
Policy Networks for Reasoning in Long-Term Autonomy

Kyle Hollins Wray and Shlomo Zilberstein
College of Information and Computer Sciences, University of Massachusetts, Amherst, MA, USA

Abstract

Policy networks are graphical models that integrate decision-
making models. They allow for multiple Markov decision
processes (MDPs) that describe distinct focused aspects of
a domain to work in harmony to solve a large-scale problem.
This paper presents the formalization of policy networks and
their use in modeling reasoning tasks necessary for scalable
long-term autonomy. We prove that policy networks gener-
alize a wide array of previous models, such as options and
constrained MDPs, which can be equivalently viewed as the
integration of multiple models. To illustrate the approach, we
apply policy networks to the challenging real world domain
of robotic home health care. We demonstrate the benefits of
policy networks on a real robot and show how they facilitate
scalable integration of multiple decision-making models.

Introduction
Over the past decade, sequential decision-making models
have been increasingly deployed in large-scale domains with
high societal impact, ranging from aircraft collision avoid-
ance (Kochenderfer 2015) to autonomous vehicles (Wray,
Witwicki, and Zilberstein 2017). While these systems have
enjoyed rapid growth, they relied on a fragmented collection
of specialized approaches that combine either multiple ob-
jectives (Altman 1999; Klein et al. 2012) or multiple models
by hierarchical abstraction (Sutton, Precup, and Singh 1999;
Pineau et al. 2003) or by integrating their actions online (Bai
et al. 2015; Wray, Witwicki, and Zilberstein 2017).

Each one of these solutions introduces an important rea-
soning capability, but to support long-term autonomy in the
real world, we increasingly need to integrate multiple capa-
bilities within one system. As Marvin Minsky observed, “the
power of intelligence stems from our vast diversity, not from
any single, perfect principle” (Minsky 1986). It is unlikely
that any single MDP model will suffice. For the sake of scal-
ability and computational efficiency, we need new formal
ways to facilitate the integration of multiple models within
a single agent. To this end, we propose a novel framework
called policy networks that unifies prior approaches, offers
new insights, and provides a solid foundation on which to
build the next generation of large-scale decision models.

We consider a home healthcare robot domain for house-
hold and eldercare scenarios (Pineau et al. 2003). The robot
must perform a wide array of helpful tasks (e.g., medicine
delivery and cleaning), plan safe paths around the house, and
detect falls to call for help as needed (Broadbent et al. 2009)

while operating over a long duration. This domain has many
subproblems, each complex and nuanced, and they are all in-
terrelated as part of the whole solution. Systems of this scale
require an integration of many methods, as they quickly be-
come too large to solve with a single monolithic MDP.

Prior work on integrations of multiple models arose from
disparate ideas, each of which extends the MDP in a par-
ticular way. For hierarchies, a large problem is decomposed
into essentially subtasks (Sutton, Precup, and Singh 1999;
Tao et al. 2009). For multiple objectives, which we show is
related, solutions typically scalarize the objectives into one
or maximize a primary objective subject to constraints (Roi-
jers, Whiteson, and Oliehoek 2014; Klein et al. 2012). For
online solutions with multiple models, each update their
state spaces simultaneously and recommend actions for each
entity in the domain (Kochenderfer 2015; Bai et al. 2015).

While these approaches have been used in modest appli-
cations, it is not clear how they relate or how to combine
them to solve large-scale problems. This knowledge gap
manifests itself by the lack of a unified view across all model
forms, which leaves many questions unanswered. For exam-
ple, how are constrained MDPs (CMDPs) related to options
and can they be combined? What does it mean to perform an
action if it can induce updates in multiple models? How can
multiple models transfer control to one another if their state
and/or action spaces are different? More generally, how can
we create a principled mathematical framework that enables
the integration of multiple models with these concepts?

We propose the notion of a policy network that helps
us begin to answer these questions. It is a graph in which
the vertices denote a set of policies and the edges denote
their dependencies. A set of policies associated with a ver-
tex refers to a state and action space that can be shared or
distinct from any other vertices. A policy constraint edge en-
forces a restriction on a vertex’s set of policies from another
vertex. A policy transition edge defines a state transition in
a vertex’s state space or a transfer of control to another ver-
tex. The objective is to maximize expected reward in the in-
duced hierarchy of constrained semi-Markov decision pro-
cesses following the graph’s dependency structure.

Our primary contributions also form the sections of the
paper: (1) a formal definition of policy networks and their
properties; (2) a theoretical analysis that proves their gen-
erality, encapsulating prior models such as CMDPs and op-
tions; and (3) an implementation of the approach in a home
healthcare robot acting in a real household environment.

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

103

Background
A multi-objective Markov decision process (MOMDP) is de-
fined by �S,A,T,R�. S is a set of states. A is a set of
actions. T :S×A×S→ [0,1] is a state transition such that
T (s,a,s�)=Pr(s�|s,a). R=[R0, . . . ,Rk]

T is a vector of
reward functions such that Ri :S×A→R. A policy may
be stochastic π :S×A→ [0,1] or deterministic π :S→A. Π
refers to any such set of policies. For a stochastic policy
π, infinite horizon objectives, with discount factor γ∈ [0,1),
have a value Vπ :S→Rk+1 for state s defined as:

Vπ(s)=
�

a∈A

π(s,a)
�
R(s,a)+γ

�

s�∈S

T (s,a,s�)V(s�)
�
.

