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Abstract

We propose a model, Lexicographic Partially Ob-
servable Markov Decision Process (LPOMDP),
which extends POMDPs with lexicographic pref-
erences over multiple value functions. It allows for
slack—slightly less-than-optimal values—for higher-
priority preferences to facilitate improvement in
lower-priority value functions. Many real life
situations are naturally captured by LPOMDPs
with slack. We consider a semi-autonomous driv-
ing scenario in which time spent on the road
is minimized, while maximizing time spent driv-
ing autonomously. We propose two solutions
to LPOMDPs-Lexicographic Value Iteration (LVI)
and Lexicographic Point-Based Value Iteration
(LPBVI), establishing convergence results and cor-
rectness within strong slack bounds. We test the
algorithms using real-world road data provided by
Open Street Map (OSM) within 10 major cities.
Finally, we present GPU-based optimizations for
point-based solvers, demonstrating that their ap-
plication enables us to quickly solve vastly larger
LPOMDPs and other variations of POMDPs.

1 Introduction

Planning with multiple objectives is prevalent throughout
numerous problem domains such as water reservoir con-
trol [Castelletti et al., 2008], industrial scheduling [Aissani
et al., 2009], energy-conserving smart environments [Kwak
et al., 2012], anthrax outbreak detection [Soh and Demiris,
2011b], and semi-autonomous driving [Wray er al., 2015].
Multi-objective Markov Decision Processes (MOMDPs) are
commonly used to solve these sequential optimization prob-
lems, leveraging a scalarization function which combines
the multiple objectives into a single one. However, find-
ing a suitable scalarization function is non-trivial because
there may be many valid Pareto optimal solutions to ex-
plore, and combining objective functions with differing units
may be impossible. Furthermore, according to a recent sur-
vey, several existing algorithms are computationally expen-
sive [Roijers er al., 2013]. We leverage the observation
that lexicographic ordering of objectives offers a natural way
to describe numerous optimization problems [Mitten, 1974;

Sobel, 1975; Gabor et al., 1998; Rangcheng et al., 2001;
Wray et al., 2015]. We optimize each objective function in
order, only using subsequent objectives to break ties.

Recently, a partially observable model for Multi-Objective
POMDPs (MOPOMDP) has been introduced, which gener-
alizes POMDPs using a vector of rewards [Soh and Demiris,
2011al. We define a new MOPOMDP model with a lexi-
cographic preference over rewards, building upon previous
work in this area [Rangcheng er al, 2001] by introduc-
ing the notion of slack (allowing small deviation from opti-
mal). This extends the original Lexicographic MDP (LMDP)
model [Wray et al., 2015]. Slack increases the space of pos-
sible actions for subsequent value functions to utilize, as long
as the deviation caused by sub-optimal action selection is
within the allotted slack. For example, the highest-priority
objective may be to minimize execution time, but within some
neighborhood of the optimal time, a secondary objective
could be optimized. Work on MOPOMDPs has been sparse
outside of evolutionary approaches [Soh and Demiris, 2011a;
2011b]. Constrained POMDPs (CPOMDP) present a sim-
ilar framework, which states an additional constraint func-
tion with a budget [Isom et al., 2008]. The expected con-
straint penalty must be less than a given limit. In essence,
CPOMDPs present a related but distinct problem, since
we characterize our problem using deviation from optimal
(slack) and allow for many rewards following a preference.

We consider a semi-autonomous driving scenario, which
requires the driver to take over control of the vehicle under
some conditions [Zilberstein, 2015]. This scenario consists of
a car capable of autonomous driving on selected well-mapped
roads such as major highways. In order to ensure safety, the
car monitors the state of the driver: attentive or tired. The sys-
tem is not perfect, however, and obtains noisy estimates of the
driver’s true state. We seek to minimize the travel time while
maximizing the time spent safely driving autonomously when
the driver is tired. Since autonomous driving is only possible
on some roads, it generally increases travel time, but could
also increase safety when the driver is tired. The introduction
of slack allows the car to select a slightly longer route in order
to travel on safe roads which are autonomy-capable.

