
Generalized Controllers in POMDP Decision-Making

Kyle Hollins Wray and Shlomo Zilberstein

Abstract— We present a general policy formulation for par-
tially observable Markov decision processes (POMDPs) called
controller family policies that may be used as a framework
to facilitate the design of new policy forms. We prove how
modern approximate policy forms: point-based, finite state
controller (FSC), and belief compression, are instances of this
family of generalized controller policies. Our analysis provides
a deeper understanding of the POMDP model and suggests
novel ways to design POMDP solutions that can combine
the benefits of different state-of-the-art methods. We illustrate
this capability by creating a new customized POMDP policy
form called the belief-integrated FSC (BI-FSC) tailored to
overcome the shortcomings of a state-of-the-art algorithm that
uses non-linear programming (NLP). Specifically, experiments
show that for NLP the BI-FSC offers improved performance
over a vanilla FSC-based policy form on benchmark domains.
Furthermore, we demonstrate the BI-FSC’s execution on a real
robot navigating in a maze environment. Results confirm the
value of using the controller family policy as a framework to
design customized policies in POMDP robotic solutions.

I. INTRODUCTION

The partially observable Markov decision process
(POMDP) is one of the most general single agent decision-
making models [1]. Over the past two decades, POMDP solu-
tion formulations and approximate algorithms have enjoyed
rapid growth and increased interest, specifically point-based
methods [2], [3], finite state controller policies [4], [5], and
compression techniques [6], [7]. With the improved tractabil-
ity these solutions afford, POMDPs are increasingly used in
real world deployed robotic applications ranging from air-
craft collision avoidance systems [8] to self-driving cars [9],
[10], [11]. However, POMDPs are PSPACE-complete, re-
quiring improved techniques to be developed to facilitate
more widespread use. Towards this goal, we provide a novel
formulation of POMDP value and policy that unifies the
state-of-the-art approaches, gives new insights, and provides
a solid foundation on which to build the next generation of
solutions that use these improved policy representations.

The current generation of POMDP solutions individually
arose from disparate ideas about how to explore small sets
of reachable beliefs, define node-based abstractions, or find
reduced models representing a similar problem. Each method
resulted in a distinct form of policy and value function
representation, on top of which an algorithm was constructed.
While each approach is successful in its own right, it is not
clear how they are related to one another. This knowledge
gap manifests itself by the lack of a unified view on the
POMDP value equations, policies, and resulting algorithms,

This work was supported by NSF grants IIS-1724101 and IIS-1524797.
University of Massachusetts, Amherst, MA 01002, USA. Emails:

{wray,shlomo}@cs.umass.edu

Belief node x28

selected to
recover from
corner

FSC node x5

moves north

FSC nodes
(e.g. x5 & x18)
navigate

Belief nodes
(e.g. x32 & x48)
verify decisions

Fig. 1. An example controller family policy called a BI-FSC on a
robot. It enables policies that combine belief points and FSC nodes.

limiting the potential of new approaches and leaving many
questions unanswered. For example, can we integrate point-
based and FSC approaches? Is there a general method to
introduce compression into point-based or FSC policy forms?
What methods can automatically select the abstracted states
(nodes)? In general, what is the relation between expanding
more belief points, adding FSC nodes, or exploring the
number of bases in a compressed model? We might even
ask what the mathematical reason is for why value iteration
and policy iteration exist? Finally, is there an underlying
principled framework to design POMDP solutions? This
paper aims at taking steps towards answering these questions.

We present the controller family of policy forms as a
general formulation of policy and value. It consists of a
set of nodes, an action selector function, a node selector
function, and a function approximator with a specific form
of value function acting as a constraint. These placeholder
nodes and functions can be assigned to specific values or left
unconstrained. We show how various policy forms emerge
by constraining these elements.

As a motivational analogy, consider exponential family
distributions which generalize popular distributions such as
binomial, exponential, Dirichlet, and Gaussian. The expo-
nential family presents a probability density function with
placeholder functions (e.g., sufficient statistic function, nat-
ural parameter, and partition function). Constraining these
placeholder functions in particular ways produces the spe-
cific popular distributions. In the same manner, we define
controller family policies with a value function using place-
holder functions. Constraining these placeholder functions in
particular ways produces specific popular approximate policy
forms: point-based, FSC, value-directed compression (VDC),
and exponential-family principle components analysis com-
pression (E-PCA). This paper defines the controller family
and rigorously proves it encapsulates these policy forms.

Our contributions are: (1) a formal statement of the con-
troller family (Section III); (2) a detailed theoretical analysis
mapping the three widely-used policy forms to the controller
family (Section IV); and (3) a novel belief-integrated FSC-
based policy form with experiments (Section V).

2019 International Conference on Robotics and Automation (ICRA)
Palais des congres de Montreal, Montreal, Canada, May 20-24, 2019

978-1-5386-6026-3/19/$31.00 ©2019 IEEE 7166

II. BACKGROUND

A partially observable Markov decision process (POMDP)
is defined by the tuple 〈S,A,Ω,T,O,R〉 [1]. S is a set of n
states. A is a set of m actions. Ω is a set of z observations. T :
S×A×S→ [0,1] is a state transition that maps state s and
action a to the probability of successor s′ with T (s,a,s′)=
Pr(s′|s,a). O :A×S×Ω→ [0,1] is an observation function
that maps action a and successor s′ to the probability of
observation ω with O(a,s′,ω)=Pr(ω|a,s′). R :S×A→R
is a reward function that maps state s and action a to a
reward R(s,a).