A constrained MDP (CMDP) (Altman 1999) is a MOMDP
with the objective:

maximize V π
0 (s0)

subject to −V π
i (s0)≤ci, ∀i∈{1, . . . ,k} (1)

and given constraints ci∈R. Rewards are commonly treated
as costs Ri=−Ci for each Vi. An optimal policy π∗ obtains
a maximal value V ∗

0 (s
0).

A semi-Markov decision process (SMDP) (Puterman
1994) is an MDP in which control of the system is so-
journ, relinquished to a so-called natural process, defining
distinct decision epochs each with a sojourn time—duration
the agent was not in control. The discrete time SMDP may
be defined by �S,A,T,F,R,ρ�. T :S×A×N×S→ [0,1]
is a state transition that includes the sojourn time τ such
that T (s,a,τ,s�)=Pr(s�|s,a,τ). F :S×A×N→ [0,1] is
the probability mass function (PMF) for the sojourn time
τ such that F (s,a,τ)=Pr(τ |s,a). ρ :S×A×N→R is the
expected reward rate for the sojourn time. For a determinis-
tic policy π, the value V π :S→R is defined as:

V π(s)=R(s,π(s))+
�

s�∈S

∞�

τ=1

γτPr(τ, s�|s,π(s))V π(s�),

with state transition Pr(τ, s�|s,a) and:

R(s,a)=R(s,a)+

∞�

τ �=1

F (s,a,τ �)
τ �−1�

τ=1

ρ(s,a,τ).

Notationally, continuous time SMDPs define F as the cumu-
lative distribution function (CDF) to facilitate its integral and
derivative equations, whereas we equivalently define F as its
PMF to facilitate discrete time equations (Howard 1971).

The options framework (Sutton, Precup, and Singh 1999)
add special actions to an MDP, called options, that execute
a complete policy, performing the actions of the agent un-
til it stochastically returns control. It forms a special type
of discrete time SDMP defined by O={O1, . . . ,Ok} with
Oi=�Ii,πi,βi�. For Markov options, Ii⊆S is a set of ad-
missible initiation states, πi :S→A is a policy, and βi :S→
[0,1] is the probability of terminating the option at each
state. Semi-Markov options are instead defined over histo-
ries H̄—sequences h̄=�s0,a0, s1,a1, . . .�—with πi :H̄→A
and βi :H̄→ [0,1].

An infinite horizon MDP is generalized by both: (1) a
CMDP with no constraints (k=0), and (2) a discrete time
SMDP that immediately returns control (F (s,a,1)=1).

Policy Networks

In general, policy networks are graphs in which vertices de-
note sets of policies for a reward function and edges denote
policy dependences among them. The objective is to capture
the relations among distinct decision-making components to
solve large multi-objective hierarchical problems.

Specifically, a policy network is a sequential decision-
making model defined by a directed graph �V,E�:

• V is a finite set of vertices such that each v∈V denotes
a set of policies Πv for reward Rv :Sv×Av→R; and

• E is a finite set of edges such that each �v,w�=e∈E is:

– policy constraint Πe enforces Πw⊆Πe; and/or

– policy transition Te defines Te :Sv×Av×Sw→ [0,1]
as a partial function equal to Pr(w,s�w|sv,av).

The execution of a policy network operates over discrete
time steps t∈N as a form of Markov reward process. Each
vertex v has a state space Sv and action space Av for its pol-
icy and reward. Both, one, or neither space might be shared
by any number of other vertices—that is, the same random
variable in dynamic Bayesian networks or the same uncer-
tainty or decision nodes influence diagrams. Each unique
state space, say Sv for vertex v, has an initial state s0v∈Sv .

As in (PO)MDPs, to perform an action is simply the act
of conditioning on the action so as to induce an update in
the underlying vertex v’s stochastic process following the
state transition distribution Pr(w,s�w|sv,av). This proba-
bility distribution describes the state transition within the
state space of v (i.e., w=v and s�w=s�v∈Sv) as well as
across other state spaces used by other vertices (i.e., w �=v
and s�w∈Sw). Policy networks require full specification of
Pr(w,s�w|sv,av), via the collection of functions Te. In its
simplest form, if v only transitions to itself by Te=Tvv , then
Te is equivalent to a typical (PO)MDP state transition. Any
induced state transition also induces a reward from Rv .

At each time step, any controller vertex v performs the
action πv(sv)∈Av at their current state sv∈Sv from avail-
able policy πv∈Πv . Actions performed by v may result in a
state transition to a different vertex w’s state space. We call
this a transfer of control, with the controller changing from
v to w who now performs the action πw(sw)∈Aw at their
state sw∈Sw from available policy πw∈Πw. Each policy
network has an initial controller v0∈V .

From an initial controller, we derive a graph describing
the direct constraint or transfer dependencies among two
vertices. Formally, the dependency graph �V,E�� is a di-
rected acyclic graph (DAG) with E�⊆E ensuring all paths
from each vertex lead to the initial controller v0. Generally,
we consider any such DAG that contains a maximal number
of edges E� from E. A common special case is simply the
shortest path tree. Following the dependency graph, we can
denote the ancestors of vertex v as A(v)⊂V , its parents as
P(v)⊆A(v), its descendants as D(v)⊂V , and its children
as C(v)⊆D(v).

104

Hierarchy of Constrained Semi-MDPs
A policy network induces a dependency graph that induces
a hierarchy of constrained semi-Markov decision processes
(CSMDP). Each CSMDP is recursively dependent, starting
at the furthest vertices and ending at the initial controller.

