Meta-Level Control of Approximate Reasoning:
A Decision Theoretic Approach

Shlomo Zilberstein

Computer Science Department, University of Massachusetts, Amherst, MA 01003

Abstract. This paper describes a novel methodology for meta-level con-
trol of approximate reasoning. We show that approximate reasoning per-
formed by anytime algorithms offers a simple means by which an in-
telligent system can trade-off decision quality for deliberation cost. The
model exploits probabilistic knowledge about the environment and about
the performance of each component in order to optimally manage com-
putational resources. An off-line knowledge compilation technique and a
run-time monitoring process guarantee that the system’s performance is
maximized. The paper concludes with a summary of two applications.

1 Approximate Reasoning in Intelligent Systems

Approximate reasoning techniques, such as abstraction, variable precision logic,
and limited horizon search, play an increasing role in intelligent systems. The
need to manipulate approximate information stems from various reasons such
as an imprecise model of the environment, the presence of stochastic events,
limited computational resources, and noisy sensing devices. As a result, complex
intelligent systems face a new control problem related to the management of
precision.

When a system is composed of a number of modules that produce approx-
imate results, important methodological questions arise regarding the manage-
ment of uncertainty and precision. How can the performance of the approximate
components be described? How does the output quality of a module depend on
the precision of the input it receives? How should the execution of a compos-
ite system be managed so as to maximize its overall performance? And most
importantly, what design methodologies simplify the task of the programmer
developing such systems?

We have developed an efficient model that answers these questions. In this
model, approximate reasoning is used as a valuable mechanism to trade off deci-
sion quality for deliberation costs. This mechanism allows an intelligent agent to
control the level of precision of each component and maximize the achievement
of its top-level goals.

The basic constructs of our model are anytime algorithms [1, 3] that form
a special type of approximate reasoning. They are characterized by the grad-
ual improvement of quality of results as a function of time. Anytime algorithms
offer a simple means by which a system can trade-off decision quality for delib-
eration costs. In addition, the model includes a novel technique to control any-
time algorithms using an adaptive, decision-theoretic approach. Efficient control

of computational resources is performed by two major components: an off-line
knowledge compilation process and a run-time monitoring process. By mechaniz-
ing the control of precision, we take an important step towards the widespread
use of approximate reasoning.

The rest of the paper outlines our methodology and its application. Section
2 describes the notion of an anytime algorithm and its attractive properties as
an approximate reasoning technique. Section 3 describes a compilation tech-
nique to compose anytime algorithms. Sections 4 describes the run-time control
mechanisms. In Section 5, we briefly describe two applications. Finally, Section
6 summarizes the benefits of our approach and discusses some directions for
further work.

2 Anytime Algorithms

Anytime algorithms are algorithms whose quality of results improves gradually
as computation time increases. They offer a tradeoff between resource consump-
tion and output quality. Many existing programming techniques produce use-
ful anytime algorithms. Examples include iterative deepening search, variable
precision logic, and randomized techniques such as Monte Carlo algorithms or
fingerprinting. For a survey of anytime programming techniques see [8].

Various metrics can be used to measure the quality of a result produced by
an anytime algorithm. From a pragmatic point of view, it may seem useful to
define a single type of quality measure to be applied to all anytime algorithms.
But in practice, different types of anytime algorithms approach the exact result
in different ways. The following metrics have been proved useful in anytime
algorithm construction: certainty — reflecting the degree of certainty that the
result is correct, accuracy — reflecting the distance between the approximate
result and the exact answer, and specificity — reflecting the level of detail of the
result.

1.00

0.80

0.60

0.40

0.20

o %

0.00 1.00 2.00 3.00 400 t

Fig. 1. Graphical representation of a CPP

2.1 Conditional Performance Profiles

To allow for efficient meta-level control of anytime algorithms, we describe their
behavior by conditional performance profiles (CPP) [7]. A conditional perfor-
mance profile captures the dependency of output quality on time allocation as
well as on input quality. In [8], the reader can find a detailed discussion of various
types of conditional performance profiles and their representation. To simplify
the discussion of compilation, we will refer only to the ezpected CPP that maps
computation time and input quality to the expected output quality.

