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Abstract

What role does metareasoning play in models of bounded ra-
tionality? We examine the various existing computational ap-
proaches to bounded rationality and divide them into three
classes. Only one of these classes significantly relies on a
metareasoning component. We explore the characteristics of
this class of models and argue that it offers desirable prop-
erties. In fact, many of the effective approaches to bounded
rationality that have been developed since the early 1980’s
match this particular paradigm. We conclude with some open
research problems and challenges.

Computational models of bounded rationality
In the pursuit of building decision-making machines, arti-
ficial intelligence researchers often turn to theories of “ra-
tionality” in decision theory and economics. Rationality
is a desired property of intelligent agents since it provides
well-defined normative evaluation criteria and since it es-
tablishes formal frameworks to analyze agents (Doyle 1990;
Russell and Wefald 1991). But in general, rationality re-
quires making optimal choices with respect to one’s de-
sires and goals. As early as 1947, Herbert Simon ob-
served that optimal decision making is impractical in com-
plex domains since it requires one to perform intractable
computations within a limited amount of time (Simon 1947;
1982). Moreover, the vast computational resources required
to select optimal actions often reduce the utility of the result.
Simon suggested that some criterion must be used to de-
termine that an adequate, or satisfactory, decision has been
found. He used the Scottish word “satisficing,” which means
satisfying, to denote decision making that searches until an
alternative is found that is satisfactory by the agent’s aspira-
tion level criterion.

Simon’s notion of satisficing has inspired much work
within the social sciences and within artificial intelligence
in the areas of problem solving, planning and search. In the
social sciences, much of the work has focused on develop-
ing descriptive theories of human decision making (Gigeren-
zer 2000). These theories attempt to explain how people
make decisions in the real-world, coping with complex sit-
uations, uncertainty, and limited amount of time. The an-
swer is often based on a variety of heuristic methods that
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are used by people to operate effectively in these situa-
tions. Work within the AI community–which is the fo-
cus of this paper–has produced a variety of computational
models that can take into account the computational cost
of decision making (Dean and Boddy 1988; Horvitz 1987;
Russell et al. 1993; Wellman 1990; Zilberstein 1993). The
idea that the cost of decision making must be taken into ac-
count was introduced by Simon and later by the statistician
Irving Good who used the term Type II Rationality to de-
scribe it (Good 1971). Good said that “when the expected
time and effort taken to think and do calculations is allowed
for in the costs, then one is using the principle of rationality
of type II.” But neither Simon nor Good presented any ef-
fective computational framework to implement “satisficing”
or “type II rationality”.

It is by now widely accepted that in most cases the ideal
decision-theoretic notion of rationality is beyond our reach.
However, the concept of satisficing offers only a vague de-
sign principle that needs a good deal of formalization before
it can be used in practice. In particular, one must define the
required properties of a satisficing criterion and the qual-
ity of behavior that is expected when these properties are
achieved. AI researchers have introduced over the years a
variety of computational models that can be seen as forms
of bounded rationality. We start by dividing these models
into three broad classes. We are particularly interested in
the role that metareasoning plays in these theories.

Approximate reasoning
One of the early computational approaches to bounded ra-
tionality has been based on heuristic search. In fact, Simon
has initially identified satisficing with heuristic search. In
this context, heuristic search represents a form of approx-
imate reasoning. It uses some domain knowledge to guide
the search process, which continues until a satisfactory solu-
tion is found. This should be distinguished from admissible
heuristic techniques such as A∗ that are designed to always
return the optimal answer. Admissible heuristic search is an
important part of AI, but it has little to do with bounded ra-
tionality. The focus on optimal, rather than satisfying, solu-
tions makes this type of heuristic search simply a more effi-
cient way to find exact answers. Simon refers to another type
of heuristic functions in which heuristics are used to select
“adequate” solutions. Such heuristic functions are rarely ad-
missible and the corresponding search processes are not op-



timal in any formal sense. Systems based on non-admissible
heuristic functions are often harder to evaluate, especially
when optimal decisions are not available.