Relative Times In discrete time SMDPs (Puterman 1994),
there are three notions of time which policy networks share.
These are relative to a vertex v, but subscripts will be omit-
ted when it is not ambiguous. First, the natural process
time is denoted by τ ∈N. It refers to the total number of
time steps following the state transitions for v’s CSMDP.
Second, a decision epoch is denoted by t∈N. It refers to a
time interval within the natural process time for v’s CSMDP:
[τ1+ · · ·+τ t,τ1+ · · ·+τ t+1) . Third, a sojourn time is de-
noted by τ t∈N for decision epoch t. It refers to the duration
of a decision epoch. This notation is overloaded, as it refers
to both this duration and the random variable that determines
this duration (F detailed below). In summary, vertex v’s rel-
ative decision epochs are when it is a controller, and its rela-
tive sojourn times are the duration between being in control.

Relative State Let ancestors that share v’s action space
be A(v)={w∈An(v)|Aw=Av}. Only these ancestors can
directly affect v’s state, because if one were to become a
controller then it would perform action, which by definition
would induce state updates in v. Variables which have this
consideration use the same notation, such as sojourn time τ t.

Since each decision epoch’s sojourn time reflects a vertex
v’s perspective on the effects ancestors have on its Markov
reward process, its CSMDP omits the time spent by ances-
tors which do not share its action space. Consequently, the
CSMDP state must consider which relevant ancestor is in
control w∈A(v), its state sw∈Sw, and the vertex’s own
current successor state s�v . Formally, this is defined by sv=
�w,sw, s�v� with all such states denoted as Sv . This space
represents the CSMDP’s states while the natural process—
ancestors of v—is in control.

Relative State Transitions The relative CSMDP stochas-
tic process follows Pr(τ , s|sv,av). It refers to the probabil-
ity that the next decision epoch for v occurs at or before
sojourn time τ and has successor state s�v , with ancestor w’s
state sw, after v had performed action av in state sv .

Additionally, as in discrete time SMDPs, we may write
Pr(τ , s|sv,av)=Fv(sv,av,τ)Tv(sv,av,τ , s) given the so-
journ time distribution following Fv and the state transition
distribution following Tv . Note that as in general SMDPs,
there are equivalent representations of Pr(τ , s|sv,av) using
different definitions of Fv and Tv , which may be used here
as well if desired.

We can compute both Fv(sv,av,τ) and Pr(s|sv,av,τ)
directly by constructing a Markov chain M |S|×|S| from the
policy network and its dependency graph. The former is
computed by marginalization over the Markov chain’s tran-
sitions to states of the form �v,sv, sv�, that is, transition-
ing back to v after sojourn time τ from Mτ . The latter is

computed directly following Mτ , as the τ -th iteration of the
Markov chain determines these probabilities. There are two
important properties regarding Markov chain M . First, as
the state only needs to consider ancestors A(v), all other an-
cestors A(v)−A(v) are summarized by their corresponding
transfer control probabilities. Second, all policy transitions
Te outside of v’s dependency graph are treated as absorbing
states in v’s CSMDP. This naturally captures the construc-
tion of abstractions with collections of subtasks: a subtask’s
goal or terminal states transfer control back to its parent after
it completes the task it was designed to handle.

Relative Rewards The discrete time CSMDP has two re-
wards: (1) immediate reward Rv , and (2) expected reward
gained at rate ρv :Sv×Av×N→R. Specifically, following
SMDPs, ρv(sv,av,τ) is defined as the reward rate at some
sojourn time τ after action av was performed in state sv , but
before the next action is performed. Thus, we have:

ρv(sv,av,τ)=γτ
v

�

s∈S

Rv(s
�
v,πw(sw))Pr(s|sv,av,τ), (2)

with a discount factor γv∈ [0,1). The resulting reward is de-
noted Rv :Sv×Av→R and is written as:

Rv(sv,av)=Rv(sv,av)

+

∞�

τ �=1

Fv(sv,av,τ
�)

τ �−1�

τ=1

ρv(sv,av,τ). (3)

Relative Constraints As this is a constrained SMDP, the
space of available policies used to perform action is re-
stricted by policy constraint edges. Formally, each vertex v
refers to a policy space such as Πv⊆{π :Sv→Av}. This
can be all possible policies or any non-empty subset, such as
in the options framework or CMDPs. Options define Πv=
{πv} as a single fixed policy that is the option itself πv (Sut-
ton, Precup, and Singh 1999). CMDPs define Πv⊂

�
iΠiv

by a restriction in this policy space by each other objective
i’s policy set Πiv that satisfies constant ci (Altman 1999).

In general, the set Πv is defined iteratively, by computing
the policy sets for all ancestors in A(v), ending with v’s own
edge constraint Πvv , if any exists. Formally, Πv ensures:

πv∈Πv⊆Πvv⊆
�

w∈P(v)

Πwv (4)

with v’s final chosen policy being any πv∈Πv , for any Πvv

and Πwv that exist in E.
To focus our discussion, we consider policy constraint

edges Πe in terms of a bound on regret from expected value
(defined in the next section) up to a slack—allowable de-
viation from optimal. Formally, policy constraint edge e=
�v,w� has a slack δvw≥0 such that:

Πvw={π∈Πv|V ∗
w(s

0
w)−V π

w (s0w)≤δe}. (5)
While we focus on CMDPs in this paper, the lexico-

graphic MDP (LMDP) (Wray, Zilberstein, and Mouaddib
2015), LPOMDP (Wray and Zilberstein 2015a), and pos-
sibly other forms of slack (Wray, Kumar, and Zilberstein
2018) can be generalized by policy networks as well. How-
ever, we leave this discussion to future work.