Definition 1 The conditional performance profile (CPP), of an algorithm
A is a function
CPPA : Qin X R+ — Qout

that maps input quality and computation time to the expected quality of the
results.

Figure 1 shows a typical CPP. Each curve represents the expected output quality
as a function of time for a given input quality.

2.2 Interruptible and Contract Algorithms

We distinguish between interruptible and contract algorithms. An interruptible
algorithm is an anytime algorithm that can be interrupted at any time. A con-
tract algorithm offers a similar tradeoff between computation time and quality
of results, but the total execution time must be known in advance. If interrupted
at any point before the termination of the contract time, it may yield no use-
ful results. In many applications, interruptible algorithms are more desirable,
but they are also more complicated to construct. In [6] we show that a simple,
general construction can produce an interruptible version for any given contract
algorithm with only a small, constant penalty. This theorem allows us to con-
centrate on the construction of contract algorithms for complex decision-making
tasks.

2.3 A Library of Anytime Algorithms

Programming with anytime algorithms requires access to their performance pro-
files. For this purpose, we developed the notion of the anytime library. The li-
brary stores not only the performance profiles of elementary anytime algorithms,
but also the results of the compilation process. The construction of a package
of anytime algorithms, accompanied by a library of performance profiles, is an
important first step toward the integration of approximate computation with
standard software engineering techniques. Behind the anytime library concept
lies the vision of a wide-spread use of standard anytime algorithms for essen-
tially every basic computational problem from sorting and searching to complex
reasoning tasks. The package of anytime algorithms supplements the compila-
tion and monitoring techniques with flexible building blocks that simplify the

development of complex systems. In current work on the development of an any-
time library, we are studying such issues as machine independent representation
of performance profiles, standard interface operations, and library maintenance
tools.

3 Composition of Anytime Algorithms

Modularity is widely recognized as an important issue in system design and
implementation. However, the use of anytime algorithms as the components of a
system presents a special type of scheduling problem. The question is how much
time to allocate to each component in order to maximize the output quality of the
complete system. We refer to this problem as the anytime algorithm composition
problem.

Repair System

Testing Diagnosis Repair planning

Fig. 2. A composite system for automatic diagnosis and repair

Consider for example an automated diagnosis and repair system whose struc-
ture is shown in Figure 2. The system is composed of three anytime modules that
perform testing, diagnosis and repair planning. Given the conditional perfor-
mance profiles of the components and a certain time allocation, the composition
problem is to determine the amount of time to be allocated to each component
so as to maximize the overall quality.

Solving the composition problem is important because it introduces a new
kind of modularity into intelligent system development by allowing for separation
between the development of the performance components and the optimization
of their performance. In addition, by mechanizing the composition of anytime
algorithms, we simplify the programming task.

3.1 The Compilation Problem

Given a system composed of anytime algorithms, the compilation process is de-
signed to: (a) determine the optimal performance profile of the complete system;
and (b) insert into the composite module the necessary code to achieve that per-
formance. The precise process definition depends on various factors such as the
structure of the composite program, the type of performance profiles and their
representation, and the type of elementary anytime algorithms used. Depending
on these factors, different types of compilation and monitoring strategies are

needed. To simplify the discussion in this paper, we will consider only the prob-
lem of producing contract algorithms when the conditional performance profiles
of the components are given. The reader can find a broader analysis of compila-
tion and monitoring in [8].

Let F be a set of anytime functions. Assume that all function parameters
are passed by value and that functions have no side-effects (as in pure functional
programming). Let 7 be a set of input variables. Then, the notion of a composite
expression is defined as follows:

Definition 2 A composite expression over F with input T is:

1. An expression f(i1,...,i,) where f € F is a function of n arguments and
U1y eeestn € T.

2. An expression f(gi,....,gn) where f € F is a function of n arguments and
each g; is a composite expression or an input variable.

