
Multi-Agent Planning with High-Level Human
Guidance?

Feng Wu1[0000−0003−3989−0509]??, Shlomo Zilberstein2, and Nicholas R Jennings3

1School of Computer Science and Technology, University of Science and Technology of China
2College of Information and Computer Sciences, University of Massachusetts Amherst

3Department of Computing, Imperial College London
wufeng02@ustc.edu.cn, shlomo@cs.umass.edu,

n.jennings@imperial.ac.uk

Abstract. Planning and coordination of multiple agents in the presence of un-
certainty and noisy sensors is extremely hard. A human operator who observes
a multi-agent team can provide valuable guidance to the team based on her su-
perior ability to interpret observations and assess the overall situation. We pro-
pose an extension of decentralized POMDPs that allows such human guidance
to be factored into the planning and execution processes. Human guidance in
our framework consists of intuitive high-level commands that the agents must
translate into a suitable joint plan that is sensitive to what they know from local
observations. The result is a framework that allows multi-agent systems to benefit
from the complex strategic thinking of a human supervising them. We evaluate
this approach on several common benchmark problems and show that it can lead
to dramatic improvement in performance.

Keywords: Multi-Agent Planning, Decentralized POMDP, Human Guidance

1 Introduction

Planning under uncertainty for multi-agent systems is an important and growing area of
AI. A common model used to handle such team planning problems is the Decentralized
Partially Observable Markov Decision Process (DEC-POMDP) [4]. While optimal and
approximate algorithms have been developed for DEC-POMDPs [15, 21, 23–25], they
assume that the agents’ plans remain fixed while they are being executed. Specifically,
when a plan computed by these solvers is executed by the agents, it cannot be changed
or modified by human operator who may supervise the agents’ activities. In real-world
problems, this lack of responsiveness and flexibility may increase the likelihood of fail-
ure or that the agents damage their workspace or injure people around.

The multi-agent systems community has long been exploring ways to allow agents
to get help from humans using various forms of adjustable autonomy [5, 8, 10, 14, 19].
? This work was supported in part by the National Key R&D Program of China (Grant No.

2017YFB1002204), the National Natural Science Foundation of China (Grant No. U1613216,
Grant No. 61603368), and the Guangdong Province Science and Technology Plan (Grant No.
2017B010110011).

?? Corresponding author.

2 Wu et al.

Human help could come in different forms such as teleoperation [9] or advice in the
form of goal bias [6]. Tools to facilitate human supervision of robots have been devel-
oped. Examples include a single human operator supervising a team of robots that can
operate with different levels of autonomy [3], or robots that operate in hazardous envi-
ronments under human supervision, requiring teleoperation in difficult situations [11].
However, none of these methods explores these questions with respect to the DEC-
POMDP model, with the added challenge that several agents must coordinate based on
their partial local information.

In this paper, we focus on a specific setting of DEC-POMDPs in which agents are
guided by runtime high-level commands from their human operator who supervises
the agents’ activities. There are several advantages to using high-level commands for
guiding agents compared with teleoperation. First, high-level commands are more in-
tuitive and require a lower learning curve for operators. For example, the high-level
command “returning home” is much easier for humans to understand and use than the
detailed procedure of teleoperating a mobile robot back to its initial location. Second,
with high-level commands, operators can focus on the strategic level of thinking while
agents take care of the massive low-level sensing and control work (e.g., perception,
manipulation, and navigation). By doing so, humans and agents can contribute to the
tasks best suited for them. Third, communication between humans and agents usually
involves delays and humans need some lead time to respond. Therefore, it is very chal-
lenging to teleoperate a system when instant response by the robots to the dynamically
changing environment is required, or when there are fewer operators than agents. In
contrast, high-level commands such as “searching a building”, “cleaning a house”, or
“pushing a box together”, require lower rate of synchronization than teleoperation and
can be used to guide the team.

However, planning with high-level human commands for DEC-POMDPs also intro-
duces several challenges. To start, we must allow operators to define useful commands
that they will use in the specific domain. The meaning of each command must be en-
coded in the model so that the solver can interpret it and compute plans for the agents.
Furthermore, plans must be represented so that the agents can select actions based on
not only their local information but also the command from the operator. In our set-
tings, computing those plans is challenging because we do not know how the operator
will command the agents when running the plan. During execution time, similar to tele-
operation, we must handle communication delays (although it is less demanding than
teleoperation) and help the operators avoid mistakes or unexpected operations.

To this end, we extend the standard finite-horizon DEC-POMDP model and propose
HL-DEC-POMDPs, which include humans in the loop of the agents’ decision making
process. More specifically, we provide a new model that allows operators to define a
set of high-level commands. Each command has a specific context that can be easily
understood by human operators. These commands are designed for situations where
the operator can provide useful guidance. We present planning algorithms for this new
model to compute plans conditioned on both the local information of an agent and the
command initiated by the operator. In the execution phase, the operator interacts with
the agents with the high-level command similar to teleoperation: the operator observ-
ing the agents’ activities initiates commands and the agents follow a plan based on the

HL-DEC-POMDP 3

command from the operator. In fact, teleoperation can be viewed as a special case of our
approach where each low-level control operation is mapping to a high-level command.
We also provide a mechanism for handling delays and an algorithm to suggest feasible
commands to the operator. This is helpful for the operator to select the best command
and avoid mistakes. This is the first work to bring humans in the loop of multi-agent
planning under the framework of DEC-POMDPs. We contribute a novel model to con-
sider human supervision of autonomous agents and an efficient algorithm to compute
human-in-the-loop plans.

