
Approximating Reachable Belief Points in POMDPs with Applications to
Robotic Navigation and Localization

Kyle Hollins Wray and Shlomo Zilberstein
College of Information and Computer Sciences

University of Massachusetts, Amherst, MA 01002
{wray,shlomo}@cs.umass.edu

Abstract

We propose an algorithm called σ-approximation that com-
presses the non-zero values of beliefs for partially observable
Markov decision processes (POMDPs) in order to improve
performance and reduce memory usage. Specifically, we
approximate individual belief vectors with a fixed bound
on the number of non-zero values they may contain. We
prove the correctness and a strong error bound when the σ-
approximation is used with the point-based value iteration
(PBVI) family algorithms. An analysis compares the algo-
rithm on six larger domains, varying the number of non-zero
values for the σ-approximation. Results clearly demonstrate
that when the algorithm used with PBVI (σ-PBVI), we can
achieve over an order of magnitude improvement. We ground
our claims with a full robotic implementation for simultane-
ous navigation and localization using POMDPs with σ-PBVI.

Introduction
Automated planning domains have been steadily growing in
complexity, especially for partially observable Markov de-
cision processes (POMDPs) (Kaelbling, Littman, and Cas-
sandra 1998). They now encapsulate problems ranging from
water reservoir control (Castelletti, Pianosi, and Soncini-
Sessa 2008) to autonomous driving (Wray and Zilberstein
2015a; Wray, Pineda, and Zilberstein 2016). The growing
number of possible states and observations in these problem
domains requires POMDP solvers to handle a large space of
agent’s beliefs over domain states. The complexity of plan-
ning has inspired the development of numerous approximate
planning algorithms.

One approximation method that proved particularly effec-
tive is point-based value iteration (PBVI) (Pineau, Gordon,
and Thrun 2003), which restricts value function computa-
tions to a subset of the belief space, thereby accelerating
value iteration techniques (Smith and Simmons 2004; Spaan
and Vlassis 2005; Pineau, Gordon, and Thrun 2006; Shani,
Brafman, and Shimony 2007; Poupart, Kim, and Kim 2011;
Shani, Pineau, and Kaplow 2013). We propose an algorithm
called σ-approximation that exploits a bounded quantity of
zero-values over the set of beliefs to greatly improve belief
operations in POMDP algorithms.

The σ-approximation method addresses an orthogonal
issue from PBVI; both methods can, in fact, be used together
or separately. PBVI concerns itself with the number of

Figure 1: Example POMDP navigation in a real world
laboratory map (2914 states; „28m-by-8.8m). The black
circle is the robot. Gray and black cells are free space and
obstacles, respectively. Blue and white cells visually depict
a single belief point; their opacity is a log-probability of the
robot’s location. Blue highlights the top k“3 probability
masses in the belief. For planning, the σ-approximation uses
the fixed top k weights for each belief.

reachable beliefs and the selection of an approximate subset.
Our algorithm focuses on the number of non-zero values
within each belief point. Specifically, we construct a new
set of beliefs to use for updates given a non-zero value
constraint rz (e.g., rz« logn, where n is the number of
states). For each belief, we sort the belief values and select
only the top rz values, then normalize these values to create
a new belief. These are then used in update equations,
allowing for dot products with beliefs to be computed much
faster based on this constraint rz . We formally show that
this simple routine is the optimal projection given the rz
constraint. Then, we prove a strong bound on the error
for the σ-approximation used in point-based algorithms.
Finally, we demonstrate its vast performance gains with low
error in six larger domains.

To our knowledge, this is a new form of belief compres-
sion for POMDPs, with theoretical guarantees in conjunc-
tion with PBVI. A similar method was briefly suggested for
the separate Bayes-adaptive POMDP model (Ross, Chaib-
draa, and Pineau 2008). They did not, however, provide
any theoretical or empirical analysis, nor the general algo-
rithm presented here. Value directed belief state compres-
sion (Poupart and Boutilier 2003) performs intelligent state
space compression to only discard (mostly) irrelevant parts
of the belief state, yielding the smallest invariant Krylov
subspace. They use a distinct linear lossy compression
method that approximates the original POMDP. Exponential

family principle components analysis (E-PCA) has also
been used to compress beliefs into a low-dimensional belief
space (Roy, Gordon, and Thrun 2005). They instead solve
the compressed POMDP, then map the policy back to the
original POMDP. This operates over all beliefs at once,
whereas ours operates on individual beliefs. Both compres-
sion methods and their numerous variants differ markedly
from our fixed non-zero values, sort-based algorithm.

