
1
APPROXIMATE REASONING

USING ANYTIME ALGORITHMS
Shlomo Zilberstein and Stuart Russell*

Department of Computer Science
University of Massachusetts, Amherst, MA 01003

* Department of EECS, Computer Science Division
University of California, Berkeley, CA 94720

ABSTRACT

The complexity of reasoning in intelligent systems makes it undesirable, and some-
times infeasible, to find the optimal action in every situation since the deliberation
process itself degrades the performance of the system. The problem is then to con-
struct intelligent systems that react to a situation after performing the “right” amount
of thinking. It is by now widely accepted that a successful system must trade off
decision quality against the computational requirements of decision-making. Anytime
algorithms, introduced by Dean, Horvitz and others in the late 1980’s, were designed
to offer such a trade-off. We have extended their work to the construction of complex
systems that are composed of anytime algorithms. This paper describes the compila-
tion and monitoring mechanisms that are required to build intelligent systems that can
efficiently control their deliberation time. We present theoretical results showing that
the compilation and monitoring problems are tractable in a wide range of cases, and
provide two applications to illustrate the ideas.

1 INTRODUCTION

A fundamental problem in computer science and artificial intelligence is the
construction of systems that can operate robustly in a variety of real-time
environments. A real-time environment can be characterized by a time-
dependent utility function. In almost all cases, the deliberation required to
select optimal actions will degrade the system’s overall utility. It is by now
well-understood that a successful system must trade off decision quality for
deliberation cost [1, 12, 14, 19, 21, 22].

1

2
���������
	���

The problem of deliberation cost has been widely discussed in artificial in-
telligence, economics, engineering and philosophy. In artificial intelligence
in particular, researchers have proposed a number of meta-level architectures
to control the cost of base-level reasoning [4, 7, 9, 12, 18]. One promising
approach is to use anytime [3] or flexible [10] algorithms, which allow the
execution time to be specified, either as a parameter or by an interrupt, and
exhibit a time/quality tradeoff defined by a performance profile. They pro-
vide a simple means by which a system can control its deliberation without
significant overhead.

Soon after the introduction of anytime algorithms, it became apparent that their
composition presents a vital, non-trivial problem [3]. We show that modular
composition of anytime algorithms can be achieved, hence the advantages
of anytime algorithms can be extended to the design of complex real-time
systems with many components. In standard algorithms, the fixed quality of
the output allows for composition to be implemented by a simple call-return
mechanism. When algorithms have resource allocation as a degree of freedom,
and can be interrupted at any time, the situation becomes more complex.
Consider the following simple example: a real-time medical expert system
containing a diagnosis component which passes its results to a treatment-
planning component. The following issues arise:

1. How can the individual components be designed as anytime algorithms?

2. How can their performance be described as a function of time and the
nature of the inputs?

3. How does the output quality of the treatment component depend on the
accuracy of the diagnosis it receives?

4. What sort of programming language constructs are needed to specify how
the system is built from its components?

5. For any given amount of time, how should that time be allocated to each
of the components?

6. What if the condition of the patient suddenly requires intervention while
the diagnosis component is still running and no treatment has been con-
sidered?

7. How should the execution of the composite system be managed so as to
optimize overall utility, particularly when the total execution time is not
known in advance?

Approximate Reasoning Using Anytime Algorithms 3

In several publications, particularly [23], we address these issues in some
depth. Here, we sketch our general approach, focusing in particular on the
compilation problem. Given a system composed of anytime algorithms, com-
pilation determines off-line the optimal allocation of time to the components
for any given total allocation. The crucial meta-level knowledge for solving
this problem is kept in the anytime library in the form of conditional perfor-
mance profiles. These profiles characterize the performance of each elementary
anytime algorithm as a function of run-time and input quality.

In Section 2, we define the basic properties of anytime algorithms. We show
how to construct anytime algorithms and how to characterize the trade-off that
they offer between quality of results and computation time. Section 3 explains
the benefits and difficulties involved in the composition of anytime algorithms.
Sections 4 and 5 describe the two main components of our solution to the
composition problem, namely off-line compilation and run-time monitoring.
Section 6 describes briefly two applications of this approach. Finally, in
Section 7, we summarize the benefits of our approach and discusses some
directions for further work in this field.

