
Approximating Reachable Belief Points in POMDPs

Kyle Hollins Wray and Shlomo Zilberstein

Abstract— We propose an algorithm called σ-approximation
that compresses the non-zero values of beliefs for partially
observable Markov decision processes (POMDPs) in order to
improve performance and reduce memory usage. Specifically,
we approximate individual belief vectors with a fixed bound
on the number of non-zero values they may contain. We
prove the correctness and a strong error bound when the
σ-approximation is used with the point-based value iteration
(PBVI) family algorithms. An analysis compares the algorithm
on six larger domains, varying the number of non-zero values
for the σ-approximation. Results clearly demonstrate that when
the algorithm used with PBVI (σ-PBVI), we can achieve over
an order of magnitude improvement. We ground our claims
with a full robotic implementation for simultaneous navigation
and localization using POMDPs with σ-PBVI.

I. INTRODUCTION

Automated planning domains have been steadily growing
in complexity, especially for partially observable Markov
decision processes (POMDPs) [1]. They now encapsulate
problems ranging from water reservoir control [2] to au-
tonomous vehicles [3], [4]. The growing number of possible
states and observations in these problem domains requires
POMDP solvers to handle a large space of agent’s beliefs
over domain states. The complexity of planning has inspired
the development of numerous approximate planning algo-
rithms.

One approximation method that proved particularly ef-
fective is point-based value iteration (PBVI) [5], which
restricts value function computations to a subset of the belief
space, thereby accelerating value iteration techniques [6],
[7], [8], [9], [10], [11]. We propose an algorithm called
σ-approximation that exploits a bounded quantity of zero-
values over the set of beliefs to greatly improve belief
operations in POMDP algorithms.

The σ-approximation method addresses an orthogonal
issue from PBVI; both methods can, in fact, be used together
or separately. PBVI concerns itself with the number of
reachable beliefs and the selection of an approximate subset.
Our algorithm focuses on the number of non-zero values
within each belief point. Specifically, we construct a new set
of beliefs to use for updates given a non-zero value constraint
rz (e.g., rz« logn, where n is the number of states). For
each belief, we sort the belief values and select only the top
rz values, then normalize these values to create a new belief.
These are then used in update equations, allowing for dot

This work was supported in part by NSF (grant IIS-1405550). Any
opinions, findings, and conclusions expressed in this material are those of
the author(s) and do not necessarily reflect the views of the NSF.

College of Information and Computer Sciences, University
of Massachusetts, Amherst, MA 01002, USA. Emails:
{wray,shlomo}@cs.umass.edu

Fig. 1. Example POMDP navigation in a real world laboratory map (2914
states; „28m-by-8.8m). The black circle is the robot. Gray and black cells
are free space and obstacles, respectively. Blue and white cells visually
depict a single belief point; their opacity is a log-probability of the robot’s
location. Blue highlights the top k“3 probability masses in the belief. For
planning, the σ-approximation uses the fixed top k weights for each belief.

products with beliefs to be computed much faster based on
this constraint rz . We formally show that this simple routine
is the optimal projection given the rz constraint. Then, we
prove a strong bound on the error for the σ-approximation
used in point-based algorithms. Finally, we demonstrate its
vast performance gains with low error in six larger domains.

To our knowledge, this is a new form of belief compression
for POMDPs, with theoretical guarantees in conjunction
with PBVI. A similar method was briefly suggested for
the separate Bayes-Adaptive POMDP model [12]. They did
not, however, provide any theoretical or empirical analysis,
nor the general algorithm presented here. Value directed
belief state compression [13] performs intelligent state space
compression to only discard (mostly) irrelevant parts of the
belief state, yielding the smallest invariant Krylov subspace.
They use a distinct linear lossy compression method that
approximates the original POMDP. Exponential family Prin-
ciple Components Analysis (E-PCA) has also been used to
compress beliefs into a low-dimensional belief space [14].
They instead solve the compressed POMDP, then map the
policy back to the original POMDP. This operates over all
beliefs at once, whereas ours operates on individual beliefs.
Both compression methods and their numerous variants
differ markedly from our fixed non-zero values, sort-based
algorithm.

