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Abstract
We address a spatial conservation planning prob-
lem in which the planner purchases a budget-
constrained set of land parcels in order to max-
imize the expected spread of a population of an
endangered species. Existing techniques based
on the sample average approximation scheme and
standard integer programming methods have high
complexity and limited scalability. We propose
a fast combinatorial optimization algorithm using
Lagrangian relaxation and primal-dual techniques
to solve the problem approximately. The algorithm
provides a new way to address a range of con-
servation planning and scheduling problems. On
the Red-cockaded Woodpecker data, our algorithm
produces near optimal solutions and runs signifi-
cantly faster than a standard mixed integer program
solver. Compared with a greedy baseline, the solu-
tion quality is comparable or better, but our algo-
rithm is 10–30 times faster. On synthetic problems
that do not exhibit submodularity, our algorithm
significantly outperforms the greedy baseline.

1 Introduction
Spatial conservation planning problems have received signif-
icant attention from the AI community, resulting in a range
of strategies for conserving land parcels in order to support
the recovery of an endangered species or preserve biodiver-
sity. Sheldon et al. [2010] studied a restricted version of
this problem—Red-cockaded Woodpecker (RCW)—in which
the planner selects a set of land parcels, subject to a budget
constraint, to maximize the spread of a population over a geo-
graphical network of land patches within a specific time hori-
zon. The underlying spreading process is modeled as a net-
work diffusion process or cascade [Kempe et al., 2003] using
a metapopulation model developed by ecologists. Due to the
stochasticity of process, the RCW problem can be written as a
stochastic optimization problem. Similar propagation models
have been studied in social networks, particularly the influ-
ence maximization problem where a planner strategically se-
lects a certain number of sources to trigger the spread of influ-
ence over a social network [Domingos and Richardson, 2001;
Kempe et al., 2003]. Unlike that problem, a major challenge

presented by RCW is that its objective function is not sub-
modular. Consequently, greedy algorithms may produce so-
lutions that are arbitrarily worse than an optimal solution.

Sheldon et al. [2010] developed an algorithm based on
sample average approximation (SAA) and mixed integer pro-
gram (MIP) to solve the problem approximately. In SAA, a
certain number of random samples are drawn and their aver-
age is used to approximate the original objective function that
is an expectation over all possible cascade scenarios. This
way, the RCW problem is converted into a discrete optimiza-
tion problem and solved optimally by a standard MIP solver.
However, since the discrete optimization problem is NP-hard,
the MIP solver can only handle limited network sizes and
a small number of samples, undermining the approximation
quality of SAA. For example, a standard MIP solver fails to
work with more than 20 samples, either taking too long to fin-
ish or using too much memory, and an improved MIP based
algorithm [Kumar et al., 2012] can scale up to 40 samples but
needs hours to finish. To address this challenge of scalability,
we propose what we believe is the first combinatorial algo-
rithm to solve the converted discrete optimization problem
approximately and efficiently.

In fact, our algorithm is applicable to a more general
problem called Budget Set Weighted Directed Steiner Graph
(BSW-DSG) and, with minor modifications, to the Quota
Set Weighted Directed Steiner Graph (QSW-DSG) and Prize-
Collecting Set Weighted Directed Steiner Graph (PCSW-
DSG) problems. We introduce each of these problem as a
generalization of a classical network design problem to the
setting where edges are purchased in sets instead of indi-
vidually. Xue et al. [2015] first generalized the Steiner
tree problem in this way; our work extends this generaliza-
tion to the widely-used quota, budget, and prize-collecting
Steiner tree variants [Johnson et al., 2000]. All three prob-
lems share the same basic setup but have different constraints
and objectives. In the basic setup, an initial graph and a set
of candidate edge sets, each with a certain cost, are given.
The planner can purchase a subset of edge sets and add the
included edges into the initial graph. In the budget prob-
lem (BSW-DSG), the total cost of selected edge sets is con-
strained by a given budget and the objective is to maxi-
mize the number of terminal vertices connected to a unique
root vertex in the augmented graph. In the quota problem
(QSW-DSG), the number of terminal vertices connected to