2 ANYTIME ALGORITHMS

The term “anytime algorithm” was coined by Dean in the late 1980’s in the
context of his work on time-dependent planning. Anytime algorithms are
algorithms whose quality of results improves gradually as computation time
increases, hence they offer a tradeoff between resource consumption and output
quality.

Various metrics can be used to measure the quality of a result produced by an
anytime algorithm. From a pragmatic point of view, it may seem useful to
define a single type of quality measure to be applied to all anytime algorithms.
Such a unifying approach may simplify the meta-level control. However, in
practice, different types of anytime algorithms tend to approach the exact result
in completely different ways. The following metrics have been proved useful
in anytime algorithm construction:

1. Certainty – this metric reflects the degree of certainty that the result is
correct. The degree of certainty can be expressed using probabilities,
certainty factors, or any other approach.

4
���������
	���

2. Accuracy – this metric reflects a measure of the difference between the
approximate result and the exact answer. Many anytime algorithms can
provide a guarantee a bound on the error, where the bound is reduced over
time.

3. Specificity – this metric reflects the level of detail of the result. In this
case, the anytime algorithm always produces correct results, but the level
of detail is increased over time.

Many existing programming techniques produce useful anytime algorithms.
Examples include iterative deepening search, iterative improvement algorithms
in numerical computation, variable precision logic, and randomized techniques
such as Monte Carlo algorithms or fingerprinting algorithms. For a survey of
such programming techniques and examples of algorithms see [23].

The notion of interrupted computation is almost as old as computation itself.
Traditionally, interruption was used primarily for two purposes: aborting the
execution of an algorithm whose results are no longer necessary, or suspend-
ing the execution of an algorithm for a short time because a computation of
higher priority must be performed. Anytime algorithms offer a third type of
interruption: interruption of the execution of an algorithm whose results are
considered “good enough” by their consumer. Similar ideas motivated the
development of the CONCORD system for imprecise computation [15].

2.1 Conditional performance profiles

To allow for efficient meta-level control of anytime algorithms, we characterize
their behavior by conditional performance profiles (CPP) [24]. A conditional
performance profile captures the dependency of output quality on time alloca-
tion as well as on input quality. In [23], the reader can find a detailed discussion
of various types of conditional performance profiles and their representation.
To simplify the discussion of compilation, we will refer only to the expected
CPP that maps computation time and input quality to the expect output quality.

Definition 1 The conditional performance profile (CPP), of an algorithm�
is a function ������� �	��
��������� ������� that maps input quality and

computation time to the expected quality of the results.

Approximate Reasoning Using Anytime Algorithms 5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 1.00 2.00 3.00 4.00 t

q

Figure 1 Graphical representation of a CPP

Figure 1 shows a typical CPP. Each curve represents the expected output quality
as a function of time for a given input quality.

2.2 Interruptible and contract algorithms

In [20] we make an important distinction between two types of anytime al-
gorithms, namely interruptible and contract algorithms. An interruptible al-
gorithm can be interrupted at any time to produce results whose quality is
described by its performance profile. A contract algorithm offers a similar
trade-off between computation time and quality of results, but it must know
the total allocation of time in advance. If interrupted at any point before the
termination of the contract time, it may yield no useful results. Interruptible
algorithms are in many cases more appropriate for the application, but they
are also more complicated to construct. In [20] we show that a simple, gen-
eral construction can produce an interruptible version for any given contract
algorithm. Furthermore, the interruptible algorithm requires at most ��� sec-
onds to produce results of the quality achieved by the contract algorithm in �
seconds, for all � . This theorem allows us to concentrate on the construction of
contract algorithms for complex decision-making tasks and then convert them
into interruptible algorithms using a standard transformation.

