
Belief Space Metareasoning for Exception Recovery

Justin Svegliato1, Kyle Hollins Wray1,2, Stefan J. Witwicki2, Joydeep Biswas1, and Shlomo Zilberstein1

Abstract— Due to the complexity of the real world, au-
tonomous systems use decision-making models that rely on sim-
plifying assumptions to make them computationally tractable
and feasible to design. However, since these limited repre-
sentations cannot fully capture the domain of operation, an
autonomous system may encounter unanticipated scenarios
that cannot be resolved effectively. We first formally introduce
an introspective autonomous system that uses belief space
metareasoning to recover from exceptions by interleaving a
main decision process with a set of exception handlers. We then
apply introspective autonomy to autonomous driving. Finally,
we demonstrate that an introspective autonomous vehicle is
effective in simulation and on a fully operational prototype.

I. INTRODUCTION

Autonomous systems have been deployed across many
applications, such as autonomous vehicles [1], search and
rescue robots [2], and space exploration rovers [3]. Simply
put, these systems make decisions based on decision-making
models that have inherent limitations. For example, a self-
driving car may not be capable of driving on poorly marked
roads or in heavy rain. Hence, in order to guarantee reliable
operation, some restricting assumptions must be satisfied.
This reduces the complexity of designing and verifying solu-
tions for efficient planning and execution [4]. However, as a
result of incomplete decision-making models, these systems
may encounter a wide range of unanticipated scenarios that
cannot be resolved optimally, feasibly, or even safely.

A simple approach to ensuring the necessary conditions
of normal operation is to place the entire responsibility on
the operator deploying the autonomous system. However,
although relying on human judgment can improve perfor-
mance [5], it is desirable to limit human involvement when
the conditions of normal operation are violated. In fact,
most of this responsibility should ideally be delegated to
the autonomous system. We therefore offer a metareasoning
framework that activates secondary decision-making models
designed to restore normal operation with or without human
involvement given any violation of its necessary conditions.

Despite tremendous progress in metareasoning centered
on monitoring and controlling anytime algorithms [6], there
have been few attempts to build autonomous systems that
use metareasoning to recover from exceptional situations
effectively. Such a system presents many challenges. First,

This work was supported in part by a National Science Foundation Grad-
uate Research Fellowship DGE-1451512, the National Science Foundation
grants IIS-1724101 and IIS-1813490, and Nissan Motor Company.

1College of Information and Computer Sciences, University of Mas-
sachusetts, Amherst, MA, USA. Emails: {jsvegliato, wray,
joydeepb, shlomo}@cs.umass.edu

2Alliance Innovation Lab Silicon Valley, Santa Clara, CA, USA. Emails:
{kyle.wray, stefan.witwicki}@nissan-usa.com

Belief

Main Decision
Process

Exception Handler

Main Decision
Process

Time

Static Obstacle
Exception Volatile Obstacle

Exception

Fig. 1. An intuitive view of an introspective autonomous system.

because an unanticipated scenario is not captured by a
decision-making model by definition, the model does not
have the information needed to resolve that exception. Next,
while a decision-making model can be extended to capture
a set of unanticipated scenarios, a naı̈ve approach will expo-
nentially grow the complexity of the model with the number
of exceptions. This is often infeasible for complex exceptions
in real world applications. Finally, since a decision-making
model cannot capture every unanticipated scenario, there will
always be exceptions that cannot be resolved properly.

Recent work in exception recovery has focused on fault
diagnosis—detecting and identifying faults—during normal
operation. For instance, many approaches diagnose faults by
exploiting methods that use particle filters [7] or multiple
model estimation with neural networks [8]. While these
approaches detect and identify exceptions, they do not offer
a comprehensive framework that can also handle exceptions
without human assistance. Building on recent work in fault
diagnosis, our goal is to provide an exception recovery
framework that detects, identifies, and handles exceptions.

We offer an approach for building introspective au-
tonomous systems that use belief space metareasoning for
exception recovery. In Figure 1, this approach makes de-
cisions by interleaving decision processes: a main decision
process designed for normal operation and a set of exception
handlers. As the system completes its task, it activates its de-
cision processes based on a belief over potential exceptions.
If its belief suggests normal operation, it executes its main
decision process. Otherwise, if its belief indicates exceptional
operation, it suspends its main decision process and executes
an exception handler. It can also gather information or
transfer control to an operator given uncertainty in its belief.

