
Stochastic Multi-Agent Planning with Partial State Models
Feng Wu

University of Science and Technology
of China

Hefei, Anhui, China
wufeng02@ustc.edu.cn

Shlomo Zilberstein
University of Massachusetts Amherst

Amherst, MA, USA
shlomo@cs.umass.edu

Nicholas R. Jennings
Imperial College London

London, UK
n.jennings@imperial.ac.uk

ABSTRACT
People who observe a multi-agent team can often provide valuable
information to the agents based on their superior cognitive abilities
to interpret sequences of observations and assess the overall situation.
The knowledge they possess is often difficult to be fully represent
using a formal model such as DEC-POMDP. To deal with this,
we propose an extension of the DEC-POMDP that allows states
to be partially specified and benefit from expert knowledge, while
preserving the partial observability and decentralized operation of
the agents. In particular, we present an algorithm for computing
policies based on history samples that include human labeled data in
the form of reward reshaping. We also consider ways to minimize
the burden on human experts during the labeling phase. The results
offer the first approach to incorporating human knowledge in such
complex multi-agent settings. We demonstrate the benefits of our
approach using a disaster recovery scenario, comparing it to several
baseline approaches.

CCS CONCEPTS
• Computing methodologies → Multi-agent systems; Coopera-
tion and coordination; Multi-agent planning.

KEYWORDS
Decentralized POMDPs, Partial State Models

ACM Reference Format:
Feng Wu, Shlomo Zilberstein, and Nicholas R. Jennings. 2019. Stochastic
Multi-Agent Planning with Partial State Models. In DAI-19: First Interna-
tional Conference on Distributed Artificial Intelligence, October 13–15, 2019,
Beijing, China. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3356464.3357699

1 INTRODUCTION
Decentralized Partially Observable Markov Decision Processes
(DEC-POMDPs) provide a powerful model for multi-agent planning
under uncertainty [3]. Once a model is obtained, it can be solved
using various existing optimal or approximate methods. However,
the specification of model parameters (i.e., the transition and obser-
vation probabilities and the reward values) can be non-trivial as the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAI-19, October 13–15, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7656-3/19/10. . . $15.0
https://doi.org/10.1145/3356464.3357699

complexity of the domain grows. Specifically, to specify a model,
every factor that is relevant to the decisions of the agents must be
modeled using state variables. Unfortunately, the overall state space
grows exponentially with the number of state variables, and the
complexity of planning for DEC-POMDPs is double-exponential in
the size of the state space. This makes it hard to develop complete
models and to solve decentralized planning problems — a phenome-
non also known as the “curse of dimensionality”. Furthermore, in
complex domains, there is often relevant knowledge that is difficult
to capture and encode within the DEC-POMDP model. For exam-
ple, in the Fukushima nuclear disaster, it is very hard to model the
experts’ knowledge for the tasks on where to sample contaminated
water and how to install a water gauge in the basement of the reactor
buildings [11]. Therefore, the need to fully specify such tasks within
the DEC-POMDP model limits the applicability of these solution
techniques.

To address this, we propose PS-DEC-POMDP — an extension of
DEC-POMDPs with partial state models. Specifically, we allow parts
of the state variables not to be explicitly modeled. In other words,
they are hidden state variables. This is very convenient because in
many applications some state variables are often very difficult to
be represented and modeled by DEC-POMDPs. However, without
a complete state model, the transition and observation functions
cannot be specified in their closed forms because they are functions
of the states. Therefore, we need additional assumptions about the
model. Firstly, we assume that there is a realistic simulator1 for the
domain. It allows us to test the agents policies and record histories
(action-observation sequences of the agents during execution). In
practice, it is often easier to devise a simulator than build a complete
DEC-POMDP. Another challenge is to specify the reward model
since in DEC-POMDPs it is also a function of the states. Fortunately,
many domains have very sparse rewards for the agents (e.g., the
agents are only rewarded when a task is completed). Therefore,
our second assumption is that there is a compact reward function
regarding hidden state variables, which can be aggregated by labels
so that the reward function can be compactly represented using the
state labels.

We also present novel algorithms to solve PS-DEC-POMDPs and
address the following challenges: (a) only a simulator instead of a
complete model is available; (b) there is no prior knowledge about
how a hidden state maps to a state label. To address (a), we borrow
ideas from sample-based planning [20] where: we first sample a
set of histories based on an initial policy; then, we optimize the
policies based on the history samples; after that, we use the current
policies to re-sample the histories and compute a new policy. We
iteratively repeat the sampling and optimization processes until no
1Here, the simulator is not limited to softwares but includes physical test sites such as
the ones for disaster training exercises.

https://doi.org/10.1145/3356464.3357699
https://doi.org/10.1145/3356464.3357699
https://doi.org/10.1145/3356464.3357699

DAI-19, October 13–15, 2019, Beijing, China Wu, et al.

improvement is possible in all agents’ policies. During optimization,
we must know the reward values of a given history. Therefore, for
(b), we ask domain experts to select a state label for each time step
of a history based on the information that it provides. Given a set
of labeled histories, the reward values can be obtained using the
compact reward function. When it is costly to query the experts, a
method based on the value of querying that we propose can minimize
the number of queries while bounding the error resulting from not
obtaining experts’ labels for some histories. The key observation is
that the rewards are sparse and therefore state labels often do not
change frequently (e.g., it takes time for the agents to complete a task
and get the reward). We also present a method for learning a mapping
from histories to state labels when a history is frequently queried.
This paper advances the state-of-the-art of multi-agent planning as
follow: 1) We propose novel algorithms that benefit from experts’
knowledge for problems where only a simulator is available and the
reward function is compactly represented. 2) We devise two methods
that can reduce the the burden on human experts. One is based on
the value of querying and the other is based on an online learning
method. We tested our algorithms on a disaster recovery domain and
demonstrated the advantages of our method when solving complex
problems.