6
���������
	���

classify speaker linguistic validity

gender accent

syntax

meaningkeyword

speech recognizer

recognize utterance

Figure 2 A composite module for speech recognition

3 COMPOSING ANYTIME ALGORITHMS

Modularity is widely recognized as an important issue in system design and
implementation. However, the use of anytime algorithms as the components of
a modular system presents a special type of scheduling problem. The question
is how much time to allocate to each component in order to maximize the
output quality of the complete system. We refer to this problem as the anytime
algorithm composition problem.

Consider for example a speech recognition system whose structure is shown
in Figure 2. Each box represents an elementary anytime algorithm whose
conditional performance profile is given. The system is composed of three
main components. First, the speaker is classified in terms of gender and accent.
Then a recognition algorithm suggests several possible matching utterances.
And finally, the linguistic validity of each possible utterance is determined and
the best interpretation is selected. The composition problem is the problem of
calculating how much time to allocate to each elementary component of the
composite system, so as to maximize the quality of the utterance recognition.

Solving the composition problem is important for several reasons. First, it
introduces a new kind of modularity into real-time system development by
allowing for separation between the development of the performance com-
ponents and the optimization of their performance. In traditional design of
real-time systems, the performance components must meet certain time con-
straints that are not always known at design time. The result is a hand-tuning
process that may, or may not, culminate with a working system. Anytime
computation offers an alternative to this approach. By developing perfor-
mance components that are responsive to a wide range of time allocations, one

Approximate Reasoning Using Anytime Algorithms 7

avoids the commitment to a particular performance level that might fail the
system.

The second reason why the composition problem is important relates to the
difficulty of programming with anytime algorithms. To make a composite
system optimal (or even executable), one must control the activation and
interruption of the components. In solving the composition problem, our goal
is to minimize the responsibility of the programmer regarding this optimization
problem. Our solution is described in the following two sections.

4 COMPILATION

Given a system composed of anytime algorithms, the compilation process is
designed to: (a) determine the optimal performance profile of the complete
system; and (b) insert into the composite module the necessary code to achieve
that performance. The precise definition and solution of the problem depend
on the following factors:

1. Composite program structure – what type of programming operators
are used to compose anytime algorithms?

2. Type of performance profiles – what kind of performance profiles are
used to characterize elementary anytime algorithms?

3. Type of anytime algorithms – what type of elementary anytime algo-
rithms are used as input? what type of anytime algorithm should the
resulting system be?

4. Type of monitoring – what type of run-time monitoring is used to activate
and interrupt the execution of the elementary components?

5. Quality of intermediate results – what access does the monitoring com-
ponent have to intermediate results? is the actual quality of an intermediate
result known to the monitor?

Depending on these factors, different types of compilation and monitoring
strategies are needed. To simplify the discussion in this paper, we will con-
sider only the problem of producing contract algorithms when the conditional
performance profiles of the components are given. We will assume that no

8
���������
	���

active monitoring is allowed once the system is activated. A broader, in-depth
analysis of compilation and monitoring can be found in [23].

Let � be a set of anytime functions. Assume that all function parameters are
passed by value and that functions have no side-effects (as in pure functional
programming). Let � be a set of input variables. Then, the notion of a
composite expression is defined as follows:

Definition 2 A composite expression over � with input � is:

1. An expression �������
	�����	�� ��� where ����� is a function of � arguments and
� � 	�����	�� � ��� .

2. An expression ����� � 	�����	�� � � where ����� is a function of � arguments and
each �
 is a composite expression or an input variable.

For example, the expression ��� �!�#"$�%	 ����&���'(����� is a composite expression over) �*	+�,	 �-	�&/. with input
) "0	�'1. . Suppose that each function in � has a con-

ditional performance profile associated with it that specifies the quality of its
output as a function of time allocation to that function and the qualities of its in-
puts. Given a composite expression of size � , the main part of the compilation
process is to determine a mapping:

2 � � �3� ���4	�����	 � ��� (1.1)

This mapping determines for each total allocation, � , the allocation to the
components that maximizes the output quality.