The σ-approximation exploits sparse beliefs. While few
algorithms leverage this fact, such as sparse stochastic finite
state controllers (Hansen 2008), it has been suggested as a
measure of POMDP complexity (Lee, Rong, and Hsu 2008).
Other related work includes algebraic decision diagrams
(ADDs) used to solve large factored POMDPs, and approx-
imate belief points in the process (Shani et al. 2008), albeit
in a very different manner from our approach.

Our paper begins with a review of the POMDP model
(Section 2), followed by our σ-approximation algorithm
(Section 3). Additionally, we present two main propositions
(correctness and an error bound) as well as two supporting
lemmas. Then, we present experiments on standard bench-
mark domains, and a full robot implementation for naviga-
tion and localization, that demonstrate our approximation
vastly improves performance with minor error (Section 4).
We conclude with a discussion of our approach and potential
future work (Section 5).

Background
A partially observable Markov decision process (POMDP)
is represented by a tuple xS,A,Ω,T,O,Ry. S is a set
of n states, A is a set of m actions, and Ω is a set of
z observations. T :SˆAˆSÑr0,1s is a state transition
function mapping a state s and action a to a successor state
s1 with probability T ps,a,s1q”Prps1|s,aq. It is common in
practice, however, to define T with a successor function that
returns only the non-zero valued successor states and their
probabilities. Let the maximum number of possible succes-
sor states be denoted as nsďn. O :AˆSˆΩÑr0,1s is an
observation function that stochastically emits an observation
ω given action a led to state s1 with probabilityOpa,s1,ωq”
Prpω|a,s1q. R :SˆAÑR is a reward function, denoted
Rps,aq for state s and action a.

The agent does not necessarily know the true state of the
POMDP at any given time. Instead noisy observations are
made and the agent is able to maintain a belief over the
true state. We denote a set of r beliefs as BĎ4n, with
4n denoting the standard n-simplex. The agent updates a
current belief bPB after taking an action a and making an
observation ω to a new belief b1 for a state sPS following:

b1ps1|b,a,ωq“ηOpa,s1,ωq
ÿ

sPS

T ps,a,s1qbpsq (1)

with normalization constant η“Prpω|b,aq´1. Importantly,
let rz denote the maximum number of non-zero values over
all belief vectors bPB.

Agents operate for a number of discrete time steps called
the horizon hPN. The agent’s reward is reduced by a dis-
count factor γ Pp0,1q per time step. Infinite horizon (h“8)

POMDPs can often be approximated by some finite horizon.
A policy π :BÑA describes how the agent acts based on its
beliefs. We also define the value function V :BÑR as the
expected reward at each belief, which is piece-wise linear
and convex in this space (Lovejoy 1991). This fact enables
us to represent the value function as a collection of α-vectors
Γ“tα1, . . . ,αxu with each αi“rV ps1q, . . . ,V psnqs

T and
V psjq denoting the value of state sj . We record a policy
by marking an action with each α-vector, so we have the
compact notation: V pbq“α ¨b and πpbq“aα PA.

Point-Based Solution Methods
Point-based value iteration (PBVI) (Pineau, Gordon, and
Thrun 2003) and other belief point-based approaches, such
as heuristic search value iteration (HSVI2) (Smith and
Simmons 2004) and Perseus (Spaan and Vlassis 2005), do
not expand all reachable beliefs from an initial seed belief.
Instead, they operate on a different set (e.g., a subset) to
avoid the exponential growth of reachable beliefs over the
horizon. In PBVI, we have an initial expand step (denoted
as expandp¨q in Algorithm 1) which produces a set of
beliefs BĎ4n. Then, we apply value iteration over these
beliefs, producing α-vectors at each time step t denoted as
Γt. Formally, this procedure is applied h times (denoted as
updatep¨q in Algorithm 1), given Γt´1, to produce Γt, is
given by:

