar to the previous
one. Hence the tree-structured GCCE problem is NP-complete. O

The KNAPSACK problem itself is pseudo-polynomid. In fact, the problem can be solved by a
simple dynamic programming agorithm. This raises the question of whether the compilation problem of
tree-structured expressions is also pseudo-polynomial. The answer to this question is positive under the
following two assumptions:

1. The bounded degree assumption:
The tree has a bounded degree. In other words, the number of inputsto each function is bounded.

2. Input monotonicity assumption:
Each conditional performance profileisamonotonic non-decreasing function of input quality. In other
words, if Q(t, ¢) isaconditional performance profile, thenfor any ¢t and ¢ >> ¢', Q(¢,q) > Q(¢,¢).

These assumptions|ead to the following result:

Theorem 5.15 Thetree-structured GCCE problemis pseudo-polynomial under the bounded degree and the
input monotonicity assumptions.

Proof: The problem remains NP-complete since the bounded degree and theinput monotonicity assumptions
were not violated by the transformation of the NP-completeness proof. Therest of the proof isbased on the
introduction of an efficient local compilation agorithm that solves the time allocation problem for this case
in polynomial time. The algorithm and the proof of its optimality are presented in the following section. O

5.5.2 Optimality of local compilation

My goal inthissectionisto provethe optimality of local compilation of tree-structured functiona programs
under the bounded degree and the input monotonicity assumptions. Without limiting the generality of the
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0,0

Figure 5.4: Tree representation of a composite expression

discussion, | will consider binary functions only and assume that the composite expression is a complete
binary tree. Theleaves of the tree are functionsthat take input variables as inputs and the internal nodes are
functions that take composite expressions as inputs.

Let f; ; denote the j** function on the :** level of the tree. The root nodeis denoted accordingly
by fo,0. If thetreeisof depth n, thenthe nodes correspondingto f, o, ..., fn,2»—1 areleaf nodeswhoseinputs
are input variables. For any othernode f;;, 0 < i< n -1, 0 < j < 2" — 1, theinputsare: f;,,; and
fi+1,2j+1 @ shownin Figure 5.4.

Corresponding to each node of the binary tree is a conditional performance profile Q; (g1, ¢2,t)
which characterizes the output quality for that node as a function of itsinput qualities, ¢; and ¢,, and time
alocation ¢.

Given a composite expression e of depth n, and a particular input quality, the global compilation
problem isto find the optimal time allocation to all the nodes of the tree that would maximize the quality of
the output of the root node:

QS (t) = arg Htl:’;XQo,o(-), Z Z tij=1 (5.24)

0<i<n 0<j<2i-1

where Qq,0(.) denotes the result of replacing (in the expression e) every function by its conditional perfor-
mance profile and every input variable by its quality.

What is the complexity of global compilation? The previous complexity results imply that
the problem is NP-complete. But no particular algorithm for solving the problem has been considered
yet. To define such an agorithm, assume a discrete tabular representation of performance profiles. This
representation reduces the compilation problem to the problem of calculating all the entries of a particular
table. Theindices of the tablerange over timealocation and input quality®. Thesizeof thetableisasystem
parameter that controls the error in quality calculation. The complexity of global compilation is therefore
determined by the amount of work needed to compute each entry of the table, that is, the complexity of
solving Equation 5.24 above. If T isthe number of discrete time unitsto be alocated and if the size of the
expression (i.e. the number of nodesin thetree) is &, then the number of different possibletime allocations

5Input quality here refers to the systeminput. In most problemsit correspondsto asingle quality measure although in principle
it may be a vector of values each corresponding to asingle input variable.
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to be considered is:
(r+&-1)!
T!(k — 1)!

For each allocation the output quality has to be calculated in time O(x). The overall work for each entry
of the table is therefore exponentia in both 7 and k. Hence a naive approach to global compilation is not
realistic for large composite expressions.

Given a particular composite expression e of depth n, alocal compilation schemefor e is defined
by induction on its structure. For aleaf node, the locally compiled performance profile is the conditional
performance profile associated with that node:

Qﬁ,j(t) = Qn,j(qn,j,l; qn,j,2) t), 0<j<2" -1 (5.29)

where g, ;1 and g, ; » are the qualities of the two inputs of the particular function. For each internal node,
the locally compiled performance profile is defined using the performance profiles of itsimmediate inputs:

iL,j (t) = arg Itrllfg({Qi,j (Qf+1,2j(t1)i f+1,2j+1(t2):t —t, —t5)} (5.26)
Finally, the performance profile of e (asaresult of local compilation) isdenoted by the foll owing expression:

Q= (t) = Qoo(t) (5.27)

Note that the external input quality was deliberately omitted in this notation since the focusis on the result
of local compilation for agiven input quality.

What is the complexity of local compilation? Using the discrete representation described above,
local compilation requires O(72) work per (internal) node of the tree. Hence the total amount of work is
O(x7?) (for each giveninput quality). Intermsof spacerequirements, eventhoughlocal compilationrequires
O (k) separate performance profiles (onefor each internal node of thetree), itstotal space requirementisonly
aconstant factor more than the space requirement of global compilation. The reasonisthat acompiled global
performance profile needs to specify the alocation to each node of the tree (i.e. k elements) for each tota
allocation while a compiled local performance profile needs to specify only the allocation to the immediate
successors of each node and to the node itself (i.e. three elements). To summarize, loca compilation has
the same space requirements as global compilation but it reduces the time complexity of the optimization
problem from exponential to polynomial. Moreover, the complexity islinear in the size of the program.

How does the quality produced by local compilation compares with the quality of globa compi-
lation? The following theorem guarantees that the final result of both compilation schemes isthe same:

Theorem 5.16 Optimality of local compilation of compositeexpressions: Let e be a composite expression
of an arbitrary depth » whose conditional performance profiles satisfy the input monotonicity assumption,
then for any input and total time allocation¢:

Q:() = Q7()

Proof: By induction on the depth of the tree. For trees of depth 1 the claim is trivially true because both
compilation schemes solve the same optimization problem. Suppose that the claim istrue for trees of depth
n — 1 or less. Let e be an expression of depth n, and let ¢; ; be the alocationsto f; ; based on global
compilation and resulting in a globa optimum. Let ¢; and ¢, be respectively the total alocation to the left
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and right subtrees of the root node:

n -1
o= ) tij (5.29)
i=1 j:zi—l
b=ttt +ioo (5.30)
Then:
QI =
By definition and monotonicity:
= QO,O(Qﬁo(tl):Qﬁl(tr);to,o) (5.31)
By theinduction hypothesis:
= QO,O( 1f,o(tl): f,l(tr);to,o) (5.32)
By local compilation:
< Qgo(t) (5.33)
By definition:
= Q) (5.34)
By global compilation:
< Q) (5.35)

Hence Q¢ (¢) = QF(¢) ©

Note that the input monotonicity assumption is required to guarantee the optimality of local
compilation. The bounded degree assumption, on the other hand, is only used to guarantee that the
complexity of local compilation of each internal node is polynomia in ¢, and hence showsthat the problem
is pseudo-polynomial. Both the bounded degree and the input monotonicity of performance profiles are not
only reasonabl e assumptions but also desirable from a methodological point of view. The bounded degree
assumption limitsthe number of inputsto each a gorithm by acertain constant, a principlethat has beenlong
recoghized as agood programming practicein the devel opment of modular systems. Theinput monotonicity
of performance profilesis a desirable property in general. It supports the selection of performance metrics
that correlate with the intuitive notion of quality rather than being random features of the results.

5.5.3 Additional programming operators

The optimality of local compilation of composite expressions makes it an attractive programming construct.
But, can the result be extended to include additional programming operators? To begin, | examine the
possibility of replacing some of the functionsin a composite expression by standard programming operators.
The validity of the theorem will be preserved if each new operator is defined as a regular function in a
composite expression. In other words, each language operator, ¢, must produce a result whose quality
depends on the qualities of its inputs and time all ocation to the eval uation of the operator itself, e,. Severa
useful operators have this property. Their evaluation time is normaly a small constant time that can be
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ignored in some applications. Their conditiona performance profiles are normally represented as step
functions. Here are some examples:

1. The operator one-of is defined as follows: its output is the result of its single component with the
highest quality and its quality is the quality of that component. The conditional performance profile
of one-of is:

Qoneof (ql’ e t) _ { g’baiﬂ((h; vy Qn) gtéefv\;gaf (536)
This models a situation in which severa aternative methods can be used to solve the same problem.
For example, suppose that one needs to transport n identical packages using a certain container.
The components of one-of might be severa aternative bin packing algorithms. The quality of each
algorithm is measured by the percentage of packages that can be packed in the given container as a
function of computation time and the total volume of the packages. Obviously, the total number of
packages that can be transported is proportiona to the maximal quality among al the individua bin
packing agorithms.

2. Theoperator all is defined as follows: its output is the result of its single component with the lowest
quality and its quality is the quality of that component. The conditional performance profile of all is:

) min(q,....,qn) ift> €
Qall(q17 vy qn, t) - { 0 OtherWISe (537)

Thismodel sasituationinwhich several sub-problemsmust be solved and all the solutionsare essential
in order to solvethe original problem. Moreover, the quality of the worst solution imposes an upper
bound on thetotal performance. For example, supposethat one needsto transport » identical packages
using, sequentialy, & different containers. The components of all might be & bin packing algorithms,
one for each container type. The quality of each component is measured as in the previous example
by the percentage of the number of packages that can be packed in the corresponding container.
Obviously, the total number of packages that can be transported (in a single shipment) is proportional
to the minimal quality among all the bin packing algorithms.

3. The operator dac (divide and conquer) is defined as follows: its output isthe result of RC F applied
to the results of its components and its quality is the result of QC F applied to the qualities of the
components. The conditional performance profile of dacis:

QCF(qh "'7Qn) Ift > €dac

0 otherwise (5.38)

Qdac(D7 RCF: QCF7 q1y .-+, th) — {

This models a situation in which a problem is solved by dividing the input problem into several
simpler sub-problems, solving each sub-problem, and generating the output from the results of the
sub-problems. The function D is used to divide the input problem into sub-problems; the function
RC'F (Result Combination Function) is used to determinethe overall result based on the results of the
components; and the function QC F' (Quality Combination Function) is used to determine the overall
quality based on the qualities of the solutionsto the sub-problems. e4,. is (normally) a constant time
necessary in order to generate the sub-problems and in order to combine their results. For example,
a path planning algorithm that has to find a path between P, and P, in an environment with random
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speech recognizer

classify speaker recognize utterance linguistic validity
gender accent one-of seq
one-—of one—of keyword meaning

NN

Figure 5.5: Anytime composite module for speech recognition

syntax

obstacles can determine a third position P; between the start and goa position and find paths from
P, to P; and from P to P,. Assuming that the quality of each componentisi,, /I (i.e. the length of
the optimal path divided by the length of the calculated path), then RC'F is a simple concatenation
operation and:

QFC(q1,¢:) = p 200 (5.39)

@1+ ¢

where ¢; and ¢, are the qualities of the componentsand 0 < k < 1 is afactor that determines the
effect of the choice of P; on the quality of the complete path.

To summarize, the optimality of local compilation provides a powerful tool to compile large
composite expressions that may include a variety of standard programming operators in addition to user-
defined elementary anytime algorithms. Figure 5.5 shows an example of such a program. It is an anytime
module for speech recognition whose elementary components are anytime agorithms. The program has
three main components: a module that classifies the speaker, a module that generates possible symbolic
representations of the utterance, and a module that checks the linguistic validity of these representations.
Each of the one-of operators represents a set of aternative methods of implementation for a particular
function, for example, a neural network implementation versus a knowledge base implementation.

554 Repeated sub-expressions

The analysis of functional composition so far has not taken into account the possibility that a composite
expression may have a sub-expression that appears severa times. Such asub-expressioniscalled arepeated
sub-expression. Using the tree representation, a repeated sub-expression corresponds to a sub-tree that
appears several times. The tree-structured analysisis based on the assumption that all the nodes of the tree
are evaluated while, with repeated sub-expressions, one should allocate time only once in order to evaluate
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F(z)

a+ Az)
b+ B(a)
¢+ C(a)

d <+ D(b,c)
e« E(d)
returne

O, WN P

(a) Definition of F using straight line code

F(z)
1 return E(D(B(A(z)),C(A(z))))

(b) Definition of F using functional composition

Figure 5.6: Composite expressions and straight line code

all the copies of arepeated sub-expression®. For example, consider the following composite expression:
E(D(B(A(z)),C(A(2))))
The sub-expression A(z) appears twice and an efficient compiler should not allocate time to both copies.
Functional composition with repeated sub-expressions can be represented efficiently as a straight
line program with anytime algorithms as basic operations. A straight line program is a sequence of
expressions of the following form:
u < F(vq,...,v,)

where u is a new local variable and each v; is either an input variable or an existing local variable. The
last local variable defined by the sequenceis considered to be the result of the sequence. There is a one-to-
one mapping between composite expressions and straight line code. Given a composite expression e, the
corresponding straight line code is defined by induction on the structure of e:

1. Aninput variable correspondsto an empty program.

2. Anexpressionof theform F(gy, ..., ga), Where each g; isacomposite expression or an input variable,
corresponds to the program that is composed of the concatenation of the programs corresponding to
g1, ..., gn followed by

u F(ry,...,m0)

whereu isanew local variable and r; istheresult of the program correspondingto g, or g; itself if it
isan input variable.

The inverse transformation is straightforward. A straight line program records all the intermediate results
and hence can reuse the result of a sub-expression when it appears several times.

6 Every sub-expression of a repeated sub-expression is obviously arepeated sub-expression aswell. To remove any ambiguity, |
will usethe term “ repeated sub-expression” only with respect to maximal repeated sub-expression, that is, repeated sub-expressions
that are not proper sub-expressionsof alarger repeated sub-expression.
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input

output

Figure 5.7: DAG representation of composite expressions

For example, Figure 5.6 shows a definition of afunction, F, both as a straight line program, (a),
and as acomposite expression, (b). Every straight line program has a corresponding Directed Acyclic Graph
(DAG) representation where each node correspondsto one assignment of avalueto anew local variable. A
directed arc goes from node v; to node v, if the assignment expression of v; usesthe local variable v; asan
argument. Figure5.7 showsthe DAG representation of F.

As in the tree-structured case, the purpose of the compilation is to compute a time allocation
mapping that would specify for each input quality and total allocation of time the best apportionment of time
to the components so as to maximize the expected quality of the output. However, the DAG representation
makes it hard to apply local compilation. The problem arises since local compilation is only possible
when one can repeatedly break a program into sub-programs whose execution intervals are disjoint, so that
allocating a certain amount of timeto one sub-program does not affect in any way the evaluation and quality
of the other sub-programs. While this claim is true about tree-structured programs, it is not a property of
DAGs. Consider, for example, the expression represented by Figure 5.7. Although B and C are the ancestors
of D, their time all ocations cannot be considered independently since they both use the same sub-expression,
A(z). Thisproblem is addressed by the following section.

5.5.5 Compilation of unrestricted composite expressions

An efficient representation of a composite expression corresponds to a DAG rather than to atree. Unfor-
tunately, the DAG representation imposes a severe restriction on the capability to apply local compilation.
In this section | will present three time alocation methods that solve this problem. The first method is
based on an efficient agorithm that finds a solution to the globa compilation problem directly, but does
not guarantee global optimality. The second method is based on determining first the allocation to the
repeated sub-expressionsand then using standard local compilation to determine the allocation to the other
components. The third method is based on learning the allocation to the repeated sub-expression based
on repeated application of standard local compilation. Finaly, the complexity and optimality of the three
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1 for each Q;, € QUALS TABLE do

2 for each T' € TIME-TABLE do

3 s < INITIAL-RESOLUTION(T)

4 t;+ T/n Vi:1<i<n

5 repeat

6 while 3¢, 7 such that
E(Qout(Qinit1, ..., ti — 8, ., tj+5,...,8,)) >
E(Qout(Qin t1, s ta))

7 let ¢, j be the onesthat maximize E(C P Py,)

8 t;<t; — s

9 i<t +s

10 54 5/2

11 until s < e

12 T(Qin, T]  (t1,...,tn)

Figure 5.8: Time allocation using a hill-climbing search

methods will be contrasted.

Method 1: Time allocation using a hill-climbing search

While local compilation cannot be applied to DAGs directly, global compilation works exactly the same
way asit workswith trees. For each particular sequence of timeallocationsto all the componentsof aDAG,
the quality of the output can be computed using the conditional performance profiles of the components.
This can be donein linear time in the size of the graph. However, the number of possible alocationsto the
components grows exponentialy. Thisdifficulty can be removed by limiting the search space.

Consider again the definition of the function F. Given a tota alocation ¢, the compiler has to
determine the suballocationst 4, tg, te, tp and tg (t4 + it + tc + tp + tg = t) tothemodules A, B, C,
D and E respectively that maximize the expected quality of the output. For each given allocation of time,
the expected quality of the output can be calculated based on the DAG representation and the conditional
performance profiles of the elementary anytime functions. In order to find an optimal allocation, | have
implemented the following search algorithm.

The time allocation agorithm shown in Figure 5.8 is based on a hill-climbing search. It starts
with an equal amount of time allocated to each component of the DAG. Then it considers trading s time
units between two modules so as to increase the expected quality of the output. Aslong asit can improve
the expected quality, it trades s time units between the two modules that have maximal effect on output
quality. When no such improvement is possible with the current value of s, it divides s by 2 until s reaches
acertain minimal value, e. At that point, it reaches alocal maximum and returns the best time allocation it
found. Aswith any hill-climbing agorithm, it suffers from the problem of converging on alocal maximum.
An analysis of the algorithm shows that simple properties of the conditional performance profiles of the
components, such as monotonicity, are not sufficient to guarantee global optimality.
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1 for each Q;, € QUALS TABLE do
2 for each T' € TIME-TABLE do
3 Qmaz <+ 0
4 Prmaz — 0
5 forr« 0to7 stepe
6 t«T-—r
7 ADJIUST-PP(r)
8 APPLY-LOCAL-COMPILATION(e, t)
9 Q + Qout(Qin, (r|ts, ..., tn))
10 if Q > Qmaee thendo
1 Qmas +— Q
12 Appt < (T|t1, .., t0)
13 T(Qin, T]  Aope
Figure 5.9: Time allocation with pre-determined time to repeated sub-expressions
Complexity

Asintheearlier anaysisof local and globa compilation, | assume a discrete tabular representation and ook
at the complexity of computing each entry in thetabl e representing the compiled performance profile. Again,
let the total number of modules be &, and let the maximal number of discrete time unitsto be alocated be
T = Tpnae /€. The complexity of the algorithmisthen:

O(x%logT)

This is due to the fact that for each search resolution s, the agorithm needs to find the optimal pair of
modules for trading time. Thisisdonein O(x?) by considering every possiblepair. This step repeats only a
constant number of times. Finding the expected quality of the output is performed in O (x) and the number
of time resolution measures is O (log). Hence we get the above overall complexity.