4.1 A compilation example

Let us look first at a simple example of compilation involving only two anytime
algorithms. Suppose that one algorithm takes the input and produces an inter-
mediate result. This result is then used as input to another anytime algorithm
which, in turn, produces the final result. Many systems can be implemented
by a composition of a sequence of two or more algorithms. For example, an
automated repair system can be composed of two algorithms: diagnosis and
treatment. This can be represented in general by the following expression:

5-6
�87 6

�:9 �*; � � �<��=>�?7 6
�����

Approximate Reasoning Using Anytime Algorithms 9

x t−x

1 1
Q Q

Time Time

Figure 3 The performance profiles of ��� and ���

Figure 3 shows the performance profiles of
� � and

�*;
. These performance

profiles are defined by:
� �
� �����	��
������� � � ; � ��������
������� �

Assume that the output quality is the sum of the qualities of
� � and

�*;
and is

expressed by: � ��" ������
��������������
��������! � �"�$# (1.2)

The maximal quality is achieved when %$&% � ��' . In other words:

(� �����$�)�*
 (; �������+ � �,��#��-' (1.3)

The solution of this equation yields the following optimal time allocation
mapping:

2 �����3�
.0/�(�1
 .0/�(; � (;

�(� � (; 	
.2/�(;
 .2/�(��� (� �(� � (; � (1.4)

To complete the compilation process, the compiler needs to insert code in the
original expression for proper activation of

� � and
� ;

as contract algorithms
with the appropriate time allocation. This is done by replacing the simple
function call by an anytime function call [23]. The implementation of an
anytime function call depends on the particular programming environment and
will not be discussed in this paper.

4.2 The complexity of compilation

The compilation problem is defined as an optimization problem, that is, a
problem of finding a schedule of a set of components that yields maximal
output quality. In order to analyze its complexity, it is more convenient to refer
to the decision problem variant of the compilation problem. Given a composite

10
���
� ���
	���

expression � , the conditional performance profiles of its components, and a total
allocation � , the decision problem is whether there exists a schedule of the
components that yields output quality greater than or equal to � . To begin,
consider the general problem of global compilation of composite expressions,
or GCCE. In [23], we prove the following result:

Theorem 3 The GCCE problem is NP-complete in the strong sense.

The proof is based on a reduction from the PARTIALLY ORDERED KNAP-
SACK problem which is known to be NP-complete in the strong sense. The
meaning of this result is that the application of the compilation technique may
be limited to small programs. To address the complexity problem of global
compilation, we have developed an efficient local compilation technique.

4.3 Local compilation

Local compilation is the process of finding the best performance profile of a
module based on the performance profiles of its immediate components. If
those components are not elementary anytime algorithms, then their perfor-
mance profiles are determined using local compilation. Local compilation
replaces the global optimization problem with a set of simpler, local optimiza-
tion problems and reduce the complexity of the whole problem. Unfortu-
nately, local compilation cannot be applied to every composite expression. If
the expression has repeated subexpressions, then computation time should be
allocated only once to evaluate all identical copies. Local compilation can-
not handle such cases. However, the following three assumptions make local
compilation both efficient and optimal [23]:

1. The tree-structured assumption – the input composite expression has
no repeated subexpressions, thus its DAG (directed acyclic graph) repre-
sentation is a tree.

2. The input-monotonicity assumption – the output quality of each module
increases when the quality of the input improves.

3. The bounded-degree assumption – the number of inputs to each module
is bounded by a constant, � .

Approximate Reasoning Using Anytime Algorithms 11

A

B C

D

E

t t

t

t

t

input

output

A

B C

D

E

Figure 4 DAG representation of F

Under these assumptions, local compilation is both efficient and yields optimal
results [23]. The first assumption is needed so that local compilation can be
applied. The second assumption is needed to guarantee the optimality of the
resulting performance profile. And the third assumption is needed to guarantee
the efficiency of local compilation. Using an efficient tabular representation
of performance profiles, we could perform local compilation in constant time
and reduce the overall complexity of compilation to be linear in the size of the
program.