Our key contributions are: (1) a formal definition of an
introspective autonomous system and its properties, (2) a
framework for profiling decision processes, (3) an application
of introspective autonomy to autonomous driving, and (4) a
demonstration that an introspective autonomous vehicle is
effective in simulation and on a fully operational prototype.

II. INTROSPECTIVE AUTONOMY

Given the complexity of the real world, autonomous
systems have traditionally relied on decision-making models
that depend on many simplifying assumptions to facilitate
planning and execution [4]. These systems, however, can
encounter unanticipated scenarios that cannot be resolved ef-
fectively. For instance, an autonomous vehicle can encounter
different types of obstacles along its route. Achieving the
complete potential of autonomous systems therefore requires
the ability to recover from exceptional situations [9].

A. Background

A partially observable Markov decision process (POMDP)
is a formal decision-making model for reasoning in partially
observable, stochastic environments [10]. A POMDP can be
described as a tuple 〈S,A, T,R,Ω, O〉, where S is the set
of states of the world, A is the set of actions of the agent,
T : S × A× S → [0, 1] is the transition function that maps
each state s ∈ S and action a ∈ A to the probability of
ending up in state s′ ∈ S, R : S×A×S → R is the reward
function that maps each state s ∈ S and action a ∈ A to the
expected immediate reward gained in s′ ∈ S, Ω is the set of
observations of the agent, and O : S×A×Ω→ [0, 1] is the
observation function that maps each state s ∈ S and action
a ∈ A to the probability of observing observation ω ∈ Ω.

In a POMDP, the agent does not necessarily know the
true state of the world at any given time. Instead, the agent
makes noisy observations that reflect its state and action. To
represent its uncertainty, the agent maintains a belief state
b ∈ B, a probability distribution over all states, where B
is the space of all belief states. Initially, the agent begins
with an initial belief state b0 ∈ B. After performing an
action a ∈ A and making an observation ω ∈ Ω, the
agent updates its current belief state b ∈ B to a new
belief state b′ ∈ B using the belief state update equation
b′(s′|b, a, ω) = ηO(a, s′, ω)

∑
s∈S T (s, a, s′)b(s), where η

is the normalization constant η = Pr(ω|b, s)−1.
At each time step, the agent selects an action based on its

current belief state using a policy π : B → A that maps a
belief state b ∈ B to an action a ∈ A. A policy π induces
a value function V π : B → R that represents the expected
cumulative reward of each belief state and an optimal policy
π∗ maximizes this reward. Note that there are many solution
methods that calculate or approximate an optimal policy [11].

B. Introspective Autonomous Systems

In order to recover from exceptions, an introspective
autonomous system maintains a belief over potential excep-
tions. The system uses this belief to reason about how to in-
terleave decision processes. Naturally, the decision processes
include the regular process, which makes decisions using a
model designed for a particular task. If the system believes
there is not an exception, suggesting normal operation, it
executes the regular process. The decision processes also
include a set of exception handlers, which make decisions
based on a model designed for a specific exception. If the
system believes there is an exception, indicating exceptional

operation, it executes an exception handler. In a self-driving
car, the regular process and exception handlers could be for
navigation and obstacle handling respectively. In short, given
its belief over potential exceptions, the system alternates
between regular decision making and exception handling.

An introspective autonomous system uses its belief to en-
capsulate its uncertainty over whether or not the assumptions
of normal operation have been violated. This belief belongs
to a space of beliefs that is partitioned into distinct regions
associated with different decision processes. Typically, the
regular process will correspond to a large region that suggests
normal operation while each exception handler will corre-
spond to a small region that indicates exceptional operation.
The system simply executes whichever decision process is
associated with the region containing its current belief.

The execution of an introspective autonomous system can
be viewed as a two-level hierarchy of decision processes. The
high-level decision process is the introspective autonomous
system while the low-level decision process is the regular
process or an exception handler. When the introspective
autonomous system activates the regular process or an excep-
tion handler, which is a form of an option [12], it transfers
control to that decision process until a condition is met: the
system executes the regular process for a fixed duration and
an exception handler until termination. After the decision
process meets this condition, the introspective autonomous
system resumes execution once again.