105

Objective Function
The infinite horizon objective of a policy network is de-
fined recursively such that each vertex v’s objective to find a
policy πv∈Πv that maximizes the expected reward starting
from initial state s0v subject to its ancestors:

E
� ∞�

t=0

γt
vRv(s

t
v,πv(s

t
v))

���πv, s
0
v,∀w∈A(v),πw,Πw

�
(6)

with stv denoting the random variable for the state of v at its
decision epoch t generated following the policy network’s
dependency graph state transitions Pr(τ , s|sv,av), and the
stationary ancestor policies πw and policy sets Πw. To fo-
cus the discussion, we consider an infinite horizon; however,
other objectives follow in the natural way.

For a policy πv∈Πv , the value V π
v :Sv→R is the ex-

pected reward at state sv following the Bellman equation:
V π
v (sv)=Rv(sv,πv(sv))

+
�

s∈S

∞�

τ=1

γτPr(τ , s|sv,πv(sv))V
π
v (s�v). (7)

A policy π∗
v ∈Πv is optimal if it obtains the maximal value

V ∗
v . This optimal value can be computed by the Bellman

optimality equation over each state sv:

V ∗
v (sv)= max

av∈Av

�
Rv(sv,av)

+
�

s∈S

∞�

τ=1

γτPr(τ , s|sv,av)V ∗
v (s

�
v)
�
. (8)

Stationarity
For a controller v and its policy set Πv , the chosen policy
πt
v∈Πv for performing actions at time t can remain constant

or vary over time. Formally, if πt
v=πv for all time t, then

we call the vertex’s policy stationary, otherwise it is non-
stationary. In the tradition of MDPs and planning, poli-
cies are commonly stationary. However, even solutions com-
puted offline can have time-varying non-stationary policies.
The holistic perspective policy networks affords a broader
view of stationarity that includes to the behavior of online al-
gorithms as well, which vary their policy over time in online
planning (Ye et al. 2017) and reinforcement learning (Sut-
ton and Barto 1998). The analysis is specific to the online
scenario and therefore we leave this analysis to future work.

Since policy networks relate sets of policies to one an-
other, the set of policies Πt

v at a time t can also remain con-
stant or vary over time. Formally, if Πt

v=Πv for all time t,
then we call the vertex’s policy set stationary, otherwise
it is non-stationary. In a simple MDP or POMDP within
a policy network, the policy set trivially remains constant.
However, in a growing number of online models—such as
MODIA used in autonomous vehicles (Wray, Witwicki, and
Zilberstein 2017)—the set of policies is constantly adjusted
online. While this is easily described in a policy network,
their formal analysis is nuanced and specific to the assump-
tions for each online scenario. For this reason, we leave any
such extensive analysis to future work, favoring a descrip-
tion of one such online model in terms of policy networks to
illustrate the approach.

(a) v (b) v

(c) v w
Πvw (d) v w

Tvw

Twv

(e)

v

w

x

y

Πxv

Πxy

Πyw

TvwTwv (f)
vwi

Πiv

i∈N

Figure 1: Basic examples of the graphical notation used
to represent policy networks, with each v∈V following
some v∼MDP(Sv,Av,Tv,Rv): (a) stationary vertex; (b)
non-stationary vertex; (c) constraint edge; (d) a transfer of
control; (e) a mixture of these previous concepts; and (f)
plate notation denoting a set of N constraints.

Graphical Representation
Policy networks continue the tradition set by probabilistic
graphical models (PGMs) with a clean and powerful graph-
ical representation. This allows for rich complex decision-
making with many objectives and levels of abstraction to be
easily described, analyzed, and implemented.

Figure 1 covers basic policy network notation. Each ver-
tex as v∈V is a circle and each directed edge e∈E as an ar-
row. Edges are directed and denote their policy dependencies
by any relevant variables. For example, policy constraints
are denoted by their policy set Πe and policy transitions are
denoted by their function Te. When it is not ambiguous, it is
suffices to denote parameters instead, such as slack δe or an
options’ initiation set Ie or termination function βe. Vertices
and edges are lowercase; their sets are uppercase. The initial
controllers v0 are denoted by double-lined circles. Station-
ary vertices are filled-in—e.g., solved by offline algorithms.
In contrast, non-stationary vertices which are not filled-in—
e.g., solved by online algorithms. Plate notation may be used
to easily group sets of similarly defined vertices.

Any vertex v which follows a standard MDP, POMDP,
etc. model uses the notation v∼MDP(·), v∼POMDP(·),
etc. in the tradition of PGMs. Intuitively, the “∼” sym-
bol refers to “selecting” a policy from a policy space. This
notation is used for convenience. It completely describes
the vertex’s policy set Π, reward R, and an implicit self-
loop edge with transition T and constraint Π∗—enforcing
only optimal policies, as applicable. Formally, this extra no-
tation means v∼MDP(S,A,T,R) defines v with policies
Π⊆{π :S→A} with reward R :S×A→R. Additionally, it
defines the implicit edge—that is, merely not graphically
drawn—self-looping edge e=�v,v�∈E with policy con-
straint Π⊆Πe=Π∗ and policy transition Te=T . POMDPs
are similarly defined as v∼POMDP(S,A,Ω,T,O,R) since
they are a special form of continuous state MDP called a
belief MDP (Kaelbling, Littman, and Cassandra 1998).

