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Abstract— We present the Goal Uncertain Stochastic Shortest
Path (GUSSP) problem — a general framework to model path
planning and decision making in stochastic environments with
goal uncertainty. The framework extends the stochastic shortest
path (SSP) model to dynamic environments in which it is
impossible to determine the exact goal states ahead of plan
execution. GUSSPs introduce flexibility in goal specification by
allowing a belief over possible goal configurations. The unique
observations at potential goals helps the agent identify the
true goal during plan execution. The partial observability is
restricted to goals, facilitating the reduction to an SSP with
a modified state space. We formally define a GUSSP and
discuss its theoretical properties. We then propose an admissible
heuristic that reduces the planning time using FLARES —
a start-of-the-art probabilistic planner. We also propose a
determinization approach for solving this class of problems.
Finally, we present empirical results on a search and rescue
mobile robot and three other problem domains in simulation.

I. INTRODUCTION AND RELATED WORK

Autonomous robots acting in the real world are often
faced with tasks that require path planning in stochastic
environments. These problems are typically modeled as a
Stochastic Shortest Path (SSP) problem, which generalizes
both finite and infinite-horizon Markov decision processes
(MDPs) and is a convenient framework to model goal-driven
problems [1]. The objective in an SSP is to devise a sequence
of actions such that the expected cost of reaching a known
goal state from the start state is minimized.

Consider a search and rescue domain (Figure 1), a motivat-
ing example where the robot has to devise a cost minimizing
path to rescue people from a building [2], [3]. While the
number of victims and the map of the building may be
provided to the robot, only potential victim locations may
be known ahead of plan execution. The unavailability of
the exact goal states (victim locations) during planning time
prevents the problem from being modeled as a standard MDP
or SSP. In this work we assume that the exact goal states
may be hard to identify, but historical data or noisy sensors
allow the robot to establish a belief distribution over possible
victim locations. The search and rescue domain is an instance
of the optimal search for stationary targets [4]–[7] — a class
of problems in which the target’s exact location is unknown
to the robot, but the robot can observe its current location
and determine whether the target is in the current location.
Hence, we assume that the robot is given well-defined goal

Support for this work was provided in part by the U.S. National Science
Foundation grants IIS-1524797 and IIS-1724101.

1College of Information and Computer Sciences, University of Mas-
sachusetts Amherst, MA, USA.

2Alliance Innovation Lab Silicon Valley, Santa Clara, CA, USA.

(a) Problem setting (b) Experimental setting

Fig. 1. An example of a search and rescue problem with goal uncertainty,
showing the initial belief (left) and the corresponding experimental setting
with a mobile robot and updated beliefs (right). The question marks indicate
potential victim locations and values denote the robot’s belief. S denotes the
robot’s start location and G is the actual victim location (goal). The robot
updates its belief about the victim locations based on its observations.

conditions, but has uncertainty about the states that satisfy
these goal conditions.

In the existing literature [8], [9], such problems
are typically modeled as a Partially Observable MDP
(POMDP) [10], a rich framework that facilitates modeling
various forms of partial observability. However, POMDPs
are much harder to solve [11]. The partially observable
SSPs (POSSPs) extend the SSP framework to settings with
partially observable states, offering a class of indefinite-
horizon, undiscounted POMDPs that rely on state-based ter-
mination [12]. Other relevant POMDP variants are the Mixed
Observable MDPs [9] that model problems with both fully
observable and partially observable state factors and the Goal
POMDPs [13] that are goal-based with no discounting. These
models are solved using POMDP solvers and are difficult to
solve optimally. They also suffer from limited scalability due
to their computational complexity [11]. Our objective in this
work is to efficiently solve problems with goal uncertainty by
leveraging the fully observable components of the problem.

We present goal uncertain SSP (GUSSP), a framework
specifically designed to model problems with imperfect goal
information by allowing for a probabilistic distribution over
possible goals. GUSSPs fit well with many real-world set-
tings where it is easier and more realistic to have belief over
goal configurations, rather than exact knowledge about the
goal states. The observation function in a GUSSP facilitates
the reduction to an SSP, enabling the computation of tractable
and optimal solutions. We address settings where the goals
do not change over time and we assume the existence of
a unique observation that allows the robot to accurately
identify a goal when it reaches one.