All decision processes generate an indicator describing its
status after execution. An introspective autonomous system
uses each indicator to update its belief over potential ex-
ceptions. The information offered by the indicator, however,
depends on the decision process. Because the objective of
the regular process is to complete a specific task, it can
generate a success or failure signal (e.g., the route has been
or cannot be completed) or a signal that suggests whether or
not an exception has been encountered (e.g., an obstacle has
been encountered). However, since the goal of an exception
handler is to resolve a particular exception, it can generate
a success signal (e.g., the obstacle is no longer blocking)
or a signal that suggests different modes of failure (e.g.,
the obstacle is still blocking). Note that it is possible for
a decision process to generate other indicators as well.

An introspective autonomous system always has a default
exception handler, called the human assistance exception
handler, that is assumed to handle any exception not yet
linked to an exception handler. In particular, if there is no
exception handler designed for a specific exception, it will
execute the human assistance exception handler as a general
form of exception handling. For example, if a self-driving
car is blocked by an unrecognized obstacle, it will transfer
control to the driver rather than use an obstacle handler.
Thus, as new exception handlers are added to the system,
its reliance on human assistance will diminish appropriately.

An introspective autonomous system also has standard
attributes in addition to exceptions, decision processes, and
indicators. That is, the system has standard states, standard
actions, and standard observations. As an example, along

Fig. 2. An introspective autonomous system interleaving the regular process with exception handlers based on its belief.

with its corresponding standard observations, an autonomous
vehicle could have standard states for wait time and standard
actions for waiting and edging in order to facilitate informa-
tion gathering about normal and exceptional operation. The
system has a standard transition function, standard reward
function, and standard observation function as well.

We now provide a formal description of an introspective
autonomous system by extending a POMDP below.

Definition 1. An introspective autonomous system can be
described as a tuple 〈E,P, I,S,A,T ,R,Ω,O〉, where
• E is a set of exceptions (denoted as ei),
• P is a set of decision processes (denoted as pj),
• I is a set of indicators (denoted as ik),
• S = S ×E is a set of factored states: a standard state

set S and an exception set E,
• A = A∪P is a set of actions: a standard action set A

and a decision process set P ,
• T : S × A × S → [0, 1] is a transition function

composed of a standard transition function T : S ×
A×S → [0, 1], a transition profile τp : S →4|S|, and
an exception profile ξp : S →4|E|,

• R : S×A×S → R is a reward function composed of
a standard reward function R : S×A×S → [0, 1] and
a cost profile ζp : S → R,

• Ω = Ω ∪ I is a set of observations: a standard
observation set Ω and an indicator set I , and

• O : S × A × Ω → [0, 1] is an observation function
composed of a standard observation function O : S ×
A×Ω→ [0, 1] and an indicator profile ιp : S →4|I|.

The exception set E requires normal operation η. The
decision process set P requires the regular process γ and
the human assistance exception handler λ. The indicator set
I requires a success signal σ and a failure signal φ. The
automated exception handler set, without the regular process
or the human assistance exception handler, is denoted as H .

There are several principles that should be followed when
building an exception handler. First, in order to cover as
many exceptions as possible, an exception handler should be
general rather than narrowly specialized. For instance, a self-
driving car should have exception handlers for broad classes
of obstacles. Next, during the handling of an exception,
an exception handler should meet the requirements of the
regular process. Finally, by monitoring the conditions for
which it has been activated, an exception handler should
terminate itself if it deems its execution unnecessary.

Following recent work on metareasoning for anytime
algorithms [13], [14], it is natural to view an introspective
autonomous system as a meta-level controller that monitors
and controls the regular process at fixed intervals. That
is, the system monitors the regular process by maintaining
a belief over whether or not the assumptions of normal
operation have been violated and controls the regular process
by executing it or suspending it to execute an exception
handler. As a meta-level controller, the systems weighs the
likelihood of normal and exceptional operation with the cost
of executing the regular process or an exception handler.

Figure 2 offers a natural view of an introspective au-
tonomous system. Generally, in order to complete a task,
the system runs different decision processes that generate
indicators used to update its belief: it either activates the
regular process for a fixed duration or an exception handler
until termination. In this example, the system executes the
regular process (with signals suggesting whether or not there
is an exception). In between the executions of the regular pro-
cess, the system executes first an exception handler and then
the human assistance exception handler that both succeed
(with success signals). The system continues to run until the
regular process is successful (with a success signal).

