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Abstract— Reduced models allow autonomous robots to cope
with the complexity of planning in stochastic environments by
simplifying the model and reducing its accuracy. The solution
quality of a reduced model depends on its fidelity. We present
0/1 reduced model that selectively improves model fidelity in cer-
tain states by switching between using a simplified deterministic
model and the full model, without significantly compromising
the run time gains. We measure the reduction impact for a
reduced model based on the values of the ignored outcomes
and use this as a heuristic for outcome selection. Finally, we
present empirical results of our approach on three different
domains, including an electric vehicle charging problem using
real-world data from a university campus.

I. INTRODUCTION
Autonomous robots are often faced with tasks that require

generating plans quickly to navigate between two points.
Uncertainty in action outcomes, which is a characteristic
of many real-world problems, increases the complexity of
path planning. These problems can be conveniently mod-
eled as Stochastic Shortest Path (SSP) problems [1], which
generalizes finite and infinite-horizon Markov decision pro-
cesses (MDPs). Since the robots often operate in resource-
constrained settings, it is common to plan using reduced
(simplified) models of the world that trade solution quality
for computational gains [2]. We consider reduced models in
which the number of outcomes per action in each state is
reduced relative to the original model.

Reduced models simplify the problem and accelerate plan-
ning by partially or completely ignoring uncertainty, thereby
reducing the set of reachable states for the planner [3], [4].
An example of this is determinization, which simplifies the
problem by associating one deterministic outcome for each
action, instead of multiple probabilistic outcomes [5], [6].
The resulting deterministic model can be efficiently solved
using algorithms such as A* [7]. The possible action out-
comes considered in the reduced model determine the model
fidelity and hence different outcome selection techniques
result in reduced models with varying fidelity.

For example, consider a motivating problem in which a
robot must navigate through the corridors in a building.
During navigation, it may encounter congested regions with
static obstacles or dynamically moving humans (Fig. 2(a)).
Reliable navigation around these obstacles and one that is
able to obviate conflicts with human traffic can be achieved
by reasoning about the robot’s drift and probabilistic predic-
tions of the human trajectories [8]. Since the robot needs to
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Fig. 1. An example illustrating the trade-off between model simplicity and
risk awareness. Risk awareness decreases as the model is simplified using
uniform outcome selection principles (indicated by the blue trend line). The
points denote reduced models formed with different reduction techniques.

handle such situations effectively, we refer to such states as
“critical” or “risky” states. Executing sub-optimal actions in
these risky states may significantly affect the expected cost
of reaching a goal. Hence we introduce an added penalty to
account for such risks. While studies of the risks associated
with AI systems are attracting growing interest [9]–[12],
research of the risks that result from simplifying the planning
model has been lacking.

A risk-aware reduced model accounts for the possibility of
encountering such risky states during plan execution, thus re-
sulting in improved solution quality. A simple reduced model
(such as determinization) accelerates planning but may not
account for the probabilities of encountering obstacles and
conflicts with human trajectories. Conversely, planning with
the full probabilistic model is computationally expensive.
Hence, the key question we address in this work is how
to create reduced models that balance the trade-off between
model simplicity and risk awareness (Fig. 1).

Intuitively, the trade-off between model simplicity and risk
awareness can be optimized by identifying when to use a
simple model and when to use a more informed model.
For a robot navigating in a building, a plan generated by
the robot using a simple reduced model may work well
when the robot is moving through an uncluttered region,
but a more informative reduced model or the full model
is required to reliably navigate through obstacles and hu-
mans [2], [4]. The existing reduced model techniques are
either incapable of handling such variations as they employ
a uniform (non-adaptive) outcome selection approach to all
state-action pairs [3], [5], [6], or perform model switching
only when no feasible solution is found with a lower fidelity
model [4]. This limits the scope of risks they can represent,
often resulting in overly optimistic planning model and sub-
optimal solutions.

We present planning using 0/1 reduced models (0/1
RM), that enables formulating reduced models with different
levels of details by switching between using a deterministic



model and the full model. We consider a factored state
representation, which allows us to characterize risks in terms
of the state features. Precise identification of states where
risk awareness is to be improved is particularly complex
and generally infeasible without solving the full model.
Therefore, we start with a simple reduced model and query
an oracle (human) for features indicating the risks in the
system. The oracle guides the planning process by providing
features that indicate risk, which is more realistic since it is
relatively easy for humans to identify such features instead
of meticulously marking states as risky. Querying an oracle
once per domain may be sufficient if the problem instances
are similar or share a structure.