Our key contributions are: (i) a formal definition of
GUSSP and its theoretical properties; (ii) a domain-
independent, admissible heuristic that can accelerate proba-
bilistic planners; (iii) a determinization approach for solving
GUSSPs; and (iv) empirical evaluation on three realistic
domains in simulation and on a mobile robot.



II. BACKGROUND: STOCHASTIC SHORTEST PATH

A Stochastic Shortest Path (SSP) is a more general
formulation of an MDP to model goal-oriented problems
that require sequential decision making under uncertainty.
Formally, an SSP is defined by the tuple 〈S,A, T,C, s0, SG〉,
where S is a finite set of states; A is a finite set of actions;
T :S×A×S → [0, 1] is the transition function representing
the probability of reaching a state s′ ∈ S by executing an
action a ∈ A in state s ∈ S, and denoted by T (s, a, s′);
C :S ×A→ R+ ∪ {0} is the cost function representing the
cost of executing action a ∈ A in state s ∈ S, and denoted
by C(s, a); s0 ∈ S is the initial state; and SG ⊆ S is the set
of absorbing goal states. The cost of an action is positive in
all states except absorbing goal states, where it is zero. An
SSP is an MDP with no discounting, that is, the discount
factor γ = 1. The objective in an SSP is to minimize the
expected cost of reaching a goal state from the start state. It
is assumed that there exists at least one proper policy, one
that reaches a goal state from any state s with probability
1. The optimal policy, π∗, can be extracted using the value
function defined over the states, V ∗(s):

V ∗(s) = min
a

Q∗(s, a), ∀s ∈ S

Q∗(s, a) = C(s, a)+
∑
s′

T (s, a, s′)V ∗(s′),∀(s, a)

with Q∗(s, a) denoting the optimal Q-value of the action a in
state s in the SSP. While SSPs can be solved in polynomial
time in the number of states, many problems of interest have
a state-space whose size is exponential in the number of
variables describing the problem [14]. This complexity has
led to the use of various approximate methods that either
ignore stochasticity or use a short-sighted labeling approach
for quickly solving the problem.

III. GOAL UNCERTAIN STOCHASTIC SHORTEST PATH

A goal uncertain stochastic shortest path (GUSSP) prob-
lem is a generalized framework to model problems with goal
uncertainty. A GUSSP is an SSP in which the agent may not
know initially the exact set of goal states (SG, which does
not change over time), and instead can obtain information
about the goals via observations.

Definition 1: A goal uncertain stochastic shortest path
problem is a tuple 〈X,S,A, T, C, s0, SG, PG,Ω, O〉 where
• S,A, T,C, s0, SG denote an underlying SSP with dis-

crete states and actions, and SG unknown to the agent;
• PG ⊆ S is the set of potential goals such that SG ⊆ PG;
• X = S×G is the set of states in the GUSSP with
G = 2PG \ {∅} denoting the set of possible goal
configurations;

• Ω is a finite set of observations corresponding to the
goal configurations, Ω = G; and

• O : A × X × Ω → [0, 1] is the observation function
denoting the probability of receiving an observation, ω∈
Ω, given action a ∈ A led to state x′ with probability
O(a, x′, ω) ≡ Pr(ω|a, x′).

Each state is represented by x=〈s, g〉, with s∈S and g ∈ G.
GUSSPs have mixed observable state components as s is
fully observable. Each g∈G represents a goal configuration
(set of states), thus permitting multiple true goals in the
model, |SG| ≥ 1. Every action in each state produces an
observation, ω ∈Ω, which is a goal configuration and thus
provides information about the true goals. The agent’s belief
about its current state is denoted by b(x), with x = 〈s, g〉;
that is, the belief about g=SG. The initial belief is denoted
by b0〈s0, g〉∈ [0, 1],∀g ∈ G, where s0 is the start state of the
SSP. The process terminates when the agent reaches a state
x with b(x)=1 and s∈g. SSPs are therefore a special type
of GUSSPs with a collapsed initial belief over the goals.

As in (PO)SSP, we assume in a GUSSP: (1) the existence
of a proper policy with finite cost, (2) all improper policies
have infinite cost, and (3) termination is perfectly recognized.

