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Abstract

Observing that many real-world sequential decision problems
are not purely cooperative or purely competitive, we propose
a new model—cooperative-competitive process (CCP)—that
can simultaneously encapsulate both cooperation and compe-
tition. First, we discuss how the CCP model bridges the gap
between cooperative and competitive models. Next, we in-
vestigate a specific class of group-dominant CCPs, in which
agents cooperate to achieve a common goal as their primary
objective, while also pursuing individual goals as a secondary
objective. We provide an approximate solution for this class
of problems that leverages stochastic finite-state controllers.
The model is grounded in two multi-robot meeting and box-
pushing domains that are implemented in simulation and
demonstrated on two real robots.

Introduction

Multi-agent models for sequential decision making un-
der uncertainty often fall into one of two distinct cate-
gories. They are either considered cooperative—when all
the agents have a shared objective, or competitive—when
each agent has a distinct private objective. Rich computa-
tional models and algorithms have been developed for each
category, particularly the decentralized partially observable
Markov decision process (Dec-POMDP) (Bernstein et al.
2002) for the cooperative case and the partially observable
stochastic game (POSG) (Hansen, Bernstein, and Zilber-
stein 2004) for the competitive case. These models have
proved useful for various applications such as cooperative
Mars rovers (Becker et al. 2004) or competitive robotic
tag (Emery-Montemerlo et al. 2004).

Real-world situations, however, tend to require a deli-
cate balance between cooperation, focusing on societal in-
terests, and competition, focusing on self-interest. For ex-
ample, autonomous vehicles (Wray, Witwicki, and Zilber-
stein 2017) must cooperate with other vehicles while opti-
mizing the resources needed to reach their own destination.
Similarly, a personal assistant must be able to cooperatively
schedule meetings that respect group preferences while op-
timizing the objectives of the user they represent (Varakan-
tham, Maheswaran, and Tambe 2005). In fact, pure cooper-
ation and pure competition are rare in real-world settings.
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The overarching goal of this work is to formalize the no-
tion of a cooperative-competitive process (CCP) by gener-
alizing Dec-POMDPs and POSGs and viewing them as ex-
treme points of a broad spectrum.

Work on integrated cooperative and competitive processes
has been sparse. While single-agent multi-objective mod-
els have enjoyed recent interest (Roijers et al. 2013), multi-
agent models have primarily focused either on a single ob-
jective for all agents (Bernstein et al. 2002; Kumar, Zilber-
stein, and Toussaint 2011; Nair et al. 2003) or a single ob-
jective for each agent (Monderer and Shapley 1996; Emery-
Montemerlo et al. 2004; Gmytrasiewicz and Doshi 2005).
TAEMS (Decker 1996) and evolutionary-based multi-agent
systems (Cardon, Galinho, and Vacher 2000; Coello, La-
mont, and Van Veldhuizen 2007) support multiple objec-
tives, but they do not address sequential decision-making
and partial observability. Semi-autonomous systems allow
control to be transferred back and forth between an agent
and a human (Wray, Pineda, and Zilberstein 2016), but
do not include slack or competition. Vector-valued Dec-
(PO)MDPs consider solving individual objectives, which
encapsulate both the agent and group objectives, and then
apply techniques to fuse policies to satisfy overall social
welfare (Mouaddib, Boussard, and Bouzid 2007; Matignon,
Jeanpierre, and Mouaddib 2012). This online approach does
not consider a characterization of slack or game theory.
Multi-objective distributed constraint optimization (MO-
DCOP) and other subclasses extend DCOP problems to
multiple objectives, but focus primarily on methods for
scalarization into a single objective (Delle Fave et al. 2011;
Roijers, Whiteson, and Oliehoek 2015).

Our primary contributions are: (1) the CCP model that
seamlessly blends the established cooperative and competi-
tive multi-agent models, allowing for a tunable “slack” pa-
rameter to control the amount of cooperation versus com-
petition; (2) a novel approximate algorithm for the model
using stochastic finite-state controllers (FSCs) that builds
upon nonlinear programming (NLP) techniques for Dec-
POMDPs (Amato, Bernstein, and Zilberstein 2010) and
best-response dynamics for POSGs (Nair et al. 2003); (3)
a formal analysis of CCP’s generality and the correctness of
the proposed algorithm; and (4) experimental evidence using
robots in real world experiments to demonstrate the range of
multi-agent interactions that the model captures.