To identify states where model fidelity is to be improved, a
reduction impact is estimated automatically based on the pro-
vided features, by generating and solving sample trajectories.
The reduction impact measures how optimistic the resulting
reduced model would be, with respect to risks, thus offering
a heuristic for choosing the outcome selection principles. In
states where the reduction impact is high, more informative
outcome selection principles are employed. Finally, we eval-
uate our approach in three domains in simulation. The results
demonstrate that our approach efficiently balances the trade-
off between risk awareness and model simplicity.

Section III introduces planning using 0/1 reduced models.
Section IV describes the estimation of reduction impact and
how it acts as a heuristic for outcome selection. Empirical
evaluation of our approach is presented in Section V.

II. BACKGROUND

Stochastic shortest path (SSP) problems extend the classic
shortest path problems to stochastic settings. An SSP is
defined by M = 〈S,A, T,C, s0, SG〉, where S is a finite
set of states; A is a finite set of actions; T (s, a, s′)∈ [0, 1]
denotes the probability of reaching a state s′ by executing
an action a in state s; C(s, a) ∈ R+∪{0} is the cost of
executing action a in state s; s0 ∈ S is the initial state;
and SG ⊆ S is the set of absorbing goal states. The cost
of executing an action is positive in all states and it is zero
in the goal states. SSPs generalize finite and infinite-horizon
MDPs and have a discount factor γ = 1. The objective in
an SSP is to minimize the expected cost of reaching a goal
state from the start state. The optimal policy, π∗, can be
extracted using the value function defined over the states,
V ∗(s) = mina Q∗(s, a), ∀s ∈ S. The Q-value of the
action a in state s is calculated as Q∗(s, a) = C(s, a) +∑
s′ T (s, a, s′)V ∗(s′).

A. Planning with Reduced Models

The complexity of solving SSPs optimally [13] has led to
the use of approximation techniques such as reduced models.
Reduced models simplify planning by considering a subset of
outcomes, which is especially useful in problems with a high
branching factor for action outcomes. Let θ(s, a) denote the
set of all outcomes of (s, a), θ(s, a) = {s′|T (s, a, s′)>0}.

Definition 1: A reduced model of an SSP M is repre-
sented by the tuple M ′ = 〈S,A, T ′, C, s0, SG〉 and charac-

(a) Problem Setting (b) ROS simulation

Fig. 2. An illustrative example of a robot navigating in a building, showing
the problem setting (left) and its corresponding ROS simulation with black
regions denoting obstacles and shaded region denoting human locations
(right). S denotes start location and G is the goal location. Green line
denotes the trajectory computed using determinization, red denotes optimal
trajectory, blue denotes that of 0/1 RM.

terized by an altered transition function T ′ such that ∀(s, a)∈
S×A, θ′(s, a) ⊆ θ(s, a), where θ′(s, a)={s′|T ′(s, a, s′)>0}
denotes the set of outcomes in the reduced model for action
a ∈ A in state s ∈ S.

We normalize the probabilities of the outcomes included
in the reduced model. The outcome selection process in a re-
duced model framework determines the number of outcomes
and how the specific outcomes are selected. Depending on
these two aspects, a spectrum of reductions exist with varying
levels of probabilistic complexity that ranges from the single
outcome determinization to the full model.

An outcome selection principle (OSP) determines the
outcomes included in the reduced model per state-action pair,
and the altered transition function for each state-action pair.
The OSP can be a simple function such as always choos-
ing the most-likely outcome or a more complex function.
Traditionally, a reduced model is characterized by a single
OSP—a single principle is used to determine the number
of outcomes and how the outcomes are selected across the
entire model. Hence, existing reduced models are incapable
of selectively adapting to risks. Fig. 2 illustrates this for a
robot navigating in a building. Planning with determinization
ignores the probability of encountering humans and therefore
its optimal policy (green in 2(b)) conflicts with that of human
trajectory, which can be avoided using the 0/1 RM approach
(blue trajectory in 2(b)) described below.

III. 0/1 REDUCED MODELS

We present planning with a portfolio of outcome selection
principles (POSP), a generalized approach to formulate risk-
aware reduced models by switching between different OSPs.
The approach is inspired by the benefits of using portfolios
of algorithms to solve complex computational problems [14].
A model selector selects an outcome selection principle for
each state-action pair.