Method 2: Pre-determined allocation to repeated sub-expressions

The second method is based on fixing the allocation to each repeated sub-expression before computing the
alocation to the other components. The allocation to the other componentsis determined based on standard
local compilation. Time allocationismade only onceto all the copies of each repeated sub-expression. Once
that allocation is decided, the complete expression is treated as a tree rather than a DAG and the efficient
local compilation scheme is used.

Let e be a composite expression. To begin, assume that e has only one repeated sub-expression
e’ that appears m > 1 timesin e. The copies of e’ are denoted by e, ..., e... Figure 5.9 shows the time
alocation algorithm. Its central idea is to reserve a certain amount of time », out of the total allocation ¢,
for evaluating a single copy of the repeated sub-expression e’. All the other copies may “enjoy for free”
the result of this evaluation. The fact that » time units are reserved for e’ is communicated to the local

compilation process by adjusting the performance profile of e¢’. The new performance profile is a step
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function that returns quality Q.. (r) at zero time and provides no further improvement of quality. Since no
improvement of quality is possible, an optimal schedule would not allocate any time to any of the copies
and hence standard local compilation is guaranteed to alocate the remaining time optimally to the other
components. The algorithm performs a search to find the best pre-determined reserved time r» for which the
output quality is maximal.

I now show that if the conditional performance profiles of al the components are monotonic, then
any optimal schedule has the following property:

Lemma5.17 Any optimal schedulefor the evaluation of e allocatestimeto a single copy of e’.

Proof: Suppose that there is an optima schedule in which more than one copy of e’ is evaluated. Let
ry, ..., 'y b€ the alocations to the m copies, and let » = Y r;. By the monotonicity of the performance
profile of e, the quality achieved by allocating » time units to a single copy is greater than any of the
gualitiesachieved with alocationsry, ..., r,,. Hence, by substituting the result of that single copy for dl the
copies without changing the allocation to the other components, and by the monotonicity of the conditional
performance profiles, it is apparent that the output quality would increase. This contradictsthe optimality of
the original schedule. Therefore, time must be alocated to asingle copy only. O

Having established the fact that any optimal schedule must activate e’ only once with some
alocation r, | define a two phase optimization problem. The first phase determines the optimal » and
the second finds the optimal allocation to the other components. The optimality of method 2 can then be
established:

Theorem 5.18 Optimality of Method 2: Let e be a composite expression with a single repeated sub-
expression e’, then method 2 returns a globally optimal time allocation schedule for evaluating e.

Proof: By Lemmab5.17, any global scheduleallocatesr time unitsto asingle copy of e’. Sincetheagorithm
performs search over the complete range of », and since local compilation yields optimal results for trees,
Method 2 is guaranteed to find the globally optimal schedule. O

Complexity

Assuming the same discrete representation as in method 1, |1 now look at the complexity of computing each
entry in the table representing the compiled performance profile. Again, let the total number of modules be
x and let the maximal number of discrete time unitsto be allocated be 7 = T, /€. The complexity of the
algorithmisthen:
O(x7?)

Thisis due to the fact that the complexity of the search for the optimal value of r is O(r) and the most
complicated step inside the loop is the local compilation step with complexity O (k72).

To extend this method to work with p different repeated sub-expressions, the algorithm must

consider any possible pre-determined alocation to (single copies of) the repeated sub-expressions. The
complexity of this step becomes 7 when p < 7. And, the overall complexity becomes

O (kr®*2)
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for each Q;, € QUALS TABLE do
for each T' € TIME-TABLE do
r+ 0
repeat
t«T-—r
SHIFT-PP(r)
APPLY-LOCAL-COMPILATION(e, t)
Let ry,...,r, bethedlocationstoey, ..., e,
r < r + max{r;}
until 7, =0
T(Qin, T] « (rlt1, ..., tn)

O©OoO~NO O, WNPF

[
)

Figure 5.10: Learning the alocation to repeated sub-expressions

Method 3: Learning the allocation to repeated sub-expressions

The third method is based on learning the allocation to repeated sub-expressions through standard local
compilation. To be able to apply local compilation, the algorithm first ignores the repetition of sub-
expressionsand uses standard local compilation. Then, it appliesaseries of performance profile adjustments
that converge on a single allocation to each repeated sub-expression.

Again, let e be a composite expression. As with method 2, | consider first the case where e has
only one repeated sub-expression e’ with copiese’, ..., e!,.. Figure5.10 showsthe time allocation algorithm.
It learns the allocation » to asingle copy of e'. Starting with » = 0, the algorithm repeatedly increases r
until local compilation allocates no additional time to the copies of e’. In each iteration, the current value of
r is used to determine how much time to reserve for evaluating e’. The fact that » time units are reserved
for ¢’ iscommunicated to the local compilation process by adjusting the performance profile of e’. Thetime
origin of the performance profileis shifted » unitsto theright. Standardlocal compilationisthen applied and
the optimal alocation to all the componentsis computed. Suppose that, based on the adjusted performance
profile, theallocationsto them copiesof e’ arery, ..., r,. Then, themaximal allocation among thoseis used
to increase the value of . This processis repeated until no additional time is allocated to any of the copies
beyond the reserved time alocation r.

At first look, Method 3 may seem to converge on an optima schedule, however the following
theorem showsthat it may not.

Theorem 5.19 Let e be a composite expression with a single repeated sub-expression e’, then Method 3
does not necessarily returns a globally optimal time allocation schedule for evaluating e.

Proof: By example. Let e be the following expression:

e = B(A(z), A(z))



CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 83

where the unconditiona performance profile of A isthe step function:

00 ifo<t«l1
ga()=14 05 if1<t<2 (5.40)
1.0 if 2<1t

and the conditional performance profile of B is the step function:

00 if (t<1) V (g1 <0.5) V (g2<0.5)
95(9:9:1) =9 o5 jf (2<t) A (05<q,g<1)
10 if (1<t) A (@=1) A (g2=1)

(5.41)

For atotal allocationof t = 3, if A gets2 timeunitsand B gets 1 unit, then the output quality is1.0. Since 1.0
is the maximum output quality, it is obviousthat the above scheduleis optimal. How would the above time
allocation agorithm behave in this case? The agorithm will first allocate 1 unit to each module resulting in
output quality of 0.5. In the next iteration it will reserve » = 1 time unit for A and alocate optimally the 2
remaining time units. Allocating the complete remaining time to the two copies of A would leave no time
for B and result in an output quality of zero. At the same time, allocating less than one unit to either copy
would yield no improvement in the output quality. Therefore, the 2 remaining time unitswill be alocated
to B, resulting in an improved quality of 0.8. Since the allocation to both copies of A is zero, the algorithm
terminates at this point with a sub-optimal schedule. O

Note that thisexample has someimplicationsfor the capability toimprove Method 2. It may seem
natural to try to determine the optimal » in Method 2 using a more guided search, such as a binary search.
But this example shows that it may be hard to determine whether r is too small or too big. In particular,
the fact that additional time is allocated by local compilation to the components, beyond the reserved time,
showsthat r istoo small. But, if no additional time is alocated to the components, » may be either too big
or too small.

What are the conditions that would guarantee the optimality of Method 3 and would alow the
use of binary search in Method 2? Thisis left as an open question at this point. A good direction toward
establishing such conditionsis to investigate the situation in which conditional performance profiles are all
convex. That is, their second derivative is continuous and negative. This assumption may be sufficient to
show that r is optimal if and only if it is the minimal alocation for which local compilation allocates no
additional time to the copies of e’. Such property would both guarantee the optimality of Method 3 and
simplify Method 2.

Complexity

Finally, I determine the complexity of computing each entry in the table representing the compiled perfor-
mance profile. Again, let the total number of modules be «, and let the maximal number of discrete time
unitsto be allocated be 7 = T, /€. The complexity of the algorithmisthen

O(kT?)

Thisisduetothefact that the complexity of the search for r isO(7) (sincer may beincremented by 1 unit of
time in each iteration). The most complicated step inside the loop isthelocal compilation with complexity
O(x7?). Notethat in practice the convergence of the search for » is much faster than O(r).



CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 84

Theextensionto multiplerepeated expressionsisstraightforward. Thealgorithmneedstomaintain
a sequence of reserved alocations for each repeated sub-expression. The rest of the algorithm is the same.
The advantage of method 3 is that its complexity remains the same with any number of repeated sub-
expressions. Thisis due to the fact that a single loop is used to update all the reserved allocations to the
repeated sub-expressions and the worst case complexity of that loop remains O(r).

Summary

I have examined three time allocation algorithms designed to cope with the difficulty of compiling DAGs.
The first algorithm has a complexity O(x3log) but finds only local optimum. The second agorithm has
complexity O (k7(P+2) and the third O(x73). Since k < 7 the first adgorithm is the most efficient one.
Method 2 is superior since it guarantees optimality, but its complexity grows exponentialy as the number
of different repeated sub-expressions grows. To address this problem, the last method can be used. Its
complexity remains the same for any number of repeated sub-expressions but it does not guarantee global
optimality. However, sinceit useslocal compilationto determinetheallocationtotherest of the components,
it has a better chance of getting closer to the global optimum than the first method.

5.5.6 Compilation under uncertainty

The discussion of compilation in this chapter was restricted to “Type I” where no active monitoring is
assumed. That is, the compilation was restricted to the problem of finding an optimal static schedulefor the
components that would maximize the expected quality of the output. However, in the analysis of functional
composition so far, | used fixed conditional performance profiles only. These performance profiles allow
no uncertainty regarding the quality of the output, once the quality of the inputs and the time alocation are
determined. Thisanalysisremainsvalid in cases where the output quality varianceis narrow. But in general,
the compilation scheme has to be extended to work with probability distribution profiles.

Let e be acomposite expression of sizen. Consider a particular timealocation (¢4, ..., t,), where
t; is the time allocation to module z. What is the probabilistic description of the quality of the output
given this particular time alocation? When fixed conditional performance profiles are used, the answer
to this question can be computed by using an expression similar to e where each function is replaced by
its conditional performance profile and each input variable is replaced by its quality. With performance
distribution profiles (pdps), the answer to this question becomes more complicated. Before answering it, |
need to discuss the representation of pdps.

Torepresent apdp, an extension of thediscretetabul ar representation of fixed performance profiles
can be used. Assume that all quality measures are normalized to be in the interval [0, 1]. Theinterva is
divided into £ discrete qualities, g;...g,. A resultis of quaity ¢; = (27 — 1)/2£ if itsactual quality measure
gisintherange: (s —1)/£ < ¢ < ¢/£. Now, aconditional pdp isamapping from input quality and run-time
into a(standardized) discrete probability distributionover qualities. Let A beafunction of oneargument and
let g represent thequality of itsinput. Using the previousnotation, @ 4 (g, t) becomesavector of probabilities
instead of ascalar. Let Q 4 (g, t)[¢] bethe:** entry of thisvector which expresses the probability of the output
quality being ¢;.

Now, consider the simple case of composition represented by the following expression:

C(A(z), B(z))

where the conditional pdps of A, B and C' are given. For any particular alocation to the components, the
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probability distribution of the output quality can be derived using marginalization over al the possibleoutput
qualitiesof A and B. That is, for agiven tota allocation ¢, with sub-allocation of ¢, to module A, tp to
module B, and t to module C, the probability distribution of the output can be computed in the following

way:
Qout(q, (ta,t5,t0)) k] = D> Qale, t4)[E1Q5(q, t5)[11Qc %, 45, tc) K] (5.42)

i=1j=1

This approach can be extended to any expression of any size. To compute the probability of a
particular output quality, one need to marginalize over all the possible qualities of intermediate results. The
time complexity of generating the table representing the probability distribution of the output for e isO(£7),
where p is the number of modules. The complexity of the same task with fixed performance profiles is
O(p). Thisexponential growth meansthat it may be impractical to apply thiscomputation globally to alarge
expression. However, similar tolocal compilation, the probability distribution of the output can be computed
for each node based on itsimmediate inputs. For binary trees the total complexity becomes O (p£3?).

It should be noted that when searching for optimal apportionment of time to the components, one
has to compare two possible probability distributions of the output quality rather than two scalar output
qualities. This comparison is not as straightforward as it may seem. One can, of course, compare the
expected qualities. However, recall that the quality of the result of a decision method is used in conjunction
with a description of the environment and a utility function to determine its actual value. The better the
quality the better the value, but a better expected quality does not necessarily correspond to a better expected
utility. In some cases, a distribution of qualities with a dightly lower expected value may be preferred
because it guarantees a narrow variance and possibly a higher expected utility. To overcome this difficulty,
the utility function of the system and a typical description of the environment can be used at compile time
so that quality distributionsare compared based on their resulting utility rather than on their quality.

5.6 Compilation of other programming structures

In thissection | will examine the compilation of additional programming structures. Thefirst part analyzes
conditional structures. The second part examines the compilation of boolean expressions. Finally, the last
part of this section analyzes the compilation of loops.

5.6.1 Conditional structures

Conditional execution of codeisafundamental structurein programming. | start thissectionwithan analysis
of several typesof conditionals. To begin, consider amodification of straight line programsthat allows each
assignment in the program to be of the form,

u < if C then F(vy,...,v,) else G(wy, ..., Wn)

Even this most basic conditional statement raises several gquestions regarding the anytime nature of the
components:

1. Isthe condition C' an anytime algorithm?

2. DoesC return atruth value or a probability?
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3. What is the quality of the result generated by the wrong branch of the structure (e.g. the result of F
when C isfalse)?

4. Do we only evaluate one branch or both?

Depending on the answers to these questions, one can design an appropriate compilation scheme. Consider
the following cases:

Case 1: Fixed-time correct-answer

In this case, the evaluation of the condition takes constant time (¢¢) after which it returns the correct truth
value. When the valueistrue, the quality of theresult isthe quality of F. Otherwise, it isthe quality of G.
No special assumption is made about the utility of the wrong branch” since, when conditional expressions
are evaluated correctly, the right branches are always selected. For example, consider the problem of bin
packing with a given set of n packages. The condition determines whether the packages are convex, in
which case algorithm F' solves the problem, or non-convex, in which case agorithm G solves the problem.
Since the condition cannot be evaluated at compile time, assume that the prior probability that the
conditionistrue, Pg, isknown. The expected performance profile of the if structureisthen,

Qis(t) = { éDCQF(t —te)+ (1 - Pe)Qel(t — to) i(:t}iefv\fi(;e (5.43)

Given its performance profile, the conditional assignment can be treated just as any other assignment in a
straight line program. Based on this performance profile one can use the efficient compilation methods for
DAGs presented in the previous section.

Case 2: Fixed-time probabilistic-answer

In this case, the evaluation of the condition takes constant time (¢¢) after which it returns the probability, p,
that theanswer is“true.” The correct truth value cannot be determined by the program. | assumethat inthis
case F' and G can generate useful results both when the correct conditionistrue and when it isfalse. The
performance profiles however are different in each case. Q .. (f) Characterizesthe quality of F whenthe
conditionistrue, and Qr, a5 (t) Specifies the quality when the condition is false. For example, consider
the bin packing example of the previous case. Assume that the bin packing algorithm for convex packages
can till handle non-convex packages (by computing their convex hull) but its performance in that case is
inferior to the performance of the specialized algorithm. Similarly, the bin packing a gorithm for non-convex
packages can, obviously, handle convex packages but not as efficiently as the specialized algorithm.

If thetotal allocationist and thereturned probability of the condition being trueisp, theagorithm
decides at run time whether to allocate the remaining time to F' or to G based on comparing their expected
values. When F isactivated (and t > t¢) the expected quality of theresultsis:

pQF,t’r’u.e(t - tC) + (]- - p)QF,false(t - tC) (544)

"However, it is atrivial property of any “good” program that the right branch has a higher utility than any wrong branch.
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When G isactivated (and ¢ > t¢) the expected quality of the resultsis:

pQG,t'rue(t - tC) + (]- - p)QG,false(t - tC) (545)

Based on the branch that has the higher expected utility, the run-time system can determine which method
should be activated. If one knows the probability distribution of the returned value of the condition, p,
one can construct the performance profile of the if structure and then use one of the standard compilation
methods for DAGsasin case 1.

Case 3. Anytime conditional

In thiscase, the condition C' itself isan anytime algorithm that returns a truth value. Its performance profile
describes the probability of correctness as afunction of time and truth value®:

Qc,true(t) = p(Correct Answer = true | C = true) (5.46)
Qc,7aise(t) = p(Correct Answer = false | C = false) (5.47)

Again, | assume that the correct truth value cannot be determined by the program and that the the quality of
theresult isthe quality of F when the correct condition valueistrue, and the quality of G otherwise. | also
assumethat the result of the wrong branch has zero quality and that the al gorithm executes F' when C' returns
true and that it executes G otherwise. For example, suppose that the condition is used to select the correct
speech recognition procedure for a particular person based on a certain classification. The conditionin this
case is an anytime agorithm that determines the membership in one out of two possible classes (male or
female, for instance). Once the utterance is classified, an appropriate anytime speech recognition procedure
isused. Assumethat if the classification is wrong, then the speech recognition procedure fails. Otherwise,
its probability of successis determined by its performance profile.

Let Pc(t) be the prior probability that the condition returns true with time allocation ¢. Then,
for each total alocation ¢, the optimal alocation z to the conditional part can be determined by solving the
following eguation:

arg ggfgt{PC(W)Qc,true(m)QF(t —z)+ (1 - Po(2))Qc,satse(2)Qc(t — z)} (5.48)

Oncethe best allocation to the conditionisdetermined, local compilation of theif structure can be completed
and its performance profile can be determined. Then, the standard compilation methods for DAGs can be
used asin the previous cases.

Summary

Severd dternative conditiona structures have been analyzed. The analysis shows that the compilation
of DAGs can be applied by first deriving the performance profile of the conditional structure, using local
compilation techniques, and then treating it as a standard component of the DAG. Thisresult can be extended
to include multi-case conditional structures such as the following case construct:

u+ caseCof {vi: Fy ; va:Fy ; ... ; v, :E,}

8 Thiskind of performance profiles and their compilation are discussed at length in the following part on boolean expressions.
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Although al the cases that were considered above can be applied to this construct, the first case seems to
be the most useful one. It would alow Fi, ..., F, to be anytime algorithms while C' must be an expression
whose eval uation returns the exact answer within afixed run-time.

Multiple versions of conditional constructs raise an important methodological question: How
would the programmer indicate the version of conditional structurethat is used. One approachisto limit the
semantics of al if structuresin aprogram to only one case depending on the application. Another approach
isto use different keywordsfor different types of conditional structures. Finally, it should be noted that the
last case, where the conditional part is an anytime algorithm, could be automatically recognized since the
compiler hasinformation in the anytimelibrary on all the anytime components.