Γtaω“trV
t
s1aωα, . . . ,V

t
snaωαs

T ,@αPΓt´1u, @aPA,ωPΩ

Γtb“tra`
ÿ

ωPΩ

argmax
αPΓt

aω

α ¨b,@aPAu, @bPB

Γt“targmax
αPΓt

b

α ¨b,@bPBu

with variables V tsaωα“γ
ř

s1PSOpa,s
1,ωqT ps,a,s1qαps1q,

ra“
ř

sPS bpsqRps,aq, and initial α-vectors be αpsq“
R{p1´γq, for all sPS, with R“minsPSminaPARps,aq
guaranteeing α-vectors increase (Lovejoy 1991).

The σ-Approximation Method
Our inspiration comes from the realization that: (1) belief
dot products are nested throughout PBVI and other algo-
rithms, (2) zero-multiplied values may be skipped, (3) a sim-
ilar definition of ns for beliefs might be exploitable, and (4)
there is a significant performance improvement in practice
when rz!n as opposed to rz«n. With these insights, we
designed a variant that can be applied to any belief-based
algorithm that reduces the beliefs from an expand step to be
of size r̂zďrz for use within an update step. For the sake of
clarity, we focus here on PBVI applications only; however,
the algorithm can be easily applied to commonly used value
iteration (VI) methods such as HSVI2 or Perseus in a natural
way. We call this general algorithm the σ-approximation.
For brevity, we denote the use of our algorithm on any point-
based algorithm with the prefix ‘σ’ (e.g., σ-PBVI, σ-HSVI2,
σ-Perseus, etc.). The σ denotes the measure of approxima-
tion, a value that can be computed, with a guarantee that
σPr1{n,1s.

The algorithm separates the true set of beliefs used in
the expand step B from the (approximate) set used in the

update step B̂. Importantly, each expand step continues to
use the true beliefs B. Since our method removes non-zero
beliefs, which are small in belief vectors, if we used B̂ for
expansions, then algorithms that explore reachable beliefs
might never explore the full set of reachable beliefs. By
preserving B for expand, we are able to explore the full
set of reachable beliefs, and then approximate these with a
bounded size of non-zero values for beliefs in B̂ for updates.
Thus, how should we best approximate beliefs inB given the
r̂z constraint?

Optimal Selection in the σ-Approximation
Let bPB be any belief point from the expanded set of beliefs
B. Let N“t1, . . . ,nu. Assume we are given a constraint
r̂zďrz PN that denotes the desired maximum number of
non-zero belief point values in any belief. Let B̂ denote the
approximated beliefs ofB given the r̂z constraint. Formally,
this constraint guarantees that for b̂PB̂:

|tiPN |b̂ią0u|ď r̂z (2)
The σ-approximation operates in the following manner.
For all beliefs bPB, b“rb1, . . . , bnsT . We sort the belief’s
values in Opn lognq time (denoted sortp¨q in Algorithm 1).
Optionally, this is much faster if: (1) we cleverly expand
so the beliefs are already sorted, and/or (2) if we sparsely
store beliefs. Let or :NÑN denote the resulting descending
ordering (rank index) of the belief vector’s indices after
sorting. Let Î“tiPN |orpiqď r̂zu be the reduced set of
indices of only the top r̂z with respect to their probabilities.
We define the new approximate belief b̂, to be added to B̂,
of the original b, for iPN as:

b̂i“

"

bi
σb
, if iP Î

0, otherwise
(3)

with σb“
ř

iPÎ bi. This also ensures Equation 2 holds. We let
σ“minbPB σb denote the overall worst-case approximation
error using our method. Interestingly, the definition of Î
implies that the worst-case approximation error is bounded
to an interval σPr1{n,1s. This only arises with r̂z“1 and a
uniform belief b. The procedure is shown in Algorithm 1.