For example, the expression A(B(z),C(D(y))) is a composite expression over
{A, B,C, D} with input {z,y}. Suppose that each function in F has a conditional
performance profile associated with it that specifies the quality of its output as
a function of time allocation and the qualities of its inputs. Given a composite
expression of size n, the compiler needs to determine the mapping, 7 : t —
(t1,...,tn), that specifies the optimal time allocation to the components for any
given amount of time.

3.2 Global Compilation is Hard

Global compilation of composite expressions (GCCE) refers to solving the com-
pilation problem as a global optimization problem. In [8], we prove the following
result:

Theorem 3 The GCCE problem is NP-complete in the strong sense.

The proof is based on a reduction from the PARTIALLY ORDERED KNAP-
SACK problem. This result has led us to search for efficient compilation tech-
niques that can be applied to large programs.

3.3 Local Compilation

Local compilation is the process of finding the best performance profile of a mod-
ule based on the performance profiles of its immediate components. If those com-
ponents are not elementary anytime algorithms, then their performance profiles
are determined using local compilation. Local compilation replaces the global
optimization problem with a set of simpler, local optimization problems and
thus reduces the complexity of the whole problem. Unfortunately, local compi-
lation cannot be applied to every composite expression. If the expression has
repeated subexpressions, then computation time should be allocated only once
to evaluate all identical copies. However, the following three assumptions result
in an efficient local compilation process that is also optimal [8]:

1. The tree-structured assumption — the input composite expression has
no repeated subexpressions (thus it can be represented as a directed tree).

2. The input-monotonicity assumption — the output quality of each mod-
ule increases when the quality of the input improves.

3. The bounded-degree assumption — the number of inputs to each module
is bounded by a constant, b.

The first assumption is needed so that local compilation can be applied. The
second assumption is needed to guarantee the optimality of the resulting perfor-
mance profile. And the third assumption is needed to guarantee the efficiency
of local compilation. Using an efficient tabular representation of performance
profiles, we can perform local compilation in constant time and reduce the over-
all complexity of compilation to be linear in the size of the program. We have
also developed a number of approzimate local compilation techniques that work
efficiently on DAGs and on a variety of additional programming constructs such
as conditional statements and loops.

4 Meta-Level Control

Monitoring plays a central role in anytime computation. We have examined the
monitoring problem in two types of domains. One type is characterized by the
predictability of utility change over time. High predictability of utility allows an
efficient use of contract algorithms modified by various strategies for contract
adjustment. The second type of domains is characterized by rapid change and
a high level of uncertainty. In such domains, scheduling interruptible algorithms
based on the value of computation criterion becomes essential. Due to limited
space, we discuss here only the control of contract algorithms.

Suppose that a system composed of anytime algorithms is compiled into
a contract algorithm, 4. The conditional performance profile of the system is
Q 4(g,t) where ¢ is the input quality and ¢ is the time allocation. Assume that
Q 4(q,t) represents, in the general case, a probability distribution. When a dis-
crete representation is used, @ 4 (g, t)[g;] denotes the probability of output quality
q;-

Let Sp be the current state of the domain, let S; represent the state of the
domain at time ¢, and let g; represent the quality of the result of the contract
anytime algorithm at time ¢. U 4(S, t, ¢) represents the utility of a result of quality
g in state S at time ¢. This utility function is given as part of the problem
description. The purpose of the monitor is to maximize the expected utility of
the result, that is, to find ¢ for which U4(S;,t, ;) is maximal.

The first step is to calculate the initial contract time. Due to the uncertainty
concerning the quality of the result of the algorithm, the expected utility of the
result at time ¢ is represented by:

Ui(St,t) = D2 Qalg: DlailUA(St, 1, :) 1)

The probability distribution of future output quality is provided by the per-
formance profile of the algorithm. Hence, an initial contract time, ., can be
determined before the system is activated by solving the following equation:

te =arg mta,X{Uh(St,t)} (2)

One monitoring approach is to allocate the initial contract time to the compo-
nents based on the compiled performance profile of the system. This approach
can be improved by revising the initial allocation based on the actual change in
the domain and the actual quality of partial results.