Our contributions include a new model entitled LPOMDP,
which extends an LMDP by addressing partial observabil-
ity. We present two algorithms for solving LPOMDPs: LVI
and LPBVI. These are non-trivial extensions, due in part to



our novel definition of slack. Without slack, lexicographic
preference orderings would have been far less interesting to
utilize because the likelihood of a tie among «-vectors at
a belief point is highly unlikely in practice. Hence, with-
out slack, the result would often be a unique policy that
optimizes the highest-priority value function while ignor-
ing all secondary optimization criteria. We present three
propositions that prove convergence and the proper bounds
on slack assignment. We experiment within a recently pro-
posed semi-autonomous driving domain, which constructs
POMDPs from real-world road data, using Open Street Map
(OSM). Furthermore, we present a novel method for point-
based POMDP and LPOMDP solvers that leverages the mas-
sive parallel processing power of a Graphics Processing Unit
(GPU). We demonstrate performance of both CPU and GPU
implementations within this realistic domain.

Section 2 formally introduces the problem description and
relevant background material. Section 3 presents the Lexi-
cographic Value Iteration (LVI) algorithm for LPOMDPs, as
well as the Lexicographic Point-Based Value Iteration (LP-
BVI) variant which enables scalability. Section 4 introduces
a convergence result and two strong bounds on slack for both
LVI and LPBVI. Section 5 grounds our theoretical results
within the semi-autonomous driving application. Addition-
ally, this section covers the GPU optimization that vastly im-
proves performance. Section 6 concludes with final thoughts.

2 Problem Definition

LPOMDP encapsulates a multi-objective, partially observ-
able, sequential decision problem such that for each state s
the agent lexicographically prefers to improve the value of
the state for objective ¢ over objective ¢ + 1. The LPOMDP
model extends the Lexicographic MDP (LMDP) model to in-
clude partial observability [Wray er al., 2015].

Definition 1. A Lexicographic POMDP (LPOMDP) is rep-
resented by a 7-tuple (S, A, Q,T,0, R, d):

e S is a finite set of n states

e A is a finite set of m actions, with A(s) denoting the
actions available in state s € S

e () is a finite set of z observations

e T:S5xAxS — [0,1] is a state transition function,
with T'(s, a, s") = Pr(s’|s, a) denoting taking the action
a € A in state s € S, then transitioning to state s’ € S

e O: AxSxQ — [0,1] is an observation transition
function, with O(a, s’,w) = Pr(w|a,s’) denoting the
probability of observing w € {2 after taking the action
a € A and entering successor state s’ € S

e R = [Ry,...,R;]" is a vector of k reward functions,
with R, : Sx A > R,ie K = {1,...,k}, mapping a
state s € S and action a € A to areward R;(s, a)

e 0 ={d1,...,0is atuple of slack values, §; >0, Vie K

The horizon h denotes the number of time steps in the
stochastic process, namely finite (h < o0) and infinite (h =
00), with discount factor ~ € [0, 1). As with most point-based
POMDP solvers, we will consider infinite horizon POMDPs
and approximately solve them via a large finite horizon.

The agent maintains a belief over the current state, given
the history of observations and actions. It is often useful to re-
fer to a set of beliefs B < A", within the standard n-simplex
A™. At each time step, the agent has a belief b € B, takes an
action a € A, makes an observation w € €2, and updates the
belief to b’ € B for all states s’ € S

b (s'|b,a,w) = cO(a,s’,w) Z T(s,a,s)b(s) (1)
seS

with normalizing constant ¢ = Pr(w|b,a)~! [Kaelbling
et al, 1998]. We often write b/ = [V/(s1]b,a,w), ...,
b (8,|b, a,w)]T. The belief state is a sufficient statistic for a
history. Note the belief does not depend on the reward vector.

Definition 1 is a direct extension of the original LMDP def-
inition to include partial observability, although we have cho-
sen to omit the state-dependent orderings, wherein the pref-
erence ordering could change depending on the belief state.
Formally, we would include S = {Si,...,S¢} to be an ¢-
partition over B = A" and a tuple of strict preference order-
ings for each o = {01, ..., 0g), with 0; denoting an ordering
over the rewards. In other words, we will limit the scope
of our investigation to £ = 1, i.e., one preference ordering
over all belief states: S = {S1}, S1 = A", 0 = {01), and
01 = (1,...,k). The reason for this is that LPOMDPs are
quite expressive with just a single preference-ordering and
the inclusion of slack. The additional complexity of belief
state-dependent orderings, which previously required a parti-
tion assumption for convergence, will be left to future work.
In any case, the ordering may be naturally applied following
the LMDP model, and our two algorithms for LPOMDPs may
also be extended in the natural way.