The σ-approximation exploits sparse beliefs. While few
algorithms leverage this fact, such as sparse stochastic finite
state controllers [15], it has been suggested as a measure
of POMDP complexity [16]. Other related work includes
Algebraic Decision Diagrams (ADDs) used to solve large
factored POMDPs, and approximate belief points in the
process [17], albeit in a very different manner from our
approach.

Our paper begins with a review of the POMDP model
(Section 2), followed by our σ-approximation algorithm
(Section 3). Additionally, we present two main propositions

(correctness and an error bound) as well as two supporting
lemmas. Then, we present experiments on standard bench-
mark domains, and a full robot implementation for navigation
and localization, that demonstrate our approximation vastly
improves performance with minor error (Section 4). We
conclude with a discussion of our approach and potential
future work (Section 5).

II. BACKGROUND

A partially observable Markov decision process (POMDP)
is represented by a tuple xS,A,Ω,T,O,Ry. S is a set of
n states, A is a set of m actions, and Ω is a set of
z observations. T :SˆAˆSÑr0,1s is a state transition
function mapping a state s and action a to a successor state
s1 with probability T ps,a,s1q”Prps1|s,aq. It is common in
practice, however, to define T with a successor function that
returns only the non-zero valued successor states and their
probabilities. Let the maximum number of possible successor
states be denoted as nsďn. O :AˆSˆΩÑr0,1s is an
observation function that stochastically emits an observation
ω given action a led to state s1 with probability Opa,s1,ωq”
Prpω|a,s1q. R :SˆAÑR is a reward function, denoted
Rps,aq for state s and action a.

The agent does not necessarily know the true state of the
POMDP at any given time. Instead noisy observations are
made and the agent is able to maintain a belief over the
true state. We denote a set of r beliefs as BĎ4n, with
4n denoting the standard n-simplex. The agent updates a
current belief bPB after taking an action a and making an
observation ω to a new belief b1 for a state sPS following:

b1ps1|b,a,ωq“ηOpa,s1,ωq
ÿ

sPS

T ps,a,s1qbpsq (1)

with normalization constant η“Prpω|b,aq´1. Importantly,
let rz denote the maximum number of non-zero values over
all belief vectors bPB.

Agents operate for a number of discrete time steps called
the horizon hPN. The agent’s reward is reduced by a
discount factor γ Pp0,1q per time step. Infinite horizon (h“
8) POMDPs can often be approximated by some finite
horizon. A policy π :BÑA describes how the agent acts
based on its beliefs. We also define the value function V :
BÑR as the expected reward at each belief, which is piece-
wise linear and convex in this space [18]. This fact enables
us to represent the value function as a collection of α-
vectors Γ“tα1, . . . ,αxu with each αi“rV ps1q, . . . ,V psnqs

T

and V psjq denoting the value of state sj . We record a policy
by marking an action with each α-vector, so we have the
compact notation: V pbq“α ¨b and πpbq“aα PA.

A. Point-Based Solution Methods

Point-based value iteration (PBVI) [5] and other belief
point-based approaches, such as heuristic search value itera-
tion (HSVI2) [6] and Perseus [7], do not expand all reachable
beliefs from an initial seed belief. Instead, they operate on a
different set (e.g., a subset) to avoid the exponential growth
of reachable beliefs over the horizon. In PBVI, we have an

initial expand step (denoted as expandp¨q in Algorithm 1)
which produces a set of beliefs BĎ4n. Then, we apply
value iteration over these beliefs, producing α-vectors at each
time step t denoted as Γt. Formally, this procedure is applied
h times (denoted as updatep¨q in Algorithm 1), given Γt´1,
to produce Γt, is given by:

Γtaω“trV
t
s1aωα, . . . ,V

t
snaωαs

T ,@αPΓt´1u, @aPA,ωPΩ

Γtb“tra`
ÿ

ωPΩ

argmax
αPΓt

aω

α ¨b,@aPAu, @bPB

Γt“targmax
αPΓt

b

α ¨b,@bPBu

with variables V tsaωα“γ
ř

s1PSOpa,s
1,ωqT ps,a,s1qαps1q,

ra“
ř

sPS bpsqRps,aq, and initial α-vectors be αpsq“
R{p1´γq, for all sPS, with R“minsPSminaPARps,aq
guaranteeing α-vectors increase [18].