C. Decision Process Profiling

Although a decision process can make decisions using
a sophisticated model, an introspective autonomous system
does not rely on its internal mechanisms. A decision process
is instead summarized by a set of profiles. Each profile forms
an abstraction over a feature of the decision process within
the system. Note that these profiles are used to describe the
transition, reward, and observation function of the system.

The first profile expresses how a decision process transi-
tions through the standard state space by mapping a factored
state to a probability distribution over all standard states.

Definition 2. A transition profile, τp : S →4|S|, gives the
probability of ending up in state s′ ∈ S after executing the
decision process p ∈ P in state s ∈ S.

The second profile captures how a decision process tran-
sitions through the exception space by mapping a factored
state to a probability distribution over all exceptions.

Definition 3. An exception profile, ξp : S → 4|E|, gives
the probability of ending up with exception e′ ∈ E after
executing the decision process p ∈ P in state s ∈ S.

Fig. 3. The transition of an introspective autonomous system.

The third profile characterizes the cost of executing a
decision process by mapping a factored state to an expected
immediate cost of a decision process.

Definition 4. A cost profile, ζp : S → R, gives the expected
cost of executing the decision process p ∈ P in state s ∈ S.

The fourth profile encapsulates how a decision process
emits an indicator by mapping a factored state to a proba-
bility distribution over all indicators.

Definition 5. An indicator profile, ιp : S →4|I|, gives the
probability of observing an indicator i ∈ I after executing
the decision process p ∈ P and ending up in state s ∈ S.

Finally, putting all of these profiles together, we present
the complete description of a decision process as follows.

Definition 6. A decision process, p ∈ P , can be described as
a tuple of profiles 〈τp, ξp, ζp, ιp〉 that summarize its operation
such that τp is the transition profile, ξp is the exception
profile, ζp is the cost profile, and ιp is the indicator profile.

Note that each decision process can be viewed as using a
policy derived from a decision-making model, such as a
stochastic shortest path (SSP) problem, or a domain expert.

Figure 3 illustrates the transition of an introspective au-
tonomous system during the execution of a decision process.
Intuitively, while its internal mechanisms can be sophisti-
cated, a decision process is simply an action that causes
the system to transition through states in its state space. In
this illustration, the system executes a decision process p
starting in state s and ending in state s′. When the system
activates the decision process in state s, it transfers control to
that decision process. The decision process then transitions
through states its own state space by performing actions in
its own action space. After the decision process is done, it
transfers control back to the system in state s′.

D. Dynamics

Now, by using the formal definition of a decision pro-
cess, we can express the transition, reward, and observation
functions of an introspective autonomous system. First, for
the transition and reward functions, if the action is a decision
process, the relevant profiles are used. Otherwise, the relevant
standard function is used. Given a state s = (s, e) ∈ S, an
action a ∈ A, and a successor state s′ = (s′, e′) ∈ S, we
describe the transition and reward functions below.

T (s,a, s′) =

{
τa(s, s′)ξa(s, e′) if a ∈ P
T (s,a, s′) otherwise

R(s,a, s′) =

{
−ζa(s) if a ∈ P
R(s,a, s′) otherwise

Fig. 4. An example route with several obstacles.

Moreover, for the observation function, if the action is
a decision process and the observation is an indicator, the
relevant profile is used. However, if the action is a standard
action and the observation is a standard observation, the
relevant standard function is used. Otherwise, the probability
is nil. Given a successor state s′ = (s′, e′) ∈ S, an
action a ∈ A, and an observation ω ∈ Ω, we express the
observation function as follows.

O(s′,a,ω) =

ιa(s′,ω) if a ∈ P and ω ∈ I
O(s′,a,ω) if a ∈ A and ω ∈ Ω

0 otherwise

E. Robustness

An introspective autonomous system enables the regular
process to complete a task by handling exceptions with a set
of exception handlers. These exception handlers are therefore
essential to the effectiveness of the system. Accordingly, we
define the main properties of an exception handler below.

Definition 7. An exception handler, h ∈ H , is strong if it
is guaranteed to handle a specific exception e ∈ E for all
states s ∈ S.

Definition 8. An exception handler, h ∈ H , is conditionally
strong if it is guaranteed to handle a specific exception e ∈ E
for some states s ∈ S.

Definition 9. An exception handler, h ∈ H , is weak if it is
not strong or conditionally strong.