Definition 2: Given a portfolio of finite outcome selection
principles, Z = {ρ1, ρ2, ..., ρk}, k>1, a model selector, Φ,
generates T ′ for a reduced model by mapping every (s, a) to
an outcome selection principle, Φ: S×A→ ρi, ρi ∈ Z, such
that T ′(s, a, s′) = TΦ(s,a)(s, a, s

′), where TΦ(s,a)(s, a, s
′)

denotes the transition probability corresponding to the out-
come selection principle selected by the model selector.

In this work, we focus on a basic instantiation of POSP —
0/1 RM — that switches between the extremes of outcome



Fig. 3. Example reduced models formed with different techniques.

selection principles: determinization and the full model.
Definition 3: A 0/1 reduced model (0/1 RM) is charac-

terized by a model selector, Φ0/1, that selects either one or all
outcomes of an (s, a) to be included in the reduced model.

In a 0/1 RM, the model selector that either ignores the
stochasticity completely (0) by considering only one outcome
of (s, a), or fully accounts for the stochasticity (1) by con-
sidering all outcomes of the state-action pair in the reduced
model. An instantiation of 0/1 RM for the robot navigation in
Fig. 2(a) uses the full model for the states around obstacles
and regions with high probability of encountering humans.

Clearly, the existing reduced models, such as determiniza-
tion, are a special case of POSP, with a model selector
that always selects the same OSP for every state-action pair.
In planning using a portfolio of OSPs, however, the model
selector typically utilizes the synergy of multiple OSPs. Each
state-action pair may have a different number of outcomes
and a different mechanism to select the specific outcomes
(Fig. 3). Hence, we leverage this flexibility in outcome
selection to improve risk awareness in reduced models by
using more informative outcomes in the risky states and using
simple outcome selection principles otherwise. Though the
model selector may use multiple OSPs to generate T ′ in a
POSP, note that the resulting model is still an SSP. In this
paper, we focus on creating reduced models that yield high
quality results using the existing OSPs from the literature.
Hence, future improvements in OSPs can be leveraged by
POSPs. Depending on the model selector and the portfolio,
a large spectrum of reduced models exists for an SSP and
choosing the right one is non-trivial.

A. Model Selector (Φ)

The model selectors in existing reduced models have been
devised typically to reduce planning time. An efficient Φ in
a POSP optimizes the trade-off between solution quality and
planning time. Devising an efficient model selector automat-
ically can be treated as a meta-level decision problem that
is computationally more complex than solving the reduced
model, due to the numerous possible combinations of OSPs.
Even in a 0/1 RM, devising an efficient Φ is non-trivial as it
involves deciding when to use the full model and when to
use determinization. We illustrate this with an example.

We experimented with a scaled-down version of the navi-
gation example in Fig. 2(a), on a 5×5 grid, allowing only one
full model usage, and using no oracle information. Therefore,
the best 0/1 RM is identified by testing all valid formulations

using most likely outcome determinization. Each state for
this problem is represented as a tuple 〈l, c〉 where l denotes
the location and c denotes if the robot is in conflict with
a human or hits an obstacle. The robot can move in eight
directions and the actions are stochastic, succeeding with
a probability of 0.8, and cost +10 if c = True and +1
otherwise. We generated models with different fidelities by
altering when the full model is used. As expected, the highest
gains are observed when the full model is used in states that
lie on humans trajectories, with high probability. The time
taken to identify the best setting with one full model usage
is 2851 ms and involved solving for all possible reduced
model formulation. Hence, for large real world problems
with unconstrained full model use, exhaustive search in the
space of models is not viable even for 0/1 RM.

In the worst case, all OSPs in Z may have to be evaluated
to determine the best reduced model formulation for the more
general setting. Let τmax denote the maximum time taken for
this evaluation across all states. When every action transitions
to all states, the outcome selection principles in Z may be
redundant in terms of the specific outcomes set produced by
them. For example, selecting the most-likely outcome and
greedily selecting based on heuristic could result in the same
outcome for certain (s, a) pair. Using this, we show that the
worst case complexity for a model selector is independent of
the size of the portfolio, which may be very a large number
in the worst case.

Proposition 1: The worst case time complexity for a
model selector to generate T ′ for a POSP is O(|A|2|S|τmax).