5.6.2 Compilation of boolean expressions

This section examines the compilation of boolean expressions which are composed of anytime boolean
functions defined as follows:

Definition 5.20 An anytime boolean function is a function that returns either T (true) or F (false). Its
performance profile determines the probability that the answer is correct as a function of the returned truth
value and time.

Let f be an anytime boolean function that takes input I and calculates the truth value of the relation = (I).
For any possibletime allocation, ¢, the performance profile of f specifies:

Qs(T,t) =p(r(I) =T|f=T)

Qs(Fit)=p(r(I)=F|f = F)
obviously,
1-Q4(T,t)=p(r(I)=F|f =T)
1-Qs(Ft)=p(r(I)=T|f = F)

Note also that the performance profile has to satisfy the property that Q;(7,0) = 1 — Q4 (F, 0) since with
zero alocation the algorithm has no chance to produce any result other than a default answer. The default
answer should bethe most likely answer based on the prior probability distribution. However, forany ¢ > 0,
itispossiblethat: Q;(T,t) # 1 — Q4 (F,t).

The definition alows performance profiles to depend on the results themselves since such de-
pendency exists in many genera techniques for implementing anytime boolean functions. For example,
when a Monte Carlo algorithm returns a positive answer, it must be correct (i.e. Q;(T',t) = 1). However,
when the answer is negative, it is only because the algorithm remains silent. Its failure to give a positive
answer in aseries of trials gives evidence that the correct answer isnegative. Therefore the only meaningful
performance profileis for the case in which the algorithm returns F (i.e. Q4 (F, t)).

Note that the fact that the performance profile of each elementary agorithm depends on time as
well as on the result produced by the algorithm makes the compilation task more complicated. Normally,
the result of a moduleis a function of the results of the elementary components (only!) and the quality is
afunction of the qualities (only!). However, thiskind of separability is not simple to achieve with boolean
expressions, even if one assumes that the elementary performance profiles are independent of the results.
For example, consider the following expression:

e=(finfaNfs)
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Figure 5.11: Compilation of aboolean expression

Supposethat the results of the functions are independent, that each function returnsthe same truth valueand
that the probability of correctnessisp = 0.7 for al threefunctions. If theanswer isF, thenp(e = F) = 0.973
and theanswer for the total expression should be the standard result of (F' A F' A F'). However, if the answer
isT, thenp(e = T') = 0.343 and p(e = F') = 0.657. Hence, the more likely answer to the total expression
is F which is the negation of the standard result of (7" A T' A T'). In conclusion, both the result of a boolean
expression and its quality are defined as afunction of theresults and qualities of the elementary components.
For the purpose of analyzing the compilation of boolean expressions, the following definitionis used:

Definition 5.21 A boolean expression over a set, S, of elementary anytime boolean functionsis:
1. Any elementary anytime boolean functione € S.
2. The expression —e where e is a boolean expression.
3. Theexpression (e; A e;) wheree; and e, are boolean expressions.

4. Theexpression (e; V e;) where e; and e, are boolean expressions.

Anytime evaluation of boolean expressions

Given a boolean expression over a set {fi, ..., f»} of elementary boolean functions, two methods will be
shown for time allocation to the components. Both methods are based on the foll owing assumptions:

1. The truth values returned by the elementary boolean functions are independent, that is, p(f;|f;) =
p(f)-

2. Thetime needed to compute the truth value of each function is much longer than the time needed to
compute the value of the expression once the truth values of al the functions are known.

Thefirst assumption simplifiesthe combination of probahilities. The second assumptionallowsusto alocate
all the available time to the anytime components since the evaluation time of the boolean expression itself
isnegligible.
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Table 5.1: Optimal time allocation in boolean expression eval uation

Total Time [ ¢, | ¢, | E(Qudlity) |

1 0|1 |0.7498
4 0 |4 | 07694
7 0|7 | 07891
10 0 | 10 | 0.8088
13 0 | 13| 0.8285
16 0 | 16 | 0.8482
19 0 | 19| 0.8678
22 2 | 20| 0.8881
25 3 | 22| 0.9093
28 5 | 23| 0.9315
31 6 | 25| 0.9547
34 6 | 28 | 0.9783
37 7 | 30| 1.0000

Method 1:

The first method produces a contract algorithm. It is based on a compilation process that produces the
alocation to the components for each given tota alocation. Consider first the simple example shown in
Figure 5.11. Given the expression,

e = (F1 A\ F3) (5.49)

where the qualities of of F; and F, are described by the following functions:

Q:(t) = min{0.8+ 0.03t,1} (5.50)
Q2(t) = min{0.7 + 0.01¢,1} (5.51)

the compilation problem isto find for each total allocation the best way to allocate time to the components
so as to maximize the expected confidence level in the result of the whole expression. In order to find
the best allocation for any given tota time ¢, we can use a search method similar to methods used in the
previous section. The only difference is the way in which the expected quality of the whole expression
is calculated for each particular allocation to the components. While in functional composition one could
computethe quality of the output based on the qualitiesof the components only, here the particular results of
the components are needed as well. The result of each component is, of course, unknown at compile time.
However, based on the prior probability distribution of each component, the joint probability distribution
can be derived. The new confidence level of each component is known from the performance profiles of
the components. Hence, for each possible set of results of F; and F;,, one can compute the new probability
distribution (or confidencelevel) of theresult and, accordingly, the new output quality. Finally, the expected
quality of the whole expression can be computed based on the joint probability distribution of the results of
the components. Table 5.1 showsthetime allocation that was computed using thiscompilation technique. A
tabular representation of the compiled performance profile is arefinement of thistable along the time axis.
The above compilation method can be extended to a global compilation scheme for boolean
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expressions. Itscomplexity, however, growsexponentially withthesize of the expression. Local compilation
can only be applied under certain assumptions. When compiling a single boolean function, it is sufficient to
assumethat theresultsof theindividual componentsare independent. But, when onetriesto extend theabove
method to DAGs, the results of internal nodes may be dependent. Therefore, to apply local compilation one
must assume subtree independence. This assumption restricts the structure of the expression to atree and
requires that the truth values of any two disjoint subtrees are independent. In other words, the subsets of
elementary anytime functions used by any two sub-expressions must be disjoint. For such expressions, the
following local compilation scheme is applicable.

To formalize local compilation of boolean expressions, the following notation is needed. Let
v; represent a possible truth value of a boolean expression e;, that isv; € {T', F}. A binary probability
distributionis denoted by apair: {p, 1 — p} where the first component is the probability of T and the second
the probability of F. The function Dist(v;, ¢;) isabinary probability distribution such that p(e; = v;) = ¢.
For example, Dist(T',0.8)is{0.8,0.2} and Dist(F,0.9) is{0.1,0.9}. The boolean operators are extended
to probability distributionsrather than truth values in the following way:

~{pi,1-p} = {1-pi,p} (5.52)
{p,1 =P} A {p2,1 —p2} = {pip2,1— pip2} (5.53)
{P1,1=p1} VP, 1 —=p2} = {1-(1-p1)(1-p2),(1—p1)(1~p2)} (5.54)

The quality of aprobability distributionis simply Qual({p, 1 — p}) = max(p, 1 — p).

Loca compilation is defined by induction on the structure of the boolean expression. | assume
that aprior probability distributionfor the elementary functionsis known. The prior probability distribution
of each node can be easily calculated. Local compilation works as follows:

1. If the expression is an elementary anytime boolean function, then its performance profile is given.
Hence no compilation is necessary.

2. If the expressionisof theform —e, then its performance profile is the same as the performance profile
of e.

3. If the expression is of the form (e; A e3), then for each total alocation ¢, the best quality of result is
achieved by solving the equation:

arg 0ax{Q(Qu(2), Qalt — 2))} (5.55)

where @, and @, are the (possibly compiled) performance profiles of e; and e, respectively. The
equation also defines the best time allocation to the components. The function @, is defined as
follows:

Qr(q1, ) = Z Z p(er = v1)p(es = v2)Qual(Dist(vi, ¢1) A Dist(va, ¢2)) (5.56)

v1=T,Fv,=T,F

4. If the expression is of the form (e; V e;), then for each total alocation ¢, the best quality of result is
achieved by solving asimilar equation:

arg max{Qu(Q1(z), Qa(t — 2))} (557)

o<z<t
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where Q. isdefined asfollows:

Qv(q, q) = Z Z p(er = v1)p(es = v2)Qual(Dist(vi, q1) V Dist(va, ¢2)) (5.58)

v1=T,Fv,=T,F

Definition 5.22 A local compilation scheme is said to be consistent with respect to a certain equivalence
relation, if it yields the same performance profile for all the members of each equivalence class.

Consistency of local compilation is an important property. It guarantees that compilation is not sensitive
to trivial representation changes. Consider, for example, the equivalence relation over boolean expressions
that holds for certain expressionsif one can be derived from the other using the commutative, associative,
and distributiverules. Islocal compilation of bool ean expressionsconsistent with respect to thisequivalence
class? Empirical results suggest that the answer is positive. For example, local compilation of the two
expressions (Fy A F3) A F5 and Fy A (F, A F3) yieldsthe same allocation to all three components for each
total allocation. However, both the consistency of local compilation and its globa optimality are yet to be
proved. Note that optimality of local compilation implies consistency, but the converseis not true.

Finally, as with composite expressions, globa compilation is impractical for large expressions.
Therefore, when the subtree independence assumption does not hold, local compilation should still be used
as an approximate compilation method.

Method 2:

The second method for evaluating an anytime boolean expression is based on direct construction of an
interruptible algorithm. Any boolean expression over fi, ..., f., can be represented as a DAG. The method
is based on a greedy algorithm that repeatedly selects a single leaf node whose computational effect on the
quality of the expression is maximal and allocates a fixed amount of time to that node.

How does the algorithm select the leaf node with maximal effect? It simply considers every
aternative. For each candidate, the new expected quality of the expression can be cal culated based on the
current probability distribution associated with the leaf nodes and the performance profile of the candidate.
The output of the candidate node is unknown but the current distribution associated with it can be used
to compute the expected quality of the whole expression. The interruptible greedy algorithmis similar to
global compilation with a fixed time allocation, equal to the time quota of each iteration. What simplifies
the search prablem is the restriction that only one component gets the whole allocation in each iteration.

Aninteresting variation of this greedy algorithmisthe special case where the performance profiles
of al the elementary components are step functions. That is, the components themselves are not anytime
algorithms. By alocating a certain fixed amount of time to each component, one can get the exact truth
valueof that node. Inthisparticular case, the greedy algorithm creates an ordering of the components so that
early ones have greater effect on the quality of the result. The ordering can be cal culated once in advance or
the next candidate can be picked at run-time based on the actual truth values of the other components.

For example, consider the following expression:

FiV (F; A F)

Figure 5.12 shows the corresponding graph and the prior probability distributions of the leaf nodes and the
internal nodes. Suppose that, by allocating one unit of time, the exact truth value of any leaf node can be
computed. Which node should get the first time unit? The initial quality of the root node is 0.875. The
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{0.5,0.5} {0.75,0.25}

Figure 5.12: Interruptible eval uation of aboolean expression

greedy algorithm would simply consider the new expected quality as a result of evaluating each possible
node:

1. If F; isevauated first, the expected quality is:

Expected Quality=0.8 - 1.0+ 0.2 - 0.625 = 0.925
2. If F, isevaluated first, then the expected quality is:

Expected Quality = 0.5-0.95+ 0.5 - 0.8 = 0.875
3. If F; isevaluated first, then the expected quality is:

Expected Quality = 0.75-0.9 4+ 0.25 - 0.8 = 0.875

Therefore the algorithm would select F; for evaluationin the first iteration. If theresult of F; isT, thenthe
result of the expression is T with probability 1 and the computation terminates. Otherwise, the algorithm
will have to select between evaluation of F, and F;. Theinitia quality becomes 0.625 and the expected
qualities of the computations are as follows:

1. If F, isevauated first, the expected quality is:
Expected Quality = 0.5-0.75+ 0.5 - 1.0 = 0.875
2. If F3 isevaluated first, the expected quality is:

Expected Quality = 0.75 - 0.5 + 0.25 - 1.0 = 0.625

Therefore the algorithm would select F, for evaluation. If the result is F, then the computation terminates.
Otherwise the last function would be evaluated. Note that in this particular example, the optimal order of
evaluationis Fy, Fy, F3 inall cases, thusthe order can be determined by an off-line computation.

The compilation of boolean expressions raises many interesting questions. How does the per-
formance profile of the contract method relate to the performance profile produced by the interruptible
evaluation? What is the effect of reducing the time step of the interruptible evaluation on the performance



CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 94

Figure 5.13: Compilation of an unbounded loop

profile? Notethat thetime necessary to sel ect thenext component for allocationisconsi dered to be negligible.
This assumption becomesinvalid as the time step becomesinfinitesimal.

5.6.3 Compilation of loops

The compilation of loops is more complicated than the compilation of other programming structures. As
with the previous structures, the key question is the relationship between the quality of the loop and the
quality of its components, that is, the body and exit condition. | will generally assume that the body of
the loop is an anytime algorithm whose performance profile is given. Severa loop structures are anayzed
below.

Unbounded loops

Any system that repeatedly performs a complex task can be implemented using a loop through a sequential
anytime process. Examples include operating systems, part-picking robots, and network communication
servers. In these cases, an unbounded loop is an adequate model :

loop S

Assuming that S is an anytime al gorithm whose performance profile is given and that utility (or quality) is
additive over repeated activation of .S, time allocation should maximize the utility gain per time unit, that is,
at each iteration z is selected such that

max {Qs(z)/z} (5.59)

o0<z<t

where Qs (z) isthe performance profile of the body of theloop. Thisamountsto stopping the sequence when
it reaches the point of contact of the steepest tangent to the performance profile as shown in Figure 5.13.
What happensif the result of each iterationis part of the input to the next one? Obviously, quality
isnot additive any longer and the optimization problemis much more complicated. Supposethat Qs(g,t) is
the conditional performance profile of the body of the loop. For any fixed number of iterations, n, the loop
can be viewed as a simple linear composition of a single function duplicated n times. Since the optimality
of local compilation is guaranteed for such cases (by Theorem 5.16), a sequence of performance profiles,
Q%(g,t), can be defined such that each element is the result of local compilation of the previous one and
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Qs(g,t). For any giveninput quality ¢ and total allocation ¢, the best number of iterationsis determined by:
max{Q3(g, )} (5.60)

Once n is determined, the particular sequence of alocations can be derived by local compilation of the n
duplicates.

Fixed length loops

Fixed length loops are loops that are executed a fixed number of times, although the number of times may
be determined at run-time. Their general structureis

for i=1 to n do S(7)

I will consider the case where such loops are used for applying a certain operation to all the members of
acertain set or array. The total quality is additive and the qualities of individual iterations are similar. In
addition, | assume that the performance profile of each iteration grows faster at early stages of execution.
Based on these assumptions, all iterations must be performed and time should be divided equally between
them. If acontract algorithmis constructed, then thetotal time allocation should be divided equally between
theiterations. If an interruptibleagorithm is constructed, then the best strategy is to allocate small amounts
of time increments to the evaluation of each S(z).

The above description israther general, but it does not cover all the cases. It is also possible, for
example, that a fixed length loop would apply each iteration to the results of the previousone. In that case,
the local compilation scheme described previously for unbounded loops would apply. In fact, the case of
fixed length loopsis less complicated since the number of iterationsis known at activation time.

Conditional loops

Finally, consider the compilation of conditional loops. In particular, consider the following structure:
while C(e) do S

There are many possible ways to define the behavior of such anytime structures. The conditional part may
be an anytime algorithm and its returned value may be a probability rather than atruth value. The execution
of the body of theloop may have a negative effect when the condition does not hold or it may have no effect
in that case. The quality of the whole structure may be additive over individua iterations or each iteration
may contribute to the overall quality in a more complex way. As aresult, the compilation of loops of this
kind is hard to perform in general. Instead, | describe some particular examples that show how compilation
might be implemented.

1. One possible use of conditional loopsis in situations where the condition determines whether any
input is ready to be processed and the body implements a certain processing step. For example,

while not EMPTY (Query-Queue) do
Process(PorP(Query-Queue))

Typicaly in such situations the utility is additive over the individual queries. Assume that the time
necessary to evaluate the condition is negligible. In such a case, it seems that the control of the
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execution of the loop becomes a dynamic monitoring problem. The monitor, using a modd of the
environment, could determine the time pressure when a new query arrives. The length of the queue
can be used as an additional factor to determine thetime pressure. Then, aparticular contract time can
be derived using the performance profile of the body of the loop. Hence, off-line compilation does
not seem to be useful in this case.

2. Another possible use of conditional loopsisin situationswhere the condition enables the operation of
the body of theloop. Therun-time system may have some control over the status of the condition. In
the context of anytime computation, both the condition and the body may consume variable resources.
For example,

while (IDENTIFY-TARGET(T) A NOT-REACHABLE(T)) do
MOVE-TOWARDS-TARGET(T)

In such a situation, the performance profile of the body may express the probahility of reaching the
target as afunction of distance and time assuming that the target is static. The performance profile of
the condition may express the probability of keeping track of the target as afunction of tracking time.
In this case, compilationis possible. It will result in a certain degradation in the performance profile
of the body due to the need for constant tracking. In addition, thistype of compilation requires active
monitoring.

3. Finadly, conditional loops can be translated into the foll owing representation:

loop
if C(e) then Selseexit

The advantage of this representation is that the compilation of conditional loops is transformed into
a two-step compilation process. Thefirst step is the compilation of the conditiona structure and the
second is the compilation of the unbounded loop.

To summarize, thereis awide range of possibleloop constructs, some of which can be efficiently
compiled. The control of other structures becomes a run-time monitoring problem. Practical experience
showsthat the open ended types of 1oops, that are more difficult to compile, are useful at the very top level of
an anytime computation system. | will further examine the top level of anytime systems and their activation
in the next two chapters.

5.7 Summary

This chapter examined the possibility of producing the performance profile of large programs based on the
performance profiles of their components. Such an off-line compilation processis crucia for the efficient
implementation of the meta-level control that supports operational rationality. The global compilation
problem iswell defined for many programming structures, but its solution can be rather expensive. Itstime
complexity tendsto grow exponentially with the size of the program. To cope with thisexponential growth,
| have developed local compilation methods that are performed on one program structure at atime. Local
compilation is not only more efficient but also supports modular development of anytime algorithms. In
addition, the global optimality of local compilation has been established for the general case of functional
composition without repeated sub-expressions.
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Chapter 6

Run-Time Monitoring of Anytime
Algorithms

What is actual is actual only for one time
And only for one place.