106

v0

v1 · · · vk

c1 ck

vi∼MDP(S,A,T,−Ci)
v0∼MDP(S,A,T,R)

�

vi pj

δvi δpj

Te,Πe

i∈Kv j∈Kp

vi∼POMDP(Sv
i ,A,Ωv

i ,T
v
i ,O

v
i ,R

v
i)

pj ∼POMDP(Sp
j ,A,Ωp

j ,T
p
j ,O

p
j ,R

p
j)

�∼�{π� :{s�}→A},R��

v

oi

Iiβi

Ti

i∈K

v∼MDP(S,A∪O,T,R)
oi∼�{πi},R�

v

wj

TjvTvj

j∈K

v∼SSP(S,A,T,C,s0,sg)
wj ∼POMDP(Sj ,Aj ,Ωj ,Tj ,Oj ,Rj)

(a) CMDP (b) MODIA (c) Options (d) SAS

Figure 2: Four policy networks: (a) a constrained MDP; (b) MODIA; (c) the options framework, traditionally for a reinforcement
learning agent; and (d) semi-autonomous systems, as a macro-action or subtask example.

Theoretical Analysis
We now show the generality of policy networks by prov-
ing that they can encapsulate various models such as the op-
tions framework and CMDPs. Additionally, this section also
serves as a demonstration of the design of policy networks to
provide guidance for how to create them. Proposition 1 be-
gins with a simple but important statement regarding policy
networks’ generality beyond MDPs and POMDPs.

Proposition 1. Policy networks generalize (PO)MDPs.

Proof. For any MDP, we must construct an equivalent policy
network. Let V ={v} with v∼�Π,R�. Let E={e=�v,v�}
with transition Te=T and Πe={π|V ∗(s0)=V π(s0)}.
Thus, Pr(τ , s|s,a)>0 only if τ=1 and Pr(1, s|s,a)=
T (s,a,s�), also implying R(s,a)=R(s,a). Thus, Equa-
tion 7 becomes the MDP Bellman equation.

Next, we consider two related cases of policy constraint
edges: CMDPs and MODIA in Propositions 2 and 3, re-
spectively. Here, constraints limit the space of policies from
parent vertices to a child controller vertex. CMDPs repre-
sent a policy network with a shared both state and action
space, constrained offline with stationary policies. MODIA
represents a policy network with a different state space but
a shared action space—illustrating how performing action
can simultaneously affect many models—constrained online
with non-stationary policy sets.

Proposition 2. Policy networks generalize CMDPs.

Proof. For any CMDP, we must construct an equivalent
policy network. See Figure 2 (a). Let V ={v0, . . . ,vk}
with v0∼MDP(S,A,T,R0), vi∼MDP(S,A,T,−Ci), v0=
v0, and stochastic policies. Let {�vi,v0�}⊂E with Πi0=
{π|V ∗

i (s
0)−V π

i (s0)≤δi} and δi=V ∗
i (s

0)+ci. Thus, the
policy network has the same objective as the CMDP objec-
tive from Equation 1, and Equation 7 equal to the CMDP
Bellman equation.

MODIA (Wray, Witwicki, and Zilberstein 2017) is for au-
tonomous vehicle (AV) decision-making about other enti-
ties: vehicles Kv and pedestrians Kp, analyzed a posteriori.
Multiple POMDP models (i.e., vi and pj) describe each AV-
entity pairwise interaction; each model is solved offline in

isolate, resulting in stationary polices πv
i and πp

j . An execu-
tor � :A∗→A maps any tuple of action recommendations to
a final action performed by the executor. This action updates
the other models resulting in regret; e.g., for i∈Kv regret
is ri=V ∗

i (bi)−Q∗
i (bi,�(a)). Following Wray et al. (2017),

we consider risk-sensitive MODIA with LEAF, which as-
sumes an ordering exists over actions � in terms of safety.
If a riskier action is performed πi(bi)��(a) then the model
i experiences a regret lower bounded by ri≥Q∗

i (bi)−Q.
A so-called LEAF executor that selects the safest action
among the recommendations (i.e., ∀i,�(a)�πi(bi) and ∃j
s.t. �(a)=πj(bj)) minimizes the sum of one step regrets.

Proposition 3. Policy networks generalize MODIA.

Proof. For any MODIA, we must construct an equivalent
policy network. See Figure 2 (b). Let V ={�}∪{vi}∪{pj}
with v0=�. Let each vi∼POMDP(·) and pj∼POMDP(·)
as in the figure with shared A. Let �∼�Π�,R�� for policies
π� :S�→A with trivial state space S�={s�}. Let R�(s�,a)
equal the index of a in the reverse of ordering � over A. Let
{��,��}∪{�vi,��}∪{�pj ,��}⊂E. Let T��(s�, ·, s�)=1 be a
self-loop transition and let Π��={π|V ∗

� (s�)=V π
� (s�)} se-

lect optimal executor policies. Let Π� be a non-stationary
policy set that is defined by its parents’ constraint edges
Πt

i�={π :{s�}→A}|V ∗
i (b

t
i)−Q∗

i (b
t
i,π(s�))<δvi }, with a

similarly defined Πj�, that only allow executor actions with
regret no greater than δvi =V ∗

i (b
t
i)−Q. By construction, the

executor vertex �’s selected policy π∗
� ∈Πt

� at time t maps its
state s� to the safest action among recommendations. This is
identical to the definition of LEAF, and thus minimizes the
sum of one step regrets implicitly through constraints.

Lastly, we consider two related cases of policy transition
edges: the options framework and SAS in Propositions 4
and 5, respectively. Here, transfer of control happens be-
tween parent and child vertices, both online (options) and
offline (SAS). Options represent a policy network with a
shared state space and shared action space, learning on-
line with a non-stationary policy. SAS represents a pol-
icy network with different state space and different action
space—illustrating how how different models can interact—
planning offline with a stationary policies.