Policy representations for LPOMDPs are the same as for
POMDPs, e.g., policy trees or policy graphs. Formally, we
define a policy m : B — A as a mapping from beliefs
to actions [Sondik, 1978]. A value function maps belief
states to a real value, such that for each reward i € K,
Vi : B > R. Let V = [Vq,...,V;]7 refer to the vec-
tor of value functions. Each value function in belief space,
for finite horizon LPOMDPs, is piecewise linear and convex
(PWLC) [Smallwood and Sondik, 1973]. This can be repre-
sented as a set of r a-vectors T'; = {oy1,..., a0}, Vi € K,
such that Vj € {1,...,7}, ayj = [ij(s1),- .., aij(s,)]T =
[Vi(s1),...,Vi(sn)]T.

Each a-vector has an associated action, we denote as a® €
A;(b) < A, with A;(b) denoting the set of actions available
at belief point b € B. Finite horizon LPOMDPs have a I,
for each time step ¢. In the exhaustive case, each I'* denotes
the a-vectors for all possible histories of length 2¢ (actions
and observations). Infinite horizon LPOMDPs are only ap-
proximated by a set of a-vectors, as with POMDPs [Sondik,
1978], explained in the next section.

We write Bellman’s equation for the induced continuous-
state MDP [Kaelbling er al., 1998] at horizon h, following
policy 7, given an initial belief state b € B [Sondik, 1978]:

Vh(p) = E[ i vtR(bt,wt(bt))‘bO =, 7r]
t=0

Examining any individual value function ¢ € K at time ¢,
we may write the Bellman optimality equation with:



Tia = [Ri(Sl, a)7 e 7Ri(sn7a)]T:

Vb b-a= HO) 2

i (b) = mexbra = a;ge}r@)Qz( ,a) (@)

Qi(bya) =b-rig + 7 Z Pr(w|b,a)VITE @) (3)
we2

Applying a lexicographic preference ordering over value
functions follows similar logic as LMDPs. In an LMDP, for
a particular value function 7 € K, following the ordering, and
a state s € S, we allow for a one-step deviation from the op-
timal value at that state defined by 7; > 0. This enables a re-
striction on the set of actions available at this state for the next
value function 7 + 1 following the ordering. Each value func-
tion restricts the actions for subsequent ones, until all value
functions have been optimized under these constraints.

This process differs for an LPOMDP, since we do this for a
belief state, meaning the set of actions must be appropriately
restricted for all belief points. At each time step, for each be-
lief point, we retain c-vectors’ actions which are dominated
so long as they are within 7; of the maximal value. So long
as there exists a belief point for which the a-vector is within
n; of optimal, we must keep it in the set T'%.

Formally, for a value function i € {1,. .., k—1}, we restrict
the set of actions for a belief point b € B, by defining the set
of actions available to the belief point 4;(b) < A:

Air1(b)={a € Ai(b) L,f‘gf)((b)@(@ a') = Qi(b,a) <mi} (4

with converged values @);. Since LPOMDPs have an equiv-
alent representation in terms of «-vectors (Equation 2), we
may also write this as a restriction to a new set I'; 1 given the
original set of a-vectors I'; 4 1:

Fiy1 ={aeli|maxb-o’ —b-a” <
OéIGFi
fora” € I'; and ay = agr} 5

Figure 1 illustrates this action restriction. It depicts two be-
lief points by and by; two value functions V; and V5; and four
a-vectors for each value function. The unknown true (infinite
horizon) value of V;(b) and V5 (b) are shown, as well as the
original V7 (b) and V4 (b) which would have been selected if
slack was not introduced. First we examine V;. For belief
b1, we observe two a-vectors: «; and aq4. The difference
between b - 11 and by - av14 is greater than the allowed slack
71. Therefore, 14 is thrown out of F’i. Conversely, for belief
b, the b - 12 and by - 13 are within 7; so I'} contains both.
These two sets of a-vectors define the actions available to V5.
We make three observations about V5. First, aa4 corresponds
to the potential c-vector that would have been available had
we not removed «14’s action. Its actual value was higher, but
the first value function restricted the set of available actions
for the second value function. Second, «3’s action inclu-
sion for the actions available at by in V5 enabled it to obtain
a higher value (with as3) than it would have if we had only
allowed the maximal action to be taken (with cips). Third, the
infinite horizon values of V{(b) decreased slightly to V4 (b)
because we allowed for slack in order to greatly improve the
second value function from V5 (b) to Va(b).
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Figure 1: Examples of action restriction and slack affordance.