2 Related Work

In terms of guiding agents with high-level commands, our work is similar to the coach-
ing system in RoboCup soccer simulation where a coach who gets an overview of the
whole game sends commands to the players of its own team. However, the coach is also
a software agent (there is no human in the loop) and its decision is mainly on recog-
nizing and selecting the opponent model [12, 17]. For planning with human guidance,
MAPGEN [1], the planning system for Mars rover missions, allows operators to define
constraints and rules for a plan, which are subsequently enforced by automated planners
to produce the plan. However, this approach is only for single-agent problems and does
not consider the uncertainty in the environment. It is not clear how this can be done for
DEC-POMDPs.

For human-robot interaction, there has also been research on mobile robots that
can proactively seek help from people in their environment to overcome their limita-
tions [18,26]. Researchers have started to develop robots that can autonomously identify
situations in which a human operator must perform a subtask [22] and design suitable
interaction mechanisms for the collaboration [26].

3 The HL-DEC-POMDP Model

Our model is an extension of the standard DEC-POMDP. Before presenting our model,
we first briefly review the DEC-POMDP model. Formally, a Decentralized Partially
Observable Markov Decision Process (DEC-POMDP) is defined as a tuple 〈I, S, {Ai},
{Ωi}, P,O,R〉, where:

– I is a set of n agents where |I| = n and each agent has a unique ID number i ∈ I .
– S is a set of states and b0 ∈ ∆(S) is the initial state distribution where b0(s) is the

probability of s ∈ S.
– Ai is a set of actions for agent i. Here, we denote a = 〈a1, a2, · · · , an〉 a joint

action where ai ∈ Ai andA = ×i∈IAi the set of joint actions where a ∈ A.
– Ωi is a set of observations for agent i. Similarly, we denote o = 〈o1, o2, · · · , on〉 a

joint observation where oi ∈ Ωi andΩ = ×i∈IΩi the joint set where o ∈ Ω.
– P : S×A×S → [0, 1] is the Markovian transition function and P (s′|s,a) denotes

the probability distribution of the next state s′ when agents take a in s.
– O : S × A × Ω → [0, 1] is the observation function and O(o|s′,a) denotes the

probability distribution of observing o after taking a with outcome state s′.

4 Wu et al.

– R : S ×A→ < is the reward function and R(s,a) is the immediate reward of the
team when all the agents take joint action a in state s.

Now, we turn to our model. A Decentralized Partially Observable Markov De-
cision Process with Humans in the Loop (HL-DEC-POMDP) is defined as a tuple
M = 〈I, S, C, {Ai}, {Ωi}, P,O,R〉, with the following additional component C and
modification of the reward function R:

– C is a set of high-level commands for human operators. We assume that when a
command c ∈ C is initiated by the operator it can be received by all the agents.

– R : S×C ×A→ < is the reward function and R(s, c,a) is the immediate reward
of the team when all the agents take a in state s with command c.

In the execution phase of HL-DEC-POMDPs, the operator can initiate a command
c ∈ C to the agents. Thus, each agent i can make its decision based on both its local
observation oi from the environment and the command c from the operator. Intuitively,
HL-DEC-POMDP is at least as hard as the standard DEC-POMDP (i.e., NEXP-hard)
since DEC-POMDP is a special case of our model with only one command (i.e., |C| =
1). In this model, the operator can observe the agents’ activities and guide them with
predefined commands c ∈ C.

To intuitively explain what the high-level commands are and how they work in HL-
DEC-POMDPs, we use the cooperative box-pushing problem [20] as example. This is
a common DEC-POMDP benchmark problem where two agents in a grid world must
coordinate to independently push small boxes or cooperatively push the large box. In
this problem, a possible set of commands for the operator could be C = {“pushing
a large box”, “pushing small boxes”, “automatic”}. Each command has a specific
meaning, which is intuitive for people familiar with the problem. Moreover, they all
focus on the high-level decisions that can be used straightforwardly by the operator to
guide the agents. The design of commands depends on the requirements of the operator
on her supervision tasks. For example, if the operator wants the agents to push the
two small boxes separately, the command “pushing small boxes” can be split into two
commands as “pushing the left small box” and “pushing the right small box”.

In our model, the meaning of each command c ∈ C is specified in the reward func-
tion R. Given a command, we can generate a reward function to achieve the desirable
behavior of the agents similar to building the reward model for standard DEC-POMDPs.
For example, when c =“pushing small boxes”, R with c is defined so that only push-
ing small boxes has positive rewards. Planning with this reward function will output a
plan that lets all the agents go for the small boxes. Similarly, if c =“pushing a large
box”, only pushing a large box is rewarded in R. If the operator sets the command
c =“automatic”, the agents will push boxes as the original box-pushing problem (i.e.,
the large box has higher reward than the small boxes). In this example, each command
is defined for all the agents. Indeed, the command set can be augmented to include more
complex commands so that each agent gets a specific instruction. For example, a com-
mand can be c =“agent A pushing a small box and agent B, C pushing the large box”.
Similarly, the reward function R can be specified for this command.

Notice that the command initiated by operators does not affect the transition model
of the states but only the reward received by the agents (i.e., the reward function R in

HL-DEC-POMDP 5

the model). By so doing, we assume that the operator cannot directly interact with the
environment using the commands. Instead, the operator can guide the agents with the
commands to achieve expected behaviors of the agents. Typical scenarios of our setting
include operators situated in a base station remotely supervising the agents in some
workspace. It is worth pointing out that each command can be efficiently transferred to
the agents with its index because C is predefined and known for all the agents.