Proof: For each (s, a), at most |Z| outcome selection
principles are to be evaluated and this takes at most τmax
time (as mentioned above). Since this process is repeated
for every (s, a), Φ takes O(|S||A||Z|τmax) to generate T ′.
In the worst case, every action may transition to all states and
the outcome selection principles in Z may be redundant in
terms of the specific outcomes set produced by them. Hence,
the evaluation is restricted to the set of unique outcomes
sets denoted by k, |k| ≤ |P(S)|, with P(S) = 2|S|. Then,
it suffices to evaluate the |k| outcome sets instead of |Z|,
reducing the complexity to O(|A|2|S|τmax).

Corollary 1: The worst case time complexity for Φ0/1 to
generate T ′ for a 0/1 RM is O(|A||S|2τmax).

Proof: This proof is along the same lines as that of
Proposition 1. To formulate a 0/1 RM of an SSP, it may
be necessary to evaluate every outcome selection principle,
ρi ∈ Z, that corresponds to a determinization or a full model.
Hence, in the worst case, Φ0/1 takes O(|S||A||Z|τmax) to
generate T ′. The set of unique outcomes, k, for a 0/1 RM
is composed of all unique deterministic outcomes, which
is every state in the SSP, and the full model, |k| ≤ |S| +
1. Replacing |Z| with |k|, the complexity is reduced to
O(|A||S|2τmax).
The current best approach to evaluate an OSP is to solve
the corresponding reduced model and evaluate the policy in
hindsight. Therefore, in the following section, we propose an
approximation for outcome selection.



IV. SOLUTION APPROACH

The first step in improving risk awareness of a reduced
model is to identify the features that characterize risky states
in the problem. In our running example (Fig. 2(a)), being in
conflict with human trajectories or hitting an obstacle is a
risk, which can be denoted by the state feature c=true. Since
this cannot be estimated automatically by the agent without
solving the full model, we formalize this as planning using
information from an oracle (human). The agent queries an
oracle which provides the features that characterize risks in
a problem, denoted by ~fo. If problem instances in a domain
are similar or share a structure in terms of state features,
actions, and goal conditions, querying once per domain may
suffice. For balancing the trade-off between model simplicity
and risk awareness, it is more beneficial to use the full
model in states that immediately lead to risky states primarily
due to sub-optimal action selection that result from ignoring
outcomes. We identify these states based on the values of
the ignored outcomes for an action.

A. Reduction Impact

One of the reasons for reduced model techniques produc-
ing poor solutions is that some outcomes are completely
ignored. The reduction impact δ is a measure of the values of
ignored outcomes and is calculated for each (s, a). Following
π∗, the reduction impact is calculated as, ∀(s, a):

δ(s, a) = Q∗(s, a)−
∑

s′∈θ′(s,a)

T ′(s, a, s′)V ∗(s′). (1)

Therefore, the reduction impact is higher if risky states are
ignored in the reduced model, due to their significantly
higher expected cost of reaching a goal. Since the optimal
values are unknown, we estimate this using samples. Sample
trajectories generated by depth-limited random walk on the
target problem or smaller problem instances from the domain
may be used for this purpose. These samples are solved
optimally and the reduction impacts corresponding to ~fo
are determined using these exact solutions. The reduction
impacts for the given features are learned in hindsight by
computing the mean values of the samples. More complex
methods for aggregating the values from the samples may
be considered. In our experiments, we generate samples by
multiple trials of depth-limited random walk on the problem.
The samples are solved using LAO* [15], which is an
optimal solver based on A* [7] for solving MDPs with loops.
We then learn the reduction impact with respect to a most
likely outcome determinization of the problem. Clearly, as
the number of samples and the depth of the random walk
are increased, the estimates converge to their true values.

Optimal Reduction Impact For the class of problems
described below, we show that δ can be calculated optimally,
without using samples or having to solve the problem.

Consider an SSP in which an action can achieve a suc-
cessful outcome with probability 1−p or fail with probability
p>0. When an action fails, the state remains unchanged. Let
s denote a state of the SSP for which a successful execution

of action a with cost C(s, a) results in outcome state s′.
For problems with this structure, it has been shown that the
Q-values can be calculated optimally as [16]:

Q∗(s, a) =
C(s, a)

1− p
+ V ∗(s′).

Substituting the above equation in Equation 1, we get

δ(s, a) =
C(s, a)

1− p
.

Thus, for problems with this structure, the reduction
impact can be calculated optimally without using samples.