107

Proposition 4. Policy networks generalize options.

Proof. For any set of options, we must construct an equiv-
alent policy network. See Figure 2 (c). First, we consider
Markov options. Let V ={v}∪{oi} with v0=v. Let v∼
MDP(S,A∪O,T,R) and for each option Oi=�Ii,πi,βi�
let oi∼�Πi,R� with only the option policy Πi={πi}. As
v is traditionally a reinforcement learning agent, we sim-
ply represent the vertex’s policy as non-stationary. Let
R include the option reward R(s,Oi)=R(s,πi(s)). Let
{�v,oi�}∪{�oi,v�}∪{�oi,oi�}⊂E. Let Tvi(sv,Oi, s

�
i)=

T (sv,πi(sv), s
�
i)[sv∈Ii] transfer control to the option, as

allowed by Ii, using Iverson bracket [·]. Without loss
of generality in MDPs, actions can be defined for each
state A(sv), handling any invalid execution of options in
states. Let Tiv(si,ai, sv)=βi(si)T (si,πi(si), sv) transfer
control back to v stochastically following βi; consequently,
Ti(si,ai, s

�
i)=(1−βi(si))T (si,ai, s

�
i) accounts for βi, too.

Semi-Markov options have a similar structure, except the
shared state space is H̄ instead of S, with v∼MDP(H̄,A∪
O,Tv,Rv) and oi∼�Πi,Rv�. When v is in control, its
transitions T remain at zero time states: Tv(h̄v,a, h̄

�
v)=

T (sv,a,s
�
v)[h̄

�=�s�v�] and Rv(h̄,a)=R(stv,a) for any h̄=
�s0v,a0, . . . ,at−1, stv�, again with Rv(h̄,Oi)=R(stv,πi(s

t
v)).

When options are in control, they transition over time
by simply recording its action πi(s

t
i) and stochastic state

sti to iteratively construct a history embedded in its
state space H̄: Ti(h̄i,a, h̄

�
i)=(1−βi(s

t
i))T (s

t
i,a,s

�
i)[h̄

�=
�s0i , . . . , st−1

i ,a,s�i�]. Lastly, transfer of control is similarly
defined. Let Tvi(h̄v,Oi, h̄

�
i)=T (stv,πi(s

t
v), s

�
i)[s

t
v∈Ii] sim-

ply transfer to the option following Ii. Let Tiv(h̄i,a, h̄v)=
βi(s

t
i)T (s

t
i,a,s

0
v) transfer back to v following βi, with it re-

setting time encoded in the state h̄v for v.
In both cases, the value equation follows the option frame-

work’s discrete time SMDP Bellman equation.

Semi-autonomous systems (SAS) (Wray, Pineda, and Zil-
berstein 2016) model the transfer of control of a single agent
among a group of actors I that control it, such as transfer-
ring control between an AV and a human driver. It is built on
a two-level hierarchy with a stochastic shortest path (SSP)
problem (Bertsekas and Tsitsiklis 1991) reasons about trans-
fer of control success and failure by executing a POMDP.
The SAS state space S=S×I includes the current actor,
and the action space A=A×I includes the desired next
actor. The state transition T :S×A×S→ [0,1] follows the
current actor’s state transition Ti :S×A×S→ [0,1]. How-
ever, if a transfer is attempted at s=�s, i�, we multiply
by ρ :S×I×I→ [0,1] as ρ(s, î, i�)=Pr(i�|s, î) denotes the
probability that the next actor is i� given an attempt to trans-
fer from i to î. For each state-action pair, ρ is computed by
a POMDP in a completely different state and action space
that considers communication messages and belief about the
state of the actor’s preparedness to take control. Its execution
ends in a collapsed absorbing belief state: success bs, failure
bf , or abort ba. A mapping f :{bs, bf , ba}→I must be pro-
vided from these POMDP result states to the next SSP actor.
Given its policy, the probability of reaching these three ab-
sorbing states is computed as ρ for use by the SSP.

Proposition 5. Policy networks generalize SAS.

Proof. For any SAS, we must construct an equivalent policy
network. See Figure 2. Let V ={v}∪{wj} with v∼SSP(·)
and wj∼POMDP(·) as in the figure with distinct state and
action. Without loss of generality and to remain inline with
SAS, an SSP is used, which is akin to an MDP with discount
γ=1, initial state s0, and goal state sg . For each SSP state-
action pair there is a distinct POMDP wj , with K={j∈S×
A|j=�s,a�∧ i �= î}. Let {�v,wj�}∪{�wj ,v�}⊂E. For Tvj

and Tjv , we have the notation j=�s,a�, s=�s, i�, a=�a, î�,
and s�=�s�, i��. First, let Tvj(s,a, b

0
j)=1 be defined for any

i �= î, always executing the corresponding POMDP starting
at its b0j . Second, Tjv has three cases: for each b∈{bsj , bfj , baj }
we have Tjv(b,aj ,s

�)=Ti(s,a,s
�)[f(b)= i�]. Since the ac-

tion spaces are different (A �=Aj), v’s CSMDP summarizes
the state transitions of each wj , resulting in v’s Bellman
equation producing a ρ for each wj . This is identical to the
SAS model. Thus, this policy network produces the same
Bellman equations for the SAS’s SSP and POMDPs.

Evaluation: Home Healthcare Robot
Home healthcare robots serve in household and eldercare
scenarios, providing solutions to a wide array of helpful
tasks ranging from cleaning to medicine delivery (Robin-
son, MacDonald, and Broadbent 2014). Surveys conducted
by Broadbent et al. (2009) analyzed and ranked the desired
tasks the robot could do to help improve the lives of the
elderly. Both elderly people and healthcare staff were sur-
veyed. The top ranked needs include: (1) medicine notifica-
tion and delivery; (2) forms of cleaning the house; and (3)
monitoring, detecting, and helping with falls. We focus on a
robot solution that captures all three.