2 THE PS-DEC-POMDP MODEL
2.1 Formal Model
A decentralized partially observable Markov decision process with
partial state models (PS-DEC-POMDP) is defined by tupleM =
⟨I , S × Θ, {Ai }, {Ωi }, P ,O,R,T ⟩, where:
• I is a set of n agents where each agent i ∈ I .
• S × Θ is a set of states where S denotes the known state

variables and Θ denotes the hidden state variables.
• Ai is the action set for agent i where we denote ®a a joint

action and ®A = ×i ∈IAi the set of joint actions.
• Ωi is the observation set for agent i where ®o is a joint obser-

vation and ®Ω = ×i ∈IΩi is the joint set.
• P : S × Θ × ®A × S × Θ→ [0, 1] is the transition function and
P((s ′,θ ′)|(s,θ), ®a) is the probability of the next state (s ′,θ ′)
when the agents take ®a in state (s,θ).
• O : S × Θ × ®A × ®Ω → [0, 1] is the observation function and
O(®o |(s ′,θ ′), ®a) is the probability of observing ®o after taking
joint action ®a with outcome state (s ′,θ ′).
• R : S × Θ × ®A →ℜ is the reward function and R((s,θ), ®a) is

the reward when all the agents take ®a in state (s,θ).
• T is the planning horizon.

We use finite controllers to represent the policies, as is common
in standard DEC-POMDPs [1, 16, 20]. Specifically, we define agent
i’s local policy as δi = ⟨Qi ,π , λ⟩, where:
• Qi is a finite set of controller nodes for agent i.
• π is an action selection function where π (ai |qi) is the proba-

bility of selecting action ai in qi ∈ Qi .
• λ is a node transition function and λ(q′i |qi ,oi) is the probabil-

ity of transiting from qi to q′i given oi .
Similar to [20], each policy δi has T layers, each of which has

fixed number of nodes, and nodes in a layer only transit to the
nodes of the next layer. When executing δi , agent i first selects an
action ai ∼ π (·|qi) where qi is its current node and transits to a next

R

Θ c1 c2 c3 c4

Figure 1: Compressed Reward Function

node q′i ∼ λ(·|qi ,oi) based on its oi . This process repeats until T is
reached.

Here, A joint policy ®δ = ⟨δ1,δ2, · · · ,δn⟩ is a collection of local
policies, one for each agent. The goal of solving our model is to find
a joint policy ®δ ∗ that maximizes the expected value given the initial
state distribution b0:

®δ ∗ = argmax
®δ
E

[T−1∑
t=0

R((st ,θ t), ®a t)

�����b0, ®δ
]

(1)

2.2 Basic Assumptions
As aforementioned, we focus on problems where some state vari-
ables are hidden. To solve the problems, we make the following two
assumptions:
• There is a realistic simulator that is available for testing

agents’ policies and recording histories.
• The rewards for the agents are sparse regarding hidden state

variables and can be compactly represented.
In real-world applications, sophisticated simulators are often avail-

able for testing the system. Based on our first assumption, the out-
come of the simulator is a joint history ®h = ⟨h1,h2, · · · ,hn⟩ where
hi = (a

1
i ,o

1
i ,a

2
i ,o

2
i , · · · ,a

t
i ,o

t
i) is a local history for agent i. For

the second assumption, we introduce the compact reward function
defined as R′ : S ×C × ®A →ℜ where C is a set of state labels. Intu-
itively, C is a compact representation of the hidden state variables Θ.
An example of state labels C is illustrated in Figure 1. It is easier to
represent the compact reward function R′ with state labelsC than the
original reward function R given hidden state variables Θ because
we often have |C | ≪ |Θ|. For example, the problem considered in
our experiments has huge hidden state space (i.e., |Θ| ≈ 107) but the
rewards can be represented with a small number of state labels (i.e.,
|C |=4).

3 SOLVING PS-DEC-POMDPS
Two main challenges are inherent in PS-DEC-POMDPs. Firstly,
the complete model is not available. We address this by computing
policies with history samples drawing from a simulator. Secondly,
we only have a compact reward function where we do not know
which state label should be used for a given history. This is a very
hard problem without knowing a complete model. Fortunately, we
can query domain experts and ask them to choose a state label based
on the underlying information from a given history.