In some cases, it is possible to separate the value of the results from the time
used to generate them. In such cases, one can express the comprehensive utility
function, U4(S,t,q), as the difference between two functions:

Ua(St,t,q) = Va(So,q) — Cost(So,t) (3)

where V4 (S, q) is the value of a result of quality ¢ in a particular state S (termed
intrinsic utility [5]) and Cost(S,t) is the cost of ¢ time units provided that the
current state is S. Similar to the expected utility, the expected intrinsic utility
for any allocation of time can be calculated using the performance profile of the
algorithm:

V.;l(sv t) = Z QA(qv t) [qz]VA(Sv qz) (4)

Finally, the initial contract time can be determined by solving the following
equation:

t. =arg m?x{VA(So, t) — Cost(So,t)} (5)

Once an initial contract time is determined, several monitoring policies can
be applied. In particular, we have studied two strategies for contract adjustment.
The first strategy re-allocates residual time among the remaining modules once
the result of a module becomes available. The second strategy adjusts the original
contract time. Both of these methods are activated after the termination of each
elementary component. They consider the output of that component as an input
to a smaller residual system composed of the remaining anytime algorithms. At
that point, a better contract time can be determined that takes into account the
actual quality of the intermediate results generated so far. The higher the level
of domain uncertainty, the more beneficial is the use of contract adjustments.

5 Applications

The advantages of compilation and monitoring of anytime algorithms have been
demonstrated in several domains. In this section we summarize two applications.

5.1 Mobile Robot Navigation

One of the fundamental problems facing any autonomous mobile robot is the
capability to plan its own motion using noisy sensory data. We have developed a
simulated robot navigation system by composing two anytime modules [9]. The
first module, a vision algorithm, creates a local domain description whose quality
reflects the probability of correctly identifying each basic position. Each position
can be free or blocked by an obstacle. The second module, a hierarchical planning
algorithm, creates a path between the current position and the goal position. The
quality of a plan reflects the ratio between the shortest path and the path that
the robot generates when guided by the plan.

Anytime hierarchical planning is based on performing coarse-to-fine search
that allows the algorithm to find quickly a low quality plan and then repeat-
edly refine it by replanning a segment of the plan in more detail. Hierarchical
planning is complemented by an execution architecture that can take advantage
of abstract plans. The execution architecture uses plans as advice to direct the
base level execution mechanism. In practice, uncertainty makes it hard to use
plans except as a guidance mechanism.

quality Q100
—] 1Oo8
o 0————————————————————————F [= Q96
e 1564
Qo2
Q90
1088
0.80 1086
0.70
0.60
0.50
0.40
0.0 5.0 10.0 15.0 20.0 time (sec)

Fig. 3. The CPP of the anytime planner

The conditional performance profile of the hierarchical planner is shown in
Figure 3. Each curve shows the expected plan quality as a function of run-time
for a particular quality of visual data. An active monitoring scheme has also
been developed to use the compiled performance profile of the system and the
time-dependent utility function of the robot in order to allocate time to vision
and planning so as to maximize overall utility.

An interesting result of this experiment was the fact that the anytime abstract
planning algorithm produced high quality plans (approx. 10% longer than the

optimal path) with time allocation that was much shorter (approx. 30%) than
the total run-time of a standard search algorithm (A*). This fact shows that the
flexibility of anytime algorithms does not necessarily require a compromise in
overall performance.

5.2 Model-Based Diagnosis

Model-based diagnostic methods identify defective components in a system by
a series of tests and probes. The goal is to locate the defective components
using a small number of tests. The General Diagnostic Engine [2] (GDE) is a
basic method for model-based diagnostic reasoning. In GDE, observations and
a model of a system are used in order to derive conflicts (a conflict is a set of
components of which at least one is defective). These conflicts are transformed
to diagnoses (a diagnosis is a set of defective components that might explain the
erroneous behavior of the system). The process of observation, conflict gener-
ation, transformation to diagnoses, and generation of probe advice is repeated
until the defective components are identified. GDE has a high computational
complexity — O(2"), where n is the number of components. As a result, its
applicability is limited to small-scale applications. To overcome this difficulty,
Bakker and Bourseau have developed a method, called Pragmatic Diagnostic En-
gine (PDE), whose computational complexity is O(n?). PDE is similar to GDE,
except for omitting the stage of generating all diagnoses before determining the
best measurement-point. Probe advice is given on the basis of the most relevant
conflicts, called obvious and semi-obvious conflicts (an obvious (semi-obvious)
conflict is a conflict that is computed using no more than one (two) observed
outputs).