B. Outcome Selection Guided by Reduction Impact

Since the reduction impact reflects the criticality of the
states being ignored, we use this as a heuristic for model
selection in a 0/1 RM. Ignoring risky outcomes in the reduced
model results in an optimistic view of the problem, and
hence a higher reduction impact. In a 0/1 RM, the full
model may be employed in states with approximate reduction
impact above a certain threshold and determinization in other
states. By altering the δ threshold at which the full model is
employed, reduced models with different levels of sensitivity
to risks may be produced. This also produces reduced models
with possibly different levels of computational gains and
solution quality, due to the differences in fraction of full
model usage. To demonstrate this, we compared the solution
qualities of reduced models formed with different reduction
impact thresholds (Fig. 4) for four instances of the racetrack
domain [17]1. The problems have the same actions, goal
conditions, and state representation, but differ in the size
of the state space. The threshold indicates the % difference
between the estimated δ and the original costs, at which
the full model is employed. In all other states, most likely
outcome determinization is used. The cost increase is with
respect to the lower bound (optimal expected cost obtained
by solving the full model) and the run time reduction is
with respect to solving the full model. The full model usage
increases as the threshold lowers, resulting in improved
solution quality (lower cost) and reduced run time savings.

V. EXPERIMENTAL RESULTS

We evaluate 0/1 RM in three domains including an electric
vehicle (EV) charging problem using real world data from a
university campus, and two benchmark planning problems:
the racetrack domain and the sailing domain. We compare
0/1 RM with the following reduced model techniques:
• Most-likely outcome determinization (MLOD);
• Uniformly selecting two outcomes greedily (M02)
• Mk

l reduction characterized by l primary outcomes and
k exceptions, with k=1, l=1 [3]; and

• Reduced models, with Z = {MLOD,M02}, that alter-
nate between MLOD and M02 (0/M02 RM).

1In racetrack domain, the objective is to move from start to goal states
by applying acceleration and controlling the car correctly. If the robot (car)
hits a wall, it is repositioned back to start state.



(a) Example racetrack problem (b) Effect on expected cost (c) Effect on run time (d) Effect on full model usage (%)

Fig. 4. Comparison of different reduction impact thresholds on four instances of the racetrack domain. In (a), blue denotes start state and red denotes
goal, lighter cells denote the track and darker cells denote walls (obstacles).

The expected cost of reaching the goal and planning time
are used as evaluation metrics. The features denoting risks
were identified empirically. Given the features, the reduction
impacts are estimated using thirty samples for each domain.
For all states with reduction impact greater than the threshold
value (Table I), the model selector uses a full model in a
0/1 RM and uses M02 reduction in 0/M02 RM. In all other
states, MLOD is used. All results are averaged over 100
trials of planning and execution simulations and the average
times include re-planning time. The deterministic problems
are solved using the A* algorithm [7] and other problems
using LAO*. All algorithms were implemented with ε=10−3

convergence and using hmin heuristic computed using a
labeled version of LRTA* [18], and tested on an Intel Xeon
3.10 GHz computer with 16GB of RAM.

Racetrack Domain We experimented with six problem
instances from the racetrack domain [17], in which the task
is to move from start to goal states by applying acceleration
correctly. If the car hits a wall, it is repositioned back to
start state. We modified the problem to increase the difficulty
such that, in addition to a 0.10 probability of slipping, there
is a 0.20 probability of randomly changing the intended
acceleration by one unit. The reduction impact uses one-step
lookahead and state features such as: whether the successor
is a wall or pothole or goal, and if the successor is moving
away from the goal, estimated using the heuristic.

Sailing Domain We present results on six instances of the
sailing domain [19], in which the objective is to find the
shortest path between two points of a grid under fluctuating
wind conditions. The boat cannot move in the direction
opposite to that of the wind and the changes in wind direction
are stochastic. The problem instances vary in terms of grid
size and the goal position (opposite corner (C) or middle (M)
of the grid). The reduction impact is estimated using one-step
lookahead and based on state features such as: the difference
between the action’s intended direction of movement and the
wind’s direction, and if the successor is moving away from
goal, estimated using the heuristic value.