The overall process is outlined in Algorithm 1. Given an initial
joint policy, we sample histories by running the joint policy in the
simulator. At each time step, a joint action is selected by the agents
based on their component of the joint policy. Then, the joint action

Stochastic Multi-Agent Planning with Partial State Models DAI-19, October 13–15, 2019, Beijing, China

Algorithm 1: Solving PS-DEC-POMDPs

Input: The modelM, an initial joint policy ®δ .
repeat
®H ← Sample joint histories fromM with ®δ
// Labeling joint histories

foreach joint history ®h ∈ ®H do
if the predictor Φ(®h) is sufficiently trained then

c ← Label ®h by the predictor Φ(®h)

else
c ← Label ®h by the human experts
Φ(®h) ← Train the predictor with label c

®H ← Update history ®h with label c

// Planning with histories
®δ ← Improve agents’ policies with histories in ®H

until joint policy ®δ is converged.
return joint policy ®δ

is executed and each agent receives their own local observation from
the environment. This repeats until the horizon is reached. During
the process, we record the action and observation sequence of each
agent. Then, we use them for labeling and planning as shown in the
following sections with more detail.

3.1 Labeling Histories by Human Experts
To label a history, we ask domain experts to inspect the data (action
and observation) at each time step of the history and select a state
label based on their knowledge. For example, in robot systems,
the history consists of a sequence of sensor reading (e.g., camera
images) in time logged by the robots during task execution. Given
this, the experts can replay the process using visualization tools and
evaluate the performance of the robots. After that, a label is selected
to reward (e.g., the robots complete a task) or penalize (e.g., the
robots get trapped by an obstacle) them. Although the state labels
can be arbitrary, we assume they are meaningful to the experts and
relevant to the agents’ performance.

Querying the experts may be costly. One useful observation is
that we may not need to ask the experts for labeling every time step
of some histories. For example, if a history is about the agents doing
nothing, its label will remain unchanged for all steps because the
rewards are not changing overtime. Thus, it is not worth querying
the experts for every time step given these kinds of histories. To
evaluate the benefit of asking the experts for labeling a history, we
define value of querying (VoQ) as follows.

Let ®c = (c0, c1, · · · , cT−1) be a sequence of labels and ®C the set
of all possible such sequences. Our first type of VoQ is defined as:
VoQ∞(®h) ≡ Vmax(®h) − Vmin(®h) where Vmax(®h) = max

®c ∈ ®C V®c (
®h),

Vmin(®h) = min
®c ∈ ®C V®c (

®h). Thus, if VoQ∞(®h) ≤ ε for history ®h
where ε is a small number, we do not need to ask the experts for the
label sequence ®c ∗ because for any label sequence ∀®c ∈ ®C , we have:������V®c ∗ (®h) −V®c (®h)������ ≤ VoQ∞(®h) ≤ ε (2)

Moreover, we may be able to query the label ®c k from the experts
every k steps and apply the same label within the interval. Given
this, the VoQ for ®c k is defined as:

VoQk (®h) ≡ max
{
Vmax(®h) −V®c k (

®h),V®c k (
®h) −Vmin(®h)

}
(3)

and the cost of not querying the experts for the labels ®c ∗ at every
step is bounded by:������V®c ∗ (®h) −V®c k (®h)������ ≤ VoQk (®h) ≤ ε (4)

ifVoQk (®h) is no larger than ε . Now, the question is how to determine
the proper interval k for a given history. Intuitively, if k were too
small, there would not be a significant reduction in the number of
querying. On the other hand, if k were too large, the error would be
unbounded.

To address this, we propose a divide-and-conquer mechanism that
can assist the experts to more efficiently label histories. Specifically,
given a history ®h , we start with computing the value of VoQ∞(®h). If
VoQ∞(®h) ≤ ε, we remove ®h from the histories. Otherwise, we ask
the experts to select a label c for the the whole history ®h . Then, we
generate a label sequence ®c k by repeating c for the whole history
where k = | ®h | and compute the value of VoQk (®h). If VoQk (®h) ≤ ε,
we return ®c k because it has already bounded the error. Otherwise,
we select a time step t within history ®h and divide ®h into two sub-
histories. We recursively repeat the above process for each sub-
history. Finally, we combine the label sequences for each sub-history
and return the result for ®h .

Notice that the total number of queries initiated by our method
is at most | ®h | but can be much smaller than | ®h | depending on the
specific problem. Intuitively, our method is useful when some labels
require no changes during a period of time. Here, we observed
that the experts may need to go backwards a few steps to better
understand the scenario but reviewing the entire history is often
unnecessary. The outcome of our algorithm is a label sequence
®c made up of several subsequences, i.e., ®c = (®c k1 , ®c k2 , · · · , ®c km),
where each ®c kj consists of repeated instances of label ckj .

Theorem 1. The error of the label sequence returned by our algo-
rithm ®c = (®c k1 , ®c k2 , · · · , ®c km) is bounded bymε wherem is the total
number of the subsequences.

The proof of Theorem 3 can be found in the supplementary mate-
rial. This is useful because it exploits the sparsity of the rewards in
histories (labels are not changed frequently) and reduces the burden
on the experts for labeling tasks.

3.2 Learning Predictors for State Labels
Although the hidden state variables Θ are unknown, we are still be
able to train a predictor Φ using the state labels that we have already
obtained. Then, we can use Φ to select labels during labeling phase.
Specifically, the input of Φ is a joint history ®h ∈ ®H and the output is a
label c ∈ C. Formally, the learning problem is to train a predictor Φ :
®H → C given a set of labeled data ⟨(®h 1, c1), (®h 2, c2), · · · , (®hm , cm)⟩.