3 Solving LPOMDPs

We will describe two general methods of solving LPOMDPs:
Lexicographic Value Iteration and Point-Based Algorithms.

3.1 Lexicographic Value Iteration

Fortunately, the original formulations of value iteration
for POMDPs [Smallwood and Sondik, 1973; Sondik,
1978; Kaelbling et al., 1998] can be directly extended to
LPOMDPs. For all : € K, we may write an equivalent equa-
tion to Equation 2 following the stochastic process. This re-
sult follows exactly as Sondik’s formulation.

Qi) =b-ria+ 3 max. T b(s)ViE (s, a,0,0)
P L ey
Vi(s,a,w,a) =~ Z O(a, s',w)T'(s,a,s")a(s") (6)

s'eS

Similarly, we define the set of a-vectors, Ft, using a

Minkowski sum (cross-sum) operator @.! We define sets
re ., vt forallae A;(b) andw € 2

a%k’ ~ 1aw’
i(51,a), ..., Ri(sn,a)]"}

m* {Tza} = {[
Tl = {[Vi(s1,a,w,0),. .., Vi(sn, a,w,a)]  |ae TE

raw

Finally, we are able to define Tt

F?ia = Ffa* ® anwl DD Ffawz (7)
ri=Jr (8)
acA

This form constructs all possible combinations of action se-
lections and resulting a-vectors following the policy tree.
We always select our initial vector «’s values to be
a(s) = RM™7/(1 — ) for all s € S; this guaran-
tees that a-vectors form a lower bound, remaining the
same or improving at each time step [Lovejoy, 1991;
Pineau et al., 2006]. Additionally, as others have shown, for
each ¢ € K we may assign horizon 7" to ensure we are within
€ > 0 such that T satisfies: 77 (R — R™") < ¢, with
R = max max R;(s,a) and R™™ = minmin R;(s,a).

seS aceA seS acA
"For sets A = {a1,...,a,} and B = {b1,..., b}, A® B =
{a1 + b1,a1 + b2,...,a1 + bm,a2 + b1, ... an—i- m



3.2 Point-Based Variants

Due to the complexity of exact value iteration in POMDPs,
point-based methods have been developed, which perform
Bellman updates to a set of a-vectors for a particular set
of belief points. Algorithms differ in their selection, ad-
dition, and update frequency of belief points: Point-Based
Value Iteration (PBVI) [Pineau et al., 2006], Heuristic
Search Value Iteration (HSVI2) [Smith and Simmons, 20051,
Perseus [Spaan and Vlassis, 2005], and SARSOP [Kurniawati
et al., 2008]. At their core, however, they all exploit a new
Bellman update that only operates over belief points (Equa-
tions 9 and 10).

Tl = {ria + Z argmaxa - b|Va € A;(b)}, Vbe B (9)

t
we «€l,,

I't = {argmax « - b|Vb € B} (10)

t
aely,

4 Theoretical Analysis

We will now provide a series of theoretical results for
LPOMDPs, LVI, and LPBVI. First, we show that LVI con-
verges to a unique fixed point in the limit in Proposition 1.
Propositions 2 and 3 give a bound on slack for LVI and LP-
BVI, respectively. Additionally, they provide a correctness
result for both, which guarantees that the returned policy is
within the allotted slack.

Proposition 1 (Convergence). Lexicographic Value Iteration
(LVI) for LPOMDPs converges to a unique fixed point.

Proof. For all i € K, in order, we have a fixed set of ac-
tions for each belief point b € B, restricted from the previous
value function ¢ — 1. Therefore, value iteration converges to
a unique fixed point for V; [Smallwood and Sondik, 1973;
Sondik, 1978; Wray et al., 2015]. Since this is true for all
i € K, once ¢ = k, it converges to a unique fixed point, re-
turning a final policy m. Thus, LVI converges to a unique
fixed point V™. O

With convergence established, we now are able to state
a strong slack guarantee in Proposition 2. The proposition
guarantees that LVI returns a policy that satisfies the slack
constraints. The proof is similar to the one for LMDPs [Wray
etal.,2015], with a few adjustments for the belief-state MDPs
induced by each value function in an LPOMDP.