The agent does not observe the true state of the system.
Instead it maintains a belief b∈4n over the true state. (Note:
4n is the standard (n−1)-simplex.) For belief b, performing
a and observing ω yields successor belief b′ at s′:

b′(s′)=Pr(ω|b,a)−1O(a,s′,ω)
∑
s∈S

T (s,a,s′)b(s). (1)

It is convenient to refer to sets of beliefs B⊆4n, such
as the set of reachable beliefs from an initial belief b0

following belief updates (Equation 1) denoted R(b0). A
policy π can be described in two standard ways: a direct
mapping of beliefs to actions—using the value function for
belief points—or through an abstracted controller—using a
stochastic finite state controller (FSC). In both policy forms,
we compute a value function V π that is the expected reward
given fixed policy π, discount factor γ∈ [0,1], and horizon h.
The objective is to find the policy π∗ with maximal expected
value V ∗.

For an infinite horizon, a policy π :4n→A maps beliefs
to actions. The value function V π :4n→R maps beliefs to
their expected reward. The Bellman optimality equation is
for belief b:

V (b)=max
a∈A

[
R(b,a)+γ

∑
ω∈Ω

Pr(ω|b,a)V (b′aω)
]

(2)

with R(b,a)=
∑
s b(s)R(s,a) and b′aω following the belief

update equation. The policy is stored by associating each
α-vector with the maximizing action denoted aα∈A. The
optimal policy is computed by applying Equation 2 to all
uncountably infinite belief points until convergence.

For a finite horizon, Sondik [12] showed the value function
V π is piecewise linear and convex. Formally, a set of
α-vectors Γ={α1, . . . ,αr} with αi=[αi(s1), . . . ,αi(sn)]T

define the value of b:

V (b)=max
α∈Γ

∑
s∈S

b(s)α(s). (3)

We approximate infinite horizon solutions over 4n with a
finite horizon over R(b0) starting at a given initial belief
point b0. By applying Equations 1 and 3 to Equation 2 we
obtain:

V (b)=max
a∈A

[
R(b,a)+γ

∑
ω∈Ω

max
α′∈Γ

∑
s∈S

b(s)∑
s′∈S

T (s,a,s′)O(a,s′,ω)α′(s′)
]
. (4)

III. CONTROLLER FAMILY POLICIES

The controller family are policies defined by the form
π=〈X,ψ,η,σ〉. X is a set of r controller nodes, act-
ing as an internal memory for the agent and referring to
compact relevant aspects (e.g., belief points, state features,
or compressed beliefs). ψ :X×4n×A→ [0,1] denotes the
stochastic selection of action a at node x and belief b
with ψ(x,b,a)=Pr(a|x,b). η :X×4n×A×Ω×X→ [0,1]
denotes the stochastic selection of successor node x′ given
at node x and belief b, action a was performed yielding
observation ω with η(x,b,a,ω,x′)=Pr(x′|x,b,a,ω). Lastly,
σ :X×4n→R denotes a function approximator of V . Com-
monly, σ(x,b)=

∑
s b(s)V (x,s), with node x’s α-vector

V (x,s), is used to approximate infinite horizon with the finite
horizon α-vectors. Generally, we will see that approximate
algorithms assume V (x,b)=σ(x,b) to compute their values.

The value of a controller family policy depends on the
controller node x and the belief b:

V (x,b)=
∑
a∈A

ψ(x,b,a)
[
R(b,a)+γ

∑
ω∈Ω

Pr(ω|b,a)∑
x′∈X

η(x,b,a,ω,x′)σ(x′, b′aω)
]

(5)

with R(b,a)=
∑
s b(s)R(s,a) and b′aω following the belief

update equation. We often assume initial x0∈X and b0∈4n.
Also, it is convenient to define Q(x,b,a) by the equation in
[·]. In the most general form, the objective is to compute
values for all components, including the computation of V ,
to maximize the function approximator σ(x,b) for all x
and b. Given an initial node and belief, the objective is:
maxX,ψ,η,σ,V σ(x0, b0) subject to the definition of V (x,b)
in Equation 5 and any extra constraints on 〈X,ψ,η,σ〉.

We define a controller family policy with a function
approximator. Finite stochastic controllers (FSCs) and func-
tion approximators have been explored in various forms
in-depth before. Critically, this paper presents this unified
formulation and a novel perspective on the formal core of
POMDP algorithm policy and value representations. We are
not encompassing any specific algorithmic nuances or details.
Our work establishes important new links among the various
POMDP policy and value representations that are used by
different algorithms. Early work informally described similar
concepts, but lacked any formal results as modern algorithms
were not yet developed [13] [14]. Other work compares
the models themselves rather than the POMDP’s policy and
value forms [15] [16]. Surveys have derived algorithmic
commonalities among strictly point-based approaches [17].
The remaining literature discussed in the paper compares
algorithms, namely in terms of performance, whereas we find
the common threads underlying their design.

At a high-level, we observe that X is a free set and ψ, η,
and σ are free functions. If we condition them on the value
function and policy, in an appropriate manner, we can enforce
a particular structure to focus the resulting policy form. A
major contribution of this paper are the formal proofs that
select state-of-the-art approximate policy forms are actually
specific instances of a broad family of policies.