Observation Function In a GUSSP, an observation func-
tion is characterized by two properties. First, to perfectly
recognize termination, all potential goals are characterized
by a unique belief-collapsing (when the belief over a state
is either 1 or 0) observation. That is, at potential goal states,
if s′ ∈ g′, then ∀a ∈ A:

O(a, x′, ω) =

{
1 if g′ = ω

0 otherwise.
(1)

Second, the observation function is myopic, providing infor-
mation only about the current state or the potential goals in
the immediate vicinity. This is based on real-world settings
with limited range sensors and the exploration and naviga-
tion approaches for robots that acknowledge the perceptual
limitations of robots [15]. The landmark states, Ls, provide
accurate information about certain potential goals. Each s∈
Ls provides observations about a subset of potential goals
in the vicinity with Ωs denoting the corresponding set of
observations. Each ω ∈ Ωs provides information about the
maximal set of potential goals in the vicinity. Other non-
potential goal states, s′ /∈ Ls, provide no information about
the true goals. Therefore, the observation at non-potential
goal states is ∀a ∈ A:

O(a, x′, ω)=


1 if s′ ∈ Ls∧ ω ⊆ g′ ∧ ω∈Ωs′

0 if s′ ∈ Ls∧ ω 6⊆ g′ ∧ ω∈Ωs′
1
|Ω| if s′ /∈ Ls

,

with x= 〈s, g〉 and x′ = 〈s′, g′〉. The potential goals along
with the landmark states are called informative states, I =
PG∪Ls, since they provide information about the true goals
through deterministic observations. Thus, our observation
function satisfies the minimum information required for
state-based termination. In the next section, we discuss a
more general setting where every state may have a noisy
observation regarding the true goals.

Belief Update A belief b is a probability distribution over
X , b(x) ∈ [0, 1],∀x ∈ X and

∑
x∈X b(x) = 1. The set of

all reachable beliefs forms the belief space B ⊆ ∆n, where
∆n is the standard (n−1)-simplex. The agent updates the



belief b′∈B, given the action a ∈ A, an observation ω ∈ Ω,
and the current belief b. Using the multiplication rule, the
updated belief for x′=〈s′, g′〉 is:

b′(x′|b, a, ω) = Pr(g′|b, a, ω, s′)Pr(s′|b, a, ω, s)
= Pr(g′|b, a, ω, s′)T (s, a, s′)

Pr(g′|b, a, ω, s′) = ηPr(ω|b, a, s′, g′)Pr(g′|b, a, s′)

= ηO(a, x′, ω)
∑
g∈G

Pr(g′, g|b, a, s′)

= ηO(a, x′, ω)b(g), (2)

where η = Pr(ω|b, a, s′)−1 is a normalization constant and
b(g) is the belief over the goal configuration. Therefore,

b′(x′|b, a, ω) = ηO(a, x′, ω)b(g)T (s, a, s′). (3)

Policy and Value The agent’s objective in a GUSSP
is to minimize the expected cost of reaching a goal,
minπ∈Π E

[∑h
t=0 C(xt, at)

∣∣∣π], where xt and at denote the
agent’s state and action at time t respectively, and h ∈ N
denotes the horizon. A policy π :B→ A is a mapping from
belief b ∈ B to an action a ∈ A. The value function for a
belief, V :B →R is the expected cost for a fixed policy π and
a horizon h. The Bellman optimality equation for GUSSPs
follows from POMDPs:

V (b) = min
a∈A

[
C(b, a) +

∑
ω∈Ω

Pr(ω|b, a)V (b′aω)
]
,

where b′aω is the updated belief following Equation (3),
C(b, a) =

∑
x b(x)C(x, a), x = 〈s, g〉, and x = 〈s′, g′〉. A

proper policy, π, in a GUSSP guarantees termination in a
finite expected number of steps, V π(b0) <∞.

IV. THEORETICAL ANALYSIS

In a GUSSP, the observation function critically affects the
number of reachable beliefs. We begin with analyzing how
the number of beliefs may grow in the more general (non-
myopic observation) setting and then show that a GUSSP
with myopic observations has finite reachable beliefs.

In a GUSSP with non-myopic observations, the nonpo-
tential goal states, ∀s /∈ Ls, provide stochastic observations
about the true goals, resulting in infinitely many reachable
beliefs. While this is a trivial fact, it is useful to understand
the growth in complexity of the problem and it provides
an important link to POMDPs via the belief MDP. The
following proposition formally proves this complexity.

Proposition 1: For all horizon h > 0, the belief-MDP of
a GUSSP with non-myopic observations may have O(|Ω|h)
states.