III. THE σ-APPROXIMATION METHOD

Our inspiration comes from the realization that: (1) belief
dot products are nested throughout PBVI and other algo-
rithms, (2) zero-multiplied values may be skipped, (3) a
similar definition of ns for beliefs might be exploitable,
and (4) there is a significant performance improvement
in practice when rz!n as opposed to rz«n. With these
insights, we designed a variant that can be applied to
any belief-based algorithm that reduces the beliefs from
an expand step to be of size r̂zďrz for use within an
update step. For the sake of clarity, we focus here on
PBVI applications only; however, the algorithm can be easily
applied to commonly used value iteration (VI) methods such
as HSVI2 or Perseus in a natural way. We call this general
algorithm the σ-approximation. For brevity, we denote the
use of our algorithm on any point-based algorithm with the
prefix ‘σ’ (e.g., σ-PBVI, σ-HSVI2, σ-Perseus, etc.). The σ
denotes the measure of approximation, a value that can be
computed, with a guarantee that σPr1{n,1s.

The algorithm separates the true set of beliefs used in
the expand step B from the (approximate) set used in the
update step B̂. Importantly, each expand step continues to
use the true beliefs B. Since our method removes non-zero
beliefs, which are small in belief vectors, if we used B̂ for
expansions, then algorithms that explore reachable beliefs
might never explore the full set of reachable beliefs. By
preserving B for expand, we are able to explore the full
set of reachable beliefs, and then approximate these with a
bounded size of non-zero values for beliefs in B̂ for updates.
Thus, how should we best approximate beliefs in B given the
r̂z constraint?

A. Optimal Selection in the σ-Approximation

Let bPB be any belief point from the expanded set
of beliefs B. Let N“t1, . . . ,nu. Assume we are given a
constraint r̂zďrz PN that denotes the desired maximum
number of non-zero belief point values in any belief. Let B̂

Algorithm 1 The σ-Approximation Method for basic PBVI.
Require: xS,A,Ω,T,O,Ry: The POMDP.
Require: r̂z: The desired maximum number of non-zero values.
Require: b0: The initial belief.

1: BÐexpandpb0q
2: B̂ÐH
3: for bPB do
4: b̂“r0, . . . ,0sT

5: for iPt1, . . . ,nu do
6: oÐsortpbiq
7: ÎÐtiPN |orpiqď r̂zu

8: b̂iÐ

"

bi
σb
, if iP Î

0, otherwise
9: end for

10: B̂ÐB̂Ytb̂u
11: end for
12: ΓÐupdatepB̂q

denote the approximated beliefs of B given the r̂z constraint.
Formally, this constraint guarantees that for b̂PB̂:

|tiPN |b̂ią0u|ď r̂z (2)

The σ-approximation operates in the following manner.
For all beliefs bPB, b“rb1, . . . , bnsT . We sort the belief’s
values in Opn lognq time (denoted sortp¨q in Algorithm 1).
Optionally, this is much faster if: (1) we cleverly expand
so the beliefs are already sorted, and/or (2) if we sparsely
store beliefs. Let or :NÑN denote the resulting descending
ordering (rank index) of the belief vector’s indices after
sorting. Let Î“tiPN |orpiqď r̂zu be the reduced set of
indices of only the top r̂z with respect to their probabilities.
We define the new approximate belief b̂, to be added to B̂,
of the original b, for iPN as:

b̂i“

"

bi
σb
, if iP Î

0, otherwise
(3)

with σb“
ř

iPÎ bi. This also ensures Equation 2 holds. We let
σ“minbPB σb denote the overall worst-case approximation
error using our method. Interestingly, the definition of Î
implies that the worst-case approximation error is bounded
to an interval σPr1{n,1s. This only arises with r̂z“1 and a
uniform belief b. The procedure is shown in Algorithm 1.

