
Planning and Learning for Non-Markovian Negative Side Effects
Using Finite State Controllers

Aishwarya Srivastava,1 Sandhya Saisubramanian,2 Praveen Paruchuri,1
Akshat Kumar,3 Shlomo Zilberstein4

1 IIIT Hyderabad, 2 Oregon State University, 3 Singapore Management University, 4 University of Massachusetts Amherst
aishwarya.srivastava@research.iiit.ac.in, sandhya.sai@oregonstate.edu, praveen.p@iiit.ac.in,

akshatkumar@smu.edu.sg, shlomo@cs.umass.edu

Abstract

Autonomous systems are often deployed in the open world
where it is hard to obtain complete specifications of ob-
jectives and constraints. Operating based on an incomplete
model can produce negative side effects (NSEs), which affect
the safety and reliability of the system. We focus on miti-
gating NSEs in environments modeled as Markov decision
processes (MDPs). First, we learn a model of NSEs using
observed data that contains state-action trajectories and the
severity of the associated NSEs. Unlike previous works that
associate NSEs with state-action pairs, our framework asso-
ciates NSEs with entire trajectories, which is more general
and captures non-Markovian dependence on states and ac-
tions. Second, we learn finite state controllers (FSCs) that
predict the NSE severity for a given trajectory and general-
ize well to unseen data. Finally, we develop a constrained
MDP model that uses information from both the underly-
ing MDP and the learned FSC for planning while avoiding
NSEs. Our empirical evaluation demonstrates the effective-
ness of our approach in learning and mitigating Markovian
and non-Markovian NSEs.

Introduction
As autonomous systems are increasingly deployed in open-
world environments, obtaining a perfect description of the
target environment becomes practically infeasible (Diet-
terich 2017). Model incompleteness may arise in the form
of underspecified objectives or missing constraints, due to
the limited availability of information or due to unintentional
overlooking of details, especially those considered unrelated
to the agent’s primary task during system design (Saisub-
ramanian, Zilberstein, and Kamar 2022). Operating based
on such models may produce negative side effects (NSEs)—
which are unintended, undesired consequences of agent ac-
tions that occur in addition to the intended effects, of-
ten discovered after deployment (Amodei et al. 2016; Al-
izadeh Alamdari et al. 2022; Krakovna et al. 2019; Saisub-
ramanian, Roberts, and Zilberstein 2021).

Addressing NSEs is gaining increased attention since it
affects the safety and reliability of deployed AI systems.
The NSEs may be Markovian or non-Markovian, depending
on the problem setting (Saisubramanian, Kamar, and Zilber-
stein 2022). Markovian NSEs are those associated with the

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration of a non-Markovian NSE in a driving
domain, in which the NSE is associated with the frequency
of driving fast through puddles along the route.

immediate execution of an action in a state. Non-Markovian
NSEs are associated with a sequence of actions. Many real-
world domains are characterized by non-Markovian NSEs.

For example, consider an autonomous vehicle (AV) that
aims to quickly navigate to a goal location, while complying
with the traffic rules (Figure 1). While the AV’s model may
include all the details relevant to this task, it may lack su-
perfluous details, such as the impact of driving fast through
puddles. When operating based on this model, the AV may
drive fast through puddles, producing a NSE. While the user
may be willing to tolerate this behavior occasionally, they
may not be willing to tolerate the AV frequently splashing
water on nearby pedestrians. Since the model has no infor-
mation about NSE, the AV’s state representation may not
include a feature indicating the number of times it drove fast
through puddles so far. Thus the severity of NSE occurrence
in this case depends on the agent’s trajectory and is there-
fore non-Markovian with respect to its state representation,
which is Markovian for the navigation task.

Prior works mitigate Markovian NSE through model
and policy updates (Saisubramanian, Kamar, and Zilber-
stein 2020), by constraining actions (Zhang, Durfee, and
Singh 2018, 2020), by minimizing deviations from a base-
line (Krakovna et al. 2019), by incentivizing the agent to
preserve the ability to perform future tasks in the environ-
ment (Krakovna et al. 2020), and by considering the in-
fluence of actions on other agents in the environment (Al-
izadeh Alamdari et al. 2022). In the real world, however,
NSE may be associated with a trajectory and the state repre-
sentation may not be sufficient for the NSE to be Markovian,

particularly when the features determining NSEs are unre-
lated to the agent’s primary task. It is not straightforward to
extend the existing approaches to mitigate non-Markovian
NSEs since the NSE penalty for a trajectory may not be
decomposable into additive penalties associated with each
state-action pair (Saisubramanian, Kamar, and Zilberstein
2022). In addition, it is often computationally expensive to
expand the state representation for the NSEs to be Marko-
vian, as the expanded representation may make the primary
planning task intractable.

We propose controller-assisted safe planning (CASP), a
paradigm to mitigate the impact of non-Markovian NSEs—
the state representation is assumed to be Markovian for the
agent’s primary task but the NSEs may be non-Markovian
with respect to this representation. The problem is formu-
lated as a constrained Markov decision process (CMDP),
with constraints on NSE occurrences and deviation from the
initial objective value, denoted by the slack. The slack in-
dicates the maximum allowed deviation from the optimal
expected value when the agent updates its policy to miti-
gate NSEs. Since the agent has no prior knowledge about
NSEs, it must learn a predictive model of NSEs which is
then used to avoid them. Specifically, our approach uses a
three-step method to detect and mitigate NSEs (Figure 2):
(1) the agent gathers information about the side effects of
its trajectories through oracle (typically human) feedback;
(