the root is required to be greater than a given value and the
objective is to minimize the total cost of achieving this re-
quirement. In the prize-collecting problem (PCSW-DSG),
both the number of terminal vertices connected to the root
and cost are part of the objective and the tradeoff between
them is controlled by a parameter. In this paper, we pro-
pose a fast primal-dual algorithm to solve the PCSW-DSG
problem approximately. To address the BSW-DSG prob-
lem, we use Lagrangian relaxation [Jain and Vazirani, 2001;
Ahuja et al., 1988] to fold the budget constraint into the ob-
jective and convert the BSW-DSG problem into a PCSW-
DSG problem that is parameterized by a Lagrangian multi-
plier β. We also derive a bisection procedure to find the value
of β that gives a near optimal solution. At each iteration of the
procedure, a PCSW-DSG problem parameterized by some β
is solved near optimally. Similarly, the same algorithm can
solve the QSW-DSG problem with a minor modification to
the bisection procedure. For the sake of clarity, we focus the
paper on the BSW-DSG problem.

When applied to the RCW dataset, our algorithm produces
near optimal solutions and runs orders of magnitude faster
than the MIP approach, for example, taking only 20 min-
utes for 300 samples. A greedy baseline also produces near-
optimal results, however our algorithm still produces better
quality in most cases and, most importantly, is 10-30 times
faster. In experiments on synthetic problems with objective
functions that are strongly non-submodular, our algorithm
performs much better than the greedy baseline.

The rest of the paper is organized as follows. Section 2 de-
scribes the conservation planning problem and the basic so-
lution based on SAA. Section 3 formalizes the general BSW-
DSG problem. Section 4 presents our combinatorial algo-
rithm. Section 5 describes how to apply our algorithm to a
range of other practical applications. Experimental results
are reported in Section 6.

2 Problem Statement
Consider a conservation area consisting of habitat patches
that are the atomic units in the population dynamics model
and can be either occupied or unoccupied by the species.
These patches are grouped into non-overlapping parcels
P1,P2, ...,PL, which are the smallest units available for pur-
chase. A parcel Pl can be purchased with cost cl used to
restore and conserve its habitat patches so they are suitable
for the species to occupy. A patch can be occupied only if the
parcel that it belongs to is purchased. A conservation strat-
egy is an L-dimensional vector y where yl = 1 if that the lth
parcel is purchased and yl = 0 otherwise.

Sheldon et al. [2010] use a metapopulation model from
ecology [Hanski and Ovaskainen, 2000] to describe the
stochastic occupancy dynamics of the species. In this model,
a patch is either occupied or unoccupied at each time step
h ∈ {0, 1, ...,H − 1}. At time 0, the species occupy a set
of patches called sources. At any time h, an occupied patch
v triggers two stochastic events: (1) the population at u col-
onizes an unoccupied patch v with probability puv (typically
decays with distance between the patches) that makes v occu-
pied at time h+1; and (2) the population at v becomes extinct

}
P1}
P2

h = 0 h = 1 h = 2 h = 3 h = 4

u0 u1 u2 u3 u4

v0 v1 v2 v3 v4

w0 w1 w2 w3 w4

Figure 1: Example of the layered graph of a scenario with
three patches u, v, w and two parcels P1,P2, showing parcels
(grey boxes), occupied (red) and unoccupied (blue) patches.

with probability 1− pvv , making v unoccupied at time h+ 1.
The goal of conservation planning is to select a set of

parcels to purchase, without exceeding a budget B, such
that the expected number of patches being occupied at time
H − 1 is maximized. More concretely, given a strategy y, de-
fine 0-1 random variable X(y)v,h for each patch v and each
time h to indicate whether the patch v is occupied at time h
(X(y)v,h = 1) or not (X(y)v,h = 0). The best strategy is
obtained by solving the following optimization problem:

arg max
y

∑
v

E[X(y)v,H−1] s.t.
∑
l:yl=1

cl ≤ B. (1)

Sample Average Approximation The stochastic optimiza-
tion problem (1) is very hard to solve directly, but the SAA
scheme can be used to solve it approximately. The idea is to
sample N independent cascade scenarios from the stochastic
spreading process, each of which represents a possible out-
come of the stochastic process. For each scenario, given a
strategy vector y, the occupancy status of any patch at any
time step can be evaluated directly so that the number of oc-
cupied patches at the last time step can be determined. Hence,
the average number of occupied patches over sampled scenar-
ios is an approximation of the objective in (1).