4.4 Repeated subexpressions

While the input-monotonicity and the bounded-degree assumptions are quite
reasonable (and also desirable from a methodological point of view), the tree-
structured assumption is somewhat restrictive. We want to be able to handle
the case of repeated subexpressions. To understand the problem, consider the
following expression:

� ���,��& ���!� ����" ��� 	 ��� ���#"$�������
Figure 4 shows the DAG representation of F. Recall that the purpose of

compilation is to compute a time allocation mapping that specifies for each
input quality and total allocation of time the best apportionment of time to

12
���
� ���
	���

the components so as to maximize the expected quality of the output. But
local compilation is only possible when one can repeatedly break a program
into sub-programs whose execution intervals are disjoint, so that allocating
a certain amount of time to one sub-program does not affect in any way the
evaluation and quality of the other sub-programs. This property does not hold
for DAGs. In the example shown in Figure 4, � and � are the ancestors of & ,
but their time allocations cannot be considered independently since they both
use the same sub-expression, ���#"$� .
To address this problem we have developed a number of approximate compila-
tion techniques that work efficiently on DAGs, but do not guarantee optimality
of the schedule [23]. We have also analyzed the compilation of additional pro-
gramming constructs, such as conditional statements and loops, and derived
compilation techniques for those constructs.

5 RUN-TIME MONITORING

Monitoring plays a central role in anytime computation as it complements
anytime algorithms with a mechanism that determines their run-time. We
have examined the monitoring problem in two types of domains [23]. One
type is characterized by the predictability of utility change over time. High
predictability of utility allows an efficient use of contract algorithms modified
by various strategies for contract adjustment. The second type of domains is
characterized by rapid change and a high level of uncertainty. In such domains,
active monitoring, that schedules interruptible algorithms based on the value
of computation criterion, becomes essential.

Two primary sources of uncertainty affect the operation of real-time intelli-
gent systems. The first source is internal to the system. It is caused by the
unpredictable behavior of the system itself. The second source is external. It
is caused by unpredictable changes in the environment. These two sources of
uncertainty are characterized by two separate knowledge sources. Uncertainty
regarding the performance of the system is characterized by the performance
profile of the system (in particular, we use performance distribution profiles
to represent the probability distribution of quality of results). Uncertainty re-
garding the future state of the environment is characterized by the model of the
environment. Obviously, the type of active monitoring may vary as a function
of the source of uncertainty and the degree of uncertainty. To demonstrate the
operation of active monitoring we consider in this paper only domains that

Approximate Reasoning Using Anytime Algorithms 13

are characterized by non-deterministic rapid change. Medical diagnosis in an
intensive care unit, trading in the stock exchange market, and vehicle control
on a highway are examples of such domains. Since accurate projection into
the future is very limited in such domains, they require interruptible decision
making.

Consider a system whose main decision component is an interruptible any-
time algorithm,

�
. The conditional probabilistic performance profile of the

algorithm is
� � ��� 	 ��� where � is the input quality and � is the time allocation.� � ��� 	 ��� is a probability distribution and

� � ��� 	 ����� �
�� denotes the probability of
output quality ��
 .
Let � be the current state of the domain. Let � � be the state of the domain at
time � . And, let � � represent the quality of the result of the interruptible anytime
algorithm at time � . � � ����	 �%	��<� represents the utility of a result of quality �
in state � at time � . The purpose of the monitor is to maximize the expected
utility by interrupting the main decision procedure at the “right” time. Due to
the high level of uncertainty in rapidly changing domains, the monitor must
constantly assess the value of continued computation by calculating the net
expected gain from continued computation given the current best results and
the current state of the domain. This is done in the following way:

Due to the uncertainty concerning the quality of the result of the algorithm, the
expected utility of the result in a given future state � � at some future time � is
represented by:

�
	� ��� � 	 �������

� � ��� 	 ����� �
 � � � �� � 	 �%	��
 � (1.5)

The probability distribution of future output quality is provided by the perfor-
mance profile of the algorithm. Due to the uncertainty concerning the future
state of the domain, the expected utility of the results at some future time � is
represented by: � 	 	� � ��������� 7 �� � ��� ��� 	� ���	 ��� (1.6)

The probability distribution of the future state of the domain is provided by the
model of the environment.