7167

IV. THEORETICAL ANALYSIS

We now prove various policy forms are members of the
controller family. Each time we: (1) define its normal policy
form and value, (2) represent its policy as a controller family
policy, and (3) prove the resulting value equation is identical.

A. Optimal Policy Formulations

Importantly, Equation 5 does not enable an “improved
optimal equation” beyond what is achievable with Equa-
tion 2. The optimal solution can always be expressed by
the original Bellman optimality equation, but the controller
family equation does encapsulate it. Interestingly, we can
construct policies that are not representable by a simple
mapping of belief to action; however, no such policy can ever
obtain values higher than that of the optimal formulation.
This added flexibility is instead exploited in approximations.
These simple but necessary facts are proven in Proposition 1.

Proposition 1: The optimality policy form is a member of
the controller family.

Proof: We must write Equations 2 and 4 us-
ing Equation 5. Let X=4n, ψ(x,b,a)=[Q(x,b,a)≥
Q(x,b,a′)∀a′], η(x,b,a,ω,x′)=[x′=b′aω], and σ(x,b)=
V (x,b) with Iverson bracket [·], b′aω resulting from the
belief update equation, and b≡x in all cases. This pro-
duces Equation 2. For finite horizon, let X=R(b0) with
ψ as above. Let η(x,b,a,ω,x′)=[

∑
s′ b
′
aω(s′)V (x′,s′)≥∑

s′ b
′
aω(s′)V (x′′,s′)∀x′′] (i.e., an argmax) with α-vector

V (x,s) for belief/node x. Let σ(x,b)=
∑
s b(s)V (x,s). This

produces Equation 4. Also, we can write a policy π :4n→A
as the controller family policy πc=〈X,ψ,η,σ〉. Let X , η,
and σ be as above. Let ψ(x,b,a)=[π(x)=a] since x=b. We
can add arbitrary stochasticity to any beliefs x=b, both in
action ψ and successor η, representing policies unobtainable
otherwise.

Insights (1) The node selection X is the policy’s domain
(e.g., beliefs). (2) We write ψ and η as maximizations by
constraining them by parts of the equation. (3) Equation 3
can be interpreted as: η≡maxα and σ≡

∑
s b(s)α(s).

B. Point-Based Policy Formulations

Point-based policies avoid the exponential growth of
reachable belief points by exploring a subset B⊆R(b0).
Given any belief b∈4n, we can extract the policy’s action
π(b) 7→aα using α=argmaxα′

∑
s b(s)α

′(s). We denote a
point-based policy by π=〈B,Γ〉. The point-based update
equation, given previous α-vectors Γ′, is [2]:

Γaω={[V α
′

aω (s1), . . . ,V α
′

aω (sn)]T ,∀α′∈Γ′},

Γb={R(·,a)+
∑
ω∈Ω

argmax
α′∈Γaω

∑
s∈S

b(s)α′(s),∀a∈A},

Γ={argmax
α∈Γb

∑
s∈S

b(s)α(s),∀b∈B} (6)

with V α
′

aω (s)=γ
∑
s′O(a,s′,ω)T (s,a,s′)α′(s′) and vec-

tor R(·,a)=[R(s1,a), . . . ,R(sn,a)]T . Each initial α(s)=
mins′ mina′R(s′,a′)/(1−γ) to ensure α-vectors weakly
monotonically increase [18].

The original forms of point-based methods apply Equa-
tion 4 on a fixed grid over the belief simplex [18]. Point-
based value iteration (PBVI) in Equation 6 originally op-
erated over all beliefs, selecting them by solving linear
programs to find “witness” (i.e., improvable in value) be-
liefs [19]. The tractable general incarnation of PBVI explores
reachable beliefs and interleaves belief updates with belief
expansion techniques [2]. Perseus does all belief expansion
initially then intelligently orders the beliefs to do less updates
overall, as an α-vector can improve many beliefs simultane-
ously [20]. HSVI2 [21] and SARSOP [22] both have a tighter
interleaving of update and expansion, maintaining lower and
upper bounds to test convergence and cleverly selecting
action-observation pairs to tighten these bounds. Recent
work suggests a modular approach to mix the algorithms’
components, which can be competitive in some cases [17].

The formal mapping between a point-based policy and a
controller family policy is in Proposition 2.

Proposition 2: Point-based policies are a member of the
controller family.

Proof: We must write Equation 6 using Equation 5.
Let X=B with each x∈X corresponding to a point-based
belief x∈B, distinct from the current belief b∈R(b0). Let
σ(x,b)=

∑
s b(s)V (x,s)=

∑
sx(s)V (x,s) always requiring

x=b∈B. This is the critical assumption that makes point-
based algorithms work: to compute the values the only be-
liefs that matter are in B. Since the objective only optimizes
values over X , it removes the dependence on R(b0). We
rewrite Equation 5, noting Pr(ω|b,a) cancels with b′aω , as:

V (x,s)=
∑
a∈A

ψ(x,b,a)
[
R(s,a)+

∑
ω∈Ω

∑
x′∈X

η(x,b,a,ω,x′)

γ
∑
s′∈S

T (s,a,s′)O(a,s′,ω)V (x′,s′)
]

with
∑
s b(s) moved outside the summations such that

V (x,b)=
∑
s b(s)V (x,s). Simply reference x and x′ here

as α and α′ to rename α(s)=V (x,s) and α′(s′)=V (x′,s′).
Recognize V α

′

aω (s) to obtain α(s)=∑
a∈A

ψ(x,b,a)
[
R(s,a)+

∑
ω∈Ω

∑
x′∈X

η(x,b,a,ω,x′)V α
′

aω (s)
]
.