More concretely, one scenario is a layered graph, as shown
in Fig. 1, that contains a vertex vh for patch v and time h. To
construct the edges of the graph, for a pair of patches (u, v)
(u 6= v) and a h ∈ {0, . . . ,H − 2}, a biased coin with proba-
bility puv being heads is flipped. A directed edge (uh, vh+1)
is added to the graph iff the outcome is heads, meaning that
v will be occupied at h + 1 if u is occupied at h. Similarly,
for a patch v and h ∈ {0, . . . ,H−2}, a coin with probability
1 − pvv being heads is flipped. A directed edge (vh, vh+1)
is added to the graph iff the outcome is heads, meaning that
the population occupying v at h will survive to time h + 1.
With a conservation strategy, we can determine whether v is
occupied at h by checking whether there exists a valid path
from some u0 to vh such that (1) u is occupied at time 0
and (2) all patches on the path are purchased. By checking
the layered graphs of N i.i.d. sampled cascade scenarios, we
can obtain the average number of occupied patches at time
H − 1. Specifically, let X(y)nv,h be a 0-1 variable indicating
whether the patch v is occupied in the nth scenario at time h
(X(y)nv,h = 1) or not (X(y)nv,h = 0). Then, we have∑

v

E[X(y)v,H−1] ≈ 1

N

N∑
n=1

∑
v

X(y)nv,H−1 (2)



When N goes to infinity, the right term converges to the left
term and the vector y that maximizes the right term converges
to the vector that maximizes the left term [Kleywegt et al.,
2002]. Thus, a good conservation strategy can be obtained by
solving the following optimization problem:

arg max
y

1

N

∑
n,v

X(y)nv,H−1 s.t.
∑
l:yl=1

cl ≤ B (3)

Instead of solving (3) as a MIP, we propose a significantly
faster near-optimal algorithm.

3 Budget Set Weighted Directed Steiner
Graph Problem

In this section, we propose a novel network design problem
called Budget Set Weighted Directed Steiner Graph (BSW-
DSG), of which (3) is a specific instance.

The input of a BSW-DSG problem is a directed graph
G = {V,E} with a unique root vertex r ∈ V , a set of
terminal vertices T ⊆ V and a collection of M edge sets
E = {E1, E2, ..., EM} where Es ⊆ E and each Es is asso-
ciated with a nonnegative cost cs. Let A denote a subset of
E . Each A corresponds to a subgraph GA = {V,EA} where
EA =

⋃
Es∈AEs. A vertex v is connected to r if there is a

path from r to v. Given a budget B, the goal is to find a set A
with cost no greater than B such that the number of terminal
vertices connected to r in GA is maximized.

To write down its mathematical formulation, we start with
a preprocessing step. Let ET be an additional set of edges
from the root directly to each terminal k ∈ T . For any se-
lected setA, we can augment the subgraphGA to be a Steiner
graph (one where all terminals are connected to r) by adding
edges (r, k) ∈ ET for each terminal k that is not already
connected to r in GA. Since T is fixed, the original goal of
maximizing the number of connected terminals is equivalent
to minimizing the number of edges needed to augment GA to
obtain a Steiner graph. Mathematically, BSW-DSG is formu-
lated as follows:

argmin
A⊆E,AT⊆ET

|AT | (4)

s.t.
∑

s:Es∈A
cs ≤ B

AT ∪
( ⋃
Es∈A

Es

)
forms a Steiner graph

where AT is the set used for augmentation.
Problem (4) can be formulated as a MIP using the network-

flow encoding shown in Fig. 2. The flow variable xku,v en-
codes the flow destined for terminal k ∈ T on the edge
(u, v) ∈ E, where E denotes E