In HL-DEC-POMDP, a local policy qi for agent i is a conditional rule mapping from
its observation-action history hi ∈ Hi and the command c ∈ C to an action ai ∈ Ai,
i.e., qi : Hi × C → Ai. A joint policy q = 〈q1, q2, · · · , qn〉 is a collection of local
policies, one for each agent. The goal of solving a HL-DEC-POMDP is to find a joint
policy q∗ for the agents that maximizes the expected value:

V (b0, c0, q∗) = E

[
T−1∑
t=0

Rt

∣∣∣∣∣b0, c0, q∗
]

(1)

where c0 is the initial command initiated by the operator.

4 Solving HL-DEC-POMDPs

In the HL-DEC-POMDP model, we represent our policies by stochastic policy trees
where the nodes and branches are parameterized by probability distributions. Specifi-
cally, a stochastic policy for agent i is defined recursively as: qi = 〈πi, λi〉, where:

– πi is an action selection function that specifies a distribution over the actions.
πi(ai|qi, c) denotes the probability of selecting action ai in node qi ∈ Qi with
command c.

– λi is a node transition function that defines a distribution over the sub-trees. λi(q′i|qi, oi, c)
denotes the probability of selecting node q′i (a sub-tree with q′i as its root) when oi
is observed and command c is given by the operator.

Note that the action selection function is defined at the root node of qi and the node
transition function is defined for the branches of the root node where q′i is a sub-policy of
qi after observing oi with c. Here, c is the command for selecting the policy q′i. Indeed, a
(deterministic) policy tree is a special case of our stochastic policy. At each node qi, the
agent executes an action ai sampled from πi(·|qi, c). Based on its observation oi and the
command c, it will transition to a new node q′i sampled from the function λi(·|qi, oi, c).

Given a state s and a command c, the expected value of a joint policy q represented
by our stochastic policy trees can be computed recursively by the Bellman equation:

V t(s, c, q) =
∑
a∈A

∏
i∈I

πi(ai|qi, c)

[
R(s, c,a) +

∑
s′∈S

P (s′|s,a)
∑
o∈Ω

O(o|s′,a)

∑
q′

∏
i∈I

λi(q
′
i|qi, oi, c)

∑
c′∈C

δt(c′|·) · V t+1(s′, c′, q′)

] (2)

where δt(c′|·) is the distribution of choosing command c′.

6 Wu et al.

The Planning Phase

The Execution Phase

Point-Based
Policy Optimization

Computing The
Command Model

Suggesting The
Best Command

Executing The
Agents’ Policies

Th
e

O
pe

ra
to

r

δ

Q, V

c
(Q) (V)

(M) (C)

H

Fig. 1. Overview of our Framework

The basic framework of our approach is shown in Figure 1. In the planning phase,
we first generate a command model δt and then compute the policies and values. In the
execution phase, we take the command input of the operator and compare it with the
command computed by our algorithm. If they are different, we suggest our command
to the operator and ask her to confirm or amend her choice. Next, her choice is sent to
the agents who will execute the policies based on the command from the operator. The
following sections will given more detail on our algorithms.

4.1 The Command Model

As shown in Equation 2, the command model is a rule of selecting commands. How-
ever, commands in our approach are actually selected by the operator at runtime. Thus,
a model of how command decisions are made by the operator is needed for the planning
phase so that our planner can optimize the agents’ policies. Although human decisions
may depend on many complex factors (not only their perspective of the problem but
also their expertise and experience), we assume that the next command in our model
is selected only based on the current command and the next state at a single point in
time. Other inputs such as the history of the previous commands and indications of
the operator’s attentiveness are not used. Although a richer representation might im-
prove the predictive quality, it will dramatically increase the computational complexity
of learning and planning. Therefore, we leave an investigation of the correct balance
of representational richness and simplicity for future work. Specifically, we define the
command model as δt : C × S × C → [0, 1] where δt(c′|c, s′) is a probability of se-
lecting command c′ for the next step given the current command c and the next state
s′. Here, we use probability distributions to model human decisions because whether a
command is selected and its likelihood appears to be highly stochastic in our problems.
Note that the command model is only used in the planning phase. The operator does not
need to know the state to select her commands during execution time. There are several
methods to specify δt, depending on the characteristic of the problem domain and the
role of the operator.

HL-DEC-POMDP 7

A Fixed Command Model In a fixed command model the command is assumed that
any command issued by an operator will remain the same for the rest of the decision
steps, resulting in the following simple command model:

δt(c′|c, s′) =
{
1 c′ = c
0 c′ 6= c

(3)

The policies computed with this command model allow the operator to switch among
different reward models (i.e., objectives) during execution time. Once a command is
selected by the operator, the agents will stick to that “mode” until a different command
is issued. For example, in the cooperative box-pushing problem, if a command is set
for the agents to push small boxes, they will repeatedly push small boxes until they are
allowed to push the large box. If the policies for each reward model are independently
computed, it is nontrivial for the agents to switch to other policies in the execution
phase given the partial observability of the agents in DEC-POMDPs. Therefore, our ap-
proach is more sophisticated given that our policies straightforwardly allow the agents
to transition to other “mode” without re-coordination.