T. S. Eliot, Ash Wednesday

Monitoring plays a central role in anytime computation because it complements anytime algorithms with a
mechanism that determinestheir run-time. Without such amechanism, the anytime components of a system
are worthless. The last two chapters concentrated on the construction of anytime performance components
and on their compilation. In this chapter | examine the monitoring problem and develop several monitoring
strategies. In particular, | show that for a certain class of problemsit is sufficient to make all the monitoring
decisions when the system is activated. In other domains, active monitoring, a more complex mechanism,
is essential to guarantee operational rationality in the face of uncertainty.

6.1 Therun-time system

The run-time system complements anytime a gorithms with a monitoring mechanism that determines their
run-time. Inthissection | definethe genera notion of amonitoring scheme and di stingui sh between passive
and active monitoring. Then | analyze the conditions under which active monitoring is necessary. Finaly, |
determine the temporal scope and goal of the monitoring system.

6.1.1 Monitoring schemes

Given a compound anytime program, P, whose elementary anytime componentsare £ = {A,, ..., A,}, a
monitoring scheme is defined as a mapping that determines a certain time allocation for each activation of
an elementary component.

Definition 6.1 A monitoring scheme for a program P is a mapping:
M:Ex Zt - Rt

where E isthe set of elementary componentsof P.
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In other words, M(z, 7) is the time allocation to the 5** activation of the :** component. A monitoring
scheme supplies the necessary information to make a compound anytime program executable in a well
defined way. It fixes the degree of freedom associated with anytime algorithms.

Much of this chapter is dedicated to the development of various monitoring schemes and to the
analysis of their properties. An important distinction is made between passive and active monitoring.

Definition 6.2 A monitoring scheme is said to be passive if the corresponding time allocation mapping is
compl etely determined prior to the activation of the system.

Definition 6.3 A monitoring schemeis said to be activeif it is not passive. That is, the corresponding time
allocation mapping is partially determined while the systemis active.

Under active monitoring, some scheduling decisions are made at run-time. Such decisions are based on the
actual quality of results produced by the anytime components and based on the actual change that occurred
in the environment. It should be emphasized that compilation of anytime algorithms remains as essentia
in active monitoring as it is necessary in passive monitoring. The run-time scheduling decisions are made
using compiled performance profiles both in order to determine aninitial time-allocation to each component
and in order to determine whether time all ocation should be revised.

Figure 6.1 shows the general structure of the run-time system and the data flow between its main
components. The monitor is the central component that makes run-time scheduling decisions. It represents
the implementation of a particular monitoring scheme. An independent process is used in order to update
the state of the environment based on sensory input. This processis performed in parallel to the execution
of the main decision procedure, but it does not consume the same computational resources. The state of the
environment, or more precisely, aset of high-level features of the environment, is used together withamodel
of the environment, the current best results, and the performance profile of the main decision procedure
in order to determine the value of continued computation. The value of continued computation can be
estimated for the complete system or for individual modules. In the former case, the monitor may decide to
stop the execution of the main decision procedure and return the current best result. In the latter case, the
monitor may decide to transfer control to another anytime component or it may interrupt the execution of
the complete system. Specific examples of monitoring policies are presented in the following sections.

The main reason why complicated active monitoring is necessary in control of anytime algorithms
is the problem of uncertainty. In an entirely deterministic world, passive monitoring can yield optima
performance and hence satisfy the operationa rationality criterion. However, in unpredictable domains
there is much to be gained in performance by introducing an active monitoring component. In the next
section, the two main sources of uncertainty in real-time systems are described.

6.1.2 Uncertainty in real-time systems

Two primary sources of uncertainty affect the operation of real-time systems. The first source isinternal to
the system. It is caused by the unpredictable behavior of the system itself. The second sourceisexternal. It
is caused by unpredictable changes in the environment. Obviously, each source may contribute a variable
degree of uncertainty depending on the problem domain and the implementation of the system.

1. Uncertainty regarding the performance of the system

In the genera case of an anytime algorithm, the quality of the results may vary for any fixed time
alocation. A performance distribution profile describes the distribution of quality for any time
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alocation. In situations where the variance of the distributionis small or where the actual quality is
bounded by asmall § around the expected quality, this uncertainty may have little effect on meta-level
control of computation. However, with a large variance there is much to be gained by using active
monitoring. A monitor may use the quality of the actual result to correct the time allocation to the
components of the system.

2. Uncertainty regarding the environment

The desired run-time of a system is determined by its performance profile as well as by the time
pressure and by the characteristics of the environment in which it operates. The source of the time
pressure is change in the environment that may render the result of the computation useless. Change
in the environment creates time pressure but does not always bring about uncertainty. The source
of uncertainty is either the presence of stochastic events or the use of approximate models of the
environment. An agent that provides a certain service, such as package delivery, in an environment
where requestsfor the service arrive at a non-deterministic rate, operatesin a stochastic environment.
An agent that performs medical diagnosisoperates in an environment that has an approximate model.
In both cases, there is uncertainty regarding the future states of the environment and, as a result, any
initial contract time may need to be revised. In some situations, an interruptible algorithm must be
used due to great variability in time pressure. Active monitoring, however, may be used to control
anytime computation in such environments.

The two sources of uncertainty mentioned above are characterized by two separate knowledge
sources. Uncertainty regarding the performance of the system is characterized by the performance distri-
bution profile of the system. Uncertainty regarding the future state of the environment is characterized by
the model of the environment. Active monitoring isrequired in the presence of any one of these sources of
uncertainty. However, the type of monitoring may vary as a function of the source of uncertainty and the
degree of uncertainty.

6.1.3 Episodic problem solving

Operational rationality has been defined as an optimization problem whose ultimate goal is to generate a
utility maximizing behavior. However, the time segment over which the agent’s behavior is optimized has
not been clearly specified. In somecases, theanswer tothisquestionisobvious. Theagentispresentedwitha
singletask and thetime segment isthe period of timerequired by the agent to achievethat task. For example,
consider arobot that delivers packages and whose utility function is the sum of the time-dependent delivery
values of the packages. The behavior of therobot isoptimized over asingleinstance of the problem. Thatiis,
therobot is presented with amap, a set of packagesto be delivered and their time-dependent delivery values.
Operational rationality is achieved by optimizing resource allocation to the computational components so
as to maximize the utility function. When solving the optimization problem, the input task is considered
in isolation. The fact that the same agent may be involved in a completely different activity which may be
more beneficial is not considered. Moreover, the fact that another batch of packages may be waiting in a
gueuefor delivery isignored aswell. | call the situation where the achievement of asingletask isoptimized,
episodic problem solving. Note that the task may be arbitrarily complicated and may include a number of
sub-tasks. What makes a problem solving process episodic is not the simplicity of thetask, but the fact that
the complete task is specified as input to the system and the optimization is performed over that task only.
In episodic problem solving, theaternative use of theagent isignored. In particular, itsavailability
for solving further problems immediately after accomplishing the current task is disregarded. In the rest
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of this chapter | will focus mainly on monitoring of episodic problem solving. Optimizing behavior over
a larger time segments requires to extend the framework of anytime computation to the other components
of the agent, namely sensing and action. This extension is examined in the following chapter. It should be
noted that, to some extent, the possibility of using the agent for solving other tasks can be factored into the
model using a modified utility function. Such amodification must increase the cost of time as afunction of
the contents of the queue of waiting tasks.

The notions of passive and active monitoring have been defined and the temporal scope of the
monitoring component has been restricted to episodic problem solving. The rest of this chapter examines
several monitoringschemes. Itisdividedintotwo main parts according tothetypeof system being monitored
— contract or interruptible.

6.2 Monitoring contract algorithms

It is easier to construct contract algorithms than interruptible ones, both as elementary and as compound
algorithms. Therefore, 1 will examine first the monitoring problem assuming that the complete system is
presented as a contract algorithm, A. The conditional performance profile of the systemisQ 4(g, t) where
g is the input quality and ¢ is the time allocation. Recall that @ 4(g,t) represents, in the genera case,
a probability distribution. When a discrete representation is used, Q 4(g,t)[¢;] denotes the probability of
output quality g;.

Let S, be the current state of the domain and let S, represent the state of the domain at time ¢,
let g, represent the quality of the result of the contract anytime algorithm at timet. U 4(S, ¢, q) represents
the utility of a result of quality ¢ in state S at time ¢. This utility function is given as part of the problem
description. The purpose of the monitor isto maximize the expected utility of theresult, that is, tofind ¢ for
which U4(S:, t, ¢:) is maximal. Contract algorithms are especially useful in a particular type of domains
whichis defined as follows:

Definition 6.4 A domainis said to have predictable utility if U 4(S;, t, ¢) can be determined for any future
time, ¢, and quality of results, ¢, once the current state of the domain, Sy, is known.

The notion of predictable utility is a property of domains. The same utility function can be predictable in
one domain and unpredictable in another. What makes a domain predictable is the capability to determine
the exact value of results of a particular quality at any future time. Hence, the state of the domain may
change, even in an unpredictable way, and utility may still be predictable. To explain thissituation, | define
afunction, f(S), that isolates the features of a state that determineits utility. In other words,

vSl; SZ f(sl) — f(SZ) = UA(Slata q) — UA(527t7 Q) (61)

Consider the domain of traffic on a particular road. The state of the domain is defined by the location and
velocity of each vehicleand f(.S) may be, for example, the traffic density. Using thefunction f, it iseasy to
show that a domain with predictable utility is adomain for which f(.S;) can be determined once the current
state, S, is known. In general, three typical cases of such domains can be identified:

1. A static domain is obviously predictable since S; = S, and f(S;) = f(So). For example, the game
of chess constitutesa static domain.
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2. A domain that has adeterministic model is predictable since future states can be uniquely determined
and hence f(S;) can be determined. For example, a domain that includes moving objects has a
deterministic model when the velocity of each object is constant.

3. A domain for which there is a deterministic model to compute f(.S;), once the current stateis known,
ispredictable. Notethat thisdoes not require adeterministic model of thedomainitself. Animportant
sub-classisall the domainsfor which f(S) = 0, that is, domainsin which the utility function depends
only on time.

Theinitial contract time

The first step in monitoring of contract algorithmsinvolvesthe calculation of the initial contract time. Due
to uncertainty concerning the quality of the result of the agorithm, the expected utility of the result at time
t isrepresented by:

Ua(Si,t) = Z Qa(g,t)[e:]Ua(S:,t, a:) (6.2)

The probability distribution of future output quality is provided by the performance profile of the algorithm.
Hence, aninitial contract time, ., can be determined before the system s activated by solving the following
equation:

t. =arg mtza,x{UA(St, t)} (6.3)

Passive monitoring meansthat thisinitial contract timeisused to determine, using the compiled performance
profile of the system, the ultimate allocation to each component.
In some cases, it ispossibleto separate the va ue of theresultsfrom the time used to generate them.
In such cases, one can express the comprehensive utility function, U4 (S, t, ¢) asthe difference between two
functions:
Ua(St,t,9) = Va(So, ) — Cost(So,t) (6.4)

where V4(S, ¢) isthe vaue of aresult of quality g in a particular state S (termed intrinsic utility [Russell
and Wefald, 1989b]) and Cost(S, t) isthe cost of ¢ time units provided that the current stateis S. Similar
to the expected utility, the expected intrinsic utility for any allocation of time can be calculated using the
performance profile of the algorithm:

Va($:t) =3 Qa(9: 1) &]Va(S, %) (6.5)

Finally, theinitia contract time can be determined by solving the following equation:
t. = arg mta,x{VA(So, t) — Cost(So,t)} (6.6)

Once an initial contract time is determined, several monitoring policies can be applied. The most
trivial one is the fixed-contract strategy that leads to a passive monitoring scheme. Under this strategy, the
initial contract time and the compiled performance profile of the system are used to determine the allocation
to the components. This alocation remains constant until the termination of the problem solving episode.
The fixed-contract policy is optimal under the following conditions:

Theorem 6.5 Optimality of monitoring of contract algorithms. The fixed-contract monitoring strategy is
optimal when the domain has predictable utility and the system has a fixed performance profile.
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Figure 6.2: A sequence of residual sub-systems

Proof: Thisresultisrathertrivial since, whenthedomain haspredictableutility and the system’s performance
profileisfixed, utility of resultsat any futuretime can bedetermined. Theinitial contract time, that maximizes
the comprehensive utility, remains the same during the computation and no additional scheduling decision
can improve the performance of the system. O.

Theimplication of thistheoremisthat operational rationality can beachievedin certain domainsus-
ing asimple, passive monitoring scheme. Moreinterestingly, however, isthe applicability of thismonitoring
method in situationsthat approximately meet the conditionsof the theorem. For example, the fixed-contract
approach is efficient when the performance profile of the system is not fixed but the performance variance
issmall.

The rest of this section discusses two extensions to the fixed-contract policy for cases with high
degree of uncertainty regarding the quality of the results. In such cases, the initial contract time must be
altered by an active monitoring component.

6.2.1 Re-allocatingresidual time

Thefirst type of active monitoring that | analyze involvesreallocation of residual time among the remaining
anytimea gorithms. Supposethat asystem, composed of several e ementary contract al gorithms, iscompiled
into an optimal compound contract algorithm. Since theresultsof the elementary contract algorithmsare not
available during their execution, the only point of time where active monitoring can take place is between
activations of the elementary components. Based on the structure of the system, an execution order can be
defined for the elementary components. The execution of any elementary component can be viewed as a
transformation of a node in the graph representing the program from a computational node to an external
“input” of acertain quality. Thistransformationisshownin Figure 6.2. The quality of the new inputisonly
known when the corresponding el ementary component terminates. Based on theactua quality, theremaining
time (with respect to the global contract) can be reallocated among the remaining computational components
to yield aperformance improvement with respect to all ocation that was based on the probabilistic knowledge
of quality of intermediate results.
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In order to be able to alocate time optimally to each component, the monitor needs to access
not only the performance profile of the complete system, but aso the performance profiles of the residua
sub-systems. The compilation problem has to be solved for each residual system. For example, for the
system modeled by Figure 6.2, five performance profiles must be calculated. These performance profiles
can be derived using the standard local compilationtechnique. The only differenceisthat the compiler does
not need to store the allocation to al the components but only the allocation to the next component in the
activation order. This multi-compilation and monitoring scheme will be demonstrated by an example at the
end of this section.

6.2.2 Adjusting contract time

The second type of active monitoring for contract a gorithms involves adjustmentsto the origina contract
time. Asbefore, once an elementary component terminates, the monitor can consider itsoutput asan input to
asmaller residual system composed of the remaining anytime algorithms. By solving the previous equation
that determines the contract time for the residual system, a better contract time can be determined that takes
into account the actual quality of the intermediate results generated so far.

If the elementary componentsare interruptibl e, the contract time can be adjusted while an elemen-
tary component isrunning. Given the quality of theresultsgenerated by that component and its performance
profile!, anew contract may be determined. In that case, the new contract may affect the termination time
of the currently active module in addition to affecting the run-time of future modules.

Note that in domains with predictable utility, the only factor that may affect the execution time of
amodule is the actual qualities produced by previous modules and the module itself. But, once a module
terminates, there is no need to consider reactivating it with larger time allocation. This fact simplifies the
scheduling of anytime computation in such domains.

6.2.3 A monitoring example

The following example demonstrates how the two principles of active monitoring, re-alocating residual
time and adjusting contract time, can be used in practice. Suppose that a speech recognition system is
composed of two anytime modules. The first modul e classifies the speaker and the second module uses the
classification in order to set up theinitial parameters of the recognition phase. The better the classification,
the faster the recognition system converges on the correct sequence of words. The system’stop level can be
represented by the following expression:

RecocNize(Utterance, CLASS(Utterance))

The system must operatein real-time with only asmall constant delay allowed between the utterance and its
computed word representation. Theoveral utility isdetermined by thedel ay in computing the representation
of an utterance and the probability that the representation is correct.

A standard compilation technique looks at the complete system and determines for each total
alocationtheallocation to each component that maximizesthe overall expected utility. If passivemonitoring
isused, an optimal fixed contract isdetermined by the monitor and the components are activated accordingly.
No further scheduling decisions take place.

! The performance profile may require some dynamic adjustments aswell. Such adjustments are discussed later in this chapter.
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With active monitoring, time is only allocated to the first component, the classifier. When it
terminates, the recognition step does not receive the remaining contract time. Instead, it is viewed by the
monitor as a residual sub-system whose inputs include both the utterance and the speaker’s classification.
Each input now has a particular quality that the monitor can usein order to derive anew contract time. Since
the conditiona performance profile of the recognition phase depends on the quality of its inputs, the new
information regarding the actual quality of the classification can result in either an increase or decrease in
the time allocation to that module. The actual effect is determined by cal culating the new optimal contract
timefor theresidual system.

To summarize, when the performance profile of a system has a wide range of possible qualities, a
performance improvement can be achieved by active monitoring. Two techniques of active monitoring of
contract algorithmswere introduced: re-allocating residual time and adjusting contract time. To implement
these techniques, the monitor must calculate a new contract time before activating each component. In
other words, the process that is normally performed once in the fixed-contract case must be repeated. For
this purpose, the monitor needs a set of performance profiles, one for each residual sub-system. These
performance profiles are derived by standard compilation of each residua sub-system according to a pre-
determined evaluation order.

6.3 Monitoring interruptiblealgorithms

Now | turn to the problem of monitoring interruptible anytime computation. The use of interruptible
algorithmsis necessary in domains whose utility functionis not predictable and cannot be approximated by
a predictable utility function. Such domains are characterized by non-deterministic rapid change. Medica
diagnosisin an intensive care unit, trading in the stock exchange market, and vehicle control on a highway
are examples of such domains. Many possible events can change the state of such domains and the timing
of their occurrence is essentially unpredictable. Consequently, accurate projectioninto thefar futureisvery
limited and the previous fixed-contract approach fails. Such domains require interruptible decision making.
| start this section with alook at the construction of interruptible systems.

6.3.1 Interruptibleanytime systems

The question of generating interruptible anytime systems must be addressed before | can proceed to the
monitoring part. Obviously, elementary anytimealgorithmsthat areinterruptiblecan be constructed usingthe
programming techniques described in Chapter 4. However, when non-elementary modules are considered,
one needs to apply one of the following two approaches:

1. Generate a contract algorithm first and use the construction of Theorem 4.1. The compilation of
contract algorithms, a much easier task, has been extensively analyzed in the previous chapter. By
compiling the main decision procedure as a contract algorithm and then running it with exponentially
increasing time limits (as described in the proof of Theorem 4.1), one can create an interruptible
system. This genera approach suffers from a constant slowdown because of the reduction from
contract to interruptible algorithm.