Finally, the condition for continuing the computation at time � for an additional�
� time units is therefore � 5 ��� ' where:

� 5 �	����	 	� � ��� � ���
��
	 	� � ��� (1.7)

14
���
� ���
	���

Monitoring of interruptible systems can be simplified when it is possible to
separate the value of the results from the time used to generate them. In such
cases, one can express the comprehensive utility function, � � ���	 �%	��<� , as the
difference between two functions:

� � �� � 	 �%	��<����� �-����	��<�
 ����� � ��� ����	 � � � (1.8)

where � � ��� 	��<� is the intrinsic utility function, � is the current state, � � is the
current time, and ����� � � � ��� 	 � � � is the cost of the time interval � ����	 � � . Under this
separability assumption, the intrinsic value of allocating a certain amount of
time � to the interruptible system (resulting in domain state �) is:

� 	� ����	 �������

� � ��� 	 ��� � �
 � � � ���	��
 � (1.9)

Hence, the intrinsic value of allocating a certain time � in the current state is:

� 	 	� � ����� � � 7 ��� � � � � � 	� ��� 	 ��� (1.10)

And the condition for continuing the computation at time � for an additional�
� time units is again � 5 � � ' where:

� 5 �	����	 	� � ��� � ���
 � 	 	� � ���
 ����� � ��� �%	 ��� � � � � (1.11)

We have shown that monitoring interruptible algorithms using the value of
computation criterion is optimal when the intrinsic value function is monoton-
ically increasing and concave down and the time cost function is monotonically
increasing and concave up [23]. This assumption is identical to the assumption
of Dean and Wellman (See [5], Chapter 8, page 364) that performance profiles
have the property of diminishing returns.

6 APPLICATIONS

The advantages of compilation and monitoring of anytime algorithms have
been demonstrated through a number of applications. In this section we briefly
describe two such applications.

6.1 Mobile robot navigation

One of the fundamental problems facing any autonomous mobile robot is
the capability to plan its own motion using noisy sensory data. A simu-

Approximate Reasoning Using Anytime Algorithms 15

IQ 100

IQ 98

IQ 96

IQ 94

IQ 92

IQ 90

IQ 88

IQ 86

0.40

0.50

0.60

0.70

0.80

0.90

0.0 5.0 10.0 15.0 20.0 time (sec)

quality

Figure 5 The CPP of the anytime planner

lated robot navigation system has been developed by composing two anytime
modules [25]. The first module, a vision algorithm, creates a local domain
description whose quality reflects the probability of correctly identifying each
basic position as being free space or an obstacle. The second module, a hierar-
chical planning algorithm, creates a path between the current position and the
goal position. The quality of a plan reflects the ratio between the shortest path
and the path that the robot generates when guided by the plan.

Anytime hierarchical planning is based on performing coarse-to-fine search
that allows the algorithm to find quickly a low quality plan and then repeatedly
refine it by replanning a segment of the plan in more detail. Hierarchical
planning is complemented by an execution architecture that allows for the
execution of abstract plans – regardless of their arbitrary level of detail. This
is made possible by using plans as advice that directs the base level execu-
tion mechanism but does not fully specify a particular behavior. In practice,
uncertainty makes it impossible to use plans except as a guidance mechanism.

The conditional performance profile of the hierarchical planner is shown in
Figure 5. Each curve shows the expected plan quality as a function of run-time
for a particular quality of the vision module. Finally, an active monitoring
scheme was developed to use the compiled performance profile of this system

16
���
� ���
	���

and the time-dependent utility function of the robot in order to allocate time to
vision and planning so as to maximize overall utility.

One interesting observation of this experiment was that the anytime abstract
planning algorithm produced high quality results (approx. 10% longer than the
optimal path) with time allocation that was less than 30% of the total run-time
of a standard search algorithm. This shows that the flexibility of anytime
algorithms does not necessarily require a compromise in overall performance.