Proof: By construction, we map GUSSP with non-
myopic observations to a belief MDP 〈B,A, τ, ρ〉 with a
horizon h [10]. Let R(b0) denote the set of reachable beliefs
in the GUSSP. The set of states in the MDP is the set
of reachable beliefs from b0 in the GUSSP, B = R(b0).
The set of actions in the GUSSP are retained in the MDP,
A = A. The cost function ρ(b, a) =

∑
x∈X b(x)C(x, a),

where C(x, a) corresponds to cost function of GUSSP. The

transition function for the belief MDP is the probability of
executing action a ∈ A in belief state b ∈ B and reaching
the reaching belief b′, and denoted by τ(b, a, b′), is:

τ(b, a, b′) =
∑
ω∈Ω

Pr(b′, ω|b, a)

=
∑
ω∈Ω

Pr(b′|b, a, ω)Pr(ω|b, a)

=
∑
ω∈Ω

Pr(ω|b, a)[b′ = b′aω],

with Iversen bracket [·] and b′aω denoting the updated belief
calculated using Equation (3), after executing action a and
receiving observation ω. The probability of receiving ω is:

Pr(ω|b, a) =
∑
x′∈X

Pr(ω, x′|b, a)

=
∑
x′∈X

O(a, x′, ω)
∑
x∈X

T (s, a, s′)b(g′),

with x = 〈s, g〉 and x′ = 〈s′, g′〉. Since |S| in the GUSSP is
finite, a finite set of reachable beliefs in the GUSSP results
in a finite set of reachable states in the belief MDP. This
is a tree of depth h with internal nodes for decisions and
transitions, the branching factor is O(|Ω|) for each horizon,
h [11]. Therefore, the total number of reachable beliefs in
the GUSSP is O(|Ω|h), and thus the resulting belief MDP
may have O(|Ω|h) distinct reachable states.
In the worst case, the observation function may be uncon-
strained and all the beliefs may be unique. Since there is no
discounting in a GUSSP and the horizon is unknown a priori,
GUSSPs may have infinitely many beliefs and their complex-
ity class may be undecidable in the worst case [16]. Hence,
solving GUSSPs with non-myopic observations optimally is
computationally intractable.

We now prove that a myopic observation function results
in a finite number of reachable beliefs in a GUSSP.

Proposition 2: A GUSSP with myopic observation func-
tion has a finite number of reachable beliefs.

Proof: By definition, a myopic observation function
produces either belief-collapsing observations or no informa-
tion at all. For each case, we first calculate the updated belief
for the goal configurations using Equation (2). Therefore,
∀x′ ∈ X with x′ = 〈s′, g′〉:

b′(g′)=
O(a, x′, ω) b(g)∑
x′ O(a, x′, ω)b(g)

.

Case 1: Belief-collapsing observation. Trivially, when
O(a, x′, ω) = 0, the updated belief is b′(g′) = 0.
When O(a, x′, ω) = 1, the updated belief is b′(g′) = 1.
Case 2: No information. When the observation provides no
information, ∀a ∈ A,O(a, x′, ω)=1/|Ω|. Then,

b′(g′) =
b(g)/|Ω|∑
x′ b(g)/|Ω|

= b(g).

Thus, ∀g ∈ G, a myopic observation function produces
collapsed belief or retains the same belief, resulting in a finite
number of reachable beliefs for a goal configuration. Since



|S| is finite, the belief update following Equation (3) would
result in finite number of reachable beliefs for a GUSSP.
Hence, a myopic observation function weakly monotonically
collapses beliefs, allowing us to simplify the problem further.
We now show that a GUSSP reduces to an SSP, similar to
the mapping from a POMDP to belief-MDP [10].

Proposition 3: A GUSSP reduces to an SSP.
Proof: We map the GUSSP to a belief MDP

〈B,A, τ, ρ〉 with a horizon h [10], as in Proposition 1. By
Proposition 2, a GUSSP with myopic observation function
has a finite number of reachable beliefs and therefore, finite
states in the belief-MDP. By construction, this belief-MDP
is an SSP with the start state s̄0 = b0 and the goal states,
S̄G, are the set of states with b̄(x) = 1 such that b̄(g) = 1
and s∈g. Since there exists a proper policy in a GUSSP, the
policy in this SSP is proper by construction. Thus, a GUSSP
with myopic observation function reduces to an SSP.
The reduction to an SSP facilitates solving GUSSPs using
the existing rich suite of SSP algorithms. For ease of ref-
erence and clarity, we refer to the above-mentioned SSP as
compiled-SSP in the rest of this paper.