Theoretical Analysis of the σ-Approximation
First, we prove in Proposition 1 that the σ-approximation
algorithm yielding b̂ from Equation 3 returns the correct
optimal approximate belief given the fixed r̂z .
Proposition 1 (Correctness). For belief bP4n and r̂z PN ,
for all other beliefs b1 P4n with the same r̂z constraint: |tkP
N |b1ką0u|ď r̂z , we have the property that b̂P4n produced
by the σ-approximation:

}b̂´b}1ď}b
1´b}1 (4)

Proof. Assume by contradiction there exists a b1 P4n with
the r̂z constraint (Equation 2) such that }b̂´b}1ą}b1´b}1.
Let K 1“tkPN |b1ką0u. By definition of 1-norm we have:

ÿ

iPÎ

|b̂i´bi|`
ÿ

iRÎ

|bi|ą
ÿ

kPK1

|b1k´bk|`
ÿ

kRK1

|bk|

Algorithm 1 The σ-Approximation Method for basic PBVI.
Require: xS,A,Ω,T,O,Ry: The POMDP.
Require: r̂z: The desired maximum number of non-zero values.
Require: b0: The initial belief.
1: BÐexpandpb0q

2: B̂ÐH
3: for bPB do
4: b̂“r0, . . . ,0sT

5: for iPt1, . . . ,nu do
6: oÐsortpbiq

7: ÎÐtiPN |orpiqď r̂zu

8: b̂iÐ

"

bi
σb
, if iP Î

0, otherwise
9: end for

10: B̂ÐB̂Ytb̂u
11: end for
12: ΓÐupdatepB̂q

By rearranging and the definition of b̂ in Equation 3:
ÿ

iPÎ

ˇ

ˇ

ˇ

bi
σb
´bi

ˇ

ˇ

ˇ
`

ÿ

kPK1

|b1k´bk|ą
ÿ

kRK1

|bk|´
ÿ

iRÎ

|bi|

By Equation 2, Î“tiPN |orpiqď r̂zu, which by the de-
scending ordering or, we guarantee b̂ selected the largest r̂z
values from b. Thus, @XĎN such that |X|ď r̂z ,

ř

iPÎ biě
ř

xPX bx. By rearranging and applying probability normal-
ization requirement:

ř

iRÎ biď
ř

xRX bx. With this fact and
properties of absolute values, we obtain:

ˇ

ˇ

ˇ

1

σb
´1

ˇ

ˇ

ˇ

ÿ

iPÎ

bi´
ÿ

kPK1

|b1k´bk|ą0

By the definition of σb, rearranging, and subadditivity:
ˇ

ˇ

ˇ

1

σb
´1

ˇ

ˇ

ˇ
σbą

ÿ

kPK1

|b1k´bk|ě
ˇ

ˇ

ˇ

ÿ

kPK1

b1k´bk

ˇ

ˇ

ˇ

By definition of b1 and that probabilities sum to 1:
ˇ

ˇ

ˇ

1

σb
´1

ˇ

ˇ

ˇ
σbą

ˇ

ˇ

ˇ
1´

ÿ

kPK1

bk

ˇ

ˇ

ˇ
“1´

ÿ

kPK1

bk

Rearrange, apply the definitions of Î , K 1, and σb, as well as
the properties of absolute values with σb Pp0,1s to obtain:

1ă
ˇ

ˇ

ˇ

1´σb
σb

ˇ

ˇ

ˇ
σb`

ÿ

kPK1

bkď
ˇ

ˇ

ˇ

1´σb
σb

ˇ

ˇ

ˇ
σb`

ÿ

kPÎ

bk“
1´σb
σb

σb`σb

This implies that 1ă1´σb`σb“1, hence a contradiction
is reached. Therefore, b̂ is optimal following Equation 4.

Next, we would like to know how much error (in terms
of value at a belief) this approximation adds to PBVI and
the other point-based methods. First, Lemma 1 provides an
upper bound on the distance from any approximate belief
b̂PB̂ to an arbitrary belief b1 P4n. Importantly, this bound
is only in terms of the corresponding bPB for which b̂ was
an approximation and σb.

Lemma 1. For any belief b1 P4n, and belief b̂P4n pro-
duced by the σ-approximation of belief bPB, we have:

}b1´ b̂}1ď}b
1´b}1`2p1´σbq (5)

Proof. Take any belief b1 P4n and σ-approximate belief
b̂P4n for belief bPB. We apply the triangle inequality
(using bi), the definition of b̂ (Equation 3), rearrange, apply
the definition of σb, and simplify.