Finally, given all of these properties, we define the central
property of an introspective autonomous system as follows.

Definition 10. An introspective autonomous system is robust
if there exists a strong or conditionally strong exception
handler, h ∈ H , that is guaranteed to handle any exception
e ∈ E that may arise in any state s ∈ S during operation.

III. AUTONOMOUS DRIVING

We now provide an application of introspective autonomy
to autonomous driving. In this domain, an autonomous
vehicle must drive along a route from a start location
to a goal location. However, as the autonomous vehicle
progresses along this route, it can encounter different types
of obstacles of increasing volatility: a static obstacle that
remains stopped permanently, a dynamic obstacle that stops
and goes repeatedly, and an erratic obstacle that behaves
unpredictably. Figure 4 shows an example route with a static
obstacle (the car icon), a dynamic obstacle (the garbage
truck icon), and an erratic obstacle (the paw icon).

A. Navigation Problem

First, we consider the regular process. Its decision-making
model is a navigation problem where the autonomous ve-
hicle must drive along a route from a start location to a
goal location with the assumption that there are no ob-
stacles. More formally, for the regular process, γ ∈ P ,
the navigation problem can be represented by the tuple
〈Sγ , Aγ , T γ , Cγ , sγ0 , sγg 〉, where Sγ is a set of states rep-
resenting intersections, Aγ is a set of actions representing
road segments, T γ : Sγ × Aγ × Sγ → [0, 1] is a transition
function representing whether or not an intersection s ∈ Sγ
is connected to an intersection s′ ∈ Sγ by a road segment
a ∈ Aγ , Cγ : Sγ × Aγ × Sγ → R+ is a cost function
representing the length of a road segment a ∈ Aγ that
connects an intersection s ∈ Sγ to an intersection s′ ∈ Sγ ,
sγ0 is a start intersection, and sγg is a goal intersection.

B. Obstacle Handling Problem

Next, we consider each exception handler. This includes
automated obstacle handlers designed for each obstacle and
an obstacle handler that is assumed to handle any obstacle
using human assistance with a high penalty. Each decision-
making model is based on an obstacle handling problem.
That is, for each automated obstacle handler, h ∈ H , the
obstacle handling problem can be expressed as the tuple
〈Sh, Ah, Th, Ch, sh0 , shg 〉, where Sh = Shp × Shl × Shr × Shb
is a set of factored states such that Shp describes the posi-
tion of the autonomous vehicle (obstructed/passing/passing
with caution/collision/unobstructed), Shl and Shr describe
whether or not the left lane and right lane are avail-
able (open/closed), and Shb describes whether or not
the obstacle is blocking (blocking/not blocking), Ah =
{Stop,Edge,Go,Pass,PassWithCaution} is a set of actions
representing the maneuvers of the autonomous vehicle, Th :
Sh × Ah × Sh → [0, 1] is a transition function multiplying
the probabilities of scenarios including the probabilities
Pr(s′l|sl) and Pr(s′r|sr) that the availability of the left
lane and right lane changes and the probability Pr(s′b|sb)
of whether or not the obstacle is blocking changes, Ch :
Sh × Ah × Sh → R+ is a cost function with unit cost
for every state other than a goal state, sh0 is a start state
with an obstructed position, and shg is a goal state with an
unobstructed position. Note that any state with a collision or
infinite waiting is an absorbing dead end state with unit cost.

All obstacles handlers use an instance of the obstacle
handling problem where the transition function corresponds
to the expected behavior of each type of obstacle. This
involves adjusting the probability Pr(s′b|sb) of whether or
not the obstacle is blocking changes. For the static, dynamic,
and volatile obstacle handlers, their policies indicate to pass
the obstacle immediately (Pass), pass the obstacle cautiously
(PassWithCaution), and wait for the obstacle to move (Stop)
due to a low, medium, and high probability respectively.