2. Use specia compilation methods that directly result in an interruptible system. Direct compilation of
interruptiblealgorithmsis only possiblewith certain types of programming constructs. In the genera
case of functional composition, or even in the case of linear composition, interruptible algorithms
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require that the elementary components be activated and interrupted many times. Thisis due to the
fact that only one module, the root of the DAG, produces the output of the system. If that moduleis
not activated early on and the systemisinterrupted, noresultisavailable. If it isactivated early onand
the system is not interrupted, then execution must return to earlier modules to produce higher quality.
When repeated activation of modulesis necessary, the contract-to-interruptible reduction seems to be
a good implementation. However, in some particular cases, better performance can be achieved by
re-using resultsgenerated by previous contracts. In such cases, direct compilation might be beneficial.

Direct compilation of interruptible algorithms

A number of programming structuresallow the use of special compilation methodsthat yield aninterruptible
algorithm directly. Hereis a brief summary of these structures.

1. Pipdining of resultsin composite expressions.

Some interruptibleanytime algorithms, such asimage processing algorithms, accept large data objects
as input. The quality of the output may correspond to the percentage of input data that has been
completely processed. When a composition of such algorithms is given, it is easy to construct an
interruptible algorithm by simply alocating time to the components in an incremental way, using
pipelinesto transfer partial output of one moduleto itsconsumers. If the original performance profiles
ae@q(t), Q2(t), ..., Qn(t), then the compiled performance profile is determined by the equation:

Q) =Qu1(t)) = Qa(tz) = ... = Qu(ta) | t=titta+ ..+t (6.7)

Matching the output qualities guarantees optimal balancing of input/output sizes. The equation can
be solved efficiently by a binary search for the value of Q(t) when the performance profiles of the
elementary components are not pathol ogical

2. Compilation of a set of interruptibleindependent jobs.

A set of interruptible independent jobs is a set of interruptible jobs for which the quality of each
job depends on time alocation only. The overal utility is the sum of the qualities of al the jobs.
An interruptible system that executes these jobs can be constructed by scheduling the components
according to thederivativesof their performance profiles. Thea gorithmwith the steepest performance
gain should be selected for execution until the derivative of its performance profile fals below the
derivative of another task. The resulting performance profile and the corresponding schedule can be
calculated by an off-line compilation process. This performance profile is optimal when 8Q;(t)0t is
amonotone non-increasing function.

3. Compilation of production systems.

Russell and Subramanian [1993] studied the compilation problem of a special case of production
systemsin which production rules are matched in a fixed sequence. Each rule has associated with it a
match time and a quality which correspondsto the utility of the rule’'s recommended action when the
match succeeds. This architecture is similar to the compilation of a one-of structure where each one
of theindividual methodsis aconditiona statement. Russell and Subramanian analyze both fixed and
stochastic deadlines. For thelatter case, they provide a dynamic programming a gorithmfor obtaining
an optimal sequence of decision rules and thus produce the best interruptible algorithm for any given
stochastic deadline distribution.
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4. Compilation of loops as interruptible algorithms.

Certain types of iterative structures, in which each iteration gradually improves the quality of the
result, offer a simple basis for the construction of interruptible algorithms. If the body of the loop
requires a constant time, then the construction of the interruptible algorithmistrivia. Otherwise, the
time allocation to each iteration hasto be determined based on its conditional performance profile and
the stochastic deadline distribution.

To summarize, in severa special cases one can construct interruptible algorithms using direct
compilation methods. In all other cases, the reduction theorem can be used to construct interruptible
algorithmsfrom contract ones. Both direct compilationtechniquesand the contract-to-interruptiblereduction
require some type of monitoring to construct the interruptible algorithm. The type of active monitoring
discussed below is applied after the basic interruptible algorithmis constructed.

6.3.2 Active monitoring using the value of computation

Consider a systemwhose main decision component isaninterruptibleanytimealgorithm, .A. Theconditional
probabilistic performance profile of the algorithm is Q 4(g, t) where g isthe input quality and ¢ isthe time
alocation. Asbefore, @ 4(g, t) isaprobability distributionand Q 4 (g, ¢)[¢:] denotesthe probability of output
quality g;.

Let S bethe current state of the domain. Let S; be the state of the domain at timet¢. And, let g,
represent the quality of theresult of theinterruptible anytime algorithmat timet. U 4(S, ¢, ¢) representsthe
utility of aresult of quality ¢ in state S at timet¢. The purpose of the monitor is to maximize the expected
utility by interrupting the main decision procedure at the “right” time. Due to the high level of uncertainty
in rapidly changing domains, the monitor must constantly assess the value of continued computation by
calculating the net expected gain from continued computation given the current best results and the current
state of the domain. Thisisdonein the following way:

Dueto the uncertainty concerning the quality of the result of the algorithm, the expected utility of
theresultin agiven future state S, at some futuretimet isrepresented by:

UA Sti ZQA q,t qz UA(St; t, QZ) (68)

The probability distribution of future output quality is provided by the performance profile of the algorithm.
Due to the uncertainty concerning the future state of the domain, the expected utility of the results at some
futuretimet isrepresented by:

Z p(S;: = S)U,(S, 1) (6.9)

The probability distribution of the future state of the domain is provided by the model of the environment.
Finally, the condition for continuing the computation at time ¢ for an additional At time unitsis
therefore VOC > 0 where:
VOC = Uy(t+ At) — Uy(t) (6.10)

Similar to monitoring of contract al gorithms, monitoring of interruptiblesystemscan be simplified
when it is possible to separate the value of the results from the time used to generate them. In such cases,
one can express the comprehensive utility function, U 4 (S, t, ¢), as the difference between two functions:

UA(St: 2 Q) = VA(Si q) - COSt([tC: t]) (611)
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where V4(S, ¢) istheintrinsic utility function, S isthe current state, ¢, isthe current time, and Cost(([t., t])
isthe cost of thetime interva [t., t]. Under this separability assumption, the intrinsic value of allocating a
certain amount of time ¢ to the interruptible system (resulting in domain state S) is:

Vi(S,t) = Qulg,)a]ValS, ) (6.12)
Hence, the intrinsic value of allocating a certain time ¢ in the current stateis:

VA(t) =D _p(S: = S)VA(S, 1) (6.13)

Andthe condition for continuing the computation at timet for an additional At timeunitsisaganVOC > 0
where:
VOC =Vj(t+ At) — V4 (t) — Cost([t,t + At]) (6.14)

Discussion

A control mechanism has been developed for interruptible agorithms that is based on the estimation of
the current value of computation. Note that the condition for termination is “temporally local” in the
sense that the value of computation might be negative for a small amount of computation time, At, and
yet larger computation time might have positive net value. In highly unpredictable domains, it might be
justified to make time allocation decisions based only on predictions of the immediate future. But in more
stable situations, the monitor should consider several values of At before terminating the computation. The
following theorem asserts the optimality of the above monitoring policy under certain assumptions about
theintrinsic value and time cost functions.

Theorem 6.6 Optimality of monitoring of interruptible algorithms. Monitoring interruptible algorithms
using the value of computation criterion is optimal when At — 0 and when the intrinsic value function
is monotonically increasing and concave down and the time cost function is monotonically increasing and
concave up.

Proof: A function ¢ is called concave up on agiven interva I if it is continuous, piecewise differentiable,
and Vz,y € I for which ¢'(z) and ¢'(y) exist, (z < y) = (¢'(z) < ¢'(y)). Itiscaled concave down
if Ve,y € I for which ¢’(z) and ¢'(y) exist, (z < y) = (¢'(z) > ¢'(y)). Note that the assumption of
monotonically increasing and concave down intrinsic value function isidentical to the assumption of Dean
and Wellman? that performance profiles have the property of diminishing returns.

Now, suppose that the current timeis ¢, and that
VOC =Vj(t: + At) — V4 (t1) — Cost([t1,t: + At]) <0 (6.15)
Sincethe intrinsic value function is concave down, it is guaranteed that for any futuretimet, > ¢;:

Vi(ta + At) — V4(t2) < V4(t + At) — V(1) (6.16)

2 See [Dean and Wellman, 1991], Chapter 8, page 364
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Since the time cost function is concave up, it is guaranteed that for any futuretimet, > ¢;:
Cost([ty, t2 + At]) > Cost([t1,t1 + At]) (6.17)
Hence, it is guaranteed that for any futuretime,:
VOC =V, (ta + At) — V4(t2) — Cost([ta, t2 + At]) <0 (6.18)

And therefore termination at the current timeis an optimal decision. O

How redlistic are the assumptionsof a concave downintrinsic value and a concave up time-cost? |
suggest that these assumptionsare validin many real domains because of the nature of anytime computation.
First, it is quite norma for a system to have more significant gains in quality in the beginning of the
computation with gradually decreasing improvement rate towards its completion time. Second, the cost
of time typically grows at a slow rate at the beginning of the computation and at a faster rate as the time
approaches the “hard deadline” of the application.

6.3.3 Dynamic adjustment of perfor mance profiles

A single performance profile has been used until now in the analysis of monitoring interruptible algorithms.
This performance profile specified for any futuretime ¢ afixed quality distribution, regardless of the history
of results aready generated by the algorithm. Obviously, the history of results generated so far may provide
strong evidence regarding future results. Therefore, a more informative characterization of the future
performance of an interruptible algorithm may be captured by the following mapping:

CPP* : Qin X Q" X T — Pr(Qout) (6.19)

where Q;,, isameasure of the input quality, Q* is a sequence of qualitiesof the results produced so far, and
T isthe remaining execution time.

Although the above mapping isamore informative representation, it isunrealistic sinceit requires
that al the past qualities be stored and taken into account. Fortunately, the dependency of future results
on the results generated so far can be captured in a far more efficient way in many domains. In others, the
problem may not be relevant at all since the actual quality of previous results cannot be measured directly.
Thefollowing list summarizes four typical situations:

1. Theactual quality of the resultsis unknown.

Inthiscase @* issimply unavailableand onemust rely on astandard performance profile. For example,
consider an interruptible randomized algorithm for primality testing, or Monte Carlo algorithmsin
general. By the nature of such algorithmsthe quality of resultsisafunction of the number of iterations
(or time) and cannot be adjusted since the answer produced by a single run of the algorithm does not
have ameasurable objective quality.

2. The actual quality of theresultsis known but has no effect on the quality of future results.

In thiscase Q* isirrelevant and a standard performance profile may be used. For example, consider
an interruptiblea gorithm whose implementation is based on activating several independent methods.
Themethodsare ordered accordingto their expected quality and timerequirements. The actual quality
of amethod, as much as it may deviate from the expected value for that method, has no influence on
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the future quality of successive methods. It should be noted that while the expected performance of
future methods remains the same, the best result generated rather than the last one can be returned by
such algorithm. Hence, the dynamic performance profile at each point is composed of the maximum
of the quality of the best result so far and the origina performance profile. Thisminor correction does
not require that Q* be saved.

3. The quality of previous results has some effect on the quality of future results, but the dependency is
on the best result only.

In thiscase, @Q* isnot needed. Instead, a single number representing the best result so far has to be
stored. Therefore, the representation of the performance profile is not radically more complicated.
For example, consider iterative approximation methods (e.g. Newton’s method). In such methods,
the quality is areflection of the error or distance from the correct result. The error reduction in each
iteration is bounded by an expression that depends on the previous error bound. This case has two
interesting sub-cases:

(& When homogeneous algorithms are used, that is, agorithms whose input and output have the
same representation, a standard conditional performance profile is sufficient to capture the
dependence on the quality of intermediate results. The correction of the performance profile
can be implemented by a horizontal shift of the performance profile each time a new result
is generated. For example, consider the traveling salesman agorithm of Chapter 4 where the
problem is a random path and a solution is an improved, shorter path represented in the same
way.

(b) When non-homogeneous algorithms are used, it is still possiblethat the dependency on the best
result so far can be captured by a simple shift of the origin of the performance profileto the point
(¢, Q(¢)) where Q(t) isthe quality of the best result so far.

4. The quality of previous results offers some evidence regarding the quality of future results. The
dependency can be summarized by a function of the slope of the actual performance profile.

Theslopeof the actual performance profile can be computed based on the sequence of qualities. It does
not require that the entire sequence be saved. For example, consider a speech recognition program
whose overal quality relates to the probability of correct representation of an utterance as a function
of computation time. Obviously, the slower the speaker, the less data the system needs to process
per time unit. Hence, performance isimproved with slow speakers. The effect of the speaker on the
performance profile is linear and can be determined based on the actua performance of the system
over previous utterances of the same speaker.

In addition to the above situations, there is a class of algorithms for which the quality of previous
resultshas some effect on the quality of future results, but the dependency can beignored since the deviation
from the expected performance is negligible. In other words, the performance of the algorithm is strongly
dependent on time allocation with small deviation. In such cases, the quality of future results is highly
predictable based on aregular performance profile and no adjustment is necessary.

6.3.4 A monitoring example

Supposethat arobot is performing automatic diagnosisand repair of machinesin afactory. Once a machine
ismalfunctioning, it isshut down automatically and reported to the robot technician. Therobot then performs
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hierarchical diagnosisto determine the defective component of the machine. The smallest components of
the machine that can be identified as defective by the robot are called the elementary components. When
an elementary component is identified as defective, the robot simply replaces that component. The robot
can aso replace larger assemblies that include defective components. The time and cost of replacing a part
are known in advance and depend on the defective part only. The machine has a hierarchical structure in
which each component has severa sub-components. The diagnosisalgorithm can be interrupted at any time
to yield the identification of the sub-system that contains the defective part. The moretimethat is available
for diagnosis, the more specific the diagnosiswill be.

Each machine has an associated function that determines the loss of production as a result of
delay in repair. The function may be non-linear since there may be complex dependencies among various
machines in the factory. In addition, the function depends on the current operational needs of the factory
which change constantly. As aresult, the robot technician operates under rapidly changing time pressurein
a domain with unpredictable utility. Therefore, interruptible algorithms must be used.

With activemonitoring, timeisallocated to the diagnosismodul e based on theval ue of computation
criterion. At each point of time, the most specific defective sub-component identified so far, S;, and its
replacement time and cost are known to the monitor. The monitor needs to determine whether to allow
continued deliberation by calculating the value of computation. The value of computation in this case is
the difference between the expected saving in repair costs due to a more specific diagnosis and the cost of
further delay in making the machine operational .

Comparison to contract algorithms

The above example could be handled also using a contract algorithm. The greater efficiency of active
monitoring of interruptible algorithms becomes significant in unpredictable situationswith great variahility
in agorithm performance and in the time cost. With respect to the above example, while the level of
specificity of adiagnosismay be arelatively stable function of time, the more relevant aspect is the actual
cost of replacing the defective part. Thiscost can vary over alarge range of values. For example, amemory
component may be much cheaper than a processing component, even if both are characterized by similar
specificity levels. In addition, this domain is characterized by great variability in time cost. Hence, by
constantly re-evaluating the value of computation based on the actual defective part and the current time
cost, the performance of the robot is better optimized.

6.4 Summary

The monitoring problem has been examined in two types of domains. One type is characterized by the
predictability of utility change over time. High predictability of utility allows an efficient use of contract
algorithmsmodified by variousstrategiesfor contract adjustment. Thesecond type of domainischaracterized
by rapid change and a high level of uncertainty. In such domains, monitoring must be based on the use of
interruptible algorithms and the value of computation criterion. But, how should one handle domains with
moderate change and some degree of predictability of future utility? The monitoring approach that is based
on contract algorithms does not generalize beyond predictable domains. Fortunately, the use of interruptible
algorithmsis general enough to cover al types of domains. The only problem with interruptible algorithms
is the performance degradation as a result of converting contract algorithms into interruptible ones. This
performance degradation can be minimized by scheduling contract algorithms on a paralel machine, even
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one with a small number of processors. Another approach isto try to integrate the two monitoring schemes
and to use prior information about the distribution of stochastic deadlinesin the particular problem domain.
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Chapter 7

Anytime Sensing and Anytime Action

I have striven not to laugh at human actions, not to weep at them, nor to hate them, but to
understand them.

Baruch Spinoza, Tractatus Politicus

In this chapter | return to the fundamental question posed in the introduction: how can an artificial agent
react to a situation after performing the right amount of thinking? In the previous chapters | developed a
formal definition of the notion of the “right amount of thinking” in terms of the value of computation. |
showed how anytime algorithms, together with an appropriate compilation and monitoring scheme, can be
used to optimize the agent’s decision procedure. However, until now the decision making component of the
agent was studied in isolation. In practice, two additional processes define the quality of the behavior of an
agent, namely sensing and action. Sensing involves gathering information about the state of the domain and
action involves applying the results of computation to the domain and changing its state in order to achieve
aset of goals. Inthischapter, | will extend the notion of gradual improvement to sensing and action and will
show how to integrate them into the model of operational rationality.

7.1 Beyond episodic problem solving

The main reason for incorporating sensing and action into the model isin order to extend its scope beyond
episodic problem solving. To achievethisgoal, the principlesof operational rationality must be extended to
larger fragments of the life time of an agent. But, as one triesto solvethe utility optimization problem over
larger segments of time, or histories, once must address additional aspects of agent construction, namely
sensing and action. To understand the effects of sensing and action on the control of deliberation, it is useful
to distinguish between purely computational agents and other, more general agents.

7.1.1 The purely computational agent

A purely computational agent is an agent that performs a certain computational service (i.e. solving a
particular problem) and whose utility function is defined directly in terms of the time-dependent quality
of that service. For example, the kernel of an operating system, a standard compiler, and a automatic
text-trandation system are al purely computational agents. A purely computational agent must present its
results by writing them on a certain output device and, in a sense, this constitutes an action rather than
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a computation. Yet, it is useful to look at these agents as purely computationa in a sense that their task
terminates when they output the results. With purely computational agents, operational rationality can be
achieved without knowing exactly how the results are used and in what ways they affect the world. The
utility function relates to the results themselves, not to the results in the context of a particular state of a
certain domain. For this kind of agents, compilation and monitoring, as they were described so far, are
sufficient even when a large time segment is considered. A purely computational agent that operates on a
sequence of independent problems can be simply monitored as a type of loop as discussed earlier.

7.1.2 Computation, perception and action

The construction of ageneral artificial agent requires amodel that extends beyond the purely computational
agent boundary. A robot that performs a certain task in a given environment, such as package delivery
in an office building, cannot be analyzed based on its planning capability or decision quality alone. The
capability of the robot to carry out its plans is as important as its planning capability. The degree of task
achievement isthe ultimate measure of performance, not the quality of “thinking” (although there may be a
strong correl ation between thetwo). Theadditional aspects of therobot’sbehavior, sensing and action, affect
its operational rationality. The rest of this chapter gradually expands the model of operational rationaity
to include certain types of sensing and action. The complete analysis of perception and action is hard and
requires the solution of several open questions. This dissertation does not include complete answers to al
the questions, but it discusses the problems and outlines some directions toward their solutions.

7.2 Anytimesensing

Sensing means that some information about the current state of the domain of operation isgathered and used
by the agent after its initial activation point. | start with the analysis of anytime sensing since it appears
to be much closer than action to anytime computation. Sensing is essential in agent construction for three
primary reasons:

1. Changein the environment that may affect the immediate goal, the time pressure and the desirability
of continued computation.