In this paper, we use the randomized weighted majority (RWM)
algorithm [4] to compute Φ(®h) for joint history ®h . It is an online
learning method that can be easily integrated with our algorithm to
train the predictor in parallel with the labeling process and output

DAI-19, October 13–15, 2019, Beijing, China Wu, et al.

the prediction when required. Specifically, our adaption of RWM is
as follows:

(1) Initialize the weights w1,w2, · · · ,w |C | to 1 where wi is the
weight for state label ci ∈ C.

(2) Output ci as a prediction of the state label given Φ(®h) with
the probability pi = wi/W whereW =

∑ |C |
i=1wi .

(3) When the “correct” state label c∗ is received from the experts
for ®h , penalize each “mistaken” ci ∈ C\{c∗} by multiplying
its weight by ρ, i.e., ∀wi ,wi ← ρwi .

In RWM, a set of weights is maintained for ®h , one for each state
label c ∈ C. In the training phase, the weights are updated according
to the choices of the experts for ®h . In the predicting phase, the
weights are used to compute a distribution over state labels C and
select a label based on the distribution. Now, the key question is that
when Φ(®h) is sufficiently good for predicting the state label of ®h .

Lemma 1 (Blum [4]). The expected number of mistakes M made
by the RWM algorithm satisfies:

M ≤
m ln (1/ρ) + ln |C |

1 − ρ
(5)

where 0 < ρ < 1 and m is the number of mistakes made by the most
“correct” label c ∈ C so far.

To compute m, we count the number of penalties applied to each
label c ∈ C and return the one with the minimum number. Here,
the expected number of mistakes M can serve as a basis of the
measurement on the quality of the prediction Φ(®h) currently learned.
Intuitively, it is less likely for the predictor to make mistakes if M is
small. Let Verror be the maximum value gap for any two labels and
K be the total number of training data points for ®h .

Theorem 2. The error in the expected value obtained by the predic-
tor Φ(®h) is bounded by:������V (®h ,Θ) −V (®h ,Φ)������ ≤ m ln (1/ρ) + ln |C |

K(1 − ρ)
Verror (6)

Corollary 1. Given an expected error bound ε , the sufficient size of
the training data for ®h is:

K ≥
m ln (1/ρ) + ln |C |

ε(1 − ρ)
Verror (7)

The proofs of Theorem 4 and Corollary 2 can be found in the
supplementary material. In particular, Equation 22 can be used to
decide when Φ(®h) is sufficiently good for predicting labels for ®h .
Specifically, we set a lower boundK for the total number of training
data K and start to use the predictor to predict the label when K ≥ K
as the predictor is considered as sufficiently trained.

3.3 Improving Policies with Labeled Histories
To improve the policies, we must find the best policy parameters π
and λ for each agent that maximize the value function. Given a state
distribution b(s,θ), the value function of a joint controller node ®q is

defined by the Bellman equation:

V (b, ®q) =
∑
s,θ

b(s,θ)
∑
®a

π (®a | ®q)[R((s,θ), ®a)+∑
s ′,θ ′, ®o , ®q ′

P((s ′,θ ′)|(s,θ), ®a)O(®o |(s ′,θ ′), ®a)

λ(®q ′ | ®q , ®o)V (s ′,θ ′, ®q ′)]

(8)

where π (®a | ®q) =
∏

i π (ai |qi), λ(®q ′ | ®q , ®o) =
∏

i λ(q
′
i |qi ,oi). Let α(®q , ®a)

≡
∑
s,θ b(s,θ)R((s,θ), ®a) and β(®q , ®a , ®o , ®q ′) ≡

∑
s,θ b(s,θ)

∑
s ′,θ ′ P((s

′,θ ′)
|(s,θ), ®a)O(®o |(s ′,θ ′), ®a)V (s ′,θ ′, ®q ′). Equation 8 can be rewritten in
a short form as follow:

V (b, ®q) =
∑
®a

α(®q , ®a)π (®a | ®q) +
∑
®a , ®o , ®q ′

β(®q , ®a , ®o , ®q ′)·

π (®a | ®q)λ(®q ′ | ®q , ®o)

(9)

If the values of α and β were computed, the policy parameters π
and λ can be optimized given a joint node ®q :

maxπ ,λ V (b, ®q)

s.t. ∀i ∈ I : ∑ai ∈Ai π (ai |qi) = 1
∀i ∈ I ,oi ∈ Ωi :

∑
q′i ∈Qi λ(q

′
i |qi ,oi) = 1

(10)

where V (b, ®q) is defined by Equation 9 and the constraints ensure
that the parameters π and λ are probabilities. Note that this is a
standard nonlinear program (NLP) that can be solved by standard
NLP solvers (e.g., we use IPOPT2).

Unfortunately, in our problem, the complete model is not available.
Hence, we cannot compute the values of α and β by the model
according to their definitions. Instead, we estimate the values of α
and β using the labeled histories. Specifically, for each joint history
®h , we check whether ®q and ®a have been visited in ®h . If so, the reward
value is added to α(®q , ®a). In more detail, we approximate α as:

α(®q , ®a) ≈
1
| ®H |

∑
®h ∈ ®H

T∑
t=1

r t · ϕ(®q , ®a | ®h t) (11)

where r t is the reward value given the label at time t , ϕ(®q , ®a | ®h t) = 1
if both ®q , ®a are visited in ®h at time t and 0 otherwise. Similarly, we
approximate the values of β as:

β(®q , ®a , ®o , ®q ′) ≈
1
| ®H |

∑
®h ∈ ®H

T∑
t=1

r t · ϕ(®q , ®a , ®o , ®q ′ | ®h t) (12)

where r t is the reward value at time t , ϕ(®q , ®a , ®o , ®q ′ | ®h t) = 1 if all
®q , ®a , ®o , ®q ′ are visited in ®h at time t and 0 otherwise.