The few mobile healthcare robots that exist tend to-
wards hand-engineered decision-making systems that work
well for their specific implementation (Graf, Hans, and
Schraft 2004). One of the notable exceptions of a general
model-based approach involves an early form of hierarchi-
cal POMDP (Pineau et al. 2003). They partitioned a single
POMDP’s action space into smaller groups, solving a col-
lection of identical POMDPs with differing reduced action
spaces. While successful, this early seminal work lacked the
generality of a policy network—such handling multiple ob-
jectives in CMDPs, use different models (state and action
spaces), or leverage grounding in SMDPs such as options.

Problem Description Consider a healthcare robot with
a set of high-level tasks it must continuously complete. The
medicate task is selected to complete by the high-level and
requires navigating to the bathroom, retrieving medicine,
finding the patient, and delivering it to them. The clean task
is also selected and requires moving any out-of-place objects
back in place while vacuuming. The monitor task must op-
erate at all times, reactively interrupting any other task, and
requires monitoring and detecting a fall of an elderly person.
If confident in the detection, the robot should check on the
person and autonomously call for the help of a healthcare
professional. The low-level path planning must take special
care to avoid obstacles to safely traverse the house.

108

h �i

ti fi

pij

Thi

Tih
Πe

δti δfi
Tij

Tji

i∈I

j∈J

h∼MDP(Sh,Ah,Th,Rh)
ti∼POMDP(St

i ,A
t
i,Ω

t
i,T

t
i ,O

t
i ,R

t
i)

fi∼POMDP(Sf ,Af ,Ωf ,T f ,Of ,Rf)
�i∼�{π�

i :{s�, sc}→At
i∪Af},R�

i�
pij ∼Harmonic(Sp,Ap,Op,Gp

ij)

Figure 3: The policy network for the home healthcare robot.

Name V |S| |A| |Ω| |Γ| Time
High-Level Task Selector h 16 4 — — <0.1
Medicate Task t1 289 13 5 1224 159.8
Clean Task t2 145 13 3 612 14.0
Fall Monitor/Assist Task fi 2 3 2 22 <0.1
Low-Level Path Planner pij 17766 9 — — 0.92

Table 1: The problem sizes and run times for each model.

Policy Network Solution Figure 3 shows the policy net-
work for the healthcare robot. We provide a description of
each vertex below. Also, Table 1 shows the problem sizes
and results of solving these problems using nova (Wray and
Zilberstein 2015b), with value iteration (VI), point-based VI
(PBVI) (Pineau, Gordon, and Thrun 2006), and harmonic
functions (Wray et al. 2016), for MDP, POMDP, and path
planning models, respectively. PBVI has a policy size de-
noted as |Γ|. Harmonic function path planning (Harmonic(·)
above) is equivalent to a special class of SSP with uniform
state transitions, goals Gp

ij⊂Sp, and cost of 1 for obsta-
cles Op⊂Sp. All source code will be provided for complete
problem descriptions and reproducability.

The high-level task h handles issues I={t1, t2,fi,∅} with
Sh=2I and Ah=I . Let ∅ denote a “complete” or “no-op”
state and action here. The high-level h transfers control by
Thi to the start state of the corresponding task when selected
as an action. Let a set of regions R (e.g., kitchen, bathroom,
and bedroom) be given for the map. The medicate task t1
has St

1=R×R×{Y,N}∪{∅}, denoting region locations
for the robot and the person, as well as if the medicine is
carried or not. At

1=R refer to navigation to a region by the
path planner by Tij and Tji. Ωt

2={Y,N}×{Y,N}∪{∅}
refers to detection of a person or not, holding medicine or
not, and completion. The clean task t2 is similarly defined
with St

2=R×R∪{∅} and A2=R as it searches for a lo-
cation to clean. Ωt

2={Y,N,∅} refers to detection of a per-
son or not and completion. The monitor task fi has state
space Sf ={Y,N} for if the person has fallen and needs
help. Af ={call,ask,∅} denotes calling for help, asking if
the person needs help, and no-op. Ωf ={Y,N} refers to de-
tecting a fall or not. The executor � follows as in a MODIA,
with a preference for call and ask over region navigation
actions R. Tih transfers control back to h when in a task
complete state sc. The path planner pij navigates between
regions J=R×R in the occupancy grid map in Figure 4.

Figure 4: Experiments with the home healthcare robot us-
ing this policy network in the real household shown above.
Three highlights are shown: (1) medicine retrieval for task
t1, (2) medicine delivery completion with transfer t1→h→
t2, and (3) interruption of cleaning task t2 by detecting a fall
with task fi and calling for assistance.

Conclusion
We now revisit the questions posed in the introduction. First,
how are CMDPs related to options and can these two mod-
els be combined? In policy networks, they are different types
of edges between collections of distinct models: policy con-
straints and policy transitions. By simply adding any desired
vertices and corresponding edges, we can easily combine
both ideas, as evident by the previous section. Second, what
does it mean to perform an action? In policy networks, it
means conditioning on an action so as to induce a state up-
date in any models that share the same action space. Third,
how do these operate when the state and/or action spaces are
different? Following the definition of performing an action,
any shared action space induces state updates in the collec-
tion of models, as in options or more generally SMDPs. With
different action spaces, the policies can still affect one an-
other through transfer of control, treated as an abstraction or
macro-action.