As Proposition 1, ψ(x,b,a)=[Q(x,b,a)≥Q(x,b,a′)∀a′] and
η(x,b,a,ω,x′)=[

∑
s b(s)V

α′

aω (s)=
∑
s b(s)V

α′′

aω (s)∀α′′],
both equivalent to argmax. This produces Equation 6.
Optionally, we could use the more flexible probabilistic
softmax function, such as:

η(x,b,a,ω,x′)=
exp{

∑
s b(s)V

α′

aω (s)/τ}∑
x′′ exp{

∑
s b(s)V

α′′
aω (s)/τ}

(7)

with softmax temperature τ→0+. Also, we can write a
point-based policy πp=〈B,Γ〉 as a controller family policy
πc=〈X,ψ,η,σ〉 as in Proposition 1.

Insights (1) Node selection X is the set of explored
beliefs. (2) Node iteration—iterating to improve the set of
selected nodes—is what most point-based approaches rely
on. (3) Node (successor) selector η and action selector ψ
can be written with softmax, enabling easy derivatives [14].

7168

C. Finite State Controller Policy Formulations

Finite state controller (FSC) methods instead describe a
policy as an FSC that is executed from an initial belief [23].
An FSC policy is defined by π=〈X,ψ̂, η̂〉. X is a set
of nodes. ψ̂ :X×A→ [0,1] and η̂ :X×A×Ω×X→ [0,1]
ignore any dependence on an explicitly maintained belief and
follow the FSC alone. Policy iteration (PI) is commonly used
with FSC policy representations. PI alternates between policy
evaluation and policy improvement steps, though techniques
exist to perform them simultaneously [4]. Evaluating policy
π requires solving a system of equations:

V (x,s)=
∑
a∈A

ψ̂(x,a)
[
R(s,a)+γ

∑
s′∈S

T (s,a,s′)∑
ω∈Ω

O(a,s′,ω)
∑
x′∈X

η̂(x,a,ω,x′)V (x′,s′)
]

(8)

with V (x,b)=
∑
s b(s)V (x,s), x0∈X , and b0∈4n. This

formula is derived from the recognition and use of a cross-
product MDP formed from states and controller nodes.

The original PI defines a policy as bounded regions on
the belief simplex (e.g., resulting from Γ) and converts it to
an FSC for policy evaluation [12]. This proved intractably
complex. Instead the policy itself can be represented as
an FSC. Policy improvement performs the Bellman update
in Equation 4, assigns these α-vectors as new potential
nodes, then adds, merges, or prunes them [23]. To avoid
exponential growth, bounded PI (BPI) explores single new
node at each iteration, at the cost of getting stuck in local
optima [24]. Point-based PI (PBPI) does Hansen’s PI but
uses the point-based update in Equation 6 [25]. Recent work
casts both evaluation and improvement as one non-linear
program (NLP) [4]. A dual formulation exists, but only for
deterministic FSCs [26].

The straight-forward but necessary mapping from FSC to
the controller family is in Proposition 3.

Proposition 3: FSC policies are a member of the con-
troller family.

Proof: We must write Equation 8 using Equa-
tion 5. Let X be the same in both. Let ψ(x,b,a)= ψ̂(x,a)
and η(x,b,a,ω,x′)= η̂(x,a,ω,x′) simply ignore the current
maintained b. Let σc(x,b)=

∑
s b(s)V (x,s). Rewrite Equa-

tion 5, apply the definition of Pr(ω|b,a), and recognize we
can again pull

∑
s b(s) outside the summations to obtain

Equation 8 with V (x,b)=
∑
s b(s)V (x,s). For deterministic

FSCs, we also ensure ψ̂ and η̂ are 0 or 1 via parameters
yx∈A and zxaω∈X such that we also have ψ̂(x,a)=[a=
yx] and η̂(x,a,ω,x′)=[x′=zxaω]. Also, we must write an
FSC policy πf =〈Xf ,ψf ,ηf 〉 as a controller family policy
πc=〈Xc,ψc,ηc,σc〉, which can be done as above.

Insights (1) Node iteration to improve X occurs in
BPI and PBPI. (2) Nodes are constrained (i.e., fixed-sized
controller) in the NLP solution, but it does simultaneous
value and policy iteration because V , ψ, and η are free vari-
ables. (3) Parameters can be added to a controller family’s
elements with a fixed structure encoding these parameters in
the elements (e.g., y for ψ, and z for η, above).

D. Compression Policy Formulations

Compression techniques construct a mapping from the
original POMDP to a smaller reduced model. There are two
standard general approaches that we consider: value directed
compression (VDC) [7] and exponential family principle
components analysis (E-PCA) [6]. Both approaches attempt
to find a function f :4n→4r that projects beliefs in n
dimensional space to a lower r≤n dimensional space. In
PCA and linear VDC, this takes the form of a matrix
F ∈Rn×r that acts as a change of basis. In general, this
function f is applied to a set of beliefs B⊆4n to produce
an approximate POMDP described by B̃, T̃ :B̃×A×B̃→
[0,1], and R̃ :B̃×A→R. We prove that all these forms are
representable in the controller family.