Proposition 2 (LVI Slack Bound; Correctness). Fori € K,
assume 1,...7— 1 have converged. Let V" be the value func-
tions returned by value iteration. Let V" be the value function
returned by the policy 7 returned after running LVI over all
K. Ifn, = (1 —~)d;, then Vb e B, V;"(b) — V" (b) < 6;.

Proof. First, let p;: Bx A — Rand 7;: Bx Ax B —[0,1]
denote the reward and state transition for the induced belief
state MDP, respectively [Kaelbling er al., 1998]. Let us exam-
ine the full expansion of ¢ time steps (f — o0) of Bellman’s
equation for V™ (b").

V) = 0, 70)) + [ 7t 70,6V @)
!

:mmww»+7j7wmwmw4m~(m&ww»

pt—1

+ 'yJT(bl,w(bl),bO)VZ-O(bO)dbO) .-.)de
bo

By Proposition 1 there is exactly one unique fixed point, so
the initial value V,° does not matter. Following the policy,
we assign V2(0°) = V.7(b°). In doing so, we recognize the
existence of Q7 (b, m(b')) (the p(-) plus the integral over
b%). By Equation 4, V;"(b*) — Q7 (b, m(b')) < n;, since
m(b') € Ar(bY) < -+ < A;;1(b1). Rewriting this, we obtain
Q] (b, w(b')) = V"(b') —n;. Applying this equation, recog-
nizing that 7; is constant, and §,, 7(b', w(b"),0%)db° = 1,
we get:

> 07 0) +y [ ot w@),6) (- (ot 1)
2.

+7jﬂ#mw%www%wmw—wm)~)@*1
bl
We apply this process for all t — oo (let b* = b), noting that
each time an extra ~y7; falls out, and the previous ones gain

an extra product of . We also may subtract an extra n; > 0
to obtain a geometric series.

e}
V™ (b >V-”’b _ t iZan _ i
7 (b) = V/"(b) ;0777 7 (b) T

i
V1(b) — V7 (b) <
) =V < T
Assign 7; = (1 — v)J; to obtain our desired inequality. [

LVI is guaranteed to converge to a unique fixed point
within the afforded slack; now we may analyze LPBVI. Like
PBVI, LPBVI introduces an error from the approximation,
i.e., using belief points B instead of A™. This affects the set
of actions available to the next value function, since some ac-
tions may have been included which should not have been.
We can, however, account for this in our selection of 7 in or-
der to guarantee all actions passed to the next value function
are valid; Proposition 3 formally states this bound.

Let the density of belief points d g be defined in the same
manner as Pineau et al. [2006], albeit with slightly overloaded
notation: dp = maxpear Minpep ||b — b'|1. Fori € K,
assume 1,...,7 — 1 has converged. Let the maximal (worst-
case) error after horizon ¢ be €.

Proposition 3 (LPBVI Slack Bound; Correctness). Forie K,
assume 1,...,72—1 have converged. Let Vi”B be the value
function returned by PBVI for belief set B. Let VP be the
value function returned by the policy 7 returned after running
LPBVI over all K. If

R Ry

i = 0, (1 —~)d;
ni = max {0, (1 —7) —

(1)



then Vb € B, V"% (b) — V"B (b) < 6.

Proof. Let V,;” and V™ denote the true values following value
iteration and LVI, respectively, as defined in Proposition 2.
We know that Vb € B:

V2 () < V'(b) and VP (b) = VTP (b).

For all b € B, we begin with V,"? (b) — V7B (b):
VP (0) = VB (0)
< V() — VB (b) by construction
< V(b)) — (Vi (b) — €) worst-case upper bound
< (V'(b) — Vi (b)) + € rearrange
< L + € by Proposition 2
L=y
’ Rmaz _ Rmin )
< 7 + — 5—0p by Pineau et al. [2006]
1—vy (1—=7)

The worse-case upper bound value comes from the fact
that VB(b) e [Vi™(b) — €,V (b)]. In order to guar-
antee exactly ¢, slack, we solve for ;. We also select the
maximum of 0 and this value in order to satisfy the constraint:

VI (b) = VB (b) = 0.
s Rmar _ Rmin
5 = d g
I—y - "
leaz _ Rzrnn
i :maX{O,(l—’y)(Si— ﬁéB} O