Although it is often assumed that approximate reasoning
is aimed at finding approximate answers to a given problem,
it can take different forms. For example, the initial problem
can be reformulated in such a way that reduces its complex-
ity. The reformulation process could be approximate, yield-
ing a new problem that is easier to solve because it does not
retain all the details of the original problem. The resulting
problem could then be solved efficiently and perhaps opti-
mally and the obtained solution can then be used as an ap-
proximate solution for the original problem. One example of
such a process–also referred to as approximate modeling–is
when deterministic action models are used in planning, ig-
noring the uncertainty about action failures. Combined with
suitable runtime execution monitoring, such an approach
could be beneficial. In fact, the winner of a recent proba-
bilistic planning competition was a planner based on these
principles. Regardless of the form of approximation, ap-
proximate reasoning techniques can be complemented by
some form of explicit or implicit metareasoning. Metarea-
soning in this context is a mechanism to make certain run-
time decisions by reasoning about the problem solving–or
object-level–reasoning process. This can be done either ex-
plicitly, by introducing another level of reasoning as shown
in Figure 1, or implicitly, by pre-compiling metareasoning
decisions into the object-level reasoning process at design
time. For example, metareasoning has been used to develop
search control strategies–both explicitly and implicitly. In
some cases, the goal is specifically to optimize the trade-
off between search effort and quality of results (Russell and
Wefald 1991). Thus, metareasoning could play a useful role
in certain forms of approximate reasoning, but it is not–by
definition–a required component.

While it is clear that any form of bounded rationality es-
sentially implies that the agent performs approximate rea-
soning, the opposite is not necessarily true. Generally,
frameworks for approximate reasoning do not provide any
formal guarantees about the overall performance of the
agent. Such guarantees are necessary to offer a satisfac-
tory definition of bounded rationality and thus restore some
sort of qualified optimality. So, we do not view a heuristic
rule that proves useful in practice to be in itself a framework
for bounded rationality if it does not have additional formal
properties. The rest of this section describes two additional
approaches that offer such precise properties.

Optimal metaraesoning
Since metareasoning is a component that monitors and con-
trols object-level deliberation, one could pose the question
of whether the metareasoning process itself is optimal. Opti-
mality here is with respect to the overall agent performance,
given its fixed object-level deliberation capabilities. This is
a well-defined question that sometimes has a simple answer.
For example, metareasoning may focus on the single ques-
tion of when to stop deliberation and take action. Depending
on how the base-level component is structured, the answer
may or may not be straightforward. Optimal metareasoning

has been also referred to as rational metareasoning (Horvitz
1989) and metalevel rationality (Russell 1995) to distinguish
it from perfect rationality. This offers one precise form of
bounded rationality that we will examine in further details
in the next section.

It should be noted that optimal metareasoning can result in
arbitrary poor agent performance. This is true because we do
not impose upfront any constraints on the object-level delib-
eration process, in terms of either efficiency or correctness.
Nevertheless, we will see later that this presents an attrac-
tive framework for bounded rationality and that performance
guarantees can be established once additional constraints are
imposed on the overall architecture.

Bounded optimality
Bounded optimality techniques seek to restore a stonger no-
tion of optimality in decision making in the face of computa-
tional complexity and limited resources. That is, instead of
building systems that can find “sufficiently good” answers,
the goal is to find a maximally successful program that can
compute these answers. Optimality is defined with respect
to a particular space of possible implementations (Russell
and Wefald 1991; Russell 1995).

Russell and Wefald (1991) say that an agent exhibits
bounded optimality “if its program is a solution to the con-
straint optimization problem presented by its architecture.”
This approach marks a shift from optimization over actions
to optimization over programs. The program is bounded op-
timal for a given computational device for a given environ-
ment, if the expected utility of the program running on the
device in the environment is at least as high as that of all
other programs for the device. When the space of programs
is finite, one can certainly argue that a bounded optimal so-
lution exists. Finding it, however, could be very hard.