Pos [4] has applied our compilation technique to implement the PDE archi-
tecture. PDE can be viewed as a composition of two anytime modules. In the
first module, a subset of all conflicts is determined. Pos implemented this mod-
ule by a contract form of breadth-first search. The second module consists of a
repeated loop that determines which measurement should be taken next, takes
that measurement, and assimilates the new information into the current set of
conflicts. Two versions of the diagnostic system have been implemented: one by
constructing a contract algorithm and the other by making the contract sys-
tem interruptible using our reduction technique. The actual slow down factor of
the interruptible system was approximately 2, much better than the worst case
theoretical ratio of 4.

6 Conclusion

We presented a decision-theoretic model for meta-level control of anytime al-
gorithms. It offers both a methodological and a practical contribution to the
field of real-time deliberation in intelligent systems. The main aspects of this
contribution include: (1) simplifying the design and implementation of complex
intelligent systems by separating the design of the performance components from

the optimization of performance; (2) mechanizing the composition process and
the monitoring process; and (3) constructing machine independent intelligent
systems that can automatically adjust resource allocation to yield optimal per-
formance.

The study of anytime computation is a promising and growing field in arti-
ficial intelligence. Some of the primary research directions in this field include:
extending the scope of compilation by studying additional programming struc-
tures, producing a large library of reusable anytime algorithms, and developing
additional, larger applications that demonstrate the benefits of the methodology.

Acknowledgements

Much of this work was done in collaboration with my graduate advisor, Stuart
Russell, when I was a student at U.C. Berkeley. Tom Dean inspired my initial
interest in anytime algorithms and has continued to provide important insights
and comments. Current support for this project is provided by a Faculty Re-
search Grant from the University of Massachusetts.

References

1. Dean, T. L., Boddy, M.: An analysis of time-dependent planning. In Proceedings of
the Seventh National Conference on Artificial Intelligence, pp. 4954, Minneapolis,
Minnesota, 1988.

2. de Kleer, J., Williams, B. C.: Diagnosing multiple faults. Artificial Intelligence
32:97-130, 1987.

3. Horvitz, E. J., Breese, J. S.: Ideal partition of resources for metareasoning. Tech-
nical Report KSL-90-26, Stanford Knowledge Systems Laboratory, Stanford, Cal-
ifornia, 1990.

4. Pos, A.: Time-Constrained Model-Based Diagnosis. Master Thesis, Department of
Computer Science, University of Twente, The Netherlands, 1993.

5. Russell, S. J., Wefald, E. H.: Principles of metareasoning. In Proceedings of the First
International Conference on Principles of Knowledge Representation and Reason-
ing, R.J. Brachman et al. (eds.), San Mateo, California: Morgan Kaufmann, 1989.

6. Russell, S. J., Zilberstein, S.: Composing real-time systems. In Proceedings of the
Twelfth International Joint Conference on Artificial Intelligence, pp. 212-217, Syd-
ney, Australia, 1991.

7. Zilberstein, S., Russell, S. J.: Efficient resource-bounded reasoning in AT-RALPH.
In Proceedings of the First International Conference on AI Planning Systems,
pp- 260-266, College Park, Maryland, 1992.

8. Zilberstein, S.: Operational Rationality through Compilation of Anytime Algo-
rithms. Ph.D. dissertation, Department of Computer Science, University of Cali-
fornia at Berkeley, 1993.

9. Zilberstein, S., Russell, S. J.: Anytime sensing, planning and action: A practical
model for robot control. In Proceedings of the Thirteenth International Joint Con-
ference on Artificial Intelligence, pp. 1402-1407, Chambery, France, 1993.

This article was processed using the IATEX macro package with LLNCS style