}b1´ b̂}1“
n
ÿ

i“1

|b1i´ b̂i|ď
n
ÿ

i“1

|b1i´bi|`
n
ÿ

i“1

|bi´ b̂i|

“}b1´b}1`
ÿ

iPÎ

ˇ

ˇ

ˇ
bi´

bi
σb

ˇ

ˇ

ˇ
`
ÿ

iRÎ

|bi|

“}b1´b}1`
ˇ

ˇ

ˇ
1´

1

σb

ˇ

ˇ

ˇ

ÿ

iPÎ

|bi|`p1´σbq

“}b1´b}1`
1´σb
σb

σb`p1´σbq

which implies }b1´ b̂}1ď}b1´b}1`2p1´σbq.

We use this result in Lemma 2 and Proposition 2, which
proves a bound on σ-PBVI’s value error in terms of the den-
sity of the original belief points δB“maxb1P4n minbPB }b´
b1}1 (Pineau, Gordon, and Thrun 2003) and the worst-
case approximation error σ. The bound also utilizes R“
maxs,aRps,aq and R“mins,aRps,aq. Importantly, this
proof extends the original by Pineau et al. (Pineau, Gordon,
and Thrun 2003) and contains components of it.
Lemma 2 (σ-PBVI One Step Error Bound). The error ε
introduced in σ-PBVI when performing one iteration of
value backup over B̂ instead of B or 4n, is bounded by:

εď
R´R

1´γ
pδB`2p1´σqq (6)

Proof. We start with the belief b1 P4n that had the largest
error after a σ-PBVI update, and the closest b̂PB̂ (which σ-
approximates belief bPB) to b1 via a 1-norm, with maximal
α-vector α1 for b1 and would be maximal α-vector α̂ at b̂.
εďα1b1´ α̂b1ď}α1´ α̂}8}b

1´ b̂}1 By Pineau et al.

ď}α1´ α̂}8p}b
1´b}1`2p1´σbqq By Lemma 1

ď
R´R

1´γ
pδB`2p1´σbqq By Pineau et al.

ď
R´R

1´γ
pδB`2p1´σqq By σ“min

bPB
σb

Proposition 2 (σ-PBVI Error Bound). For any set of beliefs
BĎ4n, σ-approximation B̂ of B, and horizon t, the error
of the σ-PBVI algorithm εt“}V

B̂
t ´V

˚
t }8 is bounded by:

εtď
R´R

p1´γq2
pδB`2p1´σqq (7)

with V B̂t and V ˚t denoting the estimate and optimal value
functions, respectively.

Proof. Again by Pineau et al. we have the error εt at time t
bounded as:

εtď}H̃V
B̂
t´1´HV

B̂
t´1}8`γet´1 By Pineau et al.

ď
R´R

1´γ
pδB`2p1´σqq`γet´1 By Lemma 2

ď
R´R

p1´γq2
pδB`2p1´σqq By geometric series

with H̃ and H above above denoting the PBVI and exact
update operators, respectively. Note that σ-PBVI has the
same value update operator just on a different belief set.

An interesting facet of this bound is the relation between
δB and 2p1´σq. Since beliefs are probabilities, δB Pr0,2s.
Similarly, σPr1{n,1s implies the other term is on the same
range 2p1´σqPr0,2pn´1q{nsÑr0,2s as nÑ8. We call
this term the σ-error. Both also measure an approximation
and are orthogonal considerations. In other words, one could
have dense beliefs with high σ-error (σ-VI), sparse beliefs
with low σ-error (PBVI), sparse beliefs and high σ-error (σ-
PBVI), or dense beliefs and low σ-error (VI).

The best-case scenario that will yield the largest perfor-
mance gains using our σ-approximation consists of domains
in which beliefs are almost all collapsed to a few states,
but have a lot of very small spread out beliefs over other
states. The σ-approximation will then replace these beliefs
and efficiently perform updates on most of the denser parts
of the belief vector’s space.