EV Charging Problem We experimented with the electric
vehicle (EV) charging domain, operating in a vehicle-to-
grid setting, where the EV can charge and discharge energy
from a smart grid [20]. The objective is to minimize the
long-term operational cost of the EV, given the owner’s

charging preferences. We modified the original problem to
allow for uncertainty regarding the parking duration of the
EV, which is specified by a probability that certain states
may become terminal states. The maximum parking duration
is the horizon H . Each state is represented by 〈l, t, d, p, e〉,
where l is the current charge level, t≤H is the time step, d
and p denote the current demand and price distribution for
electricity respectively, and 0≤e≤ 3 denotes the anticipated
departure time specified by the owner. If the owner has not
provided this information, then e = 3 and the agent plans
for H . Otherwise, e denotes the time steps remaining for
departure. The process terminates when t=H or if e=0.

Each t is equivalent to 30 minutes in real time. We assume
that the owner may depart between four to six hours of
parking with a probability of 0.2 that they announce their
planned departure time. Outside that window, there is a lower
probability of 0.05 that they announce their departure. We
experimented with four reward functions (RF). The rewards
and the peak hours are based on real data [21]. The battery
capacity and the charge speeds are based on Nissan Leaf
configuration. We assume the charge and discharge speeds
to be equal. The battery inefficiency is accounted for by
adding a 15% penalty on the rewards. The reduction impact is
estimated using state features: time remaining for departure,
if the current time is peak hour, and if there is sufficient
charge for discharging, with one step-lookahead.

EV Dataset The data used in our experiments consist of
charging schedules of electric cars over a four month duration
in 2017 from an American university campus. The data is
clustered based on the entry and exit charges, and we selected
25 representative problem instances across clusters for our
experiments. The data is from a typical charging station,
where the EV is unplugged once the desired charge level
is reached. Since we are considering an extended parking
scenario as in a vehicle parked at work, we use parking
duration (H) as 8 hours in our experiments.

Discussion Table I reports the full model usage (%)
for 0/1 RM in our experiments, using reduction impact as
heuristic for model selector. The best threshold values were
identified empirically based on experiments such as those in
Fig. 4. Fig. 5 shows the average increase in cost (%) and
the time savings (%), with respect to solving the original
problem optimally, of the five techniques. For the EV do-



(a) Racetrack (b) Sailing (c) EV

Fig. 5. Comparison of different reduced models on three domains. The time savings and cost increase are with respect to solving the problem (full model)
optimally. Risk-aware reduced models have higher time savings and lower cost increase.

TABLE I
% FULL MODEL USAGE IN 0/1 RM USING REDUCTION IMPACT AS

HEURISTIC FOR MODEL SELECTOR, CORRESPONDING TO δ THRESHOLD.

Problem Full Model (%) δ threshold (%)
EV-RF-1 7.644 120
EV-RF-2 9.956 120
EV-RF-3 8.989 120
EV-RF-4 9.852 120
Racetrack-P1 0.071 100
Racetrack-P2 0.034 100
Racetrack-P3 1.859 100
Racetrack-P4 0.327 100
Racetrack-P5 2.871 100
Racetrack-P6 0.860 100
Sailing-20(C) 37.414 120
Sailing-40(C) 37.478 120
Sailing-80(C) 37.495 120
Sailing-20(M) 37.414 120
Sailing-40(M) 37.478 120
Sailing-80(M) 37.495 120

main, the results are aggregated over 25 problem instances
for each reward function. A low cost increase indicates that
the performance of the technique is closer to optimal. A
high time saving value indicates improved run time gains
by using the model. Hence, the lower right corner of each
image represents the most desired results.

We observe that 0/1 RM can effectively minimize the
expected costs without significantly affecting run time and
by sparingly using the full model. This indicates that using
δ as a heuristic works well in practice. Furthermore, 0/1 RM
performs consistently better than other techniques, in terms
of the trade-off. We solve all the reduced models optimally
using the same algorithm in order to assess the direct impact
of model reduction. In practice, however, any SSP solver
(optimal or not) may be used to further improve run time
gains. Thus, the results demonstrate the benefits of our
approach in formulating reduced models that balance the
trade-off between model simplicity and risk awareness.

VI. CONCLUSION

We propose planning using a portfolio of outcome selec-
tion principles that provides flexibility in outcome selection
for reduced models. We measure the reduction impact based
on the ignored outcomes and describe how it can be used
as a heuristic for model selector in POSP. Our empirical
results demonstrate the promise of this framework, as this
basic instantiation of a POSP improves performance without

significantly affecting the run time gains. In the future, we
aim to devise practical methods for automatically devising
good model selectors beyond the reduction impact heuristic.
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