The overall procedure is as follows. For every policy node ®q , we
compute the approximate values of ∀®a ,α(®a , ®a) and ∀®a , ®o , ®q ′, β(®q , ®a , ®o , ®q ′)
using the labeled histories according to Equations 11 and 12 respec-
tively. Then, we compute a new set of parameters by solving the NLP
as shown in Equation 10. In turn, we optimize the policy parameters
of each node until no improvements in policy values are possible
for all nodes. The final joint policy is returned as the result of policy
improvement in Algorithm 1.

2http://www.coin-or.org/Ipopt/

Stochastic Multi-Agent Planning with Partial State Models DAI-19, October 13–15, 2019, Beijing, China

N

E

W

S

Figure 2: Power plant with 12 nuclear reactors.

Table 1: Rewards for the state labels.

Joint Actions State Labels
Robot 1 Robot 2 c1 c2 c3 c4

repair-a repair-a 100 0 0 0
repair-a repair-b 0 100 0 0
repair-b repair-a 0 0 100 0
repair-b repair-b 0 0 0 100

4 EMPIRICAL EVALUATION
4.1 Problem Setup
We tested our algorithms on a disaster recovery problem as shown
in Figure 2. Specifically, we simulate a building of a power plant
with 2 entrances in the middle and 12 nuclear reactors along the four
sides. After a disaster, two mobile robots equipped with sensors and
actuators are sent to repair the reactors. Specifically, each robot can
navigate in the building with 4 actions (i.e., stay, turn-left,
turn-right, and move-forward) and 3 observations indicat-
ing the object in front (i.e., wall, other-robot, and free-space).
Each cell can only be occupied by one robot except for the cells with
reactors. Apart from the actions and observations for navigation,
each robot has 2 additional actions for repairing the reactors (i.e.,
repair-a, repair-b) and also 2 additional observations for the
reactors. Each robot only receives these observations when it is in
the same cell as the reactor.

We modeled this problem as a PS-DEC-POMDP. The known state
variables are the robots’ locations and orientations. Overall, there
are 37,824 robot states. Each reactor has 4 states and there are 412
= 16,777,216 reactor states. Note that the reactor states are hidden
variables and not modeled. It is worth noting that in standard DEC-
POMDPs the total number of states is 37,824×16,777,216≈6×1011.
Given the huge state space, it is very difficult to specify the model
and even harder to solve it. However, it is straightforward to imple-
ment a simulator for this problem with two variables for the robot
states and the other 12 variables for the reactor states.

Instead of specifying a reward function for 6×1011 states, we
implemented 4 state labels that map to the 4 joint repairing actions.
Accordingly, the compact reward function was specified in Table 1
where the reward is 100 only when the “correct” joint action is
executed given the label and 0 otherwise. Intuitively, the mapping
from the labels to the reactor states represents the domain knowledge
of the experts and their ability to interpret the observation sequences,
which could be arbitrarily complex in real-world settings. On one
hand, which joint action should be rewarded depends on the label
selected by the experts. On the other hand, how to select a label is
based on the experts’ domain knowledge (e.g., the reactors must be
repaired in a specific order) and estimate of the reactor states.

4.2 Experimental Results
To test the algorithms, we first let the robots move around in the
building and collect a set of histories using an initial policy. Next, we
invited 30 people to label the histories with the instruction on which
task should be performed by the robots in the tests (e.g., the reactors
should be fixed in a specific order). A visualization tool is developed
for them to replay the histories and view the robots’ behavior. After
that, we ran our algorithms to compute new policies for the robots
with the labeled histories from the participants. We repeated this
process with the new policies until it converged and output the final
policies. To evaluate the performance of our algorithms, we executed
the computed policies for 1000 runs and reported the average values.

Figure 3 summarizes our results in this domain. The first set of
experiments tested our planning algorithm with different sizes of
history samples (x-axis). In Figure 3(a), we compared the policy
values (y-axis) computed using the participants’ labels (i.e., Human)
with two baselines (no human knowledge) in which the histories
are randomly labeled (i.e., Random) or the label is fixed with the
values of the best fixed label reported (i.e., BestFixed). As shown
in the figure, the policies with human labeled data achieved better
values than the other two baselines and the value increases with
the sample size. This confirmed the importance of incorporating
human’s knowledge in such domains and thus the significance of
our model and algorithm.