The theoretical complexity of our PBVI’s update equation
is Opn2mzr2q in the worst case with ns“ r̂z“rz“n. In
comparison, the σ-approximation has a reduced complexity
of Opmzrnpn`rr̂zqq in the worst case with ns“n. Note
that the absolute worst-case cost of sorting, Oprn lognq,
is greatly overshadowed by the update cost. Additionally,
this reduces memory requirements. PBVI requires Oprnq
space to store all belief points, whereas σ-PBVI requires
Oprr̂zq. While this may not seem like much for smaller
problems, larger problems can have beliefs that are spread
out over many states. Thus, we can approximate large belief
vectors with the σ-approximation, while maintaining the
original size of smaller ones. This largely preserves the
accuracy of PBVI with a minor modification that vastly
improves overall runtime performance, especially if r̂z«?
n or r̂z« logn. This observation is empirically supported

by our experiments, described in the next section.
Furthermore, parallel implementations of PBVI (multi-

core CPU, GPU, or cluster) eliminate the major bottle-
neck: number of belief points r (Shani 2010; Wray and
Zilberstein 2015b). With ns!n, one of the remaining major
bottleneck variable becomes rz , which a parallelized σ-
PBVI addresses. Finally, communication overhead is one of
the biggest factors for parallel algorithms, particularly on
clusters. σ-PBVI enables belief points to be transferred over
a network on a cluster much faster because of its tunable
bounded memory size Oprr̂zq.

Domain PBVI σ-PBVI
r̂z“rz r̂z“rrz{3s r̂z“rrz{10s r̂z“rrz{30s

Name n m z r ns rz T V pb0q σ T V pb0q σ T V pb0q σ T V pb0q σ

Aloha-10 30 9 3 64 25 10 1.3 106.0 1.0 0.6 105.8 0.64 0.3 101.1 0.36 0.18 98.3 0.18
Aloha-30 90 29 3 128 27 30 82.0 787.4 1.0 34.4 787.3 0.83 13.5 784.5 0.38 7.6 769.1 0.19
Fourth 1052 4 28 256 3 1052 186.4 -60.5 1.0 187.3 -60.5 1.00 183.4 -60.5 1.00 87.3 -60.5 1.00
Hallway2 92 5 17 128 88 88 80.6 0.28 1.0 25.4 0.26 0.34 7.9 0.23 0.10 3.3 0.16 0.03
Rock Sam. 12545 13 2 512 1 256 142.0 -147.1 1.0 71.9 -148.0 0.34 50.2 -145.3 0.10 42.7 -146.9 0.04
Tag 870 5 30 256 5 841 158.7 -25.8 1.0 131.4 -27.7 0.33 131.9 -30.6 0.10 118.8 -30.2 0.03
Tiger Grid 36 5 17 64 5 36 5.04 -0.79 1.0 2.32 -1.06 0.99 0.85 -1.09 0.78 0.48 -1.11 0.69

Table 1: Computation time T (in seconds) for h“50, initial belief’s value V pb0q, and σ averaged over 10 trials for each domain.

Experimentation
We begin with a comparison of σ-PBVI over six standard
POMDP benchmark domains, varying the levels of the
approximation. Then, we experiment with σ-approximation
on a real robot performing simultaneous navigation and
localization.

Performance of σ-Approximation on Benchmarks
We implement σ-PBVI to investigate its performance im-
provements and solution quality. Table 1 shows the results
over six larger well-known domains using ranges of r̂z
values. In particular, we compute the base rz without our
σ-approximation, then vary r̂z to be rz , rz{3, rz{10, and
rz{30. Importantly, this version of PBVI is already much
more efficient than a naive implementation that stores all n
probabilities for each belief point, even with r̂z“rz .

Aloha-30, Hallway2, and Tiger Grid all obtain over an
order of magnitude improvement. Even the largest domain,
Rock Sample (7x8), results in over three times improvement
with almost zero error in value V pb0q. Results can be further
improved by the user, in terms of time or quality, using the
tunable parameter r̂z .