A Learned Command Model Another option is to learn the command model from a
log of data collected in previous trial executions. The data log records the joint action-
observation history of the agents, the obtained rewards, and the commands initiated
by the operators: H=(c0,a0, r0,o1, c1,a1, r1,o2, · · · , cT−1,aT−1, rT−1). Given this,
the operators do offline analysis of the data and evaluate the agents’ performance. In
this process, additional rewards could be specified by the operators, which may include
some of the operators’ evaluation on the agents’ behaviors that is not captured by the
model. For example, if a robot injured people in the environment when doing a task, a
penalty should be given to it by the operators. At the end of the analysis, the rewards
in H are replaced by mixtures of the original rewards and the rewards specified by the
operators.

Given the data evaluated by the operators, we can learn a new command model δt

that maximizes the expected value. Because the model and joint policies q are known
for the previous executions, the parameters of δt can be optimized by a gradient ascent
method similar to [16] using the agents’ history data. Specifically, Equation 1 can be
rewritten with the histories in H as follow:

V (b0, c0, q) =

T−1∑
t=0

∑
ht∈Ht

Pr(ht|b0, c0, q)rt(ht) (4)

where Ht⊆H is the histories up to time t, rt(ht) is the reward given by the end of ht,
and Pr(ht|b0, c0, q) is the probability for ht that can be computed given the model and
policies. Then, we can calculate the derivative of V for each δt and do a gradient ascent
on V by making updates ∆δt = β∂V (b0, c0, q)/∂δt with step size β.

4.2 Point-Based Policy Optimization

As aforementioned, our HL-DEC-POMDP model is as hard as the DEC-POMDP (i.e.,
NEXP-hard). Therefore, optimal algorithms are mostly of theoretical significance. To

8 Wu et al.

Algorithm 1: Point-Based DP for HL-DEC-POMDPs
Input: the HL-DEC-POMDP modelM.
Output: the best joint policy Q0.
for t = T − 1 to 0 do

Qt ← ∅
for k = 1 to N do

(b, d)← sample a joint belief state b and a command distribution d up to the
current step t
// Equation 5
q ← compute the best policy with (b, d)
Qt ← Qt ∪ {q}

// Equation 6
V t ← evaluate Qt for ∀s ∈ S, c ∈ C, q ∈ Qt

return Q0

date, state-of-the-art optimal approaches can only solve DEC-POMDP benchmark prob-
lems with very short horizons [7,15]. To solve large problems, one of the popular tech-
niques in the DEC-POMDP literature is using Memory-Bounded DP (MBDP) [21] —
a variation of the DP algorithm. At each iteration, it first backups the policies of the
previous iteration as the standard DP. Then it generates a set of belief points and only
retains the polices that have the highest value on those points for the next iteration.
By doing so, the number of possible policies at each iteration does not blow up with
the horizon. Several successors of MBDP have improved significantly the performance
of the approach, particularly the point-based DP technique [13], which we build on to
compute policies for our extended problem representation.

The main process is outlined in Algorithm 1. Similar to DP, the policy is optimized
backwards from the last step to the first one. At each iteration (Lines 1-8), we first
sample N pairs of (b, d) from the first step down to the current step (Line 5) where b ∈
∆(S) is a probability distribution over the state space S and d ∈ ∆(C) is a probability
distribution over the command set C. Then, we compute a joint policy for each sampled
(b, d) pair (Line 6). Sampling can be performed efficiently by running simulations on
heuristic policies. The heuristic policy can be either the policy obtained by solving the
underlying MDP or just a random policy where agent i’s action is uniformly selected
from its action setAi. In the underlying MDP, the command is treated as a state variable.
Hence the state space of the underlying MDP is S = S × C and its transition function
is P(s′, c′|s, c,a) = δt(c′|c, s′)P (s′|s,a). This is a standard MDP that can be solved
by dynamic programming. A simple technique to improve sampling efficiency is to use
a portfolio of different heuristics [21].

In each simulation of the t-th DP iteration, we first select an initial command c
and draw a state s ∼ b0(·) from the initial state distribution. Next, we compute a joint
action a using the heuristic. Then, we sample the next state s′ ∼ P (·|s,a) based on
the transition function and draw the next command c′ ∼ δt(·|c, s′) from the command
model. This process continues with the state s ← s′ and the command c ← c′ until
the sampling horizon is reached. Here, for the t-th DP iteration, the sampling horizon is

HL-DEC-POMDP 9

(T -t-1). In the last step of the simulation, the state s and command c are recorded with
b(s)← b(s) + 1 and d(c)← d(c) + 1. We repeat the simulation K times and produce
the distributions (b, d) by averaging the samples: b(s)← b(s)/K and d(c)← d(c)/K.
According to the central limit theorem, the averaged values (b, d) will converge to the
true distributions of states and commands as long as K is sufficiently large.

Give each sampled pair (b, d), the best joint policy q can be computed by solving
the following optimization problem:

max
πi,λi

∑
s∈S b(s)

∑
c∈C d(c)

∑
a∈A

∏
i∈I πi(ai|qi, c)

[
R(s, c,a) +

∑
s′∈S P (s

′|s,a)∑
o∈Ω O(o|s′,a)

∑
q′
∏
i∈I λi(q

′
i|qi, oi, c)

∑
c′∈C δ

t(c′|c, s′)V t+1(s′, c′, q′)
]

s.t. ∀i, c, ai, πi(ai|qi, c) ≥ 0,∀i, c,
∑
ai∈Ai

πi(ai|qi, c) = 1

∀i, c, oi, q′i, λi(q′i|qi, oi, c) ≥ 0,∀i, c, oi,
∑
q′i∈Q′

i
λi(q

′
i|qi, oi, c) = 1

(5)
where the variables πi and λi are the parameters of agent i’s policy and the objective is
to maximizes the expected value V t(b, d, q) =

∑
s∈S b(s)

∑
c∈C d(c)V

t(s, c, q). The
constraints in Equation 5 guarantee that the optimized policy parameters πi and λi are
probability distributions (i.e., all distributions are non-negative and sum to 1).