2. Uncertainty about the actual state of the environment due to past sensory measurement errors.
3. Uncertainty about the actual state of the environment due to inexact environment modeling.

Thenotion of anytime sensingisanatural extension of traditional sensing. Thequality of a sensing procedure
can be measured in a similar way to the quality of computation: in terms of certainty regarding the domain
descriptionthat it produces, in terms of accuracy of the domain description, or interms of level of specificity.
Gradua improvement in sensing quality can be achieved by varying the amount of data collected about the
domain or by using anytime agorithms to extract the domain description from the raw data. The amount
of sampled data can be controlled by varying the sampling resolution or by varying the number of sampled
features. For example, a vision module can produce a varying quality description of a scene by changing
the resolution of the gray level samples, by selecting a certain set of features to construct the intrinsicimage
(i.e. illumination and depth but not reflection or orientation), or by applying a certain set of analysismethods
(i.e. visua line analysis and texture analysis but not motion analysis or stereo disparity analysis). Hence, it
seems that elementary anytime sensing algorithms can be constructed in a similar way to the construction
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of elementary anytime algorithms. In this section | will examine the effect of integrating anytime sensing
into the model of operational rationality and will show several methods of controlling the tradeoff offered
by anytime sensing.

7.2.1 Sensing versus computation

To some extent, sensing is similar to computation and can be similarly compiled and controlled. Both
computation and sensing can beviewed asinformation gathering activities. Theformer providesinformation
based on manipulating knowledge already avail ableto the agent, whilethelatter providesinformation based
on activation of sensory devices. The performance profiles of both activitiesare similar innature. They both
describe the probability distribution of quality of the results as afunction of time— computation time in the
first and sensingtimein the second. Sensingtimeisthetotal amount of time consumed by the sensing device
including the computation time needed to trand ate the raw data into a more meaningful representation of
the state of the domain.

Despite thisfundamental similarity, there are several significant differences between computation
and sensing. First, the results of a computation have a fixed objective quality which is a measure of the
distance between the approximate result and the exact result. Thisquality remains the same as time passes.
The question of whether the results of a computation are used immediately or not does not affect their
objective quality since it is defined with respect to a static problem description. In that respect sensing
quality is different since it is defined with respect to a potentially dynamic environment that it describes.
Sensing provides information whose accuracy in describing the current state of the domain depends on
sensing time as well as the time the results are used. Since the state of the domain may change, the vaidity
and quality of sensory information deteriorates over time. For example, a map of objects in front of a
moving car becomesirrelevant afew seconds later as the car passes these objects or hitsthem. It istrue that
computation may suffer as well from a similar problem. The quality of a plan for achieving a certain goal
may deteriorate as computation time increases, since the facts on which the planning process is based may
become invalid. But the quality of planning can be measured with respect to a given domain description
and the deterioration of its utility can be described by a different component of the model. This separation
cannot be applied to sensing since sensing quality is always with respect to the current state of the domain.

Another important difference between sensing and computation is the fact that computations do
not changetheenvironment. Sensing sometimesdoes. Ideally, sensing devices could be used for information
gathering only. However, some types of sensorsinteract with the environment and change the environment,
possibly in an undesirable way. For example, in medical diagnosis, some tests may affect the condition of
the patient or even endanger the patient’slife.

To summarize, while sensing may seem very similar to computation, itsinherent quality deterio-
ration and its possible effect on the state of the domain make it harder to analyze and control. The rest of
this section describes several approaches to sensing and their monitoring schemes.

7.2.2 Passive sensing in semi-static environments

The analysis and control of anytime sensing can be simplified by making two assumptions that eliminate
the differences between sensing and computation. The first assumption is that sensing is passive, that is,
sensing has no effect on the state of the domain. For example, visua sensors, such as sonars, have no
significant effect on the state of the domain. The second assumptionis that the environment is semi-static,
that is, during a single problem solving episode the state of the environment can be considered static. Under
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these two assumptions sensing can be treated as computation and incorporated into the model of operational
rationality. The compilation and monitoring techniques that were introduced in the previous chapters can
handle thistype of anytime sensing.

In Chapter 8, | will describe an application of the model inwhich an anytimevision moduleisused
as part of a mobile robot navigation system. Since the vision module and the environment satisfy the two
assumptions above, standard compilation is applied in order to combine the vision module with an anytime
abstract planning module.

7.2.3 Sensing as an independent process

Another approach to sensing is to isolate the process and to assume that it is performed independently and
in paralel to the computational decision component. This approach is justified by the fact that sensing
normally uses a specialized type of hardware, such as a camera, and a specidized type of computation
elements, such as signal processors or neural networks. Asaresult, it may not be realistic to expect any kind
of resource sharing between sensing and computation. Once such resource sharing is excluded, operational
rationality can be achieved assuming an independent sensing processwhaose only goal isto maintain acurrent
description of the state of the environment. Thisisin fact the assumption used in the analysis of monitoring
in the previous chapter, where time is allocated only to computation. To control the computational task, the
monitor may use the description of the current state of the domain.

Suppose that the state of the environment is used whenever the main decision procedure is
activated with a certain contract time. The conditional performance profile of the main decision procedure
is represented bY Qout(gsensing: t) WHEre gyensing iS the quality of the sensing process and ¢ is the time
alocation. Suppose aso that the performance profile of the sensing processiis represented by Q sensing(t)-
Then, when sensingisperformed in parallel, the unconditional performance profile of the decision procedure
issimply:

Q:mt(t) = Qout(Qsensing(t); t) (71)

The control of the anytime sensing processis rather simple. Based on the desired contract time for the next
cycle of the decision procedure, the sensing monitor has to alocate time to the sensing module.

The assumption of an independent sensing process is useful as long as the sensing component
does not require any guidance, for example, when the sensor consists of a camera that overlooks the entire
domain from above and produces acomplete domain descriptionin each cycle. However, if asensor consists
of a camera mounted on a mobile robot with alimited field of view, sensing cannot remain an independent
process sincethe camera needsto be aimed at aparticular direction based on theimmediate plan of the robot.
Since the information gathered by such sensorsis limited to a certain section of the domain, they must be
coordinated so that the sensory input covers the most relevant section of the domain. Such sensing activity
is discussed in the following section.

7.2.4 Sensing as an information gathering action

Themost general view of sensingisasatypeof actionwhoseprimary goal isinformati on gathering but whose
potential effect on the domain must be analyzed in a similar way to the analysis of actions. Optimization of
the agent’sbehavior requiresintelligent use of the sensing devices so that theinformation gathered has higher
value and relevance to the situation. For example, a mobile robot operating in an office environment may
need to move some boxesjust in order to determine whether a certain packageislocated behind these boxes.
Asaresult, there may be a complex relationship, and sometimesinterference, between standard actions and
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sensing actions. So, rather than being an independent component, general sensing must be analyzed as an
integral part of the planning problem. Thistype of sensing is much closer to action and will thusbe analyzed
in the foll owing section.

To summarize, the fundamental goal of sensing processesis to gather information, much likein
the case of computational processes. In fact, in some situations anytime sensing modul es can be controlled
just as any computational modules. However, more general sensing must be viewed as a type of action
whose control is more complicated.

7.3 Anytime action

Action is much more difficult than computation or perception when analyzed as an anytime process. While
computation and perception has no intentional effect on the state of the domain, actions are designed to
transform the state of the domain. While useless computation paths may be simply abandoned, useless
actions may be destructive and sometimes irreversible. As a result, some anytime programming methods
and monitoring techni ques cannot apply directly to anytimeaction. The contract-to-interruptibleconversion,
for example, cannot apply to actions since re-initiating an action may result in different effects because of
the changed initial state. As an example of this difficulty, consider gem polishing with increasingly fine
abrasives. Once afine abrasive is used, it is normally undesired to return to a coarse abrasive even if more
timeisavailablefor the action. Asaresult, the extension of the principle of operational rationality to action
requires significant modification of the model. The purpose of this section is to introduce the notion of
anytime action and show how it could be integrated into the model of operational rationality.

7.3.1 Elementary anytime actions

The quality of an action istypically defined by the expected degree of goa achievement. The degree of goal
achievement can be measured, just as in the case of anytime computation, in terms of certainty, accuracy or
specificity. Elementary anytime actions can be constructed using several standard paradigms:

1. Aloop of corrective actions

Many types of actions can be implemented as a sequence of corrective actions that are designed to
achieveacertain goal. Consider the class of actionsin which the accuracy of goa achievement relates
to the accuracy of positioning a certain physical object. Typically, theerror inthe positionis (bounded
by) a function of the movement size and speed. For example, the angular error in a camera rotation
may depend on the angle of rotation and on the speed of rotation. In such cases, it is common to
reduce error by a series of corrective actions, each composed of a smaller movement size at a slower
speed. As aresult, the position error is constantly reduced. This process is repeated until a certain
minimal error is reached or until the processis interrupted.

2. Aloop of refinement actions

Similar to the previous case, gradually improving quality can be achieved in actions by repeatedly
applying the same action with more refined setup to increase the accuracy of the outcome. The gem
polishing example of the previous sectionisagood example. In gem polishing, it iscommon to repeat
the polishing procedure with increasingly fine abrasives. In such cases, the quality of the action is
adirect function of the refinement level. By limiting each phase to a fixed amount of time, a fixed
performance profile can be easily derived.
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3. A sequence of low-level actions

Actions are sometimes implemented by a sequence of low-level steps or motor movements, and
the degree of goal achievement depends on the completion of all the necessary phases. Gradual
improvement over time can be achieved by performing a subset of the low-level steps. For example,
when a robot needs to get closer to an object in order to better identify it, the motion toward the
object can be interrupted at any time and the remaining distance can be used to calculate the quality
of the action. Another example is theinitiaization process of an autonomousvehicle. Certain steps,
such as self-testing and instrument calibration, may be omitted under time preassure, alowing the
construction of an anytime action.

4. Multiple methods

Asinthe case of computation, anytime actionscan be sometimesimplemented using aset of alternative
methodsthat offer adifferent executiontime and performance constraints. For example, inanintensive
care unit, several different methods can be normally used to stablize the condition of the patient. A
life endangering, but fast procedure may be preferred under extreme time presure. An important
difference between action and computation is that in the case of action, once a particular method is
applied, it may restrict the future application of alternative methods. For example, the prescription
of acertain drug to a patient normally restricts the application other possible treatments, because the
combination of the associated drugs may have a dangerous effect.

To summarize, four genera methods to construct anytime actions were described. Elementary
anytime actions tend to be interruptible. A loop of corrective actions and a loop of refinement actions
are always interruptible, but a sequence of low-level actions or a set of aternative methods may not be
interruptible. For example, if gradual improvement is achieved by skipping non-critical low-level actions
without being able to return to steps that were omitted, then the outcome may be a contract algorithm that
cannot be converted to an interruptible one.

7.3.2 Performance profilesof actions

Performance profiles of elementary anytime actions describe the probability distribution of quality as a
function of time. The notion of conditional performance profile is as useful as with anytime computation
and is defined in the same way. The construction of performance profiles for anytime actions, however,
appears to be more complicated for several reasons:

1. Gathering statistics, when necessary, ismore difficult. While the performance of an algorithm can be
observed by activating it with many input instances, actions need to be performed in a certain domain.
To learn the performance profile of an action, it must be performed many timesin areal or simulated
domain. Asit seems unlikely that the real domain would be used for this purpose, the construction
of the performance profile requires the development of a simulated environment in addition to the
implementation of the procedure that performs the action itself.

2. Objective quality measures are hard to identify. While accuracy in computation is directly related to
deviation from the correct answer, it is harder to measure the accuracy of action. The main reason
is the fact that the quality of an action is related to the degree of goal achievement and hence the
same action can have different qualitieswith respect to different goals. While this problem may arise
in computation as well, it is not as common since a computation has a well defined goal (of solving
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particular problem). But a small set of actions is normaly used in order to achieve a large set of
possible goals. For example, when an agent moves toward a target, its goal may be to get a better
view of the target or to grasp the target. The quality of the action is different depending on the actual
goa. Oneway to deal with thisdifficulty isto use adifferent quality measures for different goals.

3. Actionsin many cases can be performed at a variable speed, where higher speed may reduce thetime
segment of the action but it may also increase the energy consumption®. For example, when moving
toward a target position, a mobile robot has to accelerate, move at a certain speed, and slow down.
The acceleration rate and speed of movement at any point can be controlled to vary the timing and
quality of goal achievement. In many cases the speed of execution and its effect on the performance
profile are important and must be determined by the meta-level control. Therefore, a performance
profile that is conditioned on the speed of execution must be used.

Standard conditional performance profiles can be used to characterize the behavior of anytime
actions. But several unique aspects of actions make it more difficult to construct their performance profiles.

7.3.3 Buyingtimein real-time domains

An interesting aspect of action, that has no parallel in computation, is the capability to change the degree
of time pressure or to “buy time.” In many domainsit is possible to perform a certain action whose main
or only vaue is to buy time for further planning. For example, in dialogues, any action which keeps the
other agents from speaking will give the agent more planning time. In an intensive care unit, temporary
treatment that is intended to stabilize the condition of the patient is common prior to complete diagnosis.
Similarly, inan air traffic control situation, placing some aircraft in a holding pattern to allow more time for
safe scheduling iscommonly used. So, in addition to globa goal achievement, action can be used to modify
the domain so as to reduce time pressure. The question is, how do this and other special aspects of action
affect its monitoring? This question is addressed in the following section.

7.3.4 Controlling anytime action

Operational rationality deliberately reduces the meta-level control of an agent to a resource alocation
problem. This goa is maintained as the framework is expanded to include sensing and action. In other
words, the problem of action selection is considered a planning problem, not subject to the optimization
process performed by the model of operational rationality. This optimization problem is only responsible
to determine the amount of time that should be allocated to elementary anytime modules based on their
performance profiles. So, when the possibility of using an action to buy time is considered, the purpose of
the meta-level control is limited to allocating the optimal amount of time to this action but not to selecting
the action over other possible actions. The meta-level control does not solve the planning problem of the
agent.

How does the agent select actions? The most natural way to extend the model is by performing
action selection in an analogousway to computation selection. That is, by explicit programming. According
to this approach, each anytime action is actually implemented as a procedure embedded in the complete

!vVariable action speed is somewhat analogousto variable computation speed achieved by varying the computational resources
used (e.g. the number of processors). However, parallelizing anytime algorithms is a non-trivial issue that has not beenincluded in
the model.
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program that generates the agent’s behavior. For example, consider the following high level program to
control arobot that collects empty cans:

X ¢~ LocATE-OBJECT(Can)
if REACHABLE-OBJECT(X) then
while not GRASPABLE-OBJECT(X) do
MoOVE-TOWARD-OBJECT(X)
GRASP-OBJECT(X)

Under this approach, compilation is used separately on homogeneous program fragments, that is,
on computation, on sensing, and on action. Each one of them is considered an instance of a generalized
action and a candidate module for execution. Such generalized action may be an internal action in the
form of a computation, an information gathering sensing action, or an external action. Each generalized
actions may be an anytime module whose (possibly compiled) conditional performance profileis known to
the monitor. A relatively simple monitoring scheme can be implemented by scheduling the execution of a
single selected action at atime. For this purpose, the monitor needs to determine the context of execution,
which isaset of aspects of the current state of the domain that affect the resource allocation to the selected
generalized action. Then, execution is monitored foll owing the episodic problem solving approach.

An extension of this monitoring strategy allows the generalized action to be selected by a meta-
level planning component rather than being a component of a fixed program. The planner itself may be
an anytime algorithm in which case a multi-level monitoring scheme may be required: one for allocating
time to the planner based on its performance profile and the state of the domain and another for allocating
time to the selected generalized action. These monitoring technigques optimize the allocation of time to a
singlegeneralized action at atime. The question of how to optimize the agent’s behavior over alonger time
segment remains open.

7.4 Operational rationality over history

The notion of bounded optimality or operationa rationality over along time segment, or history, is yet to
be defined and solved. The ultimate goal isto extend the theoretical framework of operational rationality to
allow building agents whose decisions are made using anytime computation, whose perception is based on
anytime sensing, and whose interaction with the environment is implemented as anytime actions. Thislong
term goal presents a number of difficulties. One difficulty with implementing operational rationality over
histories is the estimation of the utility of learning and domain exploration. Learning may have negative
effect on performance in the short run but, it has very high utility in the long run. Estimating the utility of
learning is much harder than estimating the quality of results of a given algorithm. By their nature, learning
and explorationlead tofailuresand fal se generaizations. Itishard to select performance metricsfor learning
activities, let alone characterize them quantitatively.

Another difficulty is due to the need to make predictions regarding the state of the domain far into
the future. In the face of uncertainty regarding the current state of the domain and the performance of the
system, it ishard to make such predictions. The exponential growth of the number of possible states makes
such prediction even harder. Abstraction seemsto be a possible mechanism to handlethisdifficulty. Thatis,
by making predictionsthat correspondto alarge set of possible states, rather than reasoning about individual
states, one can reduce the complexity of the problem. | will return to these problems in the concluding
chapter.
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Chapter 8

Application and Evaluation

Rationalism isan adventurein the clarification of thought.
Alfred North Whitehead, Process and Reality

This chapter describes several applications of the model of anytime computation. In each application, the
implementation of the key processes, compilation and monitoring, will be examined. Of specia interest
is the representation and learning of performance profiles and the use of conditional performance profiles.
Section 8.1 describes my own experience in using the model to implement a navigation system for amobile
robot. In Section 8.2, | describe two additional applicationsthat were developed by Anita Pos[1992, 1993]
and by Coulon et al. [1992]. Finaly, in Section 8.3, | evaluate the model based on the results of these
experiments. The purpose of this evaluation is to examine the basic assumptions of the model and its

applicability.

8.1 Path planning and navigation in robotic systems

In order to demonstrate the model of anytime computation, | have selected one of the fundamental problems
facing any autonomous mobile robot: the capability to plan its own motion with noisy sensors. For this
purpose, | have implemented a simulated environment and a system composed of anytime sensing and
planning modules. Figure 8.1 shows the data flow between the main components of the navigation system.
Sensory input is used to update the description of the environment. This description is used both asinput to
the anytime planner and as one of the factors that determine the all ocation of time by the monitor. The other
factors are the compiled performance profiles of sensing and planning, the model of the environment, and
the quality of the current best plan.

| start with adescription of the environment and the anytime sensing and planning modules. Then,
| explain how the compilation process was used to optimally integrate the components of the navigation
system. Finaly, | describe the run-time monitor and experimental results.