Cooperative-Competitive Processes

We define the notion of a cooperative-competitive process
that generalizes Dec-POMDPs and POSGs. Thanks to the
use of a slack parameter, the new model can smoothly blend
cooperation and competition, and capture a broad spectrum
of scenarios.

Definition 1. A cooperative-competitive process (CCP) is
represented by (I, S, /T,ﬁ,T,O,ﬁ).

e I={1,...,n}is aset of n agents.

e S isa set of states.

° E:Al X -+ X Ay is a set of joint actions.

° Qzﬂl x - x ), is a set of joint observations.

e T:SxAxS—[0,1] is a state transition function map-
ping factored state s and joint action a to successor state
s’ such that T'(s,d, s’) = Pr(s'|s,d).

e 0:AxSx—[0,1] is an observation function mapping
joint action @ and successor state s’ to a joint observation
@ such that O(d, s',&) = Pr(&d|a, s').

—

e R=[Ry,...,R,]7T is a vector of rewards; for each state s
and action a, Ro(s,@) is a group reward and R;(s,qd) is
an individual reward for each agent i.

A CCP operates at discrete time steps up to some hori-
zon h, either finite (h €N) or infinite (h=o00). Each agent ¢
has only access to its private observation {2; after each joint
action. Rewards are discounted over time by discount fac-
tor v € (0, 1]. Unfortunately, infinite-horizon Dec-POMDPs,
POSGs, and thus CCPs are undecidable like POMDPs,
though they can be approximated. In POMDPs, however, a
belief over the true state is a sufficient statistic for the en-
tire history of actions and observations (Kaelbling, Littman,
and Cassandra 1998). In Dec-POMDPs, POSGs, and CCPs,
the full history of joint actions and joint observations is re-
quired (in the worst case) to determine optimal actions. This
stems from the often insufficient local observations of each
agent. Thus, an agent i has local policy 7;: P(QF) — A; that
maps any history of observations to an action, with power
set P(+), and ; to the h-th Cartesian power 2. These are
stored as policy trees: actions at each node with branching
observations. A joint policy T ={m1,...,m,) is a tuple of the
agents’ local policies. We denote the set of all possible joint
policies as I1, and II; denoting the set of all possible local
policies for agent :.

We characterize policies in terms of a value function, rep-
resenting the expected reward following a policy. Formally,
given policy 7 and initial belief b° € AlS!, for each reward
function Ry, k€{0,...,n}, the value is defined as:

h—1
VE () =E[ Y+ B b 7] M
t=0

with random variable R! denoting the reward at t. We also
denote the values of the group objective as V;(b°), individ-
ual objectives as V;(b°) for i € I, and the value of the optimal
policy as V;* (") =max__g V/7 (b°).

The Objective Functions There are two complimentary
objective functions we consider for CCPs. They differ in
their lexicographic preference for optimizing the group ver-
sus the individual performance. A group dominant objective
function (Definition 2) for a CCP primarily maximizes the
group reward, then secondarily maximizes the individual re-
wards by reducing the group’s expected reward up to some
allotted slack. Conversely, an individual dominant objective
function (Definition 3) for a CCP primarily maximizes the
individual rewards, then secondarily maximizes the group
rewards, allowing for each agent to reduce their expected
reward by some individual allotted slack.

These definitions borrow notation from game theory. For
an agent 4, let —i=(1,...,i—1,4+1,...,n). This is used to
refer to all other elements in a tuple or set except for agent
i; for example, we have 7_; = (T1,..., Ti—1,Tit1,--+,Tn)-
Additionally, we consider best responses, denoted as BR,
which refers to the best policy (or strategy) given that the
policies of all other agents (or players) are fixed. A situa-
tion in which all players are playing a best response to one
another is called a Nash equilibrium (Fudenberg and Tirole
1991). This best response may be in the form of either a de-
terministic selection of a policy (I1=(P(Q}),...,P(Q"))
as before) or a stochastic selection from a set of policies
(@ = ANPE@D. PN also called pure or mixed strate-
gies, respectively.