After a set of policies are generated, we evaluate each joint policy q ∈ Qt. Specif-
ically, we compute the expected values as defined in Equation 2 for every state s ∈ S
and command c ∈ C (Line 8) as follow:

V t(s, c, q) =
∑
a∈A

∏
i∈I

πi(ai|qi, c)

[
R(s, c,a) +

∑
s′∈S

P (s′|s,a)
∑
o∈Ω

O(o|s′,a)

∑
q′

∏
i∈I

λi(q
′
i|qi, oi, c)

∑
c′∈C

δt(c′|c, s′)V t+1(s′, c′, q′)

] (6)

where V t+1 is the value obtained in the previous iteration.
All the above computations assume that the operator can make decisions and initi-

ate commands at the same rate as the agents (i.e., at each step, the operator initiates a
command and then each agent selects an action). This might be unrealistic in practice
for two reasons: First, the decision cycle of autonomous agents could be much faster.
For example, a mobile robot can move very quickly and response to the environment in
a fraction of a second. However, depending on the problem, the operator usually takes
a few seconds or even minutes to response (she may need to scan the environment and
understand the current situation and then issues a command by pressing a button). Sec-
ond, the communication between operators and agents could introduce a delay. When
a operator is situated at a distant base station, it may take some time for the state in-
formation to be transferred and displayed on the operator’s screen. Similarly, it may
also take time for the operator’s command to be transferred to the agents. Depending
on the distance between the operator and agents, the communication delay may range
from a few seconds to several hours (e.g., when communicating with space exploration
rovers). Thus, it is more realistic to assume that the operator’s decisions are made at a
lower rate.

10 Wu et al.

Monitoring
Belief State

a, o Computing
Suggestion

b

c’

Y

N

c

c’

c

c’’

The O
perators

The A
gents

c = c’

Fig. 2. The Command Suggestion System

Specifically, we assume that the operator’s decision is made at every interval of τ
steps (i.e., 0, τ, 2τ, 3τ, · · ·) up to the horizon T . Within an interval, the command is
initiated by the operator at the beginning and remains fixed until the end. To compute
the policies, our sampling algorithm must be adapted to only draw a new command
c′ ∼ δt(·|c, s′) at the beginning of an interval. Similarly, in Equations 5 and 6, if the
time step t is at the beginning of an interval, we use the same command model to
optimize and evaluate the policies. Otherwise, we use the fixed command model defined
by Equation 3 to keep the command fixed within the interval. Indeed, if τ = T , the fixed
model is actually used for the whole planning process.

4.3 Suggesting Commands to the Operators

In the execution phase, the operator guides the agents by selecting commands. We as-
sume she takes the full responsibility for every command initiated by her. Nevertheless,
it will be useful if our system can verify her choice and give her suggestions when
necessary. The operator may make mistakes, especially when she becomes distracted
or tired after long shift. She may also neglect some key factors of the current situation
that may affect her decision (e.g., low battery level of some robots). Therefore, it will
be helpful if our system can remind her or provide an alternative choice that might be
better than the operator’s original command. Given the suggestion computed by our
system, the operator can evaluate the suggested command and her original command
and make the final decision.

Figure 2 illustrates our suggestion mechanism for the operator. As we can see, the
operator first makes her decision and initiate command c. Then, our system computes
a command c′ based on its current information about the agents b. If this command
c′ is different from the operator’s choice c, our system will present its suggestion c′

to the operator and ask her to confirm or amend her choice. The operator can insist
on her original command if she feels confident about it or selects another command.
Her final decision c′′ is sent to the agents. We deliberately postpone our suggestions to
the operator so that her decisions are not biased by the suggestions. Our system does
not intend to replace the operator and make decisions for her. Instead, it is designed
to provide a chance for her to correct mistakes (if any) or improve her decision (if
possible). Notice that the suggestions are computed by a software agent running on the
operator’s system (e.g., computers at her base station) where an overview of the whole
agent team is available as for the operator.

HL-DEC-POMDP 11

To give suggestions, we compute in the planning phase the values of selecting every
command c′ ∈ C as follows:

V t(s, c, q; c′) =
∑
a∈A

∏
i∈I

πi(ai|qi, c)

[
R(s, c,a) +

∑
s′∈S

P (s′|s,a)
∑
o∈Ω

O(o|s′,a)

∑
q′

∏
i∈I

λi(q
′
i|qi, oi, c)V t+1(s′, c′, q′)

]
(7)

where V t+1 is the expected value computed by Equation 6 in Algorithm 1. Then, in
the execution phase, our system computes the best next command c′ (from the system’s
perspective) that maximizes this value as:

c′ = argmax
c∈C

∑
s∈S

bt(s)V t(s, ct, q; c) (8)

This command c′ will be compared with the operator’s original choice c. If they are
different, c′ will be suggested to the operator. We can also present to the operator the
difference in value between these two commands for reference:

D(c||c′) =
∑
s∈S

bt(s)[V t(s, ct, q; c′)− V t(s, ct, q; c)] (9)

Notice that both Equations 8 and 9 require knowledge of the current joint belief
state bt(s). As shown in Figure 2, this joint belief state is monitored and updated in
our suggestion system during execution time. Here, the joint belief state is computed
recursively by the Bayesian rule:

bt+1(s′) = α O(ot+1|s′,at)
∑
s∈S

bt(s)P (s′|s,at) (10)

where bt is the previous belief state (b0 is the initial state distribution), ot+1 is the
agents’ latest joint observation, at is a joint action taken by the agents at the previous
step, and α = 1/

∑
s′∈S b

t+1(s′) is the normalization factor. Once the up-to-date infor-
mation is transferred back from the agents to the operator, the joint belief state can be
updated by Equation 10. Indeed, our suggestion system is a POMDP agent that takes
the same input as the operator (i.e., the agents’ a and o), maintains a belief bt over the
current state, and makes suggestions to the operator based on the expected value V t of
the agents’ policies.

5 Experiments

We implemented our algorithm and tested it on two common benchmark problems pre-
viously used for DEC-POMDPs: Meeting in a 3×3 Grid [2] and Cooperative Box-
Pushing [20]. For each problem, we first designed a set of high-level commands C and

12 Wu et al.

Table 1. Results for two Benchmark Problems

τττ LEARNED FIXED MBDP LEARNED FIXED MBDP

Meeting in a 3×3 Grid (T=20) Cooperative Box-Pushing (T=20)

1 189.69, 1.87 133.70, 1.32 24.95, 0.23 45.10, 0.7% 43.48, 0.9% -11.34, 87.1%

3 175.28, 1.73 114.88, 1.13 - 26.31, 4.2% 18.17, 4.9% -

7 154.34, 1.51 94.12, 0.92 - 11.82, 35.5% 9.75, 42.7% -

the corresponding reward function R as in our HL-DEC-POMDP model. Then, we ran
our planning algorithm to compute policies for the agents. During execution time, we
let a person (the operator) guide the agents with the commands in C while the agents
execute the computed policies accordingly. The suggestions for the operator are com-
puted during the process.

We invited 30 people to participate in our tests as operators. Before the tests, they
were given tutorials on the domains, what they should do for each domain, and how
they can command the simulated robots using our interface. Then, we divided them
into two groups. The first 5 people were asked to guide the agents given the policies
computed using the fixed command model. We recorded their operations and learned a
new command model from the logged data. After that, we asked the second group to
command the agents with the policies computed using the learned model. Each person
guided the agents with different intervals (τ=1, 3, 7) and repeated each individual test
10 times. The averaged performance of the two groups was reported for each test. To
show how agents benefit from high-level human guidance, we also present the results
of the flat MBDP policies on our domains where no human decisions are involved.

The results were summarized in Table 1. For the first problem, the first value in a
cell is the overall reward and the second value shows how many times on average the
robots met at the highly rewarded corners in a test. For the second problem, the first
value is also the overall reward while the second value shows the percentage of the total
tests when the animal got injured by the robots. From the table, we can see that in both
domains human guidance can produce dramatic improvements in performance over the
flat MBDP policies and the learned command model does produce significant additional
performance gains. For example, in the second domain, the animals were very likely
to be injured without human guidance (87.1%) while the chance with our high-level
commands reduced to less than 1%. Note that the robots’ actions in our first domain
are very stochastic (with only the success rate of 0.6). Our values are also significantly
better than the MBDP policies in this domain. Without human guidance, we observed
that the robots met equally at one of the 4 corners. Overall, our results confirmed the
advantage of human guidance in agents’ plans.

Additionally, communication delays (τ) were well handled by our high-level com-
mands. With τ=7, the operators only allowed to command the agents 2 times within
the total 20 steps. However, our values with guidance are still significantly better than
the results without guidance. In contrast, we observed that tele-operation with the same
delays made no difference to the results due to the problem uncertainty. In the tests, we
observed that our suggested mechanisms were useful to the operators especially when

HL-DEC-POMDP 13

the problem was reset (once agents meet at a corner in the first problem or a box is
pushed to the goal location in the second). Most of the operators were not aware of the
change until they were asked to confirm their commands. We also observed that the
commands were more frequently modified after the participants repeated their test 6 to
7 times and they did become more likely to make mistakes when felt tired.

6 Conclusions

We introduce the HL-DEC-POMDP model — a novel extension of DEC-POMDPs to
incorporate high-level human guidance in the agents’ plans. Specifically, our model al-
lows the operators of the agents to define a set of high-level commands that are intuitive
to them and useful for their daily supervision. We also presented algorithms that can
compute the plans for the operators to guide the agents with those commands during
execution time. This enables the agents to take advantage of the operators’ superior sit-
uation awareness. This is nontrivial because the agents’ policies do not only depend on
the operators’ commands but also on their local information and how this will affect
the decision of the other agents. Moreover, our model is more robust to communica-
tion delays than simple teleoperation because commands need only provide high-level
guidance. In our planning algorithms, the quality of agents’ plans can be improved by
learning from the operators’ experience. In our experiments, whenever the operators
have information or knowledge that is not captured in the agents’ plans, significant
improvements in agents’ performance have been observed with high-level human guid-
ance. In the future, we plan to test our model and algorithm on larger domains where
high-level human guidance could play a crucial role.