6.2 Model-based diagnosis

Model-based diagnostic methods identify defective components in a system
by a series of tests and probes. Advice on informative probes and tests is
given using diagnostic hypotheses that are based on observations and a model
of the system. The goal of model-based diagnosis is to locate the defective
components using a small number of probes and tests.

The General Diagnostic Engine [6] (GDE) is a basic method for model-based
diagnostic reasoning. In GDE, observations and a model of a system are used
in order to derive conflicts (A conflict is a set of components of which at
least one has to be defective). These conflicts are transformed to diagnoses
(A diagnosis is a set of defective components that might explain the deviat-
ing behavior of the system). The process of observing, conflict generation,
transformation to diagnoses, and probe advice is repeated until the defective
components are identified. GDE has a high computational complexity – O(

� �),
where � is the number of components. As a result, its applicability is limited
to small-scale applications. To overcome this difficulty, Bakker and Bourseau
have developed a model-based diagnostic method, called Pragmatic Diagnos-
tic Engine (PDE), whose computational complexity is O(�

;
). PDE is similar

to GDE, except for omitting the stage of generating all diagnoses before deter-
mining the best measurement-point. Probe advice is given on the basis of the
most relevant conflicts, called obvious and semi-obvious conflicts (An obvious
(semi-obvious) conflict is a conflict that is computed using no more than one
(two) observed outputs).

In order to construct a real-time diagnostic system, Pos [17] has applied the
model of compilation of anytime algorithms to the PDE architecture. PDE can
be analyzed as a composition of two anytime modules. In the first module, a
subset of all conflicts is determined. Pos implements this module by a contract
form of breadth-first search. The second module consists of a repeated loop that

Approximate Reasoning Using Anytime Algorithms 17

determines which measurement should be taken next, takes that measurement
and assimilates the new information into the current set of conflicts. Finally,
the resulting diagnoses are reported.

Two versions of the diagnostic system have been implemented: one by con-
structing a contract algorithm and the other by making the contract system
interruptible using our reduction technique. The actual slow down factor of
the interruptible system was approximately 2, much better than the worst case
theoretical ratio of 4.

7 CONCLUSION

We presented a model for meta-level control of approximate reasoning that is
based on compilation and monitoring of anytime algorithms. The technique
has several important advantages that include: (1) simplifying the design
and implementation of complex intelligent systems by separating the design
of the performance components from the optimization of performance; (2)
mechanizing the composition process and the monitoring process; and (3)
constructing machine independent real-time systems that can automatically
adjust resource allocation to yield optimal performance.

The study of anytime computation is a promising and growing field in artificial
intelligence and real-time systems. Some of the primary research directions
in this field include: (1) Extending the scope of compilation by studying
additional programming structures and producing a large library of anytime
algorithms; (2) Extending the scope of anytime computation to include the
two other aspects of intelligent agents, namely sensing and action; and (3)
Developing additional, larger applications that demonstrate the benefits of this
approach. The ultimate goal of this research is to construct robust real-time
systems in which approximate deliberation, perception and action are governed
by a collection of anytime algorithms.

REFERENCES

[1] M. Boddy and T. L. Dean, Solving time-dependent planning problems, In
Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, Detroit, Michigan (1989) 979–984.

18
���
� ���
	���

[2] M. Boddy, Anytime problem solving using dynamic programming, In
Proceedings of the Ninth National Conference on Artificial Intelligence,
Anaheim, California (1991) 738–743.

[3] T. L. Dean and M. Boddy, An analysis of time-dependent planning, In
Proceedings of the Seventh National Conference on Artificial Intelligence,
Minneapolis, Minnesota (1988) 49–54.

[4] T. L. Dean, Intractability and time-dependent planning, In Proceedings of
the 1986 Workshop on Reasoning about Actions and Plans, M. P. Georgeff
and A. L. Lansky, eds., Los Altos, California (Morgan Kaufmann, 1987).