Definition 2. Given a CCP with initial belief b° € A1,
a group-dominant CCP (GD-CCP) with group slack § >0
has an optimal policy 7 that satisfies:

I = {7 I|V5 (6°) — Vi (b°) <6}

BRE(7_;)={m e 0¥ |Vx, e I¥ V7 (%) > V7' ()}

7 ell* ={7 eli®|Vi,m; € BR®(7_;)}. 2)

Definition 3. Given a CCP with initial belief b° € Al5],
an individual-dominant CCP (ID-CCP) with individual
slacks d; >0 has an optimal policy 7* that satisfies:

BRI (#_;) = {m € TL|¥x] €TL;, V7 (°) > Vi (1°)}
! = {7 eTi|Vi,m € BRI(7_;) AV (b°) — V7 (0°) <6;}
7rell* ={7ell!| max V& 0°)=Vi(")}.  (3)
7?/EHI

Informally, a GD-CCP first identifies policies Ti¢ that
maximize the expected group reward, then considers poli-
cies whose group value deviates up to the slack from the op-
timal value. Among these policies, the set of optimal policies
Ii* CTi% are those that ensure that all agents are performing
a best response to one another with respect to their individ-
ual objectives (i.e., a Nash equilibrium). ID-CCPs follow the
same pattern but with a reversed preference, prioritizing in-
dividual objectives.

Scalable Solution for CCPs

For finite horizon CCPs, Definitions 2 and 3 can be com-
puted by exhaustively enumerating all joint policies and



restricting the set of policies as shown. Hence, the equa-
tions represent a naive optimal algorithm for solving GD-
CCPs and ID-CCPs. Additionally, clever policy tree prun-
ing methods used for Dec-POMDPs (Bernstein et al. 2009)
and POSGs (Hansen, Bernstein, and Zilberstein 2004) may
be applied here as well. These algorithms exploit the fact
that some policy trees or subtrees may be eliminated be-
cause their values are strictly dominated by another tree. As
with Dec-POMDPs and POSGs, however, these algorithms
do not scale well due to the sheer complexity of the problem.

Instead, other approximate solutions to Dec-POMDPs
include bounded policy iteration (Dec-BPI) (Bernstein,
Hansen, and Zilberstein 2005), joint-equilibrium-based
search for policies (JESP) (Nair et al. 2003), and nonlinear
programming (NLP) solutions using finite state controllers
(FSCs) (Amato, Bernstein, and Zilberstein 2010). POSGs
also enjoy approximation methods which use best-response
dynamics (Oliehoek, Spaan, and Vlassis 2005), possibly in
conjunction with model and policy approximations (e.g.,
Bayesian games) (Emery-Montemerlo et al. 2004).

This body of successful research forms the foundation of
our approach. Our approximation algorithm for GD-CCPs
uses FSC mathematical programming techniques to approx-
imate the policy in synergy with best response dynamics as a
basis to realistically solve large GD-CCPs. The solution also
enjoys a very natural characterization of slack and results in
a tractable solution with crisp theoretical results.

Hence, we use a stochastic finite state controller (FSC)
for each agent i, represented by the tuple (Q;,%;,7;) (Bern-
stein, Hansen, and Zilberstein 2005). @Q; denotes the finite
set of controller nodes for agent ¢. The stochastic action
selection function v;: Q; X A; —[0,1] is defined such that
¥;(q;,a;) = Pr(a;|g;) per controller node ¢; and action a;.
The controller transition function 7;:Q; X A; X Q; X Q; —
[0,1] is defined such that ;(q;, a;,wi,q;) = Pr(qi|g:, a;,w;)
given that in controller node ¢;, taking action a; yielded ob-
servation w;, resulting in successor ¢..

We denote 7= (7,/7, 7)) as policy, with 1/7: (¥1,...,1,) and
7= (n1,...,nn), given controller nodes Q=Q1 X -+ X Q.