Relation to Goal-POMDPs The Goal-POMDP [13] mod-
els a class of goal-based and shortest-path POMDPs with
positive action costs and no discounting. The set of target
(or goal) states, P̄ have unique belief-collapsing observa-
tions. Hence, a Goal-POMDP is a GUSSP when the partial
observability is restricted to goals, the observations set is
2P̄ \{∅}, and observation function is myopic.

Proposition 4: GUSSP ⊂ Goal-POMDP.
The observations in a Goal-POMDP are not constrained

and may result in infinitely many reachable beliefs (Propo-
sition 1). This makes it computationally challenging to
compute optimal policies [11], unlike GUSSPs which are
more tractable can be solved optimally (Proposition 3).

GUSSP with Deterministic Transitions A GUSSP with
deterministic transitions presents an opportunity for further
reduction in complexity.

Proposition 5: The optimal policy for a GUSSP with
myopic observations and deterministic transitions is the
minimum arborescence of a weighted and directed graph Z.

Proof: Consider a GUSSP with deterministic transitions
and a dummy start state, r, that transitions to the actual start
state with probability 1 and zero cost. This can be represented
as a directed and weighted graph, Z = (V,E,w), such that
V = {r}∪{x ∈ X|x=〈s, g〉∧s∈PG}; that is, the start state
and the potential goals are the vertices. Each edge e ∈ E
denotes a trajectory in the GUSSP between vertices. The
proper policy in a GUSSP ensures that there is at least one
edge between each pair of vertices. The weight of an edge
connecting x, y∈V is w(e)=d(x, y)(1−b(y)), with d(x, y)
denoting the cost of the trajectory and b(y) is the belief over
y being a goal. The minimum arborescence (directed min-
imum spanning tree) of this graph, A, contains trajectories
such that the total weight is minimized, minA∈A w(A) with
w(A)=

∑
e∈A w(e). By construction, this gives the optimal

order of visiting the potential goals and hence the optimal

policy for the GUSSP with V ∗(s0)=w(A).

V. SOLVING COMPILED-SSPS

We propose (i) an admissible heuristic for SSP solvers that
accounts for the goal uncertainty and (ii) a determinization-
based approach for solving the compiled-SSP.

A. Admissible Heuristic

In heuristic search-based SSP solvers, the heuristic func-
tion helps avoid visiting states that are provably irrelevant.
An efficient heuristic for solving the compiled-SSP guides
the search by accounting for the goal uncertainty. We propose
a simple heuristic for the compiled-SSP that accounts for
goal uncertainty and is calculated as follows:

hpg(x) , min
g∈G

(
(1− b(g)) min

i∈g
d(x, i)

)
where d(x, i) denotes the cost of the shortest trajectory to the
potential goal i from state x and b(g) is the agent’s belief
of g being a true goal. Multiplying by the probability of
a state not being a goal (1 − b(g)) breaks ties in favor of
configurations with a higher probability of being a goal, with
a lower heuristic value. The following proposition shows that
the proposed heuristic is admissible.

Proposition 6: hpg is an admissible heuristic.
Proof: To show that hpg is admissible, we first show

that mini∈g d(x, i) is an admissible estimate of the expected
cost of reaching a goal configuration g from state x. Let
d∗(x, g) be the expected cost of reaching g from x. Since
d(x, g) is the cost of the shortest trajectory to g from x,
d(x, g)≤ d∗(x, g). If all paths exist from x to all potential
goal states i∈g, then by definition, the shortest trajectory to
a goal configuration is the minimum distance to a potential
goal in g. That is, d(x, g) = mini∈g d(x, i) and therefore
mini∈g d(x, i) ≤ d∗(x, g). Multiplying this value by the
belief and using the minimum value over all possible goal
configurations guarantees that hpg is an admissible estimate
of the expected cost reaching a true goal configuration.

B. Determinization

Determinization is a popular approach for solving large
SSPs as it simplifies the problem by replacing the proba-
bilistic outcomes of an action with a single deterministic
outcome [17], [18]. We extend determinization to a GUSSP
by ignoring the uncertainty about the goals. The agent plans
to reach one potential goal (determinized goal) at a time, sim-
plifying the problem to a smaller SSP. During execution, if
the determinized goal is not a true goal, the agent replans for
another unvisited potential goal. This approximation scheme
offers considerable speedup over solving the compiled-SSP.

