Real-Time Problem-Solving with Contract Algorithms

Correction of the Proofs of Theorems 2 and 3*

Theorem 2 The minimal acceleration ratio needed to con-
struct an interruptible algorithm from a given contract algo-
rithmisr = 4.

Proof: From Lemma 1 we know that for any sequence of
contracts, X = (z1, z2, ...), r must satisfy:
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From the strict monotonicity of () 4 we get:
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we can write the previous equation as:
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We know that the sequence (g;);>1 is an increasing sequence

of positive numbers, so p, defined as follows:
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satisfies p > 1. From Equation (4) we obtain
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Finally, we deduce that:
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as the function p — ﬁ reaches a minimum of 4 on the

interval (1, +o00) forp=2. O

*We are grateful to Reshef Meir for pointing out the error in the
original proofs.

Theorem 3 The minimal acceleration ratio needed to con-
struct an interruptible algorithm to solve m problem in-
stances with a given contract algorithm is r = (ZELym+1,

Proof: For any sequence of contracts, X = (zx)x>1, 7 must

satisfy:
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From the strict monotonicity of () 4 we get:
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we can write the previous equation as:
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We know that the sequence (91‘)121 is an increasing se-

quence of positive numbers, so p, defined as follows:
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satisfies p > 1. From Equation (8) we obtain
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Finally, we deduce that:
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(1,-+00) when p = ™1 therefore r > (:tlym+1,

The ratio (“£1)™+1 can be obtained by a sequence of con-
tracts defined by a geometric series with run-times being mul-
tiplied by a factor of ’”T'H Thus the best possible acceleration
ratio is r = (=t )m+l O

reaches its minimum on the interval