The second set of experiments tested the usefulness of the value
of querying (VoQ) and the learned predicting model for labeling
(RWM). In Figure 3(b), we reported the actual error (i.e. Error)
between the labels produced by VoQ and the histories entirely la-
beled by participants (the left side of the y-axis) and the error bound
(i.e., Bound) introduced by Theorem 3 (i.e., mε) with different
thresholds controlled by ε (x-axis). We also reported the percentage
(i.e., Query) of the actual queries comparing to the total possible
queries (the right side of the y-axis). As we can see from the figure,
the actual error increases with ε and is bounded by mε while the
number of queries drops very quickly (e.g., about 10% at 300) as
ε increases. It is worth noting that the error bound is loose, which
means that the actual performance is much better than the bound.
Similarly in Figure 3(c), we reported the actual error (i.e., Error)
of the labels produced by RWM, the error bound (i.e., Bound) de-
fined by Theorem 4, and the percentage (i.e., Query) of the actual
queries with different thresholds controlled by K (x-axis). We can
see from the figure that the error decreases with K and is bounded
as in Theorem 4. As expected, the number of queries increases since
the algorithm needs more data for training the predictors. In contrast,
the error bound here is tight, which indicates that Corollary 2 is
useful to determine K. These two results confirmed the usefulness
of our algorithms for reducing the number of queries while bounding
the errors.

5 RELATED WORK
Multi-agent systems are being increasingly deployed in real-world
applications where people take an active part in the decision making
and planning process [5, 7]. Agents in these settings need to be able
to learn to perform new tasks, adapt to novel situations, and under-
stand what their human users want. For instance, the MAPGEN
system, used for daily planning for Mars exploration rovers, allows

DAI-19, October 13–15, 2019, Beijing, China Wu, et al.

-200

-100

 0

 100

 200

 300

 400

 10 20 30 40 50 60 70 80 90 100

Samples (|H|)

Human
Random

BestFixed

(a) Reward Values

 0

 200

 400

 600

 800

 1000

 50 100
 150

 200
 250

 300
 350

 400
 450

0%

20%

40%

60%

80%

100%

Thresholds (ε)

Error
Bound
Query

(b) VoQ: Errors vs. Queries

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100
0%

20%

40%

60%

80%

100%

Thresholds (K)

Error
Bound
Query

(c) RWM: Errors vs. Queries

Figure 3: Experimental results.

human tactical activity planners to use it in an interactive mode
by selecting and placing new activities on timelines [5]. The HAC
system, devised for coordinating the activities of first responders
in disaster scenarios, allows them to make modifications or replan
based on their preferences [7]. The key challenge of these systems is
to efficiently transfer the experts’ knowledge or preferences to agents
and guide their decisions. In the single-agent case, work has been
done using inverse reinforcement learning [13] to extract rewards
from the behavior of an expert. Most recently, the TAMER frame-
work has been proposed to train an agent via interactive shaping
[8, 9] with human-generated rewards. However, it is very difficult
to computed decentralized policies by the aforementioned methods
due to the partial observability of the agents and huge policy space
of DEC-POMDPs.

Given a complete model of DEC-POMDPs, it can be solved either
optimally or approximately by many existing methods [1, 2, 6, 10,
12, 14, 17, 18, 20]. Among them, our planning is mostly related to
[20] where they also compute a decentralized policies using sam-
ples drawing from a simulator. However, they assume that the states
are fully observable and can be reset at any time by the simulator.
Therefore, our problem cannot be solved by their method. In terms
of alternatively optimization using nonlinear programs, our work
is related to [1]. Again, they require a complete model with the
transition, observation, and reward functions fully specified. This
makes it unsuitable for our settings since the model is partially spec-
ified. Regarding the compact reward function, our work is related
to [15, 19] where they also exploit the compact representation of
DEC-POMDPs. Unlike their work, we make no assumption on the
agents’ interaction and use a small set of state labels to represent
the reward function. Moveover, the decision on how to select a state
label for a given history is made by human experts during planning.

6 CONCLUSIONS
We address settings where additional state variables or domain
knowledge is possessed by people, but is difficult to incorporate
into the domain model. The solution we propose is to directly in-
clude the human experts in the loop and allow them to interactively
train the agents’ policies during planning time. Specifically, the ex-
perts are asked to select labels given sampled histories and then map
the selected labels to the reward signals for the histories. We pro-
pose a compact reward model to consider the labels and presented

algorithms to compute joint policies using the sampled histories.
To minimize the number of queries to the experts, a divided-and-
conquer method is presented to interact with the experts based on
the value of querying. Additionally, we propose an online learning
method to learn the mapping from histories to labels in parallel to the
planning process. We tested our algorithms on a disaster recovery
domain where the repair of nuclear reactors can only be carried
out with the knowledge of the experts. Experimental results with
different settings confirm the benefits of our model and the proposed
algorithms. In the future, we plan to test our algorithms on real-world
applications and investigate more human factors with crowdsourcing
platforms.

REFERENCES
[1] Christopher Amato, Daniel S Bernstein, and Shlomo Zilberstein. 2010. Optimiz-

ing fixed-size stochastic controllers for POMDPs and decentralized POMDPs.
Autonomous Agents and Multi-Agent Systems 21, 3 (2010), 293–320.

[2] Chistopher Amato, Jilles Steeve Dibangoye, and Shlomo Zilberstein. 2009. Incre-
mental Policy Generation for Finite-Horizon DEC-POMDPs. In Proc. of the 19th
Int’l Conf. on Automated Planning and Scheduling. 2–9.

[3] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein.
2002. The complexity of decentralized control of Markov decision processes.
Mathematics of Operations Research 27, 4 (2002), 819–840.