We consider two determinization approaches: (i) most-
likely goal determinization (DET-MLG) and (ii) closest-
goal determinization (DET-CG). In the DET-MLG, the most-
likely goal is determinized, based on its current belief. In
DET-CG, the agent determinizes the closest goal based on
the heuristic distance to the potential goal (with non-zero
belief) from its current state. We resolve ties randomly.



TABLE I
COMPARISONS OF AVERAGE COST AND PLANNING TIME (SECONDS) WITH BOLD TITLES INDICATING OUR TECHNIQUES.

LAO* (Optimal solver) Flares(1)-hmin Flares(1)-hpg Det-MLG Det-CG
Problem Instance Cost Time Cost Time Cost Time Cost Time Cost Time

rover (20,6) 28.25 14.99 35.35 ± 2.67 1.08 30.34 ± 2.37 0.17 36.71 ± 2.62 0.07 45.51 ± 3.22 0.06
rover (20,7) 42.16 30.19 43.49 ± 1.62 1.17 45.07 ± 1.77 0.83 49.69 ± 1.91 0.02 48.36 ± 1.43 0.03
rover (30,8) 36.96 190.92 38.21 ± 1.83 2.27 41.31 ± 1.97 0.16 38.54 ± 1.54 0.02 40.34 ± 1.82 0.03
rover (30,9) 34.72 832.56 38.21 ± 2.54 7.56 43.32 ± 2.54 1.73 50.27 ± 2.58 0.88 49.49 ± 1.97 0.45
search (20,4) 87.63 15.78 94.32 ± 0.58 1.45 93.32 ± 0.58 0.98 91.22 ± 0.67 1.05 90.42 ± 0.61 0.86
search (20,5) 74.61 14.42 83.83 ± 0.56 2.99 81.91 ± 0.56 1.93 78.32 ± 0.56 1.98 79.74 ± 6.37 0.98
search (20,5) 86.72 63.71 94.21 ± 0.79 6.21 91.18 ± 1.46 1.93 87.74 ± 0.65 0.66 89.98 ± 0.59 1.68
search (30,6) 90.89 267.35 94.21 ± 1.35 117.63 103.77 ± 3.42 21.07 101.67 ± 1.61 12.68 92.94 ± 0.68 19.50

ev (-,5) 2.34 8.16 3.29 ± 1.55 2.21 4.89 ± 1.36 0.92 5.15 ± 1.46 0.52 7.17 ± 1.43 0.62
ev (-,6) 3.46 10.79 4.89 ± 1.96 2.25 5.96 ± 1.96 1.14 7.15 ± 2.46 0.88 8.17 ± 1.43 0.79

VI. EXPERIMENTS

We begin with a comparison of different approximate
solution techniques for solving the compiled-SSP on three
domains in simulation. We then test the model on a real
robot with three different initial belief settings.

A. Evaluation in Simulation

We experiment with three domains to evaluate the solution
techniques in handling (i) location-based goal uncertainty
(planetary rover domain, search and rescue domain) and
(ii) temporal goal uncertainty (electric vehicle (EV) charg-
ing problem using real-world data). The expected cost of
reaching the goal and run time (in seconds) are used as
evaluation metrics. A uniform initial belief is considered for
all the domains in these experiments. We solve the compiled-
SSPs optimally using LAO* [19], which is an optimal solver
based on A* [20] for solving MDPs with loops, and approx-
imately using FLARES, a domain-independent state-of-the-
art algorithm for solving large SSPs using horizon=1 [21], as
well as the two determinization methods. The hmin heuristic,
computed using a labeled version of LRTA* [22], is used as
a baseline for evaluating hpg .

Planetary Rover This domain models the rover science
exploration [9], [23] that explores an environment described
by a known map to collect a mineral sample. There are n
sample locations and the samples at each of these locations
may be ‘good’ or ‘bad’, |PG| = n. The rover knows its
own position (x, y) exactly, as well as those of the samples
but does not know which samples are ‘good’. The process
terminates upon collecting a ‘good’ sample. The actions
include moving in all four directions, which succeed with a
probability of 0.8, and a sample action which is deterministic.
The sample action costs +2 if the mineral is good and +10
otherwise; all other actions cost +1.