Given the local FSCs for all agents, the value of objective

ke€{0,...,n} at nodes ¢ and state s is (Amato, Bernstein,
and Zilberstein 2010):

Vi(@5)= Y [Tesaa) (Ru(s,d)+7 Y T(s,3.5')

Gedi=1 s'€S

Z 0o(d,s',d) Z Hnj(qj,aj,wj,q;)vk(q',s')>

seh qe@i=l

Algorithm 1 presents a scalable FSC solution to CCPs that
assumes a given tuple of fixed size FSC nodes Q . First, in Ta-
ble 1 we compute the best approximate value, denoted 17()*,
for the group objective (reward Ry) following the nonlinear
programming (NLP) techniques developed by Amato, Bern-
stein, and Zilberstein (2010). Second, we select an agent ¢
arbitrarily, defined by some function select(I) that returns
an agent 1€/ (e.g., random) as long as it does not starve
the selection of any agents. Following this agent selection,

Algorithm 1 Approximate FSC Solution to GD-CCP

Require: (S, A, QT, O, E): The GD-CCP.
Require: Cj: (Q1,-..,Qn): The fixed controller nodes.
Require: ¢° ¢ Q: The initial controller nodes.
Require: b° € A!l: The initial belief state.
Require: e: The convergence criterion.
I: 1/_1'*717*, Vo < solve_mo(q°,b°)
V5 (6) =22 e s 80 ()Vo (", )
Vi (0°) 0, Vie{l,...n}
d=(dy,...,dn)<(c,...€)
while max; d; > € do
i< select(I)
wrvn;7 ‘A/th % <;SOZ"-)ejTi(ivq_O7bo7’l/;‘i7,'7lr_7”ii7‘/\/O*(bo))
(7":9)
0

VI (00) =2 V0 (s) Vi@ s
d; +max{d;,|V;" (0°) = Vi (0°)|}
10: Vi (00) Vi (0°)

1 Ve (00) =22, 0°(5) Vo (@, 9)
12: end while ) R

13: return *, 7, Vg (b°),..., Vi (%)

R A o

we fix all other agents” FSCs, and compute a new local FSC
for ¢ that maximizes the individual expected reward R; over
time, denoted VZ* as shown in Table 2. This is an iterative
best response dynamics process. The FSC for each agent i is
solved using a cubically constrained linear program (CCLP)
(as written in Table 2) similar to the NLP. Two additional
constraints are included. We must compute the effective V"
following the local deviations made by agent . Using this,
we constrain the deviation of this value up to the slack .

While written in its most general form for clarity, the
CCLP follows the same logic as Amato, Bernstein, and Zil-
berstein (2010) use for their quadratically constrained lin-
ear program (QLCP) POMDP solution. Specifically, we dis-
tribute ¢; to R; and directly to mf/i inside the summa-
tion. We may then combine 7; and v; as a single variable
Pr(q.,a;|q;,w;) via the transformations:

Pr(q;,a;qi,wi) =i (i, a:)ni (45, a5, wi, ;)

> Pr(gailgs,wi) =g, ai)
4EQ;
As with other forms of slack (Wray and Zilberstein
2015a), this algorithm only guarantees that the final joint
policy 7* has a value Voﬁ* that is within § of the more pre-

ferred objective’s value VO*, which is approximate in this
case with a fixed set of controller nodes. It is not within
slack of the true optimal value V|, since we obviously did
not compute that; 7* is an approximate solution after all.

Theoretical Analysis

To begin, we prove a straight-forward but important property
of an CCP in Definition 1, namely that they strictly general-
ize both Dec-POMDP and a POSG.

Proposition 1. For all Dec-POMDPs and POSGs, there ex-
ists an equivalent CCP.



Function:  solve_mg

Given: @ beAl’
Variables:  1);(qi,a:), Vi,qi,a;
Maximize: Vg (bo)zzsesbo(s)%(q_o,s)
Bellman Constraint:

Probability Constraints:
Yi(gi,ai) >0, Vi, q:,a;
ni(qiva’hwhq;) 207 Vi7qi7aiawiaqg

/ . /
ni(qiyai7wi7qi)’ vlaqiyai7wi7Qi

‘70(57 5) :Zaeﬁn?:1 wb(q“al) |:R0(S7d) +’YZS/EST(S76> 8/) EQQQ 0(675,7(3) Z(T/EQ H?:l ni(qi7ai>wi>qg)%(ql7sl)i|

Dasea, Vilgiai)=1,Vi,q;
Zq;eQ,i 771(‘127%7“17(];) = 17 Vi7qi7aiawi

Table 1: The NLP for computing the solution to the group reward V.