B. Theoretical Analysis of the σ-Approximation

First, we prove in Proposition 1 that the σ-approximation
algorithm yielding b̂ from Equation 3 returns the correct
optimal approximate belief given the fixed r̂z .

Proposition 1 (Correctness): For belief bP4n and r̂z P
N , for all other beliefs b1 P4n with the same r̂z constraint:
|tkPN |b1ką0u|ď r̂z , we have the property that b̂P4n pro-
duced by the σ-approximation:

}b̂´b}1ď}b
1´b}1 (4)

Proof: Assume by contradiction there exists a b1 P4n

with the r̂z constraint (Equation 2) such that }b̂´b}1ą
}b1´b}1. Let K 1“tkPN |b1ką0u. By definition of 1-norm

we have:
ÿ

iPÎ

|b̂i´bi|`
ÿ

iRÎ

|bi|ą
ÿ

kPK1

|b1k´bk|`
ÿ

kRK1

|bk|

By rearranging and the definition of b̂ in Equation 3:
ÿ

iPÎ

ˇ

ˇ

ˇ

bi
σb
´bi

ˇ

ˇ

ˇ
`

ÿ

kPK1

|b1k´bk|ą
ÿ

kRK1

|bk|´
ÿ

iRÎ

|bi|

By Equation 2, Î“tiPN |orpiqď r̂zu, which by the descend-
ing ordering or, we guarantee b̂ selected the largest r̂z values
from b. Thus, @XĎN such that |X|ď r̂z ,

ř

iPÎ biě
ř

xPX bx.
By rearranging and applying probability normalization re-
quirement:

ř

iRÎ biď
ř

xRX bx. With this fact and properties
of absolute values, we obtain:

ˇ

ˇ

ˇ

1

σb
´1

ˇ

ˇ

ˇ

ÿ

iPÎ

bi´
ÿ

kPK1

|b1k´bk|ą0

By the definition of σb, rearranging, and subadditivity:
ˇ

ˇ

ˇ

1

σb
´1

ˇ

ˇ

ˇ
σbą

ÿ

kPK1

|b1k´bk|ě
ˇ

ˇ

ˇ

ÿ

kPK1

b1k´bk

ˇ

ˇ

ˇ

By definition of b1 and that probabilities sum to 1:
ˇ

ˇ

ˇ

1

σb
´1

ˇ

ˇ

ˇ
σbą

ˇ

ˇ

ˇ
1´

ÿ

kPK1

bk

ˇ

ˇ

ˇ
“1´

ÿ

kPK1

bk

Rearrange, apply the definitions of Î , K 1, and σb, as well as
the properties of absolute values with σb Pp0,1s to obtain:

1ă
ˇ

ˇ

ˇ

1´σb
σb

ˇ

ˇ

ˇ
σb`

ÿ

kPK1

bkď
ˇ

ˇ

ˇ

1´σb
σb

ˇ

ˇ

ˇ
σb`

ÿ

kPÎ

bk“
1´σb
σb

σb`σb

This implies that 1ă1´σb`σb“1, hence a contradiction
is reached. Therefore, b̂ is optimal following Equation 4.

Next, we would like to know how much error (in terms
of value at a belief) this approximation adds to PBVI and
the other point-based methods. First, Lemma 1 provides an
upper bound on the distance from any approximate belief
b̂PB̂ to an arbitrary belief b1 P4n. Importantly, this bound
is only in terms of the corresponding bPB for which b̂ was
an approximation and σb.

Lemma 1: For any belief b1 P4n, and belief b̂P4n pro-
duced by the σ-approximation of belief bPB, we have:

}b1´ b̂}1ď}b
1´b}1`2p1´σbq (5)

Proof: Take any belief b1 P4n and σ-approximate belief
b̂P4n for belief bPB. We apply the triangle inequality
(using bi), the definition of b̂ (Equation 3), rearrange, apply
the definition of σb, and simplify.