Each approximate belief b̃∈4r is projected from some
original belief b∈4n by b̃T =bTF for linear and b̃=f(b) for
non-linear. For the linear case, a belief b can be reconstructed
as b̂≈b with b̂=(F †)T b̃; orthonormal columns yields b̂=F b̃.
For the non-linear case, a belief b can be reconstructed with
a function inverse b̂=f –1(b̃). In general, we consider these
beliefs to be non-negative and renormalized, as both VDC
and E-PCA papers discuss. If they are not, then the resulting
compressed model would not be a valid (PO)MDP, as beliefs
and state transitions must be probabilities over 4n. It does
not necessarily affect the change of basis, and without it
algorithms can run into issues. In the cases when it does still
work, it falls outside the proper definition of a (PO)MDP.

Value Directed Compression VDC compresses the
beliefs with either a lossless or lossy f creating a smaller
POMDP on which any solver can be applied [7]. To focus
our analysis, we consider the linear VDC using F as it is the
favored form to extend [27] [28] [29]. Similar logic applies
for general approaches using non-linear f . The original
model forms lossless compression F by Krylov iteration.
Let Ra∈Rn be defined as Rai =R(si,a). Let T aω∈Rn×n
be defined as T aωij =Pr(sj ,ω|si,a)=T (si,a,sj)O(a,sj ,ω).
Krylov iteration methods start with F1j=Raj . Then, for
each a and ω, they iteratively assign F·i+1 =T aωF·i if it
is linearly independent for all F·1, . . ., F·i−1 [7]. Lossy
variants can compute F by linear programming or truncated
Krylov iteration. Truncated Krylov iteration selects up to a
fixed r≤n and removes the largest error column in F at
each step. Other lossy variants employ non-negative matrix
factorization (NMF) over a given fixed set of beliefs, either
by orthogonal NMF to ensure FF †≈I [27] or by locality
preserving NMF to ensure Lipschitz continuity is preserved
in the compressed model [28].

The VDC compressed problem requires that Ra=FR̃a

and T aωF =FT̃ aω . Since the columns of F are linearly
independent by construction, we take the pseudoinverse to
derive the compressed model:

R̃a=F †Ra and T̃ aω=F †T aωF. (9)

The policy π̃ :4r→A is be evaluated with Ṽ π̃ :4r→R by:

Ṽ π̃(b̃)= b̃T R̃π̃(b̃) +γ
∑
ω∈Ω

Ṽ π̃(b̃T T̃ π̃(b̃)ω). (10)

7169

Lemma 1: The linear VDC policy is a member of the
controller family.

Proof: We must write Equation 10 as Equation 5.
Let X=B̂⊆4n be all possible reconstructed beliefs, with
each x= b̂. For example, if starting at x=b0, X=R̂(b0)
are all possible reconstructed beliefs following T aω and F .
Let ψ(x,b,a)=[π̃(b̃)=a], since VDC uses a policy evalu-
ation form. Let η(x,b,a,ω,x′)=[b̂TT aω=x′]. Let σ(x,b)=
V (x, b̂)/‖b̂‖1 = b̂T α̂/‖b̂‖1, with the α-vector dot product, and
α̂=Fα̃. By the definition of σ(x,b), the only beliefs ever
visited are the reconstructed b̂ corresponding to x. Apply to
Equation 5:

V (x, b̂)=R(b̂, π̃(b̃))+γ
∑
ω∈Ω

Pr(ω|b̂, π̃(b̃))

V (x′, b̂TT π̃(b̃)ω)/‖b̂TT π̃(b̃)ω‖1

with x= b̂, b̃T = b̂TF , and x′= b̂TT π̃(b̃)ω from η’s definition.
It is simple to show that ‖b̂TT π̃(b̃)ω‖1 =Pr(ω|b̂, π̃(b̃)). Apply
this fact with the definitions of R (as vectors) and V :

V (x, b̂)= b̂TRπ̃(b̃) +γ
∑
ω∈Ω

b̂TT π̃(b̃)ωFα̃.

Apply definition of b̂, and then recognize both R̃ and T̃ :

V (x, b̂)= b̃TF †Rπ̃(b̃) +γ
∑
ω∈Ω

b̃TF †T π̃(b̃)ωFα̃

= b̃T R̃π̃(b̃) +γ
∑
ω∈Ω

b̃T T̃ π̃(b̃)ωα̃.

With b̃ we know x and b̂, so we can rename V (x, b̂)= Ṽ (b̃).
Recognize Ṽ (b̃)= b̃T α̃ to obtain Equation 10. Also, we can
rewrite any policy π̃ :4r→A as the controller family policy
π=〈X,ψ,η,σ〉 by assigning the elements be as above.