Russell, Subramanian, and Parr (Russell et al. 1993) give
an efficient construction algorithm that generates a bounded
optimal program for a particular restricted class of agent ar-
chitectures, in which a program consists of a sequence of
decision procedures. The decision procedures are repre-
sented using condition-action rules. The authors admit that
bounded optimality as defined above may be hard to achieve
for most problems. They propose a weaker notion of asymp-
totic bounded optimality as a more practical alternative. The
latter case requires that the program performs as well as the
best possible program on any problem instance, provided
that its computational device is faster by a constant factor.

To establish bounded optimality, the designer of the
system–not the agent itself, is responsible to identify the
agent reasoning architecture and to prove that the program
satisfies the optimality conditions. In that sense, metarea-
soning does not play any significant role is this framework.
Certainly there is no requirement that the agent itself be en-
gaged in any form of metareasoning. As long as the agent
program is shown to satisfy the optimality conditions, we
have a bounded optimal agent.

One criticism of bounded optimality is that while the
bounded rationality criterion is very well defined, it is very
hard to achieve in practice as evidenced by the limited num-
ber of examples produced following the introduction of the



Figure 1: The view of metareasoning as monitoring and con-
trolling object-level reasoning.

concept 15 years ago. Bounded optimality may well be the
most precise formal approach to bounded rationality, but
without further refinement it has little use in practice.

Bounded rationality as optimal metareasoning
We considered three basic approaches to achieve bounded
rationality: approximate reasoning, optimal metareasoning,
and bounded optimality. The latter two approaches represent
very specific, well-defined solutions; everything else falls
under the broad category of approximate reasoning. We ar-
gued that the first approach is under-constrained, essentially
allowing any form of approximate reasoning to be a solu-
tion, and the third approach is over-constrained, being hard
to implement in practice. This leaves us with optimal metar-
easoning as the most promising approach for further exami-
nation.

We adapt the view of metareasoning as a process that
monitors and controls the object-level reasoning process as
shown in Figure 1. This can take many different forms and
can present metareasoning decisions of various complexi-
ties. We will consider an agent to be bounded rational when
its metareasoning component is optimal. That is, given a
particular object-level deliberation model, we look for the
best possible way to control it so as to optimize the actual
ground-level performance of the agent.

There are a number of key questions to answer with re-
spect to any implementation of this framework. The answers
to these questions can help establish additional desired prop-
erties of the overall system that are not directly implied by
optimal metareasoning.

1. What object-level decision making architecture is em-
ployed? Is it complete? Is it sound? What tradeoffs it
offers between computational resources and quality of re-
sults?

2. How does the metareasoning component model the
object-level reasoning process? What kind of prior
knowledge is available about the efficiency and correct-
ness of the object-level component?

3. What run time information about the state of the object-
level reasoning process is being monitored? What is
known about the external environment?

4. What control decisions are being made by the meta-level
reasoning process? How do these decisions affect the
object-level component?

5. When and how does execution switches between the
object-level and the meta-level?

6. How much time is consumed by the meta-level reasoning
process? How much of the metareasoning strategy is pre-
computed offline? What is the online overhead?

7. Is metareasoning optimal? What assumptions are needed
to establish optimality?

8. What can be said about the overall performance of the
agent? Can a bound be established on how close it is to
an ideal perfectly rational agent?

Over the 1980’s, a number of decision making frame-
works have been developed that match this form of bounded
rationality. In the next section, we describe one such frame-
work in detail and examine the answers to the above ques-
tions in that particular case. We then survey briefly a number
of additional frameworks.

Optimal metareasoning with anytime
algorithms

One general approach to bounded rationality is based
on composition and monitoring of anytime algorithms.
Methodologically, problem solving with anytime algorithms
is based on dividing the overall problem into four key sub-
problems: elementary algorithm construction, performance
measurement and prediction, composability, and meta-level
control of computation.