8.1.1 Theenvironment

A robot is situated in a simulated, two dimensiona environment with random rectangular obstacles. The
robot does not have an exact map of the environment, but it has a vision capability that allowsit to create an
approximate map. The accuracy of the domain description, produced by the vision mechanism, depends on



CHAPTER 8. APPLICATION AND EVALUATION 122

PHYSICAL
ENVIRONMENT

ANYTIME LIBRARY ANYTIME SENSING

DESCRIPTION OF
ENVIRONMENT

MODEL OF
ENVIRONMENT ANYTIME PLANNING

CURRENT BEST PLAN

PLAN EXECUTION S \‘

Figure 8.1: Dataflow diagram
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Figure 8.2: The performance profile of the vision module

thetime allocated to the vision module. The environment isrepresented by a matrix of el ementary positions.
The robot can move between adjacent cells of the matrix at varying speeds which affect the execution time
of the plan as well as the energy consumption. Since both sensing and planning are imprecise, it is possible
that a plan would lead the robot through a position that is actually blocked by an obstacle. | assume that
the rabot has a capability to detect this situation using an alternative sensing capability (i.e. sonar) when it
is close to the blocked position. In that case, the robot has to modify the plan at run-timein order to avoid
hitting the obstacle.

When the simulation starts, the robot is presented with a certain task that requiresit to moveto a
particular positionand perform aspecific job. Associated with each task isareward function that determines
the value of the task as a function of completion time. The system is designed to control the movement of
the robot, that is, to determine its direction and speed at each point of time while maximizing the overall
utility. The overall utility depends on the value of the task (a time dependent function) and on the amount
of energy consumed in order to complete it.

To simplify the discussion, | assume first that the description of the environment is produced by
a global sensing module, that is, the vision module has access to the complete environment (i.e. using a
camera that is watching the domain from above). However, in a more redistic situation, sensingis limited
to a small, local segment of the complete environment. That situation will be examined later, when the
run-time system is described. At that point, the sensing and planning modules will be applied repeatedly
to segments of a larger domain. The monitor has to determine at each point how much time to allocate to
vision and path-planning based on factors such as the current location of the robot, the estimated distanceto
the goa position, the urgency of the task, and the quality of the plan produced so far.

8.1.2 Anytimesensing

A primary goal of thisapplication hasbeen to extend the notion of gradual improvement of quality to sensing.
The supposition that sensors produce a perfect domain description, as much as the assumption of perfect
planning and plan execution, constitutes a major disadvantage in any model for real-world robot control.
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In my model, the presence of sensory errors is not only acceptable, but is considered the normal situation.
Moreover, in order to optimally control the quality of sensing, the model includes a quantitative evaluation
of its effect on the quality and performance of the other components of the system.

This section describes the module of anytime sensing that | implemented. It produces a domain
description whose quality expresses the probability that an elementary (base level) position is wrongly
identified, that is, identified as free space while actually blocked by an obstacle or vice versa. It isassumed
that within the area in which the sensors are effective, the quality of sensingis not affected by the robot’s
position. The general model, however, does not require this assumption.

Figure 8.2 shows the performance profile of the vision module. It is characterized by several
parameters. Ty, Ty, Qa, Q- T, isthe minimal amount of time needed for the sensor to produce an initial
domain description with quality Q,. Given a shorter run-time, the sensor does not produce any description
of thedomain. For arun-timet, T, < t < T}, thequality of visionimprovesfrom @, to themaximal quality
Q4. which is1.00 in thisexample.

Notice that when a sensor is interrupted at any time shorter than T, it is still possible for the
system to operate using prior knowledge. For example, it may assume that every positionisfreein aregion
with scarce obstacles.

8.1.3 Anytime abstract planning

Path planning is performed using avariant of the coarse-to-fine search al gorithm [L ozano-Pérez and Brooks,
1984] that allows for unresolved path segments. In order to make thisa gorithminterruptible, ahierarchy of
abstraction levels of the domain descriptionisused. Thisallowsthe algorithmto find quickly alow quality
plan and then repeatedly refine it by replanning a segment of the plan in more detail. Therest of thissection
describesthe algorithm and its performance profile.

Abstract description of the domain

In ahierarchical (quad-trees) representation, the nt* level of abstraction correspondsto a certain coarse grid
inwhich every position, (z, j), isan abstraction of a2™ x 2™ matrix of base-level positions. Each high level
position hasa certain degree of “ obstacleness” associated with it which issimply the proportion of the matrix
that is covered by obstacles.

A genera position in this two dimensional domain has therefore three components. (z y ):
where z and y are the coordinates and  is the level of abstraction. The position (3 3 1), for example,
correspondsto the following set of base level positions: (6 6 0) (6 7 0) (7 6 0) (7 7 0). If oneof these
positionsis blocked by an obstacle and the rest are free, then the “obstacleness’ of (3 3 1) is0.25.

The anytime planning algorithm

The interruptible anytime planner (ATP) constructs a series of plans whose quality improves over time. It
starts with a plan generated by performing best-first search at the highest level of abstraction. Then, it
repeatedly refines the plan created so far by selecting the worst segment of the plan, dividing it into two
segments (of identical length), and replacing each one of those segments by more detailed plans at a lower
abstraction level. The worst segment of the plan is selected according to the degree to which the segment
is blocked by obstacles and according to its abstraction level. A special data structure, called a multi-path,
isused in order to keep intermediate results. It isalist of successive path segments of arbitrary abstraction
level. The agorithmis shownin Figure 8.3.



CHAPTER 8. APPLICATION AND EVALUATION 125

ATP(start, goal, domain-description)

1 multi-path <— [SEGMENTIZE(Start),
PATH-FINDER(PROJECT(Start, Lynaz), PROJECT(goal, L,z ), domain-description),
SEGMENTIZE(goal)]

REGISTER-RESULT(multi-path)

while REFINABLE(muIti-path) do
REFINE(WORST-SEGMENT(multi-path), domain-description)
REGISTER-RESULT(multi-path)

SIGNAL(TERMINATION)

HALT

No oh~hwN

Figure 8.3: The anytime planning algorithm

PaTH-FINDER(start, goal, domain-description)

level «— LEVEL-OF(start)

size < ACTUAL-DOMAIN-SIZE/2te et

domain <— NTH-ABSTRACTION-LEVEL (level, domain-description)
close +— UNVISITED(domain)

open < [MAKE-STATE(start)]

best-path +— best-fir st-sear ch(domain, open, close, goal)

return [start | best-path]

No o~ owWDN PR

Figure 8.4: The path finder

Notethat start and goal are the start and goal positions, and L., isthe maximal abstractionlevel.
The length of each segment of an intermediate planisinvariant. It depends only on the length of the initial
path at the highest level of abstraction. Asaresult, the run-time of the refinement step is approximately the
same for any segment of the plan regardless of itslevel of abstraction.

The PATH-FINDER is asearch procedure that returnsthe best path between any two positionsin the
same abstraction level. The path isrepresented asa list of positionsat the same abstraction level asthe start
and goal positions. A base-level path must be obstacle-free and hence, it isaroute that the robot can follow.
A path a ahigher level of abstraction, on the other hand, is the result of a best-first search that minimizes
the length as well as the obstacleness of the result. It does not correspond to a particular list of base-level
positionsthat the robot can follow. The particular positionsare determined at execution time. The algorithm
isshownin Figure 8.4.

Plan execution

In order to follow an abstract path, the robot must use an obstacle avoidance procedure that controls its
movement whenever the planned routeisblocked. The robot can sensethat the planned routeis blocked as it
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Length of shortest path is: 133

Figure 8.5: Optimal path

reaches an obstacle (using adifferent kind of sensing method). Navigation using obstacle avoidanceaoneis
not efficient and may lengthen the route. In thisimplementation, aslong as there exists a path that connects
the start and goal positions, the obstacle avoidance procedure alone can bring the robot to its destination.
Therefore, any abstract plan is executable. Obstacle avoidanceis clearly not a smart navigation method, but
it can aways substitute for missing details in an abstract plan. The quality of an abstract plan P is defined

asfollows:
_route-length(Pog:)

Quallty(P) - I’OUte'Iength(P)

whereroute-length(P) isthelength of the route generated when the robot is guided by the plan P, and P,
isthe optimal plan. Note that the higher the level of abstraction, the lower the quality of the plan. At the
same time, high-level abstract planning reduces the search space and hence it is performed much faster.

The notion of executable abstract plans — regardless of their level of detail — is made possible
by using plans as suggestionsthat direct the base level execution mechanism but do not impel a particular
behavior. Thisideawas promoted by Agre and Chapman [1990] and was experimentally supported by Gat
[1992]. Uncertainty alone makes it impossibleto use plans except as a guidance mechanism.

Performance with perfect vision

What isthe performance of the abstract planner? First, | will examine the performance under the assumption
of perfect domain description. Then, | will examine the effect of degradation in vision on the quality of
planning.

Figure 8.5 shows the path found by the path finder when activated with start and goal positions
being the lower left and upper right positions respectively. The search level is zero (base level) hence the
path shownisoptimal (i.e. it isashortest path).
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Path Guality = 0.826 Path Guality = 0.847

(@) Leve 3 plan (b) Level 2 plan

Path Guality = 0.905 Path Guality = 0.985

(c) Leved 2/1 plan (d) Leved 1/0plan

Figure 8.6: Abstract planswith perfect vision
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Figure 8.7: The performance profile of the anytime planner

Figure 8.6 shows the paths generated by the path finder when activated with the same start and
goa positions but starting at the highest abstraction level. The upper-left frame (a) shows (by the large
squares drawn in broken ling) an abstract plan at level 3. The quality of the plan, 0.826, is determined by
the length of the route the robot would have followed if guided by this plan (shown in the figure by a heavy
broken line) compared to the length of the shortest route. The upper-right frame (b) shows a more precise
abstract plan with segments at level 2. Itsquality is 0.847. The lower-left frame (c) shows an abstract plan
with segments at levels 2 and 1. Quality reaches 0.905. Finally, the lower-right frame (d) shows a detailed
plan with segments at levels 1 and 0. Although further refinement is possible, it has no effect on the quality
of the plan in this particular example. Notice that the quality of the plan reached 0.985 — almost as good as
the quality of the shortest path.

Thetypical performance of the planner issummarized by itsperformance profilein Figure8.7. The
graph showsthe expected quality of the plan asafunction of run-time. When run to completion, the expected
quality of the plan produced by the abstract planner is 0.93. At the same time, its expected run-timeis only
27% of the the expected run-time needed to compute the optimal path using the standard .A* agorithm.
These figures show that anytime algorithms offer both more flexibility and a better cost/performance ratio.

Performance with imperfect vision

I now examine the effect of vision errors on the quality of planning. Suppose, for example, that the quality
of the domain description is 0.96. This figure is a measure of the sensor’s noise level as described in the
previous section. The physical domain isidentical to the one used in the previous example. However, the
map constructed by the vision moduleis erroneous.

Figure 8.8 shows snapshots of the plans generated by the algorithm and their qualities. Notice
that as a result of lower quality of sensing, the quality of the initial plan is only 0.760 compared to 0.826
with perfect vision. In this particular example, the planner completed its execution with a plan of the same
quality asin the perfect vision case, but it took more time. The lower-right frame (d) shows a plan of the
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Path Quality = 0,760 Path Quality = 0,836

(@) Leve 3 plan (b) Level 2 plan

Path Quality = 0,893 Path Quality = 0,985

(c) Leved 2/1 plan (d) Leved 1/0plan

Figure 8.8: Abstract planswith imperfect vision
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Figure 8.9: The conditional performance profile of the anytime planner

same quality (0.985) as in the perfect vision case, but one can see that in order to reach this quality, the
abstract planner had to refine the plan until it was almost entirely inlevel 0. To summarize, asaresult of the
error in the domain description, the planner terminates, on average, with a plan of lower quality.

Based on statisticsgathered by running the planning al gorithm many times on randomly generated
domains, its conditional performance profile can be derived. The conditiona performance profile describes
the expected quality of aplan based on the quality of the domain description and run-time. Figure 8.9 shows
the conditional performance profile of the abstract planner. Each curve correspondsto a particular quality of
visionand showsthe expected plan quality asafunction of run-time. The use of the conditional performance
profilein order to determine optimal time allocation is further discussed below.

8.1.4 Compilation of sensing and planning

The composition of planning and sensing is a simple example of a compilation of a straight line program as
discussed in Section 5.5:

ATP(start, goal, DOMAIN-DESCRIPTION(Sensor))

For optimizing time allocation, | implemented the hill-climbing algorithm described in Section 5.5.

Figure 8.10 shows the performance profile that was produced by compiling the sensing and
planning modules. Also shown in that figure (for comparison) are the performance profiles of two other
modules: MIN, that alocates to vision aminima amount of time, T',, and MAX, that alocates to vision a
maximal amount of time, T3. The compiled performance profileis superior to both. It iscloser to MIN with
small alocationsof time and iscloser to MAX in the limit.
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Figure 8.10: Compilation of vision and planning

8.1.5 Therun-timesystem

Systems composed of anytime a gorithms require constant monitoring. The compilation process provides
the necessary meta-level information to make the run-time monitoring more efficient, but it isnot asubstitute
for monitoring. In thissection | explain how the run-time system control sthe time all ocation to the anytime
modules.

The optimization of the long-term behavior of the robot is performed by dividing a complex task
into a series of small sensing, planning and plan execution episodes called frames. For each episode, the
anytime sensing and planning modules that were described earlier are used. Since, in many cases, sensing
capability islimited to asmall, local segment of the environment, it is only natural to break the navigation
problem into small episodes. Each episode is monitored using dynamic readjustment of contract time as
described in Chapter 6.

Thetask of the meta-level control isto determine the optimal initial contract time for each frame.
This decision — inter-frame optimization— is made in the following way: let ¢ be the current time (real-time
since the beginning of the execution of the task), let f, be the (estimated) number of frames left at time¢ for
planning and execution, let ¢, be the contract time for the next cycle of planning and execution, and let e, be
the energy used so far for plan execution. Then:

t. = argmaz, {VOT(t, fi,t;) — COE(ey, fi,t:)}

where VOT isthe expected value of the task and COE is the expected cost of energy. Note that both the
performance profile of the system and a model of the environment are necessary in order to compute these
functions.

Once an initia contract time is determined, the system starts allocating resources to sensing,
planning and plan execution. At the same time, it continues to monitor the performance of the anytime
modules. This constant monitoring is necessary because of the uncertainty concerning the actual quality of
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Figure 8.11: Intra-frame optimization

plans and the actual time necessary to execute them. The purpose of the meta-level control in this phase
isto reach an optimal plan quality for the next frame while executing a previously derived plan. For this
purpose, it can modify the initial contract time. This decision — intra-frame optimization — is made in the
following way:

The monitor determines at each point whether planning is ahead of or behind expectations by
comparing the (estimated) plan quality to thequality advertised by the performanceprofile. 1t also determines
whether plan execution is ahead of or behind expectations by comparing the (estimated) execution time
to the frame contract time. Figure 8.11 shows how the resource allocation decision is made. In this
figure, + represents a process that advanced faster than initially expected and — represents a process
whose performance is below expectations. If planning is ahead of expectations and plan execution is
behind, the monitor accel erates plan execution by allocating more resources (energy) to plan execution. |If
planningisahead and plan execution isbehind, the monitor slowsdown plan execution by reducing resource
consumption.

Thismonitoring strategy can be modified in variousways. For example, one can consider planning
more than one frame ahead when plan execution is slow. Another possibility in this case isto replan part of
the plan to accel erate its execution. However, experiments with the above domain show that the monitoring
strategy that was implemented is sufficient in order to achieve (within 4% error) the optimal task value that
the system computes when presented with the task.

Figure 8.12 showsthe display of the run-time system. The left frame shows an intermediate state
of sensing and planning and includesthe best plan so far, its expected quality, the contract time, frame time,
sensing time and its quality. The right frame shows the plan execution (at the same time) and includes the
path followed by the robot, the current time and the energy consumed so far. It also showsthe expected task
completion time and value.

8.2 Other applications

Inthissection | describetwo additional applicationsof themodel of anytime computation. Both applications
wereinfluenced by Russell and Zilberstein’s[1991] paper on the composition of real-time systems. Thefirst
project involvesthe construction of adiagnostic system by AnitaPosand René Bakker from the University of
Twente, The Netherlands. The second project involvesthe analysis of anytime generate-and-test algorithms
by aresearch group at the German National Research Institute for Computer Science (GMD).
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Figure 8.12: The run-time display

8.2.1 Anytime pragmatic diagnostic engine

Mode! -based diagnostic methods [Davis and Hamscher, 1988] identify defective componentsin atechnical
system by a guided series of tests and probes. Advice on informative probes and tests is given using
diagnostic hypotheses that are based on observations and a model of the system. The goal of model-based
diagnosisisto locate the defective components using a small number of probes and tests.

The General Diagnostic Engine [de Kleer and Williams, 1987] (GDE) is a basic method for
model -based diagnosticreasoning. In GDE, observationsand amodel of asystem are usedin order to derive
conflicts!. These conflicts are transformed to diagnoses®. The process of observing, conflict generation,
transformation to diagnoses, and probe adviceis repeated until the defective componentsare identified. This
processis shown in Figure 8.13(a).

GDE has a high computational complexity — O(2™), where n is the number of components. Asa
result, its applicability is limited to small-scale applications [de Kleer, 1991]. To overcome this difficulty,
Bakker and Bourseau [1992] have devel oped amodel -based diagnostic method, called Pragmatic Diagnostic
Engine (PDE), whose computationa complexity is O(r?). PDE is similar to GDE, except for omitting the
stage of generating all diagnoses before determining the best measurement-point. Probe adviceis given on
the basis of the most relevant conflicts, called obvious and semi-obvious conflicts®. This processis shown
in Figure 8.13(b).

In order to construct areal-time diagnostic system, AnitaPos [Pos, 1992] has applied the model of
compilation of anytime algorithms to the PDE architecture. PDE can be analyzed as a composition of two
(anytime) modules. In thefirst module, a subset of all conflictsis determined. Pos implements this module

! A conflictis aset of componentsof which at least one hasto be defective.
2 A diagnosisis a set of defective componentsthat might explain the deviating behavior of the system.
3 An obvious (semi-obvious) conflict is a conflict that is computed using no more than one (two) observed outputs.
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Figure 8.13: Architecturesfor model based diagnosis

by a contract form of breadth-first search. The second module consists of arepeated loop that determines
which measurement should be taken next, takes that measurement and assi milates the new information into
the current set of conflicts. Finally, the resulting diagnoses are reported.

To represent the performance information, Pos uses a combination of expected performance
profile and performance interval profile (defined in Section 4.2). The combined performance profile is
named Statistical Performance Profile or PSP, It records not only upper and lower bounds but also the mean
of the sample set. For the purpose of decision making, the mean isused instead of the center of theinterval.