Exponential Family Principle Component Analysis E-
PCA computes a non-linear compression of the reachable
beliefs using E-PCA [6] and applies fitted value iteration [30]
on the resultant reduced belief MDP. E-PCA is used over
PCA to better represent the fact that beliefs are probabilities.
This generalized form requires a link function ` :4n→4n.
The exponential link function is given by `(F b̃)=exp{F b̃}
with F ∈Rn×r. It enables us to recover a belief b≈ b̂ with
b̂=exp{F b̃}. Thus, the link function acts an inverse f –1(b̃)=
b̂=`(F b̃). In general, the link function determines the type of
exponential family random variable. A loss function is then
defined by minimizing the generalized Bregman divergence
between b and b̂. For the choice of an exponential link
function, we have a Poisson belief error model, and equates
to minimizing unnormalized KL divergence. The solutions to
F and B̃ are convex optimization problems solvable using
the partial derivatives of this loss function. The process for B̃
is also used to project belief b to the compressed belief space
b̃, defining f(b)= b̃. Fitted value iteration (FVI) is used in
the E-PCA compressed belief MDP with a averager function
approximator. E-PCA policy π̃ :B̃→A is determined from
value Ṽ :B̃→R:

Ṽ (b̃)=max
a∈A

R̃(b̃,a)+γ
∑
b̃′∈B̃

T̃ (b̃,a, b̃′)Ṽ (b̃′) (11)

with k-nearest neighbors computing the nearest k>0 belief
neighbors such that w :B̃×4r→ [0,1] and w(b̃, b̃′)=(1/k)
if b̃ is one of k closest beliefs from B̃ for b̃′, with w(b̃, b̃′)=0
otherwise. The reward and state transition are defined, with
b̂=f –1(b̃) and b̃′aω=f(b̂′aω), as:

R̃(b̃,a)=
∑
s∈S

b̂(s)R(s,a)

(12)

and T̃ (b̃,a, b̃′)=
∑
ω∈Ω

Pr(ω|b̂,a)w(b̃′, b̃′aω).

Lemma 2: The E-PCA policy is a member of the con-
troller family.

Proof: We must write Equation 11 as Equation 5. Let
X=B̃ be all compressed beliefs considered, with b̂=f –1(b̃).
Let ψ(x,b,a)=[Q(b̂,a)≥Q(b̂,a′)∀a′], since E-PCA’s FVI
uses an optimality form. Let η(x,b,a,ω,x′)=w(b̃′, b̃′aω),
noting that from x= b̃ we compute b̂, then b̂′aω , and finally
b̃′aω . Let σ(x,b)=V (x, b̂) with b̂ computed from x= b̃. By
the definition of σ(x,b), the only beliefs ever visited are the
reconstructed b̂ corresponding to x. Apply this to Equation 5
to yield:

V (x, b̂)=max
a∈A

∑
s∈S

b̂(s)R(s,a)

+γ
∑
x′∈X

∑
ω∈Ω

Pr(ω|b̂,a)w(b̃′, b̃′aω)V (x′, b̂′)

with the definition of R and reordering of summations.
Rename V (x, b̂)= Ṽ (b̃) since b̃ uniquely determines x and
b̂. Recognize R̃ and T̃ to obtain Equation 11. Also, we can
rewrite any policy π̃ :4r→A as the controller family policy
π=〈X,ψ,η,σ〉 by assigning the elements as above.

Compression Policy Formulations Proposition 4 for-
mally combines the above lemmas that show linear and non-
linear compression forms are generalized and remarks on
other subsumed methods.

Proposition 4: Compression policies are members of the
controller family.

Proof: By Lemmas 1 and 2, we find that the controller
family generalizes compression equations and policy repre-
sentations. Since VDC generalizes state aggregation [31],
model minimization [32], and linear predictive state rep-
resentations (PSR) [33], so too does the controller family.
Additionally, since the proof is independent of `, controller
family generalizes any choice of ` for E-PCA.

Insights (1) Node selection is the compression technique
itself, since X is the compressed or reconstructed beliefs. (2)
Function approximators σ make value constant over the be-
lief; instead, the value’s belief (i.e., b in V (x,b)) is replaced
with node’s reconstructed belief. (3) Node selection are thus
assigned to ensure the node’s belief properly updates.

7170

Domain BI-FSC-Based Policy FSC-Based Policy
Name |N | Time ADR |B| Time ADR
Aloha-10 10 109.2 523.0 50 15.0 163.0
Grid-4x3 5 16.4 0.83 10 18.8 0.58
Hallway2 7 155.4 0.25 10 67.2 0.27
Tiger 3 13.8 11.7 6 20.7 -20.0

TABLE I
RESULTS USING NEW POLICY FORM WITH SAME NLP

ALGORITHM AND SAME NUMBER OF FSC NODES (|N |).
METRICS: TIME (SECONDS, 10 TRIALS) AND AVERAGE

DISCOUNTED REWARD (ADR, 100 TRIALS). BOLD INDICATES

STATISTICALLY SIGNIFICANT IMPROVEMENT.

V. EVALUATION

Now we demonstrate the efficacy of the controller family
as a tool for describing novel policy and value represen-
tations. Importantly, the main contribution of this paper
remains the formulation of controller family and theoretical
analysis, rather than this new example of a controller family
policy. Recall, the controller family is not an algorithm; it
is a representation of policy and value. This is included to
provide evidence of its usefulness and guidance for how to
create new forms of policy.