⋃
ET . It is easy to show

that, in the optimal solution of the MIP, xku,v is either 0 or 1.
The 0-1 decision variable ys indicates whether the edge set
Es is purchased (ys = 1) or not (ys = 0). The 0-1 variable
zrk indicates whether the edge (r, k) ∈ ET is used (zrk = 1)
or not (zrk = 0). Line (2) forces each terminal k to be con-
nected to r by requiring one unit of flow on a path from r to
terminal k. The objective is to minimize the number of used

min
x,y,z

∑
(r,k′)∈ET

zrk′ (1)

s.t.
∑

(w,v)∈E

x
k
wv −

∑
(u,w)∈E

x
k
uw =

 1 if w = r
−1 if w = k
0 otherwise

∀w ∈ V ∀k ∈ T

(2)

x
k
uv ≤

∑
s:(u,v)∈Es

ys ∀k ∈ T , ∀(u, v) ∈ E (3)

x
k
rk′ ≤ zrk′ ∀k ∈ T , ∀(r, k′) ∈ ET (4)

M∑
s=1

csys ≤ B (5)

x
k
uv ∈ [0, 1] ∀k ∈ T , ∀(u, v) ∈ E (6)

ys ∈ {0, 1} ∀Es ∈ E and zrk′ ∈ {0, 1} ∀(r, k′) ∈ ET (7)

Figure 2: MIP formulation of BSW-DSG problem

edges in ET . Line (3) says that the flow can pass an edge
(u, v) only when (u, v) is in a purchased edge set Es, (4)
says that the flow can pass an edge (r, k) ∈ ET only when
rrk is 1, and (5) is the budget constraint.

BSW-DSG Formulation of the RCW problem The opti-
mization problem (3) can be formulated as a BSW-DSG prob-
lem in the following way. A new input graph of BSW-DSG is
created by combining the layered graphs of N sampled sce-
narios in which a vertex vnh exists for each patch v, each sce-
nario n and each time step h. Also, a new root vertex r is
added to the graph along with directed edges from r to each
vn0 with v being occupied at time 0. Then, vnh being con-
nected to r implies the patch v is occupied at time h in the
nth scenario. The terminal set T is defined to contain all
vertices with subscript H − 1, that is, T = {vnH−1 : ∀v, n ∈
{1, ..., N}} since the goal is to optimize occupancy of patches
at time H − 1. An edge set Es is created for a parcel Pl in a
way that if a patch v is in Pl, all edges ending with vnh is in
Es. Formally, Es ={

(u, vnh) :
∀v ∈ Pl, h = {1, ...,H − 1}, n = {1, ..., N}
∀(u, vnh) in the nth layered graph

}
The cost of Es is the cost of Pl. By now, we formulated the
optimization problem (3) of the RCW problem as an instance
of BSW-DSG.

4 Our Algorithm for BSW-DSG Problem
Lagrangian relaxation has been used to solve many con-
strained discrete optimization problems [Jain and Vazirani,
2001; Kumar et al., 2012; Ahuja et al., 1988]. The basic idea
is to relax a complex constraint and bring it to the objective
together with a Lagrangian multiplier β. The new optimiza-
tion problem is called relaxation problem parameterized by β.
In this paper, we take advantage of the problem structure to
develop a bisection procedure to search for a β such that the
near optimal solution can be computed by solving the relax-
ation problem with that β. For the BSW-DSG problem, the
relaxation problem is a PCSW-DSG problem with tradeoff
parameter β. To solve the PCSW-DSG problem, we propose
a primal-dual algorithm motivated by [Wong, 1984].



PCSW-DSG Problem / Primal Problem:

min
(x,y,z)∈X

L(x, y, z, β) =
∑

(r,k′)∈ET
zrk′ + β

(
M∑
s=1

csys − B
)

(1)

X = {(x,y,z) :x, y, z satisfy constraints (2), (3), (4), (6), (7) in Fig. 2} (2)

Dual Problem:

max
∑
k∈T

(
µ
k
k − µ

k
r

)
− βB (3)

s. t. µ
k
v − µ

k
u − λ

k
uv ≤ 0 ∀(u, v) ∈ E (4)∑

(u,v)∈Es

∑
k∈T

λ
k
uv ≤ βcs ∀Es ∈ E, ∀k ∈ T (5)

∑
k∈T

λ
k
rk′ ≤ 1 ∀(r, k′) ∈ ET (6)

µ
k
v ∈ {−∞,∞} ∀k ∈ T , v ∈ V (7)

λ
k
uv ∈ [0,∞) ∀k ∈ T , (u, v) ∈ E (8)

Figure 3: Primal and dual formulations of relaxation problem

In summary, our algorithm consists of three major steps.
First, we relax the budget constraint (5) in Fig. 2 and move it
to the objective with a parameter β to create the PCSW-DSG
problem shown in Fig. 3. Second, we use the bisection pro-
cedure to find the β, using the primal-dual algorithm to solve
the PCSW-DSG problem. Finally, we extract and refine the
solution. The primal-dual algorithm and the bisection proce-
dure will be explained next.