Elementary algorithm construction covers the problem
of introducing useful tradeoffs between computational re-
sources and output quality in decision making. This fun-
damental problem has been studied by the AI community
resulting in a variety of “anytime algorithms” (Dean and
Boddy 1988) or “flexible computation” methods (Horvitz
1987) whose quality of results improves gradually as com-
putation time increases. The same problem has been stud-
ied within the systems community in the area of “impre-
cise computation” (Liu et al. 1991). While iterative re-
finement techniques have been widely used in computer
science, the construction of “well-behaved” anytime algo-
rithms is not obvious. To serve as useful components of a
resource bounded reasoning system, such algorithms should
have certain properties: measurable objective output quality,
monotonicity and consistency of quality improvement, and
marginal decrease in the rate of quality improvement over
time. Constructing good, reusable anytime algorithms is an
important active research area. There are now many existing
anytime algorithms for standard heuristic search, planning
and reasoning tasks.

Performance measurement and prediction covers the
problem of capturing the tradeoff offered by each system
component using a “performance profile”. A good perfor-
mance profile is a compact probabilistic description of the
behavior of the component. A typical representation is a
mapping from run-time to expected output quality. Recent
results show that conditioning performance profiles on input
quality and other observable features of the algorithm can
improve the precision of run-time quality prediction.



Composability covers the problem of building modular
resource bounded reasoning system with anytime algorithms
as their components. The fundamental issue is that composi-
tion destroys interruptibility–the basic property that defines
anytime algorithms. A two step solution has been developed
to this problem that makes a distinction between “interrupt-
ible” and “contract” algorithms (Zilberstein 1993). Contract
algorithms offer a tradeoff between output quality and com-
putation time, provided that the amount of computation time
is determined prior to their activation. The idea is to first
compose the best possible contract algorithm and then make
it interruptible with only a small, constant penalty (Zilber-
stein and Russell 1996).

Finally, meta-level control covers the problem of run-
time allocation of computational resources (or “deliberation
scheduling” (Dean and Boddy 1988)) so as to maximize the
overall performance of the system. In general, meta-level
control involves modeling both the internal problem solving
process and the external environment and manage compu-
tational resources accordingly. In domains characterized by
high predictability of utility change over time, the monitor-
ing problem can be solved efficiently using contract algo-
rithms and a variety of strategies for contract adjustment.
In domain characterized by rapid change and a high level
of uncertainty, monitoring must be based on the use of in-
terruptible algorithms and the marginal “value of computa-
tion” (Russell and Wefald 1991). An approach to monitor-
ing have been developed that is sensitive to both the cost
of monitoring and to how well the quality of the currently
available solution can be estimated by the run-time moni-
tor. The technique is based on modeling anytime algorithms
as Markov processes and constructing an off-line monitor-
ing policy based on a stochastic model of quality improve-
ment (Hansen and Zilberstein 1996).

Work on anytime algorithms has produced all the key in-
gredients for building bounded rational agents. In order to
relate this work to the model of bounded rationality we dis-
cussed in the previous section, we answer the eight key ques-
tions that are associated with that model. We use the work
on anytime algorithms to illustrate the framework and re-
fer to the simple case involving an object-level component
composed of a single anytime algorithm.

1. What object-level decision making architecture is em-
ployed?
The basic assumption about the object-level is that it is an
anytime algorithm, normally an interruptible one. Some
anytime algorithms, such as anytime A* (Hansen et al.
1997), guarantee convergence on the optimal solution, but
this is not generally required.

2. How does the metareasoning component model of the
object-level reasoning process? What kind of prior
knowledge is available about the efficiency and correct-
ness of the object-level component?
Some form of a performance profile is normally used as
prior knowledge. It characterize the tradeoff between run-
time and quality of results. Both deterministic and proba-
bilistic models have been developed.