Intuitively, we define a belief-integrated FSC as a member
of the controller family with some FSC nodes with some
belief point nodes. FSC nodes follow the free stochastic
successor node selector (e.g., NLP). Beliefs nodes follow an
argmax (e.g., PBVI). The belief points used, however, are
reconstructed from compressed beliefs (e.g., E-PCA). The
resulting value equation is amenable to node iteration via
PBVI’s expand step followed by E-PCA, and policy iteration
via an NLP. Formally, a belief-integrated FSC (BI-FSC) is
a controller family policy π=〈X,ψ,η,σ〉 that has its nodes
X represent both FSC nodes and compressed belief-points.
Let X=N ∪B̃ with N a set of FSC nodes and B̃⊆4n.
Let λ∈ [0,1] be a weight between both approaches. Let
η(x,b,a,ω,x′) be either: (1−λ)η̄(x,b,a,ω,x′) if x,x′∈N ;
λsoftmax over B̃ if x∈N and x′∈B̃; or η̄(x,b,a,ω,x′) if
x∈B̃ and x′∈N . We can use a Taylor series approximation
of softmax (e.g., the 0-th order is 1/|B̃|). Let σ(x,b) be
either:

∑
s b(s)V (x,s) if x∈N ; or

∑
s b̂
′
aω(s)V (x,s) if x∈

B̃ and b̂=f –1(x).
Understanding the BI-FSC Policy Form What does

this novel policy form look like in practice? Figure 2 shows
results from real robot POMDP navigation. The POMDP has
S as a 7×5 grid, A as eight directions and stop, and Ω as
the “bump” sensor. We solve the BI-FSC with nova [34]
using SNOPT [35] on the NEOS Server [36]. The traversed
path includes intentional “feeling” for walls with successful
localization. Interestingly, this policy uses the interspersed
belief nodes’ decisions to help guide the stochastic FSC
nodes’ decisions to the goal (blue and green in Figure 2).

How does this new policy form improve performance over
just a pure FSC policy form? Table I shows results of a pure
FSC-based policy versus a BI-FSC-based policy (λ=0.5) on
standard benchmark domains. The NLP algorithm is used by
both policy forms to isolate a direct comparison of different

Fig. 2. Robot experiment. Path: FSC (blue), belief (green) actions.

policy forms, instead of the algorithms used on top of a
chosen policy form. Experiments were run with SNOPT on
the NEOS Server. BI-FSC policies are suited for domains
that have many local optima (e.g., Aloha-10 and Tiger) in
which solvers like SNOPT easily get stuck. BI-FSCs obviate
the issue by infusing important beliefs to help find the global
optima. Thus, BI-FSCs are able to greatly outperform FSC-
based policies in ADR (especially Aloha-10 and Tiger) and
can even improve time.

VI. CONCLUSION

We now revisit the questions from the introduction. How
can we simultaneously integrate belief point-based and FSC-
based techniques? Nodes can be defined to be beliefs and
FSC nodes, with the successor node selector to be a free
variable or argmax. Is there a way to introduce compression
into policy forms? Simply select compressed or reconstructed
beliefs for some or all nodes; other elements (e.g., successor
node selectors) use these reconstructed beliefs. Can we
automatically select some of the nodes (i.e., node iteration)?
Simply use any prior approach appropriate to the type of
node—belief nodes use belief exploration (e.g., HSVI2), FSC
nodes use node addition/pruning (e.g., BPI), or compressed
nodes use compression (e.g., E-PCA). In general, how are it-
eration techniques related? Each is an operator on a different
type of node as described above.

Lastly, what is the mathematical reason for the existence of
value and policy iteration? From the perspective offered by
the controller family, it is determined by the action selector
ψ. When ψ is constrained to a fixed function, we have
value iteration. This assignment prevents policy iteration
because the policy is determined by the other free elements;
the values V determine the mapping from belief to action.
Conversely, when ψ is at all unconstrained, V and ψ are both
free and can be computed separately (e.g., policy iteration’s
evaluation/improvement steps) or together (e.g., NLP).

In conclusion, is there an underlying principled framework
to design POMDP policies? This paper defines the controller
family as an answer to this question. We show they gener-
alize the policy and value representations used by state-of-
the-art solutions. To validate its effectiveness, we construct a
novel policy formulation that infuses beliefs into an FSC. We
demonstrate this improved policy form’s execution on a real
robot acting in the world, and show it overcomes some well-
known issues with a vanilla FSC. Finally, we will provide our
source code with the goal of building new controller family
policies to improve POMDP solutions under this unified
formal language with the greater research community.

7171

REFERENCES

[1] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, no. 1, pp. 99–134, 1998.

[2] J. Pineau, G. Gordon, and S. Thrun, “Anytime point-based approxima-
tions for large POMDPs,” Journal of Artificial Intelligence Research,
vol. 27, pp. 335–380, 2006.

[3] K. H. Wray and S. Zilberstein, “Approximating reachable belief
points in POMDPs,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2017, pp. 117–122.

[4] C. Amato, D. S. Bernstein, and S. Zilberstein, “Optimizing fixed-
size stochastic controllers for POMDPs and decentralized POMDPs,”
Autonomous Agents and Multi-Agent Systems.

[5] K. H. Wray, A. Kumar, and S. Zilberstein, “Integrated cooperation
and competition in multi-agent decision-making,” in Proceedings of
the 32nd AAAI Conference on Artificial Intelligence, 2018, pp. 4751–
4758.

[6] N. Roy, G. Gordon, and S. Thrun, “Finding approximate POMDP
solutions through belief compression,” Journal of Artificial Intelligence
Research, vol. 23, pp. 1–40, 2005.

[7] P. Poupart, “Exploiting structure to efficiently solve large scale
partially observable Markov decision processes,” Ph.D. dissertation,
University of Toronto, 2005.

[8] M. J. Kochenderfer, Decision Making Under Uncertainty: Theory and
Application. MIT Press, 2015.

[9] K. H. Wray, S. J. Witwicki, and S. Zilberstein, “Online decision-
making for scalable autonomous systems,” in Proceedings of the 26th
International Joint Conference on Artificial Intelligence, 2017, pp.
4768–4774.