References

1. Ai-Chang, M., Bresina, J., Charest, L., Chase, A., Hsu, J.J., Jonsson, A., Kanefsky, B., Mor-
ris, P., Rajan, K., Yglesias, J., Chafin, B.G., Dias, W.C., Maldague, P.F.: MAPGEN: Mixed-
initiative planning and scheduling for the mars exploration rover mission. IEEE Intelligent
Systems 19(1), 8–12 (2004)

2. Amato, C., Dibangoye, J.S., Zilberstein, S.: Incremental policy generation for finite-horizon
DEC-POMDPs. In: Proceedings of the 19th International Conference on Automated Plan-
ning and Scheduling. pp. 2–9 (2009)

3. Bechar, A., Edan, Y.: Human-robot collaboration for improved target recognition of agricul-
tural robots. Industrial Robot: An International Journal 30(5), 432–436 (2003)

4. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decentralized
control of Markov decision processes. Mathematics of Operations Research 27(4), 819–840
(2002)

5. Bradshaw, J.M., Jung, H., Kulkarni, S., Johnson, M., Feltovich, P., Allen, J., Bunch, L.,
Chambers, N., Galescu, L., Jeffers, R., et al.: Kaa: Policy-based explorations of a richer
model for adjustable autonomy. In: Proceedings of the 4th International Conference on Au-
tonomous Agents and Multiagent Systems. pp. 214–221 (2005)

6. Côté, N., Canu, A., Bouzid, M., Mouaddib, A.I.: Humans-robots sliding collaboration control
in complex environments with adjustable autonomy. In: Proceedings of Intelligent Agent
Technology (2013)

14 Wu et al.

7. Dibangoye, J.S., Amato, C., Buffet, O., Charpillet, F.: Optimally solving Dec-POMDPs as
continuous-state MDPs. In: Proceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence (2013)

8. Dorais, G., Bonasso, R.P., Kortenkamp, D., Pell, B., Schreckenghost, D.: Adjustable auton-
omy for human-centered autonomous systems. In: IJCAI Workshop on Adjustable Auton-
omy Systems. pp. 16–35 (1999)

9. Goldberg, K., Chen, B., Solomon, R., Bui, S., Farzin, B., Heitler, J., Poon, D., Smith, G.:
Collaborative teleoperation via the internet. In: Proceedings of the 2000 IEEE International
Conference on Robotics and Automation. vol. 2, pp. 2019–2024 (2000)

10. Goodrich, M.A., Olsen, D.R., Crandall, J.W., Palmer, T.J.: Experiments in adjustable auton-
omy. In: Proceedings of IJCAI Workshop on Autonomy, Delegation and Control: Interacting
with Intelligent Agents. pp. 1624–1629 (2001)

11. Ishikawa, N., Suzuki, K.: Development of a human and robot collaborative system for in-
specting patrol of nuclear power plants. In: Proceedings 6th IEEE International Workshop
on Robot and Human Communication. pp. 118–123 (1997)

12. Kuhlmann, G., Knox, W.B., Stone, P.: Know thine enemy: A champion robocup coach agent.
In: Proceedings of the 21st National Conference on Artificial Intelligence. pp. 1463–1468
(2006)

13. Kumar, A., Zilberstein, S.: Point-based backup for decentralized POMDPs: Complexity and
new algorithms. In: Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems. pp. 1315–1322 (2010)

14. Mouaddib, A.I., Zilberstein, S., Beynier, A., Jeanpierre, L.: A decision-theoretic approach to
cooperative control and adjustable autonomy. In: Proceedings of the 19th European Confer-
ence on Artificial Intelligence. pp. 971–972 (2010)

15. Oliehoek, F.A., Spaan, M.T., Amato, C., Whiteson, S.: Incremental clustering and expan-
sion for faster optimal planning in decentralized pomdps. Journal of Artificial Intelligence
Research 46, 449–509 (2013)

16. Peshkin, L., Kim, K.E., Meuleau, N., Kaelbling, L.P.: Learning to cooperate via policy
search. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence. pp.
489–496 (2000)

17. Riley, P.F., Veloso, M.M.: Coach planning with opponent models for distributed execution.
Autonomous Agents and Multi-Agent Systems 13(3), 293–325 (2006)

18. Rosenthal, S., Veloso, M.M.: Mobile robot planning to seek help with spatially-situated tasks.
In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (2012)

19. Scerri, P., Pynadath, D., Tambe, M.: Adjustable autonomy in real-world multi-agent envi-
ronments. In: Proceedings of the 5th International Conference on Autonomous agents. pp.
300–307 (2001)

20. Seuken, S., Zilberstein, S.: Improved memory-bounded dynamic programming for decen-
tralized POMDPs. In: Proceedings of the 23rd Conference Conference on Uncertainty in
Artificial Intelligence. pp. 344–351 (2007)

21. Seuken, S., Zilberstein, S.: Memory-bounded dynamic programming for DEC-POMDPs. In:
Proceedings of the 20th International Joint Conference on Artificial Intelligence. pp. 2009–
2015 (2007)

22. Shiomi, M., Sakamoto, D., Kanda, T., Ishi, C.T., Ishiguro, H., Hagita, N.: A semi-
autonomous communication robot: a field trial at a train station. In: Proceedings of the 3rd
ACM/IEEE International Conference on Human Robot Interaction. pp. 303–310. ACM, New
York, NY, USA (2008)

23. Szer, D., Charpillet, F.: Point-based dynamic programming for DEC-POMDPs. In: Proceed-
ings of the 21st National Conference on Artificial Intelligence. pp. 1233–1238 (2006)