4.1 Bisection Procedure
Let’s first analyze the function L(x, y, z, β) in Fig. 3. Let
(xβ , yβ , zβ) denote the optimal solution of the PCSW-DSG
problem for some β. Let, Z(β) =

∑
(r,k′)∈ET zrk′β ,C(β) =∑M

s=1 csysβ , and L(β) = Z(β) + βC(β). We have the fol-
lowing properties.

Proposition 1. As β increases, Z(β) is nondecreasing and
C(β) is nonincreasing.

The proof is omitted due to space limitation. Intuitively,
larger β puts larger penalty on the cost and thus results in
a less costly y but larger Z(β).

The bisection procedure starts with a suitably large interval
bounding β and then narrows it iteratively. At each iteration,
a new β is picked as the middle point of the current range and
then the primal-dual algorithm is used to calculate C(β) and
produce a near optimal strategy for β. By Proposition 1, if
C(β) < B, all β′ greater than β will give Z(β′) ≥ Z(β) and
therefore can be abandoned. If C(β) > B, all β′ smaller than
β will give C(β′) ≥ C(β) and therefore can be abandoned.
The procedure terminates when the range is less than some
threshold and then a β in the range along with the computed
strategy is returned.

Proposition 1 is true when the PCSW-DSG problem is
solved optimally for each β, but the bisection procedure is
still valid with our approximate algorithm. Let (x̂β , ŷβ , ẑβ)
denote the near optimal solution computed by the primal-dual
algorithm for some β. And let Ẑ(β) =

∑
(r,k′)∈ET ẑrk′β and

Ĉ(β) =
∑M
s=1 csŷsβ . Then, we have

Algorithm 1 Primal-Dual Algorithm for PCSW-DSG
1: function PRIMALDUAL(G, E , β)
2: λk

uv ← 0 ∀k ∈ T ∀(u, v) ∈ E
3: G′ = {V,E′}, E′ ← φ
4: y ← 0, z ← 0
5: while G′ is not a steiner graph do
6: Pick a k ∈ T not connected to r
7: Find δ(k) : a set of cut edges between r and k
8: S = {s|Es ∩ δ(k) 6= 0, Es /∈ A}
9: s∗ = arg mins∈S ∆(s, k) where

10: ∆(s, k) = βcs −
∑

k′∈T ,(u,v)∈Es
λk′
uv/|Es ∩ δ(k)|

11: if ∆(s∗, k) ≥ (1− λk
rk) then

12: ∆(s∗, k)← 1− λk
rk

13: E′ ← E′ ∪ {(r, k)} and zr,k ← 1
14: else
15: E′ ← E′ ∪ Es∗ and ys∗ ← 1
16: end if
17: λk

uv ← λk
uv + ∆(s∗, k) ∀(u, v) ∈ δ(k)

18: end while
19: Set ys ← 0 if removing Es, G′ is still Steiner graph.
20: Return y
21: end function

Proposition 2. Suppose terminal vertices in line 6 of Algo-
rithm 1 are chosen in a predefined order, as β increases, Ẑ(β)

is nondecreasing and Ĉ(β) is nonincreasing.

The proof is omitted. Intuitively, as β becomes larger, the
equality in (5) in the dual problem becomes harder to sat-
isfy. Since the terminal vertices are picked in the same order
over different β, the set of edge sets purchased for a larger
β is the subset of edge sets for a smaller β which gives us
Proposition 2. Finally, if the primal-dual algorithm performs
near optimally for the PCSW-DSG problem, the final solution
computed by the bisection procedure will be near optimal for
the BSW-DSG problem. Although this procedure is not ac-
companied by a formal approximation guarantee, we observe
that it produces near-optimal results on the problem instances
used in our experiments.