Function:  solve_m;

Given: Agenticl ¢°€ Q
Variables:  ;(q;,a:), Vqi, a;
Maximize: V;* (bo):zsesbo(s)\z(tio,s)
Bellman Constraint for Individual Objective:

W enls

Bellman Constraint for Group Objective:

Slack Constraint:

Vo (0°) = 2,5 () Vo(d",5) <6
Probability Constraints:

Vi(gi,a:) >0,Vqi,a

i (qi, i, wi,q;) >0, Yqi, ai,wi, q;

¥i(a5,a5), Vi #i,q5,a;
ni(qhai:wiyq;)ythai:wiyq;

VL(@ 8) :ZEeA'H;‘Lzl '(/)j (qJ'vaj) [R'i(szd) +725/65T(57675/) Zajeﬁ O(6> S/>‘z) Zlf’eQ H?:l 15 (ijaj7wj7q3')‘zi(q(75/)}

Vo(@8) = e Tl 3(a505) [Ro(5,8) +7 Ses T(5,88) L 05 ,3) Sy [y 13 (a5,05,05,0) Vo (@ 5')|

ZaieAi wl(qzval) =1, VQZ
queQi Wi(inaszzvqg) =1, vqi7ai7wi

nj(qj7a'j7wj7q;')sVj?éizqﬁaj:wj:q;’ ‘/O*(bo)

Vi(@,s),¥q,s  Vo(d,s),Vq,s

Table 2: The NLP (written as CCLP for clarity) for computing the best response for agent ’s reward, v, given all others —1¢ are fixed.

Proof. For any Dec-POMDP X with rewards R, let a
GD-CCP Z have identical S, A, O, T, and O with R=
[R,R,...,R]T and slack §=0. By Definition 2, Ii%=
{Fel|Vg(b°)=VZ (%)} which are equivalent optimal
policies for X. Similarly, for a POSG Y with payoffs
(Ry,...,Ry), let a GD-CCP have R=[Ry,Ry,...,R,]"
with any Ry with slack 0 —oc; e.g., infinite horizon
has  =max, s Ro(s,d)/(1—y) and finite horizon has §=
max, g Ro(s,d)h. Thus, by Definition 2, e =TI, resulting
in the exclusively Nash equilibrium solution concept POSG
Y. Similar logic applies for ID-CCPs in the natural way. [l

Definition 5 presents a type of GD-CCP for which
a potential function (Definition 4) exists. This class of
problems extends the powerful and well-known potential
games (Monderer and Shapley 1996). Intuitively, this class
of GD-CCPs means that while individual rewards might dif-
fer and be competing, there is still a sense of a collective
objective (likely distinct from Ry).

Definition 4. An (ordinal) potential for a GD-CCP is a
function @ : II— R such that for all agents i:

VA —VE (1) >0 iff ®(F) —D(F)>0 (@)

for all #, 7' €11 such that #_; =7’

—1°

with 8% € AIS1,

Definition 5. A potential GD-CCP is a GD-CCP for which
there exists a potential function ®.

Within this class of GD-CCPs, Proposition 2 proves that
if a potential function exists then it induces a potential game
for the individual rewards for all assignments of slack.

Proposition 2. For a potential GD-CCP and slack ¢ >0, the
policy constraints induced by Equation 2 preserve potential
® and induce an equivalent potential game denoted N

Proof. By Equation 2, I1¢ C Ii which restricts according to
slack 4. This induces an equivalent normal form game N
with strategy profiles [T and utilities (V¥ (8°),...,V,7(b°))
for # € [1¢ and initial belief b°. By Definition 4, we are given
potential ®, thus N is also a potential game. O

Next, we consider finite potential GD-CCPs (Definition 6)
to facilitate convergence in potential games. Deterministic
FSCs, commonly used in other work (Kumar, Mostafa, and
Zilberstein 2016), produce finite potential GD-CCPs and can
be solved as a mixed integer linear program (MILP). An-
other natural case is stochastic FSCs defined as bounded in-
teger variables in Tables 1 and 2 with a normalization term.

Definition 6. A finite potential GD-CCP is a potential GD-
CCP with finite sets II; €I for all 1 € .