Finally, is there a principled mathematical model that en-
ables the integrated design of multiple models with these
concepts? Policy networks serve as an answer to this. They
provide a theoretical model that generalizes select state-
of-the-art models. The implementation shown here demon-
strates they can successfully model and solve a challeng-
ing home healthcare robot domain. In summary, policy net-
works provide a general model for the reasoning component
in real-world systems for long-term autonomy.

109

Acknowledgments
We thank the reviewers for their helpful comments. This re-
search was supported by the National Science Foundation
grant number IIS-1724101.

References
Altman, E. 1999. Constrained Markov decision processes.
England: Chapman & Hall/CRC Press.
Bai, H.; Cai, S.; Ye, N.; Hsu, D.; and Lee, W. S. 2015.
Intention-aware online POMDP planning for autonomous
driving in a crowd. In Proceedings of the IEEE International
Conference on Robotics and Automation, 454–460.
Bertsekas, D. P., and Tsitsiklis, J. N. 1991. An analysis of
stochastic shortest path problems. Mathematics of Opera-
tions Research 16(3):580–595.
Broadbent, E.; Tamagawa, R.; Kerse, N.; Knock, B.; Pa-
tience, A.; and MacDonald, B. 2009. Retirement home staff
and residents’ preferences for healthcare robots. In Proceed-
ings of the 18th IEEE International Symposium on Robot
and Human Interactive Communication, 645–650.
Graf, B.; Hans, M.; and Schraft, R. D. 2004. Care-o-bot
ii—development of a next generation robotic home assistant.
Autonomous Robots 16(2):193–205.
Howard, R. A. 1971. Dynamic Probabilistic Systems: Semi-
Markov and Decision Processes. New York, NY: Wiley.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101(1):99–134.
Klein, L.; young Kwak, J.; Kavulya, G.; Jazizadeh, F.;
Becerik-Gerber, B.; Varakantham, P.; and Tambe, M. 2012.
Coordinating occupant behavior for building energy and
comfort management using multi-agent systems. Automa-
tion in Construction 22:525–536.
Kochenderfer, M. J. 2015. Decision Making Under Uncer-
tainty: Theory and Application. MIT Press.
Minsky, M. 1986. The Society of Mind. New York, NY:
Simon and Schuster.
Pineau, J.; Montemerlo, M.; Pollack, M.; Roy, N.; and
Thrun, S. 2003. Towards robotic assistants in nursing
homes: Challenges and results. Robotics and Autonomous
Systems 42(3):271–281.
Pineau, J.; Gordon, G.; and Thrun, S. 2006. Anytime point-
based approximations for large POMDPs. Journal of Artifi-
cial Intelligence Research 27:335–380.
Puterman, M. L. 1994. Markov decision processes: Discrete
stochastic dynamic programming. New York, NY: John Wi-
ley & Sons.
Robinson, H.; MacDonald, B.; and Broadbent, E. 2014. The
role of healthcare robots for older people at home: A review.
International Journal of Social Robotics 6(4):575–591.
Roijers, D. M.; Whiteson, S.; and Oliehoek, F. A. 2014.
Linear support for multi-objective coordination graphs. In
Proceedings of the 13th International Conference on Au-
tonomous Agents and Multi-Agent Systems, 1297–1304.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction. MIT Press.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial Intelligence 112(1-
2):181–211.
Tao, Y.; Wang, T.; Wei, H.; and Chen, D. 2009. A behav-
ior control method based on hierarchical POMDP for in-
telligent wheelchair. In Proceedings of IEEE/ASME Inter-
national Conference on Advanced Intelligent Mechatronics,
893–898.
Wray, K. H., and Zilberstein, S. 2015a. Multi-objective
POMDPs with lexicographic reward preferences. In Pro-
ceedings of the 24th International Joint Conference on Arti-
ficial Intelligence, 1719–1725.
Wray, K. H., and Zilberstein, S. 2015b. A parallel point-
based POMDP algorithm leveraging GPUs. In Proceedings
of the AAAI Fall Symposium on Sequential Decision Making
for Intelligent Agents, 95–96.
Wray, K. H.; Ruiken, D.; Grupen, R. A.; and Zilberstein,
S. 2016. Log-space harmonic function path planning. In
Proceedings of the 29th IEEE/RSJ International Conference
on Intelligent Robots and Systems, 1511–1516.
Wray, K. H.; Kumar, A.; and Zilberstein, S. 2018. Inte-
grated cooperation and competition in multi-agent decision-
making. In Proceedings of the 32nd AAAI Conference on
Artificial Intelligence, 4751–4758.
Wray, K. H.; Pineda, L.; and Zilberstein, S. 2016. Hier-
archical approach to transfer of control in semi-autonomous
systems. In Proceedings of the 25th International Joint Con-
ference on Artificial Intelligence, 517–523.
Wray, K. H.; Witwicki, S. J.; and Zilberstein, S. 2017. On-
line decision-making for scalable autonomous systems. In
Proceedings of the 26th International Joint Conference on
Artificial Intelligence, 4768–4774.
Wray, K. H.; Zilberstein, S.; and Mouaddib, A.-I. 2015.
Multi-objective MDPs with conditional lexicographic re-
ward preferences. In Proceedings of the 29th AAAI Con-
ference on Artificial Intelligence, 3418–3424.
Ye, N.; Somani, A.; Hsu, D.; and Lee, W. S. 2017. DESPOT:
Online POMDP planning with regularization. Journal of
Artificial Intelligence Research 58:231–266.

110