4.2 Primal-Dual Algorithm for PCSW-DSG
Algorithm 1 summarizes the PCSW-DSG solver. This algo-
rithm builds technically on the primal-dual algorithm of Xue
et al. [2015] for the SW-DSG problem (where all terminals
must be connected). The dual formulation, shown in Fig. 3,
is obtained based on the LP relaxation of the primal problem.
The basic idea of the primal-dual algorithm is to repeatedly
adjust dual variables to increase the dual objective and at the
same time construct a feasible primal solution while main-
taining the primal complementary slackness condition [Vazi-
rani, 2001]. This condition is defined as follows for our prob-
lem.

Definition 1. Primal Complementary Slackness Condition:

1. ys 6= 0 implies
∑

(u,v)∈Es

∑
k∈T λ

k
uv = βcs

2. zrk′ 6= 0 implies
∑
k∈T λ

k
rk′ = 1

Without loss of generality, we assume that E doesn’t con-
tain edge (r, k) for any k ∈ T . Initially, the primal variables



y, z are set to be 0 (line 4), meaning that no edge sets are pur-
chased and no edges inET are used (line 3), which represents
an infeasible solution for the primal problem. Also, the dual
variables are set to be 0 (line 2), which is a feasible solution
for the dual problem. Note that we omit the dual variables
{µkv} in the presentation of the algorithm because their val-
ues can be derived from the values of {λkuv} and our goal is
to construct the feasible primal solution rather than explicitly
calculate the actual value of the dual objective. The relation-
ship of µ and λ is described by the following Proposition.
Proposition 3. Consider the edge-weighted graph Gk =
{V,E} where each edge (u, v) is assigned length equal to
λkuv . For any pair of vertices u and v where there is a path
from u to v in Gk, the maximum value that µkv − µku can take
subject to constraint (4) in the dual problem, is the shortest
path distance from u to v in Gk.

Thus, maximizing µkk − µkr is equivalent to the problem
of assigning a length λkuv to each edge in E, subject to con-
straints (5) and (6) of the dual problem, to maximize the
shortest distance from r to k. To maximize the objective of
the dual problem, the lengths of {λkuv} are assigned, subject
to constraints (5) and (6), to maximize the sum of the shortest
distances from r to k for all k ∈ T .

In each iteration (line 5-18), our algorithm increases the
dual objective by increasing the value of µkk − µkr for one ter-
minal k that is not connected to r in graphG′, while maintain-
ing feasibility. It first finds a set of edges δ(k) cutting k and
r (line 7). Lines 8-16 calculate a maximum value ∆(s∗, k)
that all λkuv with (u, v) ∈ δ(k) can increase by without vi-
olating constraints (5) and (6), which therefore increases the
value of µkk − µkr by the same amount. In line 8-10, for each
Es, the maximum amount of value that all variables λkuv with
(u, v) ∈ Es ∩ δ(k) can increase is equal to the remaining
value of constraint (5) divided by the number of edges in
Es ∩ δ(k). For the edge (r, k) ∈ ET , since it is always in
δ(k) and the value of λkr,k can at most increase to 1 by con-
straint (6), the maximum value ∆(s∗, k) is at most (1−λkr,k)

(line 11-12). If ∆(s∗, k) is equal to (1 − λkr,k) eventually,
the constraint (6) will become tight for (r, k), so zrk is set to
be 1 due to the complementary slackness condition 2 and the
edge (r, k) is added to G′ (line 13). Otherwise, the constraint
(5) will become tight for s∗, so ys∗ is set to be 1 due to the
complementary slackness condition 1 and all edges inEs∗ are
added to G′ (lines 15). In line 17, dual variables are updated.
The algorithm terminates when all terminals are connected to
r. Finally, in line 19, we check whether there exists some
purchased Es that can be removed without disconnecting any
terminal from r. If we find such Es, we set ys = 0.

4.3 Improvement Techniques
Several techniques can improve the results of Algorithm 1.

Expanding Direction In line 7, the edge sets cutting r and
k can be found in two different ways:
• Forward method: The cutset δ(k) contains an edge

(u, v) if u is connected to r in the constructed graph G′
and k is connected to v in the original graph G. Namely,
the path from r to k is created in a forward direction.