Search and Rescue In this domain, an autonomous robot
explores an environment described by a known map to find
victims [3]. We modify the problem such that there are m
victims locations and n total victims. The agent is aware
of the potential victim locations and each location may or
may not have victims. The exact locations of the victims are
unknown to the robot a priori. The objective is to minimize
the expected cost of saving all victims. The state factors
include the robot’s current location and a counter to indicate

the number of victims saved so far. The observations indicate
the presence of victims in each state. The actions include
moving in all four directions and a SAVE action that saves
all the victims in a state. The move actions cost +1 and are
stochastic, succeeding with 0.8 probability. The SAVE action
is deterministic and costs +2. Any obstacle the robot may
encounter is accounted for in the transition function.

Electric Vehicle Charging We experimented with the elec-
tric vehicle (EV) charging domain, operating in a vehicle-
to-grid setting [18], [24], where the EV can charge and
discharge energy from a smart grid. The objective is to
devise a robust policy that is consistent with the owner’s
preferences, while minimizing the operational cost of the
vehicle. We modified the problem such that parking duration
of the EV is uncertain with H denoting the horizon. The
potential goals in this problem are the possible departure
times. The EV can fully observe its current charge level and
the time step. In our experiments, |PG| = n denotes that
PG={H,H−1, ..,H−n}. Each t is equivalent to 30 minutes
in real time. If the EV’s exit charge level does not meet the
owner’s desired exit charge level, a penalty is incurred.

The battery capacity and the charge speeds for the EV are
based on Nissan Leaf configuration and the action costs and
peak hours are based on real data [25]. The charge levels and
entry time data are based on charging schedules of electric
cars over a four month duration in 2017 from a university
campus. The data is clustered based on the entry and exit
charges, and we selected 25 representative problem instances
across clusters for our experiments.

Discussion Table I shows the results of the five techniques
on various problem instances, in terms of cost and runtime(s)
respectively. The grid size and the number of potential goals
for each problem is indicated in parenthesis in the table. The
results are averaged over 100 trials and standard errors are
reported for the expected cost. The results for the EV domain
are averaged over 25 problem instances. We experiment with
no landmark states to demonstrate the performance in the
worst case setting. In terms of expected costs, the perfor-
mance of the approximate techniques are comparable. The
runtimes for solving the problems optimally, however, scales
rapidly as the number of potential goals increases. The ad-
vantage of using FLARES with hpg and the determinization
techniques are more evident in the runtime savings. FLARES



Fig. 2. Demonstration of the path taken by the robot with three different initial beliefs for the map in Figure 1. The start state and the true goal state are
denoted by S and G, respectively. The other potential goals are denoted by the question mark symbol. Green, blue, and red show the path taken by the
robot with 0.1, 0.25, and 0.9 as the initial belief for the true goal state and equal probability for other potential goal states.

using our heuristic hpg is significantly faster than using the
baseline hmin heuristic. Both the determinization techniques
are faster than solving the problem using FLARES.

B. Evaluation on a mobile robot

The robot experiment aims to visually explain how the
belief distribution alters the robot’s trajectory. Figure 2 shows
the results in a ROS simulation and on a real robot for a
simple search and rescue problem with one agent and four
potential victim locations for the map shown in Figure 1. We
test with three different initial beliefs: uniform, optimistic,
and pessimistic. The corresponding belief of the true goal,
G, in each belief setting is: 0.25, 0.9, and 0.1, with the other
potential goals having equal probability.

VII. CONCLUSION AND FUTURE WORK

The goal uncertain SSP (GUSSP) provides a natural
model for representing real-world problems where it is non-
trivial to identify the exact goals ahead of plan execution.
While a general GUSSP could be intractable, we identify
several tractable classes of GUSSPs and propose effective
approaches for solving them. Specifically, we show that a
GUSSP with a myopic observation function can be reduced
to an SSP, allowing us to efficiently solve it using existing
SSP solvers. We also propose an admissible heuristic that
accounts for goal uncertainty in its estimation and a fast
solver based on extending the notion of determinization to
handle goal uncertainty. The results show that GUSSPs can
be solved efficiently using scalable algorithms that do not
rely on POMDP solvers. In the future, we aim to explore
other conditions under which GUSSPs have a bounded set
of beliefs that supports the development of efficient solvers,
and examine the implications of goal uncertainty in multi-
agent settings [26] and other contexts.
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