3. What run time information about the state of the object-

level reasoning process is being monitored? What is
known about the external environment?
Typically the two key parameters are total runtime and the
quality of the current solution. In some cases, the quality
of the current solution can only be estimated using certain
features of the solution. In that case, the metareasoning
component need to estimate the quality of the solution us-
ing the available features (Hansen and Zilberstein 2001)

4. What control decisions are being made by the meta-level
reasoning process? How do these decisions affect the
object-level component?
The most simple example is when the metareasoning
component only decides when to stop the anytime algo-
rithm and return the current solution. When each activa-
tion of the metareasoning component takes non-negligible
amount of time, the decision could also include the fre-
quency of monitoring (Hansen and Zilberstein 2001).

5. When and how does execution switches between the
object-level and the meta-level?
In most cases, monitoring of anytime algorithm is done
periodically at some fixed intervals, although the tech-
niques mentioned above can also optimize the frequency
of monitoring and vary it at runtime.

6. How much time is consumed by the meta-level reasoning
process? How much of the metareasoning strategy is pre-
computed offline? What is the online overhead?
Work on anytime algorithms often relies on pre-computed
control strategies that are generated offline using the per-
formance profile of the algorithm. Simple control strate-
gies, such as a myopic approaches that stops the compu-
tation when the marginal value of computation becomes
negative–can be computed online with little overhead.
When solution quality must be estimated at runtime, this
needs to be done online and could introduce a significant
overhead.

7. Is metareasoning optimal? What assumptions are needed
to establish optimality?
Optimal metareasoning has been introduced for a wide
range of scenarios involving anytime algorithms using
certain assumptions about the performance profile. Typ-
ical assumptions are that the performance profile satis-
fies the diminishing returns property. A range of situa-
tions in which optimal metareasoning can be established
is described in (Zilberstein 1996; Hansen and Zilberstein
2001).

8. What can be said about the overall performance of the
agent? Can a bound be established on how close it is to
an ideal perfectly rational agent?
It depends on how the quality of results produced by the
anytime algorithm is measured. Generally, no perfor-
mance bound exist because the anytime algorithm being
monitored is not subject to any constraints in terms of its
efficiency or correctness. But when the quality measure
provides an error bound on how close the results is to the
optimal answer, we can establish a worst-case bound.

To summarize, there are many instances of optimal metar-
easoning involving anytime algorithms as object-level delib-



eration method. There are also examples of optimal metar-
easoning with respect to other object-level components such
as algorithm portfolios (Petrik and Zilberstein 2006), and
contract algorithms (Zilberstein et al. 2003). These exam-
ples illustrate that this well-defined model of bounded ratio-
nality can be implemented in practice in many domains.

Conclusion
We examined three different formal approaches to bounded
rationality. One approach–based on optimal metareasoning–
seems particularly attractive because it is both relatively
easy to implement and it provides some formal guarantees
about the behavior of the agent. We examined several in-
stantiations of this approach using anytime algorithms and
provided a characterization of the relationship between the
object-level and metareasoning components. These exam-
ples show that metareasoning plays an important role in one
of the key approaches to bounded rationality.

One interesting challenge is to try to establish mecha-
nisms to bound the performance different between the more
practical approach based on optimal metareasoning with a
given object-level component and a bounded optimal agent,
using the same architecture. Creating a bounded optimal
agent is hard, but bounding the performance gap might be
possible.

Another challenge is to develop models of bounded ra-
tionality suitable for multiple decision makers in either co-
operative or competitive settings. When agents operate in-
dependently and cannot be controlled in a centralized man-
ner, their metareasoning components need to coordinate. A
simple example is when one agent decides to stop thinking
and take action, but the other may see a need to continue
deliberation. There has been little work so far on coordi-
nation between the metareasoning components of collabora-
tive agents. The situation is even more complicated in com-
petitive settings when agents need to monitor the delibera-
tion processes of other agents, on which they have very little
knowledge.
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