• Backward method: the cutset δ(k) contains an edge
(u, v) where k is connected to v inG′ and u is connected
to r in G. Namely, the path from r to k is created in a
backward direction.

We found that each method may perform better than other
depending on the budget, so we use both methods in our im-
plementation.

Local Search In the experiments, we found that differ-
ent orders of picking terminals can give slightly different
solution qualities, so we experimented with a local search
method to further improve the solution. We start with the β
value returned by the bisection procedure and run the PCSW-
DSG solver using a different, randomly selected order. If
C(β) < B, we decrease β by a small amount (by Proposi-
tion 1). Otherwise, we increase β by a small amount. We
repeat this process for 10-20 iterations and in each iteration,
we re-select the order of picking terminals randomly. Finally,
we return the best feasible solution found. We note, however,
that the improvement is limited, indicating that the order of
picking terminals doesn’t affect the quality that much.

Greedy Padding Since we find a near-optimal β rather than
an optimal one, the computed solution may not use all the
available budget. Therefore, to improve the solution, a greedy
procedure can be used to continue purchasing edge sets until
the budget is exhausted. In our experiments, only a few ad-
ditional edge sets can be purchased so the procedure is very
fast, but the improvement is not significant, usually 1-2%.

5 Extensions to Other Problems
BSW-DSG is a very general problem that can capture a range
of network optimization problems since the candidate edge
sets E can be defined arbitrarily, unlike RCW that is limited
to adding patches. For example, our framework is applicable
when the underlying network is a road network or river net-
work [Wu et al., 2014a; 2014b] where the investment is used
to improve certain edge segments rather than certain locations
in the network.

The techniques we propose in this paper can also solve the
quota problem (QSW-DSG) by using a slightly different bi-
section procedure: when narrowing the interval of β, we can
check whether Z(β) is greater than the required number of
terminals being connected to r and then abandon one half of
the interval accordingly. The QSW-DSG problem is an im-
portant problem in conservation planning and scheduling. For
example, the problem studied by Xue et al. [2012] is a spe-
cial instance of the QSW-DSG problem where all terminals
are required to be connected to r. Xue et al. [2015] mention
a useful extension to their problem that only requires a fixed
fraction of all terminals to be connected to r, which is equiv-
alent to the QSW-DSG problem. While their paper does not
give a solution to that problem, our algorithm can solve it ap-
proximately. Furthermore, our algorithm can quickly produce
a curve to visualize the tradeoff between cost and the fraction
of terminals that need to be connected, by solving the PCSW-
DSG problem with different parameters, which offers a useful
new capability to end-users.
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Figure 4: Optimality and runtime versus budget with 10 samples

Optimal solutions to the prize-collecting problem are
Pareto optimal with respect to cost and coverage; varying β
explores different Pareto optimal solutions. Thus, our algo-
rithm can explore different (approximate) Pareto optimal so-
lutions, but it only partially explores the space and does not
guarantee generating all Pareto optimal solutions. Finally, our
algorithm can be potentially extended to solve the network
topology optimization problem in social networks [Khalil et
al., 2014]. The applicability of our algorithm to this broad
list of problems underscores its significance.

6 Experimental Results
6.1 Empirical Data of RCW Problem
We used the data set for the RCW problem introduced
by Sheldon et al. [2010]. The study area includes 2537
patches and 443 parcels. The data set specifies the coloniza-
tion probabilities between all pairs of patches, the grouping
of patches into parcels, the prices of parcels and the initial
occupancy status of patches. We used a planning horizon of
100 years and compared our algorithm with a MIP solver and
with a greedy algorithm. In each iteration, the greedy algo-
rithm chooses the edge set with the highest ratio of increase in
objective value to cost, which gives better solutions than an-
other greedy variant that chooses the edge set with the highest
increase in objective value. We used the Gurobi Optimzer as
the MIP solver [Gurobi, 2015]. All the experiments were run
on a 2.2GHz Intel Core i7 CPU with 16GB of RAM.