State Transition Model Observation Model

Pr(Action Success) = 0.8 Pr(Bump) = 0.9
Pr(No Bump) = 0.1
Pr(Slide) = 0.1 @

Pr(Action Failure) = 0.1

Figure 1: Two abstract meeting box-pushing domains: Battle
Meeting and Prisoner Meeting. States: 2x2 Grid. Actions: None, N,
S, E, W. Observations: No Bump and Bump. Stochastic movement
and observations. Group Objective: Proportional to distance apart.
Individual Objectives: Battle of the Sexes or Prisoner’s Dilemma.

Now we present two propositions characterizing Algo-
rithm 1. First, we show that the algorithm converges to a
joint policy (i.e., pure strategy profile) given that it is a finite
potential GD-CCP. Next, we show that this joint policy sat-
isfies the slack constraint imposed by the model—a simple
but crucial fact. Note that in both cases, we assign ¢ =0 be-
cause we consider finite potential GD-CCPs that guarantee
convergence to equilibria in a finite number of iterations.

Proposition 3. Algorithm 1 with e=0 converges to a joint
policy 7* for finite potential GD-CCP.

Proof. Solving the NLP (Table 1) on Line 1, we obtain our
slack constraint for the CCLPs. The algorithm then iterates
from Line 5 to Line 12, until the policy does not change
(7=7") due to ¢ =0. For the selected agent each time, Line 7
computes a best response following Table 2’s objective func-
tion. As described in Proposition 2, there exists an equivalent
normal form game N. Given (ordinal) potential ®, this is a
potential game for any slack §. All finite ordinal potential
games converge in a finite number of steps to a pure strat-
egy Nash equilibrium following best response dynamics as
proven by Monderer and Shapley (1996). O

Proposition 4. Algorithm 1 with e =0 produces joint policy
7* which satisfies the slack J for finite potential GD-CCP.

Proof. By Line 7 and the Slack Constraint in Table 2, we
have Vi (b%) — >, . b°(s)Vo(¢",s) <4. By Line 6, this is
true for all agents i € I. 0

Experiments

Our experiments consider two GD-CCPs which both
uniquely combine the spirit of the standard cooperative do-
main Meeting in a Grid (Amato, Bernstein, and Zilberstein
2010) with the spirit of two competitive domains: Battle of
the Sexes and Prisoner’s Dilemma (Fudenberg and Tirole
1991). In both cases, the agents are primarily rewarded pro-
portional to their distance from one another. They allow for a
relaxation of this objective up to some slack in order to push
an agent-specific box for an individual reward. The Battle of
the Sexes variant assigns a greater reward for “push” only if
the agents are together. The Prisoner’s Dilemma variant as-
signs “cooperate” as “do not push* and “defect” as “push”.
Figure 1 shows a visual example of the domains’ models in-
cluding the starting locations and individual box locations.

CCP Domains We consider two novel domains called
Battle Meeting and Prisoner Meeting. In both, there are
two agents I ={1,2} and the state space is S =57 x Sy with
S; ={top-left, top_right, bottom_le ft, bottom_right}. It
has action space A=A; x Ay with A;={none, north,
south, east, west} and observation space 2 ={no_bump,
bump}. The state transitions 7" are defined as found in Fig-
ure 1. For example, successful movement is 0.8, sliding to a
neighboring cell is 0.1, and failure to move is 0.1; the agents
always succeeds at not moving. Also, they have transition
independence for movement, and self-loop with 0.9 proba-
bility when moving into a box or wall with a 0.1 probability
of sliding to the neighbor cell. Observations are perfect for
detecting a “bump” at a wall or box, but there is a 0.1 prob-
ability of a false positive detected while moving normally.

The group objective rewards R, are defined by 2—
d(s1,ds) where d(s1,$2) is the Manhattan distance between
agents’ locations s; € 57 and s3 € .S5. Battle Meeting’s indi-
vidual objectives assign reward R; to 2—d(s1,s2) if agent
¢ pushes its box, and half that if —i pushes its box. Pris-
oner Meeting’s individual objectives assign reward R; to: 1
if both push their respective boxes, 3 if agent ¢ pushes but —¢
does not, 0 if ¢ does not push but —¢ does, and 2 if both do
not push. In all cases, all three objectives have an additional
small —0.1 penalty if any movement action is taken. Lastly,
we have a discount factor of v=0.95.