}b1´ b̂}1“
n
ÿ

i“1

|b1i´ b̂i|ď
n
ÿ

i“1

|b1i´bi|`
n
ÿ

i“1

|bi´ b̂i|

“}b1´b}1`
ÿ

iPÎ

ˇ

ˇ

ˇ
bi´

bi
σb

ˇ

ˇ

ˇ
`
ÿ

iRÎ

|bi|

“}b1´b}1`
ˇ

ˇ

ˇ
1´

1

σb

ˇ

ˇ

ˇ

ÿ

iPÎ

|bi|`p1´σbq

“}b1´b}1`
1´σb
σb

σb`p1´σbq

which implies }b1´ b̂}1ď}b1´b}1`2p1´σbq.
We use this result in Lemma 2 and Proposition 2, which

proves a bound on σ-PBVI’s value error in terms of the den-
sity of the original belief points δB“maxb1P4n minbPB }b´
b1}1 [5] and the worst-case approximation error σ. The bound
also utilizes R“maxs,aRps,aq and R“mins,aRps,aq. Im-
portantly, this proof extends the original by Pineau et al. [5]
and contains components of it.

Lemma 2 (σ-PBVI One Step Error Bound): The error ε
introduced in σ-PBVI when performing one iteration of value
backup over B̂ instead of B or 4n, is bounded by:

εď
R´R

1´γ
pδB`2p1´σqq (6)

Proof: We start with the belief b1 P4n that had the
largest error after a σ-PBVI update, and the closest b̂PB̂
(which σ-approximates belief bPB) to b1 via a 1-norm, with
maximal α-vector α1 for b1 and would be maximal α-vector
α̂ at b̂.

εďα1b1´ α̂b1ď}α1´ α̂}8}b
1´ b̂}1 By Pineau et al.

ď}α1´ α̂}8p}b
1´b}1`2p1´σbqq By Lemma 1

ď
R´R

1´γ
pδB`2p1´σbqq By Pineau et al.

ď
R´R

1´γ
pδB`2p1´σqq By σ“min

bPB
σb

Proposition 2 (σ-PBVI Error Bound): For any set of be-
liefs BĎ4n, σ-approximation B̂ of B, and horizon t, the
error of the σ-PBVI algorithm εt“}V

B̂
t ´V

˚
t }8 is bounded

by:

εtď
R´R

p1´γq2
pδB`2p1´σqq (7)

with V B̂t and V ˚t denoting the estimate and optimal value
functions, respectively.

Proof: Again by Pineau et al. we have the error εt at
time t bounded as:

εtď}H̃V
B̂
t´1´HV

B̂
t´1}8`γet´1 By Pineau et al.

ď
R´R

1´γ
pδB`2p1´σqq`γet´1 By Lemma 2

ď
R´R

p1´γq2
pδB`2p1´σqq By geometric series

with H̃ and H above above denoting the PBVI and exact
update operators, respectively. Note that σ-PBVI has the
same value update operator just on a different belief set.

An interesting facet of this bound is the relation between
δB and 2p1´σq. Since beliefs are probabilities, δB Pr0,2s.
Similarly, σPr1{n,1s implies the other term is on the same
range 2p1´σqPr0,2pn´1q{nsÑr0,2s as nÑ8. We call
this term the σ-error. Both also measure an approximation
and are orthogonal considerations. In other words, one could
have dense beliefs with high σ-error (σ-VI), sparse beliefs

with low σ-error (PBVI), sparse beliefs and high σ-error (σ-
PBVI), or dense beliefs and low σ-error (VI).

The best-case scenario that will yield the largest perfor-
mance gains using our σ-approximation consists of domains
in which beliefs are almost all collapsed to a few states,
but have a lot of very small spread out beliefs over other
states. The σ-approximation will then replace these beliefs
and efficiently perform updates on most of the denser parts
of the belief vector’s space.