C. Introspective Autonomous Vehicle

Finally, given the regular process and each exception
handler, we consider the introspective autonomous sys-

tem. The introspective autonomous vehicle, v, can be
described as an introspective autonomous system with
〈Ev, P v, Iv,Sv,Av,T v,Rv,Ωv,Ov〉, where
• Ev = {η, e1, e2, e3} is a set of exceptions such that η

is no obstacle, and e1, e2, and e3 is the presence of a
static, dynamic, and erratic obstacle respectively,

• P v = {γ, λ, h1, h2, h3} is a set of decision processes
such that γ is the regular process, λ is the human assis-
tance obstacle handler, and h1, h2, and h3 is the static,
dynamic, and erratic obstacle handler respectively,

• Iv = {σ, φ, ib, im} is a set of indicators such that σ is
the success signal, φ is the failure signal, and ib and im
are signals that indicate whether or not an obstacle is
blocking and moving respectively,

• Sv = Sv × Ev is a set of factored states: a standard
state set Sv and the exception set Ev such that Sv is
the wait time (none/short/medium/long),

• Av = Av ∪P v is a set of actions: a standard action set
Av = {Edge,Wait} and the decision process set P v ,

• T v : Sv ×Av × Sv → [0, 1] is a transition function,
• Rv : Sv ×Av × Sv → R is a reward function,
• Ωv = Ωv ∪ Iv is a set of observations: a standard

observation set Ωv and the indicator set Iv , and
• Ov : Sv×Av×Ωv → [0, 1] is an observation function.

Note that a monolithic POMDP that instead combines the
navigation problem and the obstacle handling problems to-
gether is intractable. Given a navigation problem with |Sγ |
states and n obstacle handling problems with 40 states, there
are |Sγ | ·40n states. A simple example with 30 intersections
and 3 types of obstacles has over a million states, which
cannot even be solved with state-of-the-art solvers [11].

D. Analysis

Our goal is to show that the introspective autonomous
vehicle can complete its route by handling all obstacles that
can be detected and identified during navigation. We first
show that every obstacle handler is strong below.

Proposition 1. An obstacle handler is strong.

Proof (Sketch) 1. For an obstacle handler to be strong,
it must be guaranteed to handle its corresponding obstacle
for all states. In particular, if the obstacle handling problem
is described as an SSP, it must ensure goal reachability by
satisfying both conditions of an SSP. First, the problem has
a proper policy: the Stop action can be performed to always
avoid dead end states and eventually reach the goal state
once the obstacle is no longer blocking. Second, all improper
policies of the problem incur infinite cost for any state that
may not reach the goal state. Therefore, by satisfying both
condition of an SSP, the obstacle handler is strong.

Finally, by using this proposition, it is easy to show that
the introspective autonomous vehicle is robust as follows.

Theorem 1. An introspective autonomous vehicle is robust.

Proof (Sketch) 2. Since all obstacle handlers are strong by
Proposition 1, the introspective autonomous vehicle is robust.

TABLE I
THE PERFORMANCE OF ALL AUTONOMOUS VEHICLES.

Obstacle Handlers Incidents Autonomy (%) Transfers Time (s)

None 12 — — —
λ 0 51.4 12 750.2
λ, h1 0 60.3 9 700.0
λ, h1, h2 0 72.0 6 649.8
λ, h1, h2, 33 0 84.3 3 599.5

IV. DEMONSTRATION

In this section, we demonstrate that the introspective
autonomous vehicle is effective in simulation and on a fully
operational prototype. In particular, we compare different
versions of the introspective autonomous vehicle to a reg-
ular autonomous vehicle without introspective autonomy.
For each introspective autonomous vehicle, vi, the available
obstacle handlers Hvi are the following: Hv1 = {λ}, Hv2 =
{λ, h1}, Hv3 = {λ, h1, h2}, and Hv4 = {λ, h1, h2, h3}.

Each experiment represents an instance of the naviga-
tion problem with different obstacle handling problems: the
introspective autonomous vehicle has to complete a route
by passing obstacles. To do this, we run an introspective
autonomous vehicle process that uses a belief to interleave
decision processes. If the belief suggests normal operation,
the navigation process is executed. Otherwise, if the belief
indicates exceptional operation, an obstacle handling process
is executed. The experiment concludes once the introspective
autonomous vehicle process has been terminated.

All autonomous vehicles traverse a route with 3 instances
of each type of obstacle and 3 unrecognized obstacles that
can only be handled by the human assistance obstacle han-
dler. Other routes can be built using the observation that the
expected time needed to handle each obstacle is consistent:
the static, dynamic, erratic, and unknown obstacles require
12.3, 15.1, 12.5, and 14.7 seconds respectively. Due to im-
plementation constraints of the vehicle, transferring control
safely to and from the driver requires 8.0 seconds.