Evaluation in Simulation We evaluate our approximate
CCP algorithm in simulation with three different amounts of
controller nodes with |Q;| €{2,4,6} for each agent  in Fig-
ure 2. In each scenario, we evaluate the average discounted
reward (ADR) vs. the allotted slack (§). The ADR averages
over 1000 trials for each scenario (i.e., each point). The stan-
dard error is provided as error bars. We omit the directly

computed I7L* (b°) for 7* as they match the ADR values.
Figure 2 shows the results from the experiments. We
solve the NLPs and CCLPs in Tables 1 and 2 using the
NEOS Server (Czyzyk, Mesnier, and Moré 1998) running
SNOPT (Gill, Murray, and Saunders 2005). Table 3 summa-
rizes the timings (in seconds) for the group and individual
objectives, as well as the entire solution time (in seconds),
for all scenarios. We also include the number of iterations
for the best response dynamics. We allowed for a maximum
of 50 iterations, occasionally causing early termination of
the best response dynamics. In a few cases, SNOPT can also
fail to optimally solve the NLP, as it is an approximation, re-
sulting in occasional sub-optimal policies. All other normal
cases terminate when max; d; <e=0.01 as in Algorithm 1.

Evaluation on Two Robots We implemented the Prisoner
Meeting and Battle Meeting domains on two real robot plat-
forms (Figure 3). The objective is to evaluate the stochastic
FSC performance on an actual system, as opposed to only an
abstract notion of value. In prior work, this challenging but
crucial step is unfortunately skipped when using FSCs or
other approximation techniques. Conducting actual experi-
ments ensures that the policies we compute are suitable for
use in real systems and produce meaningful agent behaviors
in practice.



Battle Meeting: ADR vs. Slack (Num Nodes = 2)
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Figure 2: Results for the Battle Meeting (top) and Prisoner Meeting (bottom) domains. The average discounted reward (ADR) for the group
objective (V0) and the min/max values for two agents’ individual objectives (V1 and V2) are shown for different amounts of slack § € [0, 25].

Meeting | |Q;| | Group | Individual | Iterations Total
Battle 2 17.6 21.1 10.5 447.2
4| 3224 49.3 24.3| 28273
6| 181.5 196.9 16.5 | 10775.3
Prisoner 2 22.1 20.7 13.3 574.1
4| 256.8 39.1 26.2 | 2577.0
6| 1773 182.2 38.3 | 11702.8

Table 3: Battle Meeting and Prisoner Meeting average computa-
tion time (seconds) for group and individual objectives, the average
number of best response iterations, and the average total computa-
tion time (seconds).

Discussion

CCPs are designed to naturally blend between coopera-
tion and competition with an intuitive meaning for how
this structure operates in a given domain. The two exam-
ple domains illustrate this intent by means of rewarding
both agents meeting for the group while rewarding indi-
vidual goals either in the form of Prisoner’s Dilemma or
Battle of the Sexes. The reward structure in each case di-
rectly matches the classic games from game theory, ex-
panded into a richer state and action space. Interestingly,
Prisoner’s Dilemma and Battle of the Sexes are both clas-
sical potential games as well.

In both Prisoner and Battle Meeting, one agent is always
able to exploit the other. The higher performing agent is de-
termined primarily by their best response ordering and the
approximations of SNOPT when solving the NLP (e.g., re-
laxed nonlinear infeasibilities), even though their initializa-
tion is entirely symmetric. The regions found in Figure 2
show the range of the agents’ individual objectives’ expected

values. The trend lines are shown to reinforce the obser-
vation that it indeed produces a blended cooperation from
meeting to either Battle of the Sexes (trend increases) or
Prisoner’s Dilemma (trend decreases). Additionally, the tim-
ings in Table 3 clearly show that the number of iterations be-
fore convergence is typically a reasonable number between
10 and 25 for most of our experiments. The time to com-
pute a best response, however, scales rapidly depending on
the number of controller nodes, as expected. Overall our re-
sults show that with zero slack the agents focus almost ex-
clusively on meeting. As we increase slack, however, their
preference shifts to first move their individual boxes then
meet in the grid. Finally, as the slack increases the agents fa-
vor only pushing individual boxes, based on the objectives,
and do not focus on the meeting objective.