[4] Avrim Blum. 1998. On-line algorithms in machine learning. Springer.
[5] John L Bresina, Ari K Jónsson, Paul H Morris, and Kanna Rajan. 2005. Activity

Planning for the Mars Exploration Rovers.. In Proc. of the 15th Int’l Conf. on
Automated Planning and Scheduling. 40–49.

[6] Jilles Steeve Dibangoye, Christopher Amato, Olivier Buffet, and François Charpil-
let. 2013. Optimally Solving Dec-POMDPs as Continuous-State MDPs. In Proc.
of the 23d Int’l Joint Conf. on Artificial Intelligence.

[7] Nicholas R Jennings, Luc Moreau, David Nicholson, Sarvapali D Ramchurn,
Stephen J Roberts, T Rodden, and Alex Rogers. 2014. On human-agent collectives.
Commun. ACM (2014).

[8] W Bradley Knox and Peter Stone. 2009. Interactively shaping agents via hu-
man reinforcement: The TAMER framework. In Proc. of the 5th Int’l Conf. on
Knowledge Capture. 9–16.

[9] W Bradley Knox and Peter Stone. 2010. Combining manual feedback with
subsequent MDP reward signals for reinforcement learning. In Proc. of the 9th
Int’l Conf. on Autonomous Agents and Multiagent Systems. 5–12.

[10] Akshat Kumar and Shlomo Zilberstein. 2010. Point-Based Backup for Decentral-
ized POMDPs: Complexity and New Algorithms. In Proc. of the 9th Int’l Conf.
on Autonomous Agents and Multiagent Systems. 1315–1322.

[11] Keiji Nagatani, Seiga Kiribayashi, Yoshito Okada, Satoshi Tadokoro, Takeshi
Nishimura, Tomoaki Yoshida, Eiji Koyanagi, and Yasushi Hada. 2011. Redesign
of rescue mobile robot Quince. In Proc. of the 2011 IEEE Int’l Symposium on
Safety, Security, and Rescue Robotics. 13–18.

[12] Ranjit Nair, Milind Tambe, Makoto Yokoo, David V. Pynadath, and Stacy Marsella.
2003. Taming Decentralized POMDPs: Towards Efficient Policy Computation for
Multiagent Settings. In Proc. of the 18th Int’l Joint Conf. on Artificial Intelligence.
705–711.

[13] Andrew Y Ng and Stuart J Russell. 2000. Algorithms for inverse reinforcement
learning.. In Proc. of the 17th Int’l Conf. on Machine Learning. 663–670.

Stochastic Multi-Agent Planning with Partial State Models DAI-19, October 13–15, 2019, Beijing, China

[14] Frans A Oliehoek, Matthijs TJ Spaan, Christopher Amato, and Shimon Whiteson.
2013. Incremental Clustering and Expansion for Faster Optimal Planning in
Decentralized POMDPs. Journal of Artificial Intelligence Research 46 (2013),
449–509.

[15] Frans A Oliehoek, Matthijs TJ Spaan, Shimon Whiteson, and Nikos Vlassis. 2008.
Exploiting locality of interaction in factored Dec-POMDPs. In Proc. of the 7th
Int’l Joint Conf. on Autonomous Agents and Multiagent Systems. 517–524.

[16] Joni Pajarinen and Jaakko Peltonen. 2011. Periodic Finite State Controllers for
Efficient POMDP and DEC-POMDP Planning. In Proc. of the 25th Conf. on
Neural Information Processing Systems. 2636–2644.

[17] Sven Seuken and Shlomo Zilberstein. 2007. Memory-Bounded Dynamic Pro-
gramming for DEC-POMDPs. In Proc. of the 20th Int’l Joint Conf. on Artificial
Intelligence. 2009–2015.

[18] Matthijs T. Spaan, Frans A. Oliehoek, and Christopher Amato. 2011. Scaling up
optimal heuristic search in Dec-POMDPs via incremental expansion. In Proc. of
the 22nd Int’l Joint Conf. on Artificial Intelligence. 2027–2032.

[19] Stefan J Witwicki and Edmund H Durfee. 2011. Towards a unifying characteri-
zation for quantifying weak coupling in Dec-POMDPs. In Proc. of the 10th Int’l
Conf. on Autonomous Agents and Multiagent Systems. 29–36.

[20] Feng Wu, Shlomo Zilberstein, and Xiaoping Chen. 2010. Rollout sampling policy
iteration for decentralized POMDPs. In Proc. of the 26th Conf. on Uncertainty in
Artificial Intelligence. 666–673.

A PROOFS OF THEOREMS
Theorem 3. The error of the label sequence returned by our algo-
rithm ®c = (®c k1 , ®c k2 , · · · , ®c km) is bounded bymε wherem is the total
number of the subsequences.

PROOF. Let ®c be the label sequence returned by our algorithm
for ®h and ®c ∗ be the “optimal” sequence obtained by querying the
experts for every time step in ®h . Apparently, in order to obtain ®c ∗, we
must query the experts for | ®h | times. The goal of our algorithm is to
approximate ®c ∗ with ®c where the number of querying for computing
®c can be much less than the total querying of ®c ∗, i.e.,m ≪ |®h |, while
bound their difference (error) in terms of the expected values:

Verror (®c , ®h) =
������V®c ∗ (®h) −V®c (®h)������ (13)

If the algorithm terminates with VoQ∞(®h) ≤ ε, according to the
definition, the difference in values between any sequences (including
the “optimal” sequence from the experts) is less than ε. In this case,
we arbitrarily select a single label c for the whole ®h . Thus, the error
is bounded by ε as:������V®c ∗ (®h) −V®c (®h)������ ≤ VoQ∞(®h) ≤ ε (14)

with m = 1 where ®c is a sequence that repeats c for all the steps.
Otherwise, a procedure is called in the algorithm to check the value
of VoQk (®h) with different interval k .