[5] T. L. Dean and M. P. Wellman. Planning and Control. San Mateo,
California (Morgan Kaufmann, 1991).

[6] J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artificial
Intelligence 32 (1987) 97–130.

[7] J. Doyle, Rationality and its roles in reasoning, In Proceedings of
the Eighth National Conference on Artificial Intelligence, Boston, Mas-
sachusetts (1990) 1093–1100.

[8] A. Garvey and V. Lesser, Design-to-time real-time scheduling, In IEEE
Transactions on Systems, Man and Cybernetics, 23(6) (1993).

[9] M. R. Genesereth, An overview of metalevel architectures, In Proceed-
ings of the Third National Conference on Artificial Intelligence, Wash-
ington, D.C. (1983) 119–123.

[10] E. J. Horvitz, Reasoning about beliefs and actions under computational
resource constraints, In Proceedings of the 1987 Workshop on Uncertainty
in Artificial Intelligence, Seattle, Washington (1987).

[11] E. J. Horvitz, H. J. Suermondt and G. F. Cooper, Bounded conditioning:
Flexible inference for decision under scarce resources, In Proceedings
of the 1989 Workshop on Uncertainty in Artificial Intelligence, Windsor,
Ontario (1989) 182–193.

[12] E. J. Horvitz and J. S. Breese, Ideal partition of resources for metar-
easoning, Technical Report KSL-90-26, Stanford Knowledge Systems
Laboratory, Stanford, California (1990).

[13] R. E. Korf, Depth-first iterative-deepening: An optimal admissible tree
search, Artificial Intelligence 27 (1985) 97–109.

Approximate Reasoning Using Anytime Algorithms 19

[14] V. Lesser, J. Pavlin and E. Durfee, Approximate processing in real-time
problem-solving, AI Magazine 9(1) (1988) 49–61.

[15] K. J. Lin, S. Natarajan, J. W. S. Liu and T. Krauskopf, Concord: A system
of imprecise computations, In Proceedings of COMPSAC ’87, Tokyo,
Japan (1987) 75–81.

[16] R. S. Michalski and P. H. Winston, Variable precision logic, Artificial
Intelligence 29(2) (1986) 121–146.

[17] A. Pos, Time-Constrained Model-Based Diagnosis, Master Thesis, De-
partment of Computer Science, University of Twente, The Netherlands
(1993).

[18] S. J. Russell and E. H. Wefald, Principles of metareasoning, In Proceed-
ings of the First International Conference on Principles of Knowledge
Representation and Reasoning, R.J. Brachman et al., eds., San Mateo,
California (Morgan Kaufmann, 1989).

[19] S. J. Russell and E. H. Wefald, Do the Right Thing: Studies in limited
rationality, Cambridge, Massachusetts (MIT Press, 1991).

[20] S. J. Russell and S. Zilberstein, Composing real-time systems, In Pro-
ceedings of the Twelfth International Joint Conference on Artificial Intel-
ligence, Sydney, Australia (1991) 212–217.

[21] H. A. Simon, Models of bounded rationality, Volume 2, Cambridge,
Massachusetts (MIT Press, 1982).

[22] S. V. Vrbsky and J. W. S. Liu, Producing monotonically improving
approximate answers to database queries, In Proceedings of the IEEE
Workshop on Imprecise and Approximate Computation, Phoenix, Arizona
(1992) 72–76.

[23] S. Zilberstein, Operational Rationality through Compilation of Anytime
Algorithms, Ph.D. dissertation, Computer Science Division, University
of California, Berkeley, California (1993).

[24] S. Zilberstein and S. J. Russell, Efficient resource-bounded reasoning in
AT-RALPH, In Proceedings of the First International Conference on AI
Planning Systems, College Park, Maryland (1992) 260–266.

[25] S. Zilberstein and S. J. Russell, Anytime sensing, planning and action: A
practical model for robot control, In Proceedings of the Thirteenth Inter-
national Joint Conference on Artificial Intelligence, Chambery, France
(1993) 1402–1407.