Simulation and Robotic Experiments Battle Meeting is
designed to demonstrate that as slack increases, the group
objective decreases, and the individual objectives are able to
increase. In Figure 2, agents cannot satisfy their individual
objectives with § =0. As § — 25, the agents are able to focus
more on box pushing and less on meeting in the grid as ev-
ident by the trend line and individual expected values. The
robotic experiments in Figure 3 clearly show this behavior
as well. With § =0, the best decision is for one agent (Alice,
arbitrarily chosen due to symmetric initial state) to risk the
stochastic motion in an attempt to meet the other (Bob) in
the grid. Conversely at § =25, they exactly incarnate Battle
of the Sexes wherein one agent pushes its box for a large
reward (Bob, again essentially arbitrary) but the other agent
merely joins (Alice) for a small reward.

Prisoner Meeting is designed instead to demonstrate a
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Figure 3: Experiments with CCP on two real robot platforms. Battle Meeting (top row) and Prisoner Meeting (bottom row) are shown with
slack § =0 (left column) and § =25 (right column) for both. The paths traversed by robots “Alice” (blue) and “Bob” (red) over the entire
execution are shown as well. For each slack allotment, the robots adapt their policy to work together to satisfy the group task and/or complete

their individual box-pushing tasks.

different behavior to clearly illustrate the classic Prisoner’s
Dilemma. As slack increases, the intent is to elicit the group
objective to decrease but, very importantly, the individ-
ual objectives are also expected to decrease. We observe
this desired behavior in Figure 2. With § =0, the agents
are forced into the classical Prisoner’s Dilemma’s “cooper-
ate” actions—not pushing the boxes—without the option to
“defect”—to push their boxes. As slack increases, they con-
verge to the proper Nash equilibrium of “defect” for both
players which results in lower values for both agents (Fu-
denberg and Tirole 1991). Again, the robotic experiments
perfectly illustrate the expected behavior. With § =0, a robot
(Bob, again, essentially arbitrarily chosen) risks stochastic
movement to meet the other (Alice). Interestingly, a slack
of §=0 forces both players in Prisoner’s Dilemma to “co-
operate” by not pushing their boxes. Once J =25, however,
both robots have enough slack to push their individual boxes,
probabilistically ignoring meeting each other altogether.

In summary, the simulation results in Figure 2 and robotic
experiments in Figure 3 demonstrate the intent of the CCP
model: In all 6 cases shown, as slack increases, the group
objective decreases up to the allotted slack, allowing the best
response dynamics to optimize individual objectives.

Fair Distribution The CCP model’s slack raises interest-
ing questions of fairness (Rabin 1993). For example, is one
agent in a GD-CCP allowed to consume all of the slack in
order to maximize its own rewards at the expense of oth-
ers? Or perhaps do we enforce some measure of fairness
in the allocation of slack so that all agents have a chance
to fairly maximize their rewards? As defined, we consider
a shared slack to be divided amongst the group based on
best response converging to a Nash equilibria. More fair
methods may be employed that ensure each agent receives
some share of the slack. For example, a formal definition
of local and global fairness properties can ensure an even
distribution (Burkhard 1993). Conversely, a form of reci-

procity solution concept may be used instead, possibly in-
cluding corresponding reciprocity payoffs (Dufwenberg and
Kirchsteiger 2004). These approaches, however, likely re-
quire many more best response iterations. Addressing this
increased complexity while ensuring equal slack distribution
is a topic of interest for future work.

Conclusion

It has long been a challenge to build a formal multi-agent
model that seamlessly incorporates both cooperation and
competition. The CCP model is shown to be an effective
tool for capturing this intriguing marriage of the coopera-
tive Dec-POMDP and the competitive POSG models. It en-
ables an intuitive slack parameter to control the degree of
cooperation/competition. A theoretically-grounded approx-
imate algorithm uses FSCs to produce tractable results that
are demonstrated to work on actual multi-robot systems.

Future work will focus on building more scalable algo-
rithms (Wray and Zilberstein 2015b), potentially using other
solution concepts and incorporating measures to ensure the
fair distribution of slack among the agents. We are also inter-
ested in applying this framework to more expansive robotic
domains that require modeling both cooperation and compe-
tition, such as autonomous vehicles. Towards this goal, we
will provide our source code to support further development
of models that generalize cooperation and competition under
a unified approach.
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