Small Sample Size We compare three algorithms for 10
samples and the results are shown in Fig. 4. For our algo-
rithm, we applied Algorithm 1 twice, once using the forward
method and once using the backward method, and then ap-
plied the local search and greedy padding techniques to the
better of those two solutions. In Fig. 4(b), our algorithm runs
significantly faster than MIP and 10–20 times faster than the
greedy algorithm. In Fig. 4(a), both our algorithm and the
greedy algorithm produce near optimal solutions. Our algo-
rithm outperforms the greedy algorithm on larger budget sizes
and performs slightly worse on smaller budget sizes.
Large Sample Size We also tested our algorithm and the
greedy baseline using 300 samples. The results are show in
Fig. 5. We did not test Gurobi because it fails to solve MIPs
with more than 20 samples by either using too much time or
running out of memory. Our algorithm performs almost iden-
tically to the greedy algorithm when the budget is smaller
than 3× 108 and outperforms the greedy algorithm when the

(a) Optimality w.r.t. budget (b) Runtime w.r.t. budget

Figure 5: Optimality and runtime versus budget with 300 samples

budget is greater than 3× 108. Fig. 5(b) shows that our algo-
rithm is 10–30 times faster than the greedy algorithm and its
running time is almost constant with respect to budget, while
the greedy algorithm takes longer for larger budgets. This
implies that our algorithm can scale to larger network sizes or
more samples, that latter of which leads to improved solution
quality within the SAA methodology.

6.2 Synthetic Data
In the RCW problem, even though the discrete optimization
problem is NP-hard, the greedy algorithm is still able to pro-
duce a solution within 80% of the optimal value, which sug-
gests that the problem does not badly violate submodularity.
In this section, we design a group of problems that are more
challenging. These synthetic problems are motivated by the
corridor design problem, which is another important conser-
vation planning problem [Gomes, 2009] in which the goal
is to purchase a subset of parcels to build a (long) corridor
connecting distant habitat areas in a fragmented landscape.
When formulated within our context, the objective function
violates submodularity because purchasing individual parcels
has no or little effect on the objective function until the entire
corridor is purchased, at which point the endpoints become
connected and there is a large jump in the objective value.

With this motivation, we construct a small problem in-
stance as follows (see Fig. 6(a)). We first create M1 parcels,
each of which are directly connected to the source population
and so carry an immediate reward of p1 if purchased. We also
create a free parcel which has reward of p2 if it is reachable
from the source. The free parcel is connected by a corridor of
M3 parcels, which have reward of p3 if accessible. All parcels
in the corridor must be purchased to realize the reward of the
free parcel. If we set p2 � p1 > p3 , the optimal strategy
should first purchase all parcels in the corridor whenever the
budget allows, and first purchase all of the M1 parcels if the
budget is not enough to purchase the corridor.

The experimental results of our algorithm and the greedy
algorithm on the synthetic data are shown in Fig. 6(b). Our al-
gorithm gives the optimal solution as its curve overlaps with
the curve of the MIP solver. When budget is not enough (less
than 7500) to purchase all parcels in the corridor, the greedy
algorithm performs optimally. But it performs poorly when
budget is enough (greater than 7500) because it never pur-
chases any parcels in the corridor before all M1 parcels are
purchased. From these results, we observed that when the
objective function is not submodular as in our simple prob-
lem setting, the greedy algorithm may produce arbitrarily bad
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Figure 6: Experiments on synthetic data

solutions, while our algorithm can still produce near-optimal
solutions.

7 Conclusion
We propose a fast approximate algorithm to solve a spa-
tial conservation planning problem in which a set of budget-
constrained land parcels are purchased to maximize the ex-
pected spread of a population of a species. Our algorithm can
approximately solve three different variants of a more gen-
eral network design problem: the budget, quota, and prize-
collecting extensions of the Set-Weighted Directed Steiner
Graph Problem. It therefore has potential to apply to a va-
riety of other applications, which we plan to explore in future
work. On the Red-cockaded Woodpecker problem, our algo-
rithm produces near optimal solutions and runs significantly
faster than a standard mixed integer program solver. Also,
the solution quality is comparable to or better than a greedy
baseline (which is also near optimal on this problem), but our
algorithm is 10–30 times faster. On synthetic problems that
do not exhibit submodularity, our algorithm significantly out-
performs the greedy baseline.
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