Overall, there is a clear trend that larger domains benefit
more from this than smaller domains. This is due in part
to large spread out belief vectors being relatively rare after
expand steps; most reachable beliefs in large domains are
actually dense with a few near-zero belief values. Thus,
these introduce very small overall error when approximated
with smaller belief vectors. Additionally, more complex
expand steps (e.g., PEMA) might improve the standard
PBVI beliefs, but recall that we are still σ-approximating
those beliefs. Thus, the σ-approximation result will also
further improve. In summary, our σ-approximation worked
well in large domains, introducing low error for greatly
reduced computation time.

Application to Robotic Navigation and Localization
We construct a real robotic navigation and localization
experiment similar to those found in the few previous real
applications of POMDPs (Brooks et al. 2006; Spaan and
Vlassis 2004; Pineau et al. 2003). Here, we define a 56 state
POMDP: an 8-by-7 abstracted grid. There are 9 actions: all
8 neighboring cells and a stop action. Furthermore, there
are 2 observations: “bump” or “no bump”. Note that this
results in the POMDP’s actions and observations allowing

for both navigation and localization. The probability of
successful forward motion is 0.9, with a slight uniform
chance of deviating left and right, as well as not moving.
The probability of observing a “bump” is proportional to
the average number of obstacles over all possible successor
states. The reward is a small -0.05 for non-goal states and 0.0
for the goal. Belief is therefore over the location of the robot
as it moves around the world. We assign the initial beliefs
to be collapsed with 1.0 probability mass over each state
and perform original PBVI expansions afterward selecting
maximally “distinct” beliefs (Pineau, Gordon, and Thrun
2003). The σ-approximation is applied on these beliefs.

Figure 2 shows the real world execution of σ-PBVI (k“
4) and PBVI in a maze on a robot platform: the base Kobuki
made by Yujin Robot Co., Ltd. with an Nvidia Jetson TX1
made by Nvidia Corporation. As we observe, the actual real-
world performance (i.e., the paths and actions taken by the
robot shown in Figure 2) is almost the same between σ-
PBVI and PBVI. The maze itself was designed to spread
belief over the straight “hallways” prior to entering each
“room”. In practice, the belief spreads out over much more
than k“4 states; however, as observed, the final perfor-
mance is quite similar.

Conclusion
We provide an approximation algorithm that compresses
the non-zero values in belief vectors, solving larger prob-
lems faster with bounded additional error. We provide two
propositions, and two related lemmas, proving that our
σ-approximation is optimal and has bounded error. This
is demonstrated in our experiments on six standard do-
mains. Additionally, we implement a POMDP on a real
robot in a simultaneous navigation and localization domain,
comparing σ-PBVI and PBVI, showing only minor policy
differences.

The main contribution of the σ-approximation its appli-
cability to all algorithms that operates over beliefs. We en-
vision its use in many other algorithms beyond σ-PBVI, in-
cluding σ-HSVI2 and σ-Perseus. Also, the σ-approximation
is much simpler to implement over other approaches, such
as value directed belief state compression (Poupart and
Boutilier 2003) or E-PCA methods (Roy, Gordon, and Thrun
2005). We plan to explore broader use of σ-approximation
in future work with this foundation established. Finally, we
will provide our source code so that others could easily build
faster approximate POMDP solvers.

Figure 2: Demonstration of our σ-approximation used on a real robot. Each column of images denotes the ROS output (top) and
corresponding real world pictures for σ-PBVI (middle) and normal PBVI (bottom) over time (left to right). The black circle is
the robot. Blue and white denote log-probability belief regarding the robot’s physical location. Blue visually highlights only the
top three highest weights for reference. The red line denotes the σ-PBVI path. The green line denotes the normal PBVI path.
(Both paths are from odometry.) The start and goal are marked as “S” and “G”, respectively. Note the localization attempts in
the paths in which the robot intentionally “bumps” the wall to confirm its location and collapse belief.

Acknowledgments We thank the reviewers for their help-
ful comments. Also, we thank Dirk Ruiken and Samer
Nashed for their help with our robot in the experiments.