HL-DEC-POMDP 15

SB SB LB R1 R2

R1 R2

(a) Meeting in a 3x3 Grid (b) Cooperative Box-Pushing

1 2

4 3

1 2 3 4

Fig. 3. The Benchmark Problems

24. Wu, F., Jennings, N.R., Chen, X.: Sample-based policy iteration for constrained dec-pomdps.
In: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI). pp. 858–
863 (2012)

25. Wu, F., Zilberstein, S., Chen, X.: Trial-based dynamic programming for multi-agent plan-
ning. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence. pp. 908–914
(2010)

26. Yanco, H.A., Drury, J.L., Scholtz, J.: Beyond usability evaluation: Analysis of human-robot
interaction at a major robotics competition. Human–Computer Interaction 19(1-2), 117–149
(2004)

A The Benchmark Problems

A.1 Meeting in a 3×3 Grid

In this problem, as shown in Figure 3(a), two robots R1 and R2 situated in a 3×3 grid try
to stay in the same cell together as fast as possible. There are 81 states in total since each
robot can be in any of the 9 cells. They can move up, down, left, right, or stay so each
robot has 5 actions. Their moving actions (i.e., the actions except stay) are stochastic.
With probability 0.6, they can move in the desired direction. With probability 0.1, they
may move in another direction or just stay in the same cell. There are 9 observations
per robot. Each robot can observe if it is near one of the corners or walls. The robots
may meet at any of the 4 corners. Once they meet there, a reward of 1 is received by
the agents. To make the problem more challenging, the agents are reset to their initial
locations when they meet at the corners.

We design the high-level commands so that the robots are asked to meet at a specific
corner. In more detail, the command set for this problem is C={c0, c1, c2, c3, c4} where
c0 allows the agents to meet at any corner and ci(i 6= 0) is the command for the robots
to meeting in the corner labeled with i in Figure 3(a). Depending on what we want to
achieve in the problem, the commands can be more general (e.g., meeting at any of the
top corners) or specific (e.g., meeting at the top-left corner without going through the
center). The reward function is implemented so that they are rewarded only when they
meet at the specific corner (for c0, the original reward function is used). For example,
R(c1, ·, ·) = 1 only when they meet at the top-left corner and 0 otherwise.

During execution time, we simulate a random event to determine whether meeting
at one of the corners has a much higher reward (i.e., 100) and which corner. It is a finite
state machine (FSM) with 5 states where state 0 means there is no highly rewarded

16 Wu et al.

corner and state i (1≤i≤4) means the corner labeled with i has the highest reward. The
transition function of this FSM is predetermined and fixed for all the tests, but it is not
captured by the model and not known during planning time. Therefore, they are not
considered in the agents’ policies. The event can only be observed by the operator at
runtime. This kind of a stochastic event can be used to simulate a disaster response sce-
nario, where a group of robots with pre-computed plans are sent to search and rescue
victims at several locations (i.e., the corners). For each location, the robots must cooper-
ate and work together (i.e., meeting at the corner). As more information (e.g., messages
reported by the people nearby) is collected at the base station, one of the locations may
becomes more likely to have victims. Thus, the operators should guide the robots to
search that location and rescue the victims there.

A.2 Cooperative Box-Pushing

In this problem, as shown in Figure 3(b), there are two robots R1 and R2 in a 3×3 grid
trying to push the large box (LB) together or independently push the small boxes (SB).
Each robot can turn left, turn right, move forward, or stay so there are 5 actions per
robot. For each action, with probability 0.9, they can turn to the desired direction or
move forward and with probability 0.1 they just stay in the same position and orienta-
tion. Each robot has 5 observations to identify the object in front, which can be either
an empty field, a wall, the other robot, a small box, or the large box. For each robot,
executing an action has a cost of 0.1 for energy consumption. If a robot bumps into a
wall, the other robot, or a box without pushing it, it gets a penalty of 5. The standard
reward function is designed to encourage cooperation. Specifically, the reward for co-
operatively pushing the large box is 100, while the reward of pushing a small box is just
10. Each run includes 100 steps. Once a box is pushed to its goal location, the robots
are reset to an initial state.

The high-level commands C={c0, c1, c2, c3} are designed as follow: (c0) the robots
should push any box; (c1) the robots should only push the small box on the left side;
(c2) the robots should only push the small box on the right side; (c3) the robots should
only push the large box in the middle. Specifying the corresponding reward function is
straightforward. For c0, we use the original reward function. For ci (1≤i≤3), we reward
the agents (+100) for pushing the right box and penalize them for pushing other boxes
(−100).

Similar to the previous domain, we also simulate a random event representing a
trapped animal in one of the cells labeled with numbers in Figure 3(b). The animal is
hidden behind a box so the robots cannot see it with their cameras. However, if the
robots push a box while an animal is on the other side of that box, it will get injured
and the robots get a high penalty of 100. The random event is modeled by a FSM with
5 states where state 0 represents no animal and state i (1≤i≤4) means an animal is
trapped in the cell labeled i. If the animal gets injured, the FSM transitions to another
state based on a predefined transition function. Again, this event is neither captured by
the agents’ model nor their policies. The animal can only be observed by the operators
during execution time with an additional camera attached behind the boxes. This setting
allows us to simulate a scenario where the operators supervise robots performing risk-
sensitive tasks. For example, robots doing construction work on a crowded street.