Interestingly, this bound has the desired property that as
we improve the density of our belief points (i.e., B — A"
and 6p — 0), the acceptable value of each 7; converges to
the result from Proposition 2. Additionally, the bound makes
intuitive sense: 7); describes the acceptable slack for one itera-
tion’s action’s deviation from optimal. It turns out that the ad-

%6 B is exactly the definition of PBVI’s

one-step error [Pineau et al., 2006], which obviously must be
accounted for in the tolerable amount of one-step slack 7;.
Equation 11 raises one issue: We cannot compute § 5 with-
out solving a linear program. Therefore, we will use an
approximation op = maXyep Mingep |b — |1 to create a
weaker slack variable 7);. It is easy to show that the approx-
imation we will use is an upper bound: 7; < 7); because
b; < 0;. The density of belief points 6 will be updated upon
every expansion of B and weakly monotonically decrease.

justment of

5 Experimentation

Semi-autonomous systems require collaboration between a
human and an agent in order to achieve a goal [Cohn et al.,
2011; Zilberstein, 2015]. We experiment within one such
domain—semi-autonomous driving—in which a car may only
drive autonomously on some subset of autonomy-capable
roads, requiring manual driving on the remaining roads. In
our scenario the driver may be attentive or tired, extending
the original problem formulation by Wray et al. [2015].
States are defined as all pairs of intersections, which
implicitly represent location and direction, as well as two

3\\\,

s

Goal

Figure 2: An example policy for Boston with driver tiredness
belief probability of 0.2 (top) and 0.8 (bottom).

Boolean values, indicating whether the driver is tired and if
autonomy is enabled. All actions are therefore taken at inter-
sections and simply refer to which road to take next. Addi-
tionally, autonomy can be enabled or disabled at an intersec-
tion; however, the car can only drive autonomously on major
roads, not minor back roads. Following the model introduced
by Wray et al., we use a real-world dataset and allow for au-
tonomy whenever the speed limit is greater than 30 miles per
hour. State transitions capture the likelihood (0.1 probability)
that the human driver will drift from attentive to tired.

An LPOMDP differs from an LMDP in that the true state
of the system is unobservable. We do assume that the car’s lo-
cation and autonomy indicator are perfectly observable, and
include noisy observations regarding the driver’s state. Thus,
observations simply denote if the driver is attentive or tired.
The observation model captures the inaccuracy of the sys-
tem monitoring human attentiveness, e.g., an eye tracking
system [Pradhan et al., 2005]. In the experiments, we use
a 0.75 probability for accurately determining the true state of
the driver, with a 0.25 error rate.

We include two reward functions: time and autonomy. The
first seeks to reduce time spent to reach the goal, i.e., short-
est path. More concretely, it penalizes the agent for the time
spent on each road (distance divided by speed in seconds).
The second function only penalizes the agent if: (1) auton-
omy was not enabled while the driver was tired, or (2) the
agent did not enable autonomy if it had the option to do so.
At the goal state, both reward functions provide zero penalty.

Figure 2 demonstrates an example policy for a section of
Boston. At each intersection, the action is shown with ar-
rows. The blue roads are autonomy-capable and white roads



City [ ISIT 1A 1@ [ [BI] WE°) [ V3'®°) | CPU(h=10) [ GPU(h=500) | Improvement
Austin 92 8 2 230 574 35.9 14.796 3.798 x 194.79
San Franc. 172 8 2| 430 97.8 53.8 51.641 8.056 x 320.51
Denver 176 8 2| 440 123.7 77.3 60.217 8.299 x 362.80
Baltimore 220 8 2 550 56.2 439 104.031 11.782 x 441.48
Pittsburgh 268 | 10 2 670 148.0 142.2 169.041 19.455 x 434.44
L.A. 380 8 2 950 167.9 114.4 298.794 25.535 x 585.07
Chicago 404 | 10 2| 1010 67.4 31.6 399.395 36.843 x 542.02
Seattle 432 | 10 2| 1080 111.2 66.9 497.061 48.204 x 515.58
N.Y.C. 1064 | 12 2 | 2660 108.1 73.7 n/a 351.288 n/a

Boston 2228 12 2| 5570 109.3 79.2 n/a 2424.961 n/a

Table 1: Computation time (seconds), and the initial belief’s values (negated travel time; seconds) over 10 cities for LPBVI on
the CPU (h = 10) and GPU (h = 500) and the improvement ratio: (50 + CPU)/GPU adjusted for the horizon difference.

are not. Since values and actions exist within an impossible-
to-visualize high-dimensional belief space, we simply took
two “slices” over this space. We assumed the physical state
and autonomy were known, assigning a probability of 0.2 to
being attentive and 0.8 to being tired.