The theoretical complexity of our PBVI’s update equation
is Opn2mzr2q in the worst case with ns“ r̂z“rz“n. In
comparison, the σ-approximation has a reduced complexity
of Opmzrnpn`rr̂zqq in the worst case with ns“n. Note
that the absolute worst-case cost of sorting, Oprn lognq,
is greatly overshadowed by the update cost. Additionally,
this reduces memory requirements. PBVI requires Oprnq
space to store all belief points, whereas σ-PBVI requires
Oprr̂zq. While this may not seem like much for smaller
problems, larger problems can have beliefs that are spread
out over many states. Thus, we can approximate large belief
vectors with the σ-approximation, while maintaining the
original size of smaller ones. This largely preserves the
accuracy of PBVI with a minor modification that vastly
improves overall runtime performance, especially if r̂z«

?
n

or r̂z« logn. This observation is empirically supported by
our experiments, described in the next section.

Furthermore, parallel implementations of PBVI (multi-
core CPU, GPU, or cluster) eliminate the major bottleneck:
number of belief points r [19], [20]. With ns!n, one of
the remaining major bottleneck variable becomes rz , which
a parallelized σ-PBVI addresses. Finally, communication
overhead is one of the biggest factors for parallel algorithms,
particularly on clusters. σ-PBVI enables belief points to be
transferred over a network on a cluster much faster because
of its tunable bounded memory size Oprr̂zq.

IV. EXPERIMENTATION

We begin with a comparison of σ-PBVI over six standard
POMDP benchmark domains, varying the levels of the
approximation. Then, we experiment with σ-approximation
on a real robot performing simultaneous navigation and
localization.

A. Performance of σ-Approximation on Benchmarks

We implement σ-PBVI to investigate its performance
improvements and solution quality. Table I shows the results
over six larger well-known domains using ranges of r̂z
values. In particular, we compute the base rz without our
σ-approximation, then vary r̂z to be rz , rz{3, rz{10, and
rz{30. Importantly, this version of PBVI is already much
more efficient than a naive implementation that stores all n
probabilities for each belief point, even with r̂z“rz .

Aloha-30, Hallway2, and Tiger Grid all obtain over an
order of magnitude improvement. Even the largest domain,
Rock Sample (7x8), results in over three times improvement
with almost zero error in value V pb0q. Results can be further

Domain PBVI σ-PBVI
r̂z“rz r̂z“rrz{3s r̂z“rrz{10s r̂z“rrz{30s

Name n m z r ns rz T V pb0q σ T V pb0q σ T V pb0q σ T V pb0q σ

Aloha-10 30 9 3 64 25 10 1.3 106.0 1.0 0.6 105.8 0.64 0.3 101.1 0.36 0.18 98.3 0.18
Aloha-30 90 29 3 128 27 30 82.0 787.4 1.0 34.4 787.3 0.83 13.5 784.5 0.38 7.6 769.1 0.19
Fourth 1052 4 28 256 3 1052 186.4 -60.5 1.0 187.3 -60.5 1.00 183.4 -60.5 1.00 87.3 -60.5 1.00
Hallway2 92 5 17 128 88 88 80.6 0.28 1.0 25.4 0.26 0.34 7.9 0.23 0.10 3.3 0.16 0.03
Rock Sam. 12545 13 2 512 1 256 142.0 -147.1 1.0 71.9 -148.0 0.34 50.2 -145.3 0.10 42.7 -146.9 0.04
Tag 870 5 30 256 5 841 158.7 -25.8 1.0 131.4 -27.7 0.33 131.9 -30.6 0.10 118.8 -30.2 0.03
Tiger Grid 36 5 17 64 5 36 5.04 -0.79 1.0 2.32 -1.06 0.99 0.85 -1.09 0.78 0.48 -1.11 0.69

TABLE I
COMPUTATION TIME T (IN SECONDS) FOR h“50, INITIAL BELIEF’S VALUE V pb0q, AND σ AVERAGED OVER 10 TRIALS FOR EACH DOMAIN.

improved by the user, in terms of time or quality, using the
tunable parameter r̂z .

Overall, there is a clear trend that larger domains benefit
more from this than smaller domains. This is due in part
to large spread out belief vectors being relatively rare after
expand steps; most reachable beliefs in large domains are
actually dense with a few near-zero belief values. Thus,
these introduce very small overall error when approximated
with smaller belief vectors. Additionally, more complex
expand steps (e.g., PEMA) might improve the standard PBVI
beliefs, but recall that we are still σ-approximating those
beliefs. Thus, the σ-approximation result will also further
improve. In summary, our σ-approximation worked well in
large domains, introducing low error for greatly reduced
computation time.