Table I shows the performance of the regular autonomous
vehicle and each version of the introspective autonomous ve-
hicle. Obstacle Handlers lists the obstacle handlers available
to the vehicle. Incidents includes the number of exceptions
that prevent the vehicle from completing its route due to
an exception that leads to a collision or infinite waiting.
Autonomy shows the percentage of time that the vehicle
is driven autonomously. Transfers includes the number of
activations of the human assistance exception handler by the
vehicle. Time presents the duration of the route in seconds.

We also demonstrate that the complete introspective au-
tonomous vehicle is effective on a road in the real world
with a static obstacle (a parked car), a dynamic obstacle (a
slow-moving car), and an erratic obstacle (an unpredictable
pedestrian) on the fully operational prototype in Figure 5.

V. DISCUSSION

In Table I, when no obstacle handlers are available, the
introspective autonomous vehicle cannot complete its route
due to 12 potential incidents. Once the human assistance
obstacle handler becomes available, the vehicle completes

Fig. 5. A fully operational introspective autonomous vehicle prototype.

its route without any potential incidents. Relying on the
driver, however, leads to the worst level of autonomy (51.4%)
and route time (750.2 s). As each obstacle handler becomes
available, the vehicle continues to improve until reaching its
best level of autonomy (84.3%) and route time (599.5 s)
where all unrecognized obstacles must be handled by the
driver. In short, with each exception handler, the vehicle
improves its independence and efficiency during operation.

VI. CONCLUSION

We introduce a new approach to exception recovery in
autonomous systems that uses belief space metareasoning.
By reasoning over the assumptions of normal operation,
an introspective autonomous system interleaves the regular
process with different exception handlers to identify, detect,
and handle unanticipated scenarios. Finally, we offer an
introspective autonomous vehicle and demonstrate its effec-
tiveness in simulation and on a fully operational prototype.
Future work will extend introspective autonomy to multiple
concurrent exceptions that interact during operation.

REFERENCES

[1] K. H. Wray, S. J. Witwicki, and S. Zilberstein, “Online decision-
making for scalable autonomous systems,” in 26th IJCAI, 2017.

[2] M. A. Goodrich, B. S. Morse, D. Gerhardt, J. L. Cooper, M. Quigley,
J. A. Adams, and C. Humphrey, “Supporting wilderness search and
rescue using a camera-equipped mini UAV,” J. of Field Robotics, 2008.

[3] B. C. Williams, M. D. Ingham, S. H. Chung, and P. H. Elliott, “Model-
based programming of intelligent embedded systems and robotic space
explorers,” Proceedings of the IEEE, 2003.

[4] A. Ferrando, L. A. Dennis, D. Ancona, M. Fisher, and V. Mascardi,
“Recognising assumption violations in autonomous systems verifica-
tion,” in 17th AAMAS, 2018.

[5] J. Zhang and E. Bareinboim, “Characterizing the limits of autonomous
systems,” in 17th AAMAS, 2018.

[6] E. A. Hansen and S. Zilberstein, “Monitoring and control of anytime
algorithms: A dynamic programming approach,” J. of Artificial Intel-
ligence Research, 2001.

[7] V. Verma, G. Gordon, R. Simmons, and S. Thrun, “Particle filters for
fault diagnosis,” IEEE Robotics and Automation Magazine, 2004.

[8] P. Goel, G. Dedeoglu, S. I. Roumeliotis, and G. S. Sukhatme, “Fault
detection and identification in a mobile robot using multiple model
estimation and neural network,” in ICRA, 2000.

[9] R. Alterovitz, S. Koenig, and M. Likhachev, “Robot planning in the
real world,” AI Magazine, 2016.

[10] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning
and acting in partially observable stochastic domains,” J. of Artificial
Intelligence Research, 1998.

[11] J. Pineau, G. Gordon, and S. Thrun, “Point-based Value Iteration: An
anytime algorithm for POMDPs,” in 18th IJCAI, 2003.

[12] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical
reinforcement learning,” Discrete Event Dynamic Systems, 2003.

[13] J. Svegliato and S. Zilberstein, “Adaptive metareasoning for bounded
rational agents,” in IJCAI Workshop on AEGAP, 2018.

[14] J. Svegliato, K. H. Wray, and S. Zilberstein, “Meta-level control
of anytime algorithms with online performance prediction,” in 27th
IJCAI, 2018.