[10] K. H. Wray, L. Pineda, and S. Zilberstein, “Hierarchical approach
to transfer of control in semi-autonomous systems,” in Proceedings
of the 25th International Joint Conference on Artificial Intelligence,
2016, pp. 517–523.

[11] K. H. Wray and S. Zilberstein, “Multi-objective POMDPs with lexico-
graphic reward preferences,” in Proceedings of the 24th International
Joint Conference on Artificial Intelligence, 2015, pp. 1719–1725.

[12] E. J. Sondik, “The optimal control of partially observable Markov
processes over the infinite horizon: Discounted costs,” Operations
Research, vol. 26, no. 2, pp. 282–304, 1978.

[13] K. P. Murphy, “A survey of POMDP solution techniques,” University
of California Berkeley, Tech. Rep., 2000.

[14] D. Braziunas, “POMDP solution methods,” University of Toronto,
Tech. Rep., 2003.

[15] C. Boutilier, T. Dean, and S. Hanks, “Decision-theoretic planning:
Structural assumptions and computational leverage,” Journal of Arti-
ficial Intelligence Research, vol. 11, pp. 1–94, 1999.

[16] B. Bonet and H. Geffner, “Planning and control in artificial intelli-
gence: A unifying perspective,” Applied Intelligence, vol. 14, no. 3,
pp. 237–252, 2001.

[17] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based POMDP
solvers,” Autonomous Agents and Multi-Agent Systems, pp. 1–51,
2013.

[18] W. S. Lovejoy, “Computationally feasible bounds for partially ob-
served Markov decision processes,” Operations Research, vol. 39,
no. 1, pp. 162–175, 1991.

[19] N. L. Zhang and W. Zhang, “Speeding up the convergence of value
iteration in partially observable Markov decision processes,” Journal
of Artificial Intelligence Research, vol. 14, pp. 29–51, 2001.

[20] M. Spaan and N. Vlassis, “Perseus: Randomized point-based value
iteration for POMDPs,” Journal of Artificial Intelligence Research,
vol. 24, pp. 195–220, 2005.

[21] T. Smith and R. Simmons, “Point-based POMDP algorithms: Im-
proved analysis and implementation,” in Proceedings of the 21st
Conference on Uncertainty in Artificial Intelligence, 2005, pp. 542–
549.

[22] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient point-
based POMDP planning by approximating optimally reachable belief
spaces.” in Robotics: Science and systems, 2008.

[23] E. A. Hansen, “Solving POMDPs by searching in policy space,”
in Proceedings of the 14th Conference on Uncertainty in Artificial
Intelligence, 1998, pp. 211–219.

[24] P. Poupart and C. Boutilier, “Bounded finite state controllers,” in
Proceedings of Advances in Neural Information Processing Systems
16, 2004, pp. 823–830.

[25] S. Ji, R. Parr, H. Li, X. Liao, and L. Carin, “Point-based policy
iteration,” in Proceedings of the 22nd AAAI Conference on Artificial
Intelligence, 2007, pp. 1243–1249.

[26] A. Kumar and S. Zilberstein, “History-based controller design and
optimization for partially observable MDPs,” in Proceedings of the
25th International Conference on Automated Planning and Scheduling,
2015, pp. 156–164.

[27] X. Li, W. K. Cheung, J. Liu, and Z. Wu, “A novel orthogonal NMF-
based belief compression for POMDPs,” in Proceedings of the 24th
International Conference on Machine Learning, 2007, pp. 537–544.

[28] G. Theocharous and S. Mahadevan, “Compressing POMDPs using
locality preserving non-negative matrix factorization,” in Proceedings
of the 24th AAAI Conference on Artificial Intelligence, 2010, pp. 1147–
1152.

[29] Z. Wang, P. A. Crook, W. Tang, and O. Lemon, “On the linear belief
compression of POMDPs: A re-examination of current methods,”
arXiv preprint arXiv:1508.00986, 2015.

[30] G. J. Gordon, “Stable function approximation in dynamic program-
ming,” in Proceedings of the 12th International Conference on Ma-
chine Learning, 1995, pp. 261–268.

[31] C. Boutilier and D. Poole, “Computing optimal policies for partially
observable decision processes using compact representations,” in Pro-
ceedings of 13th National Conference on Artificial Intelligence, 1996,
pp. 1168–1175.

[32] R. Givan, T. Dean, and M. Greig, “Equivalence notions and model
minimization in Markov decision processes,” Artificial Intelligence,
vol. 147, no. 1, pp. 163–223, 2003.

[33] M. L. Littman, R. S. Sutton, and S. Singh, “Predictive representations
of state,” in Proceedings of Advances in Neural Information Processing
Systems 14, 2002, pp. 1555–1561.

[34] K. H. Wray and S. Zilberstein, “A parallel point-based POMDP
algorithm leveraging GPUs,” in Proceedings of the 2015 AAAI Fall
Symposium on Sequential Decision Making for Intelligent Agents,
2015, pp. 95–96.

[35] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP
algorithm for large-scale constrained optimization,” SIAM Review,
vol. 47, no. 1, pp. 99–131, 2005.

[36] J. Czyzyk, M. P. Mesnier, and J. J. Moré, “The NEOS Server,” IEEE
Computational Science and Engineering, vol. 5, no. 3, pp. 68–75, July
1998.

7172