B. POMDP Navigation and Localization on a Real Robot

We construct a real robotic navigation and localization
experiment similar to those found in the few previous real
applications of POMDPs [21], [22], [23]. Here, we define
a 56 state POMDP: an 8-by-7 abstracted grid. There are 9
actions: all 8 neighboring cells and a stop action. Further-
more, there are 2 observations: “bump” or “no bump”. Note
that this results in the POMDP’s actions and observations
allowing for both navigation and localization. The probability
of successful forward motion is 0.9, with a slight uniform
chance of deviating left and right, as well as not moving.
The probability of observing a “bump” is proportional to
the average number of obstacles over all possible successor
states. The reward is a small 0.05 for non-goal states and 0.0
for the goal. Belief is therefore over the location of the robot
as it moves around the world. We assign the initial beliefs
to be collapsed with 1.0 probability mass over each state
and perform original PBVI expansions afterward selecting
maximally “distinct” beliefs [5]. The σ-approximation is
applied on these beliefs.

Figure 2 shows the real world execution of σ-PBVI (k“4)
and PBVI in a maze on a robot platform: the base Kobuki
made by Yujin Robot Co., Ltd. with an Nvidia Jetson TX1
made by Nvidia Corporation. As we observe, the actual real-
world performance is quite similar. The maze itself was
designed to spread belief over the straight “hallways” prior
to entering each “room”. In practice, the belief spreads out

over much more than k“4 states; however, as observed, the
final performance is quite similar.

V. CONCLUSION

We provide an approximation algorithm that compresses
the non-zero values in belief vectors, solving larger prob-
lems faster with bounded additional error. We provide two
propositions, and two related lemmas, proving that our σ-
approximation is optimal and has bounded error. This is
demonstrated in our experiments on six standard domains.
Additionally, we implement a POMDP on a real robot in a
simultaneous navigation and localization domain, comparing
σ-PBVI and PBVI, showing only minor policy differences.

The main contribution of the σ-approximation its appli-
cability to all algorithms that operates over beliefs. We
envision its use in many other algorithms beyond σ-PBVI, in-
cluding σ-HSVI2 and σ-Perseus. Also, the σ-approximation
is much simpler to implement over other approaches, such as
value directed belief state compression [13] or E-PCA meth-
ods [14]. We plan to explore broader use of σ-approximation
in future work with this foundation established. Finally, we
will provide our source code so that others could easily build
faster approximate POMDP solvers.

Acknowledgments: We thank Dirk Ruiken and Samer
Nashed for their help with our robot in the experiments.

REFERENCES

[1] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning
and acting in partially observable stochastic domains,” Artificial
Intelligence, vol. 101, no. 1, pp. 99–134, 1998.

[2] A. Castelletti, F. Pianosi, and R. Soncini-Sessa, “Water reservoir
control under economic, social and environmental constraints,” Au-
tomatica, vol. 44, no. 6, pp. 1595–1607, 2008.

[3] K. H. Wray and S. Zilberstein, “Multi-objective POMDPs with lexico-
graphic reward preferences,” in Proceedings of the 24th International
Joint Conference of Artificial Intelligence (IJCAI), July 2015, pp.
1719–1725.

[4] K. H. Wray, S. J. Witwicki, and S. Zilberstein, “Online decision-
making for scalable autonomous systems,” in Proceedings of the
26th International Joint Conference of Artificial Intelligence (IJCAI),
August 2017.

[5] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An
anytime algorithm for POMDPs,” in Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), vol. 3, 2003,
pp. 1025–1032.

[6] T. Smith and R. Simmons, “Heuristic search value iteration for
POMDPs,” in Proceedings of the 20th Conference on Uncertainty in
Artificial Intelligence (UAI), 2004, pp. 520–527.