References
Brooks, A.; Makarenko, A.; Williams, S.; and Durrant-
Whyte, H. 2006. Parametric POMDPs for planning in
continuous state spaces. Robotics and Autonomous Systems
54(11):887–897.
Castelletti, A.; Pianosi, F.; and Soncini-Sessa, R. 2008.
Water reservoir control under economic, social and environ-
mental constraints. Automatica 44(6):1595–1607.
Hansen, E. 2008. Sparse stochastic finite-state controllers
for POMDPs. In Proceedings of the 24th Conference Annual
Conference on Uncertainty in Artificial Intelligence (UAI),
256–263.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R.
1998. Planning and acting in partially observable stochastic
domains. Artificial Intelligence 101(1):99–134.

Lee, W. S.; Rong, N.; and Hsu, D. J. 2008. What
makes some POMDP problems easy to approximate? In
Proceedings of Advances in Neural Information Processing
Systems 20 (NIPS), 689–696.
Lovejoy, W. S. 1991. Computationally feasible bounds for
partially observed Markov decision processes. Operations
Research 39(1):162–175.
Pineau, J.; Montemerlo, M.; Pollack, M.; Roy, N.; and
Thrun, S. 2003. Towards robotic assistants in nursing
homes: Challenges and results. Robotics and Autonomous
Systems 42(3):271–281.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In
Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI), volume 3, 1025–1032.
Pineau, J.; Gordon, G.; and Thrun, S. 2006. Anytime
point-based approximations for large POMDPs. Journal of
Artificial Intelligence Research 27:335–380.
Poupart, P., and Boutilier, C. 2003. Value-directed compres-

sion of POMDPs. In Proceedings of Advances in Neural
Information Processing Systems 15 (NIPS), 1579–1586.
Poupart, P.; Kim, K.; and Kim, D. 2011. Closing the gap:
Improved bounds on optimal POMDP solutions. In Pro-
ceedings of the 21st International Conference on Automated
Planning and Scheduling (ICAPS), 194–201.
Ross, S.; Chaib-draa, B.; and Pineau, J. 2008. Bayes-
adaptive POMDPs. In Proceedings of Advances in Neural
Information Processing Systems 20 (NIPS). 1225–1232.
Roy, N.; Gordon, G. J.; and Thrun, S. 2005. Finding
approximate POMDP solutions through belief compression.
Journal of Artificial Intelligence Research (JAIR) 23:1–40.
Shani, G.; Poupart, P.; Brafman, R. I.; and Shimony, S. E.
2008. Efficient ADD operations for point-based algorithms.
In Proceedings of the 18th International Conference on
Automated Planning and Scheduling (ICAPS), 330–337.
Shani, G.; Brafman, R. I.; and Shimony, S. E. 2007.
Forward search value iteration for POMDPs. In Proceedings
of the 20th International Joint Conference on Artificial
Intelligence (IJCAI), 2619–2624.
Shani, G.; Pineau, J.; and Kaplow, R. 2013. A survey
of point-based POMDP solvers. Autonomous Agents and
Multi-Agent Systems 27(1):1–51.
Shani, G. 2010. Evaluating point-based POMDP solvers on
multicore machines. IEEE Transactions on Systems, Man,
and Cybernetics, Part B 40(4):1062–1074.
Smith, T., and Simmons, R. 2004. Heuristic search
value iteration for POMDPs. In Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence (UAI),
520–527.
Spaan, M. T., and Vlassis, N. 2004. A point-based
POMDP algorithm for robot planning. In Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), volume 3, 2399–2404.
Spaan, M., and Vlassis, N. 2005. Perseus: Randomized
point-based value iteration for POMDPs. Journal of Artifi-
cial Intelligence Research 24:195–220.
Wray, K. H., and Zilberstein, S. 2015a. Multi-objective
POMDPs with lexicographic reward preferences. In Pro-
ceedings of the 24th International Joint Conference of Arti-
ficial Intelligence (IJCAI), 1719–1725.
Wray, K. H., and Zilberstein, S. 2015b. A parallel point-
based POMDP algorithm leveraging GPUs. In AAAI Fall
Symposium on Sequential Decision Making for Intelligent
Agents (SDMIA), 95–96.
Wray, K. H.; Pineda, L.; and Zilberstein, S. 2016. Hierar-
chical approach to transfer of control in semi-autonomous
systems. In Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI), 517–523.