The quality combination function (set multiplication) maps the mean of each sub-process to the
mean of the complete process, so that the resulting performance profile is again a PSP. An interesting result
of the above decompositionisthat interactionwith the user, who hasto actually take measurements, hasto be
considered in determining the performance profile of the second sub-process. Thisis achieved using expert
knowledge and statistical experiments to determine the average time necessary to take each measurement.
Thisknowledgeis then incorporated into the performance profile.

Two versions of the diagnostic system have been implemented: one by constructing a contract
algorithm and the other by making the contract system interruptible using Theorem 4.1. The actua slow
down factor of the interruptible system was approximately 2, much better than the worst case theoretical
ratio of 4.

8.2.2 Generate-and-test search

Coulon et al. [1992] have analyzed severa control strategies to perform a generate-and-test search at
any time. One of their goalsis to examine the applicability of the model of anytime computation to the
composition of generate-and-test modules. The dataflow of information is as follows:

input => GENERATE —> hypotheses —> TEST —> solutions

The problem definition includes a stopping criterion for the system. The stopping criterion is a disjunction
of alower bound on the number of solutions, sol,,;,, and an upper bound on time alocation, t,,.. . Given a
stopping criterion, thegoal of the system isto maximize the number of solutionss and minimize computation
time¢. The expected utility is defined asfollows:

U(s,t)=s/t
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To simplify the analysis, the following four assumptionsare made: (A1) all generated hypotheses
are tested before a new set may be generated; (A2) a non-trivial constant time, ¢,,::./2, is required for
switching from the generate module to testing and vice versa; (A3) generating a hypothesis and testing it
require constant times (¢,., and t..,; respectively) for all hypotheses; and (A4) solutions are distributed
uniformly among the hypotheses. Four possible control strategies are presented and analyzed:

Strategy 1 —directly generate theright number of hypotheses

If one knowsthe probability p that a generated hypothesi s becomes a solution, one can estimate the number
of hypotheses needed to obtain sol,,;,, solutions. The authorsuse p in order to define a control strategy that
does not require switching back from testing to hypothesis generation. It performs only one iteration that
generates sol.,;, /p hypotheses and tests them. The paper claims that this strategy is optimal. However,
since it does not satisfy the stop criterion mentioned above nor does it guarantee termination with sol ,,,;,
solutions, the claim of optimality isinaccurate.

Strategy 2 — eager generation

This strategy first generates all the possible hypotheses and then tests them, producing al the solutions
(whose number is sol,;). Aswith Strategy 1, it aso hasthe “advantage” of not switching back from test to
generate. Since aredlistic domain may have a very large, sometimes infinite, hypothesis set, the generation
of al hypotheses seems impractical.

Strategy 3 —lazy generation
This strategy generates one hypothesisat atime, testsit and switches back to generate. The expected time
to compute sol,,.;, hypothesesis:

s0lin

p

[

-|(t9€n + ttest + tswitch)
where [ -] isthe ceiling function. Obviously, if ¢,,::cn = 0, thisstrategy is optimal.

Strategy 4 — generate the number of missing solutions
This strategy generatesin each iteration as many hypotheses as the number of missing solutions.

Theauthors compare the strategies based on their performance as shownin Figure 8.14. Their final
analysisidentifiestwo cases of termination: by reaching sol > sol,,;, and by reaching ¢ < #,,,,. INnthefirst
case, the choice of strategy depends on the proportion of solutionp, theratio betweent,,iscn, and g, +tiese,
and theratio between sol,;; and sol,,,;,,. When p isknown, the authorsclaim that Strategy 1isoptimal. Inthe
second case, the authors claim that the methods have different propertiesin terms of risk and performance
and that the last strategy represents a compromise that offers high-payoff/high-risk in the beginning and
gradually becomes low-payoff/low-risk. Theauthorssay that this behavior is advantageous since the chance
of runningintot,,,, increasesover time. Thelast conclusion confusesthe problem definition with the notion
of interruptibility. When a stopping criterion is given (specifying the maximal time allocation), the meaning
of high-risk (or low-risk) isunclear. The problem definitionisbased on satisfying a stopping criterion rather
than on a stochastic deadline.

Coulon et al. concludethat only when the probability p of ahypothesisbeing a solutionis known,
isan optimal strategy (based on compilation) possible. When p is unknown, it means that the performance
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Figure 8.14: Distribution of solutionsover timefor S1-4

profileis unknown and hence compilation is obviously impossible. This presents an interesting question of
how to utilize systems composed of anytime algorithms when the performance profiles are not given. A
reasonabl e approach would be to learn the performance profile while the system is working and adjust the
time allocation to reflect changes in the performance profile. An initia estimate of the performance profile
is needed.

8.3 Moded evaluation

I conclude this chapter with a summary of the experience that | had with the development and application
of the model of operational rationality. Most of my conclusionsrelate to my own work on the mobile robot
navigation system. An extensivetheoretical analysisof the model and its capabilitiesappearsin the previous
chapters. The purposeof thissection isto assessthe potential of operational rationality to become apractical
method capable of both simplifying the development of real-time systems and optimizing their behavior.

8.3.1 Constructing elementary anytime algorithms

The construction of elementary anytime algorithmshas been found to be as simpl e as standard programming.
It does not impose any new limitations on the programmer beyond the simple requirement of registering
intermediate results. Standard programming methods, some of which were surveyed in Chapter 4, extend
naturally to anytime computation.

Another important aspect of anytime computation that seems to pose no difficulty isthe selection
of an appropriatequality measure to characterize the performance of thealgorithm. Although more extensive
research and many more applications are needed to examine this aspect, preliminary experience shows that
anytime algorithms have “natural” quality measures. In optimization problems, such as minimal cost path
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finding, the natural quality measure of any given path is the ratio between its length and the length of an
optimal solution. This approach has been used successfully in the mobile robot navigation system. A
possibledifficulty may arise when the optimal solutionistoo hard to compute, even by an off-line simulation
program. In such a case one, can use the ratio between the length of the path and the distance between the
start and goal positions as a reasonable quality measure.

8.3.2 Computing performance profiles

The computation of performance profiles is, at the moment, a somewhat tedious task. Many decisions
regarding the representation of the performance profile are made by the programmer. These decisions
include the selection of the range of time allocation, the resolution of time and quality, and the choice of
an appropriate range of initia input qualities for the construction of the conditional performance profile.
My experience shows that in the prototype system the single aspect that has the highest effect on the
development cycle is the computation of the performance profiles. It takes hours to gather the essential
statisticsto buildthequality map and construct the performance profile, even after determining the parameters
of the representation. This process, which is completely automated, cannot be avoided when using anytime
algorithms. The system however can be debugged at the same time using an older (or an approximate)
performance profile. Inaccurate performance profiles affect only the performance of the system but not its
logical operation.

Another interesting difficulty that was observed by Anita Pos relates to the construction of per-
formance profiles when interaction with a user is part of the main line of the algorithm. For example, in
the second phase of her diagnostic system, the anytime agorithm consists of a loop that determines which
measurement should be taken next, takes that measurement and assimilates the new information into the
current set of conflicts. Measurements are actually taken by the user. To construct the performance profile,
Pos used the knowledge of an expert and statistical experiments to determine the average time necessary for
manual measurements.

8.3.3 Compilation

Loca compilation of anytime algorithmsis, in fact, asimple, fast process. The relatively small size of the
application that | developed made it possible to apply both globally optimal and approximate compilation
methods. In fact, | have compared the efficient hill-climbing time allocation agorithm and the algorithm
that uses compl ete search to guarantee optimality. | found that the resultswere practically the samein terms
of the alocation to the components and the overall quality. Only one entry in the tables representing the
performance profiles was slightly different. More experience is needed, however, to test the performance of
the hill-climbing allocation algorithm and to determine how closeiit is to the optimal output quality.

8.34 Achieving operational rationality

The applications developed so far show that operationa rationality can be achieved in practical domains.
Thisisan important result of this dissertation since the very principle of operational rationality and anytime
computation offer, by their nature, a performance improvement over traditional approaches to real-time
system development.

Recall, however, that the performance of the agent is optimized given a certain set of performance
components and a system design that are decided by the developer. Therefore, one cannot immediately
concludethat the performance achieved by an operationally rational agent isbest in absoluteterms. Butitis
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clearly an efficient tool to achieve superior performance with respect to agents whose components are based
on producing output of fixed expected quality.

Severa fundamental aspects of the model of operationa rationality are till hard to evauate.
These aspects can be evaluated only after alarge number of applications are developed. This leaves some
open questions regarding the potential of the model. For example, to what degree could one create a large,
genera purpose library of anytime algorithms? To what degree would anytime computation and automatic
compilation simplify the devel opment of real-time systems? | will return to these questionsin my concluding
remarks.
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Chapter 9

Conclusion

Civilization advances by extending the number of important operations which we can perform
without thinking about them.

Alfred North Whitehead, An Introduction to Mathematics

I have examined the problem of real -timedecision making by intelligent agents. Theresult of thisexamination
has been the devel opment of an efficient model of bounded optimality that is based on anytime computation,
off-line compilation, and run-time monitoring. In thischapter | will summarize the contribution of thiswork
and identify the main aspects of the model to be studied and refined in the future.

9.1 Contribution

The model of operational rationality offers both a methodol ogical and a practical contributionto thefield of
real-time decision making and to artificial intelligencein general. The main aspects of this contribution are
summarized below:

Design of complex real-time systems

Operational rationality offersamodular approach to the design of complex real-time systems. Separating the
design of the system from the optimization of its performanceintroducesanew typeof modularity and alarge
degree of simplification. Many researchers in the real-time community believethat the devel opment of real-
time systems is incompatible with the principles of abstraction since abstraction emphasi zes the functional
requirements but ignores the timing constraints of the system. The model of operational rationality shows
how the two aspects can be addressed independently and hence it encourages the use of abstraction in
real-time system design.

Foundations of anytime computation

Operational rationality is largely based on anytime computation. The optimal scheduling and control of
anytime agorithms forms the center of the model. The utility of approximate computation has been long
appreciated by the computer science community. However, it has a so been recognized that a major obstacle
to thewide spread use of approximate computationisitsincompatibility with standard software engineering
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principles. The principal problems have involved the estimation of the cumulative effect of error in the
system, the control of approximate computation, and the great degree of unpredictability associated with
approximate computation. By introducing modularity into anytime computation and by mechanizing the
scheduling task, operational rationality constitutes an important step toward the complete integration of
approximate computation into standard system development methodologies. Performance profiles give
the designer a high degree of performance predictability and the standard library of anytime agorithms
encourages sharing and re-using anytime modul es among different applications.

Resour ce bounded reasoning

The problem of optimal decision making with limited resources has been recognized as a hard problem
in artificia intelligence, in engineering, in economics and in philosophy. This dissertation presents a
general approach to solving this problem in two steps. First, certain structural constraints on the agent are
established. Then, and only then, the question of optimal decision making can be considered in the context
of those structural constraints. Since the chosen architecture can be arbitrarily restricted, the corresponding
optimization problem can be arbitrarily simple. The general trend should be to investigate the solutionsone
obtains as the constraints on the agent’s architecture are relaxed. Operational rationality offers a solution to
the problem of resource bounded reasoning that fits this framework. Its structural premise isthat the agent
is designed by composing anytime a gorithms.

M achine independent real-time systems

Finally, operational rationality defines real -time systems by atime-dependent utility function. The dynamic
monitoring and the use of anytime computation make it possibleto construct machine independent real-time
systems, a concept that has been considered a self-contradiction in the past. When an anytime system
is installed on a slower machine, it would automatically adjust the time allocation to its components to
maximizeits utility. In response to areduction in computational power, such systems offer a corresponding
reduction in performance rather than failing to produce results at all.

9.2 Further work

Further work is required to generalize the components of the model of operational rationality and to further
validate its effectiveness. This section identifies the three major directions such work could take.

9.21 The scope of compilation

Whilethe compilation processhas been devel oped and theoretically analyzed for large programs, its practical
use has been limited to small programs. Larger applications of the model need to be examined in order to
validate the vital role of local compilation. In addition, the scope of compilation needs to be extended to
include more programming structures. The compilation of recursive anytime functions, for example, is yet
to berealized.

9.2.2 Thetheoretical framework

Thetheoretical framework of anytime computation hasto be further extended to include anytime sensing and
anytime action. To fully integrate the notion of action into the optimization problem, one needs to examine
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the optimal behavior of agents over histories. This requires the development of mechanisms to handle the
exponential complexity of projection into the far future.

9.2.3 Programming support for anytime computation

Anytime computation requires anumber of aspects of system devel opment to be re-defined. One important
aspect is algorithm specification. In traditional programming, algorithm specification is based on binary
truth criteria that determine when an answer is correct, independent of its computation time. This kind
of specification is no longer useful with anytime computation. A performance profile seems to be a more
adequate mechanism for algorithm specification. But, as erroneous results become permissible in program
development, a distinction must be drawn between an inefficient anytime algorithm and a programming
bug. This distinction can be based on a minimal performance profile that sets up a lower bound on the
performance of an acceptabl e algorithm.

Another aspect is the integration of al aspects of anytime programming into the programming
environment. The Concord system of Chapter 2 represents a preliminary step in this direction, but many
guestions are till left open. How would the performance profilesin the library be linked to the algorithms
they describe? How would the programmer indicate the type of compilation method to be used? What
degree of control would the programmer have over the modification of thelibrary to better match a particular
problem domain? Further work and experience with anytime computation are needed to answer these
guestions.

Finally, debugging and testing tool s for anytime algorithms must be devel oped that would address
the special characteristics of these algorithms.

9.3 Design, deliberation and adaptation

The problem of real-time decision making has been addressed by many researchers over the years. Three
basi c mechani smsto sol vethisproblem can beidentified [Russel| and Wefald, 1989b], asshownin Figure9.1.
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1. Real-time decision making by design—in which the designer possesses the computational and infor-
mational resources required to find optimal solutions and uses them in order to build a system that
“does theright thing.”

2. Real-time decision making by deliberation — in which the agent itself performs explicit deliberation
in order to make decisions, possibly using compilation to improve its reactivity over time.

3. Real-time decision making by adaptation—in which the agent i s equi pped with a mechanism to adjust
itsbehavior in responseto feedback from the environment so that the quality of its decisionsimproves
over time.

The challenge of artificial intelligence, | would argue, is to reduce the burden on the designer by moving
primary system construction mechanisms from the first category into the other two. However, in the current
state of artificial intelligence, sophisticated tasks are achieved largely by design. Explicit deliberation and
adaptation techniques are simply not fast enough to implement intelligent agents, let a one real-time agents.
In that respect, operational rationality offers a significant new direction. Operational rationality is based
on a combination of the three mechanisms. the outline of the system and its performance components are
solved by design; the resource allocation problem to the components is solved by meta-level deliberation;
and the information regarding the performance of the el ementary componentsis constructed by adaptation
in the context of a particular problem domain.

Thefield of artificial intelligencehas been at acrossroadsin recent years. Classical techniques, that
have been proven inadequate, are being gradually replaced by techniques that better address the problems
of uncertainty, incomplete information and bounded computational resources. The model of operational
rationality addresses these issues. Further research in this area will contribute to our understanding of the
limits and capahilities of intelligent agents.
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Glossary

Many of the basic concepts and terms in the area of anytime computation are defined for thefirst timeinthis
dissertation. Other terms have been used in the past but still lack a generally accepted definition. For this
reason, | have included the following short summary of speciaized terminology. The definitions here are
informal and are intended for clarification purposes only. Exact definitions can be found in the body of this
dissertation.

anytimeaction An external action of an agent whose degree of goal achievement improves gradually as
execution timeincreases.

anytimealgorithm An agorithm whose quality of results improves gradually as computation time in-
Ccreases.

anytime computation A model of computation that allows using anytime algorithms as basic components
and includes mechanisms for automatic scheduling the components so as to maximize a certain
objective function.

anytime sensing A sensing procedure whose quality of domain description improves gradually as sensing
timeincreases.

compilation of anytime algorithms An off-line process that inserts time alocation code in a compound
anytime algorithm and prepares auxiliary meta-level information for efficient scheduling of the com-
ponents. The meta-level performance information iscomputed by the compiler using the performance
profiles of the elementary anytime components.

completion time of an anytime algorithm. The minima amount of time required by an anytime agorithm
to guaranteethat output quality reachesits maximal value and that no further computation can improve
the quality of the outpui.

compound anytime algorithm An anytime algorithm composed of one of more elementary anytime algo-
rithms using certain program composition operator.

comprehensive value of a computation The net value of the information produced by a computation.
Sometimes represented as the difference between the intrinsic value of the information and the cost of
resources consumed by the computation.
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conditional performance profile of an anytime algorithm. A mapping that determines the probabilistic
characterization of the quality of the output of an anytime algorithm as a function of run-time and a
set of input attributes, usually the quality of the input.

contract anytime algorithm An anytime algorithm that returns results as characterized by its performance
profile when the time alocation is determined in advance, before activating the algorithm, and is
known to the algorithm itself.

deliberation value of an interruptible anytime decision system. The marginal value of continued compu-
tation. The difference between the comprehensive value of taking an action in the future based on
further deliberation and the comprehensive vaue of taking immediate action based on the current
results. A negative valueindicates that deliberation should be interrupted and the current best results
should be used.

episodic problem solving A problem solving approach in which the complete description of a problem
instance is introduced to the problem solver as input and no further input is considered before the
termination of the problem solving process.

generalized action A common referenceto any aspect of thebehavior of anagent asan action: computations
areinternal actions, base-level actionsareexternal, and sensing activity isinformation gathering action.

intrinsic value of a computation The vaue of the results of a computation with respect to a fixed pre-
determined problem description, regardless of the time consumed by the computation and the possi-
bility that the problem description may not remain accurate as the environment changes.

interruptible anytime algorithm An anytime agorithm that returns results as characterized by its perfor-
mance profile when interrupted at an arbitrary point after its activation.

local compilation method A compilation method that is performed by considering only one program con-
struct at atime and using only the performance profiles of itsimmediate components. Theimmediate
components are treated as if they are elementary anytime agorithms.

operational rationality The theory of scheduling anytime computation so as to maximize the degree of
goal achievement determined by a certain utility function.

pathological anytimealgorithm An anytime agorithm whose quality of results is not a non-decreasing
function of time.

performance profile of ananytimealgorithm. A mapping that determinesthe probabilistic characterization
of the quality of the output of an anytime algorithm as a function of run-time.

performance profilelibrary A database wherethe (conditional) performance profiles of al the elementary
anytime algorithms are originally stored and where the compiler stores the (conditional) performance
profiles of compound anytime algorithms.

quality map of an anytime algorithm. A set of pairs each indicating a particular quality of resultsthat was
achieved by running the algorithm with a particular time allocation. Quality map is always defined
with respect to a particular distribution of input instances and a particular input quality. Used to
construct the conditional performance profile of an anytime agorithm.
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