Fig. 2. Demonstration of our σ-approximation used on a real robot. Each column of images denotes the ROS output (top) and corresponding real world
pictures for σ-PBVI (middle) and normal PBVI (bottom) over time (left to right). The black circle is the robot. Blue and white denote log-probability
belief regarding the robot’s physical location. Blue visually highlights only the top three highest weights for reference. The red line denotes the σ-PBVI
path. The green line denotes the normal PBVI path. (Both paths are from odometry.) The start and goal are marked as “S” and “G”, respectively. Note the
localization attempts in the paths in which the robot intentionally “bumps” the wall to confirm its location and collapse belief.

[7] M. Spaan and N. Vlassis, “Perseus: Randomized point-based value
iteration for POMDPs,” Journal of Artificial Intelligence Research,
vol. 24, pp. 195–220, 2005.

[8] J. Pineau, G. Gordon, and S. Thrun, “Anytime point-based approxima-
tions for large POMDPs,” Journal of Artificial Intelligence Research,
vol. 27, pp. 335–380, 2006.

[9] G. Shani, R. I. Brafman, and S. E. Shimony, “Forward search value
iteration for POMDPs,” in Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI), 2007, pp. 2619–2624.

[10] P. Poupart, K. Kim, and D. Kim, “Closing the gap: Improved bounds
on optimal POMDP solutions,” in Proceedings of the 21st Interna-
tional Conference on Automated Planning and Scheduling (ICAPS),
2011, pp. 194–201.

[11] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based POMDP
solvers,” Autonomous Agents and Multi-Agent Systems, vol. 27, no. 1,
pp. 1–51, 2013.

[12] S. Ross, B. Chaib-draa, and J. Pineau, “Bayes-adaptive POMDPs,” in
Proceedings of Advances in Neural Information Processing Systems
20 (NIPS), 2008, pp. 1225–1232.

[13] P. Poupart and C. Boutilier, “Value-directed compression of POMDPs,”
in Proceedings of Advances in Neural Information Processing Systems
15 (NIPS), 2003, pp. 1579–1586.

[14] N. Roy, G. J. Gordon, and S. Thrun, “Finding approximate POMDP
solutions through belief compression,” Journal of Artificial Intelligence
Research (JAIR), vol. 23, pp. 1–40, 2005.

[15] E. Hansen, “Sparse stochastic finite-state controllers for POMDPs,” in
Proceedings of the 24th Conference Annual Conference on Uncertainty
in Artificial Intelligence (UAI), 2008, pp. 256–263.

[16] W. S. Lee, N. Rong, and D. J. Hsu, “What makes some POMDP

problems easy to approximate?” in Proceedings of Advances in Neural
Information Processing Systems 20 (NIPS), 2008, pp. 689–696.

[17] G. Shani, P. Poupart, R. I. Brafman, and S. E. Shimony, “Efficient
ADD operations for point-based algorithms,” in Proceedings of the
18th International Conference on Automated Planning and Scheduling
(ICAPS), 2008, pp. 330–337.

[18] W. S. Lovejoy, “Computationally feasible bounds for partially ob-
served Markov decision processes,” Operations Research, vol. 39,
no. 1, pp. 162–175, 1991.

[19] G. Shani, “Evaluating point-based POMDP solvers on multicore
machines,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B, vol. 40, no. 4, pp. 1062–1074, 2010.

[20] K. H. Wray and S. Zilberstein, “A parallel point-based POMDP
algorithm leveraging GPUs,” in AAAI Fall Symposium on Sequential
Decision Making for Intelligent Agents (SDMIA), November 2015, pp.
95–96.

[21] A. Brooks, A. Makarenko, S. Williams, and H. Durrant-Whyte, “Para-
metric POMDPs for planning in continuous state spaces,” Robotics and
Autonomous Systems, vol. 54, no. 11, pp. 887–897, 2006.

[22] M. T. Spaan and N. Vlassis, “A point-based POMDP algorithm for
robot planning,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), vol. 3, 2004, pp. 2399–2404.

[23] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun,
“Towards robotic assistants in nursing homes: Challenges and results,”
Robotics and Autonomous Systems, vol. 42, no. 3, pp. 271–281, 2003.