To achieve this, we first query the experts for a label c at the last
step of the joint history and compute VoQk assuming that c is used
for the entire joint history. If VoQk (®h) ≤ ε, we return with a repeat
of c. Otherwise, we recursively divide the joint history into two
segments and compute VoQk for reach segments. Finally, we merge
all the results and return the whole sequence ®c = (®c k1 , ®c k2 , · · · , ®c km).
Notice that we cache the querying results so each time step of the
joint history is at most queried once.

Let ®c k ⊆ ®c be a subsequence of ®c that consists of repeated
instances of one label ck and m is the total number of such subse-
quences in ®c . The expected value of ®c is written as:

V®c (
®h) = V®c k1

(®h k1) +V®c k2
(®h k2) + · · · +V®c km (

®h km)

=
∑
®c k ⊆®c

V®c k (
®h k)

(15)

The error in terms of expected values between ®c and ®c ∗ is:

| |V®c ∗ (
®h) −V®c (

®h)| | = | |V®c ∗ (
®h) −

∑
®c k ⊆®c

V®c k (
®h k)| |

= | |
∑
®c k ⊆®c

[V®c ∗k
(®h k) −V®c k (

®h k)]| |

≤
∑
®c k ⊆®c

ε =mε

(16)

where ®c ∗k is a subsequence of ®c ∗ with the same starting and ending
time as ®c k . Thus, comparing to the “optimal” sequence from the
experts, the error is bounded by mε, i.e.,

Verror (®c , ®h) ≤ mε (17)

for the label sequence ®c computed by our algorithm given the joint
history ®h . □

Lemma 2 (Blum [4]). The expected number of mistakes M made
by the RWM algorithm satisfies:

M ≤
m ln (1/ρ) + ln |C |

1 − ρ
(18)

where 0 < ρ < 1 and m is the number of mistakes made by the most
“correct” task c ∈ C so far.

Please refer to Blum [4] for the detail proof.

Theorem 4. The error in the expected value obtained by the predic-
tor Φ(®h) is bounded by:������V (®h ,Θ) −V (®h ,Φ)������ ≤ m ln (1/ρ) + ln |C |

K(1 − ρ)
Verror (19)

where Verror = maxs,c R(s, c, ®a) −mins,c R(s, c, ®a) is the maximum
gap in value for any two labels and K is the total number of training
data obtained so far for ®h .

PROOF. Let M be the expected number of mistakes made by the
predictor Φ, K be the total number of training data obtained so far for
®h , andm be the number of mistakes made by the most “correct” label
so far. In other words, we train the predictor with K examples. Each
example is a label c for ®h labeled by the experts. In the algorithm,
given an example, we penalize the labels that are different from the
example. Let Pc be the total number of penalties applied to label c
given the K examples. The number of mistakes made by the most
“correct” label so far can be computed asm = minc ∈C Pc .

Since M is the expected number of mistakes made by the predictor
in the K trials, the error rate is M/K . Given that the error for any two
labels is less than or equal to Verror , we have:

| |V (®h ,Θ) −V (®h ,Φ)| | ≤
M

K
Verror (20)

DAI-19, October 13–15, 2019, Beijing, China Wu, et al.

Thus, Equation 19 holds by applying Lemma 2:

| |V (®h ,Θ) −V (®h ,Φ)| | ≤
M

K
Verror

≤
m ln (1/ρ) + ln |C |

K(1 − ρ)
Verror

(21)

Note that Verror is a constant given ®h . Therefore, the error bound
on the right-hand side is determined bym and K . This concludes our
proof that the predictor learned by RWM is error-bounded. □

Corollary 2. Given an expected error bound ε , the sufficient size of
the training data for ®h is:

K ≥
m ln (1/ρ) + ln |C |

ε(1 − ρ)
Verror (22)

PROOF. Given an expected error bound ε , the goal is to guarantee
that:

| |V (®h ,Θ) −V (®h ,Φ)| | ≤ ε (23)
According to Theorem 4, we can have:������V (®h ,Θ) −V (®h ,Φ)������ ≤ m ln (1/ρ) + ln |C |

K(1 − ρ)
Verror ≤ ε (24)

Thus, we can guarantee the error bound if the size of training data:

K ≥
m ln (1/ρ) + ln |C |

ε(1 − ρ)
Verror (25)

This concludes our proof. □

	Abstract
	1 Introduction
	2 The PS-DEC-POMDP Model
	2.1 Formal Model
	2.2 Basic Assumptions

	3 Solving PS-DEC-POMDPs
	3.1 Labeling Histories by Human Experts
	3.2 Learning Predictors for State Labels
	3.3 Improving Policies with Labeled Histories

	4 Empirical Evaluation
	4.1 Problem Setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusions
	References
	A Proofs of Theorems