5.1 GPU Optimization

To improve the scalability of (L)PBVI and other point-based
algorithms, we develop a GPU-based parallel variant for
(LYPOMDPs.> We implemented it within CUDA? to demon-
strate that CUDA provides a vast performance improvement
over CPU-based versions. This is a relatively unexplored, fer-
tile area of research. GPU-based MDP solvers have been de-
veloped in the past [J6hannsson, 2009; Wray et al., 2015], as
well as a Monte Carlo Value Iteration GPU solver for continu-
ous state POMDPs [Lee and Kim, 2013]. Crook et al. [2011]
parallelized only the belief update equation within a spoken
dialog system domain. To the best of our knowledge, no one
has explored our parallel approach for point-based solvers
that leverages a GPU’s parallel computational capabilities.

To start, we divide the update step of (L)PBVI at a horizon
into two subproblems, each executed as a kernel (i.e., a pro-
gram which runs on the GPU). Equation 10 requires a maxi-
mization and a summation over states (dot product). This will
form our first kernel, which computes the maximal a-vectors
over each belief separately in parallel with a simple reduction.
In order to do this, however, we must compute the a-vectors
within I‘fb. This will be our second kernel; it is computed
by Equation 9, which contains a summation over observa-
tions, a maximization over a-vectors (the size of belief space
B), and a summation over states (dot product). Furthermore,
I't ., must be computed from Equation 6, which is another
summation over states. This is done in parallel over beliefs,
actions, and observations. The result is cached for use in the
first kernel.

Table 1 shows performance over 10 cities, as well as the
values of both objective functions at the initial belief point,
which has uniform belief over the fatigue of the driver. The
improvement ratio of (50«C' PU)/GPU is shown, too. These
are point-based algorithms without expansion, so each hori-

*Trivially, this also works perfectly with point-based methods for
POMDPs, yielding the same kind of performance improvements.
3https://developer.nvidia.com/about-cuda

zon step is the same operation. For that reason, the improve-
ment multiplies the CPU time by 50 as it accounts for the
horizon difference, shifting them to the same scale.

Experiments were conducted with an Intel(R) Core(TM)
i7-4702HQ CPU at 2.20GHz, 8GB of RAM, and an
Nvidia(R) GeForce GTX 870M graphics card using C++ and
CUDA(C) 6.5. The results demonstrate that the GPU im-
plementation produces a speedup of more than two orders
of magnitude over the CPU implementation. Note, however,
that our CPU implementation used STL objects, whereas the
GPU used arrays. While these results are preliminary and are
specific to our implementations, the trend is evident from our
initial experimentation in parallelizing (L)PBVIL.

6 Conclusion

We present a model for a lexicographic multi-objective
POMDP with slack entitled LPOMDP, which naturally cap-
tures many real-world problem domains with multiple, priori-
tized objectives. In fact, it is our novel definition of slack that
enables the use of lexicographic orderings in MOPOMDPs.
It allows for higher-preference objective functions to slightly
deviate from optimal, up to the allotted slack, in order to
hopefully improve lower-preference objective functions.

We present two algorithms that solve this problem: LVI,
which extends value iteration to LPOMDPs, and LPBVI,
which to the best of our knowledge is the first multi-objective
point-based algorithm for MOPOMDPs. We prove conver-
gence, as well as bounds on slack for both, thereby prov-
ing their correctness. To illustrate our model’s applicability
to real-world problems, we examine its performance within
the recently proposed semi-autonomous driving domain. Our
experiments show that our algorithms can solve practical
LPOMDPs with large state-spaces—in line with the capabil-
ities of state-of-the-art POMDP solvers. Furthermore, we
present a GPU-based version of point-based solvers that re-
duces runtime by orders of magnitude, and is immediately
applicable to a range of existing POMDP solvers.

In future work, we will expand our investigation of
LPOMDPs and their applications. Additionally, we plan to
make our domain-specific tools public, in addition to both our
CPU and GPU source code, to facilitate community-wide de-
velopment of realistic-scale domains and algorithms for plan-
ning under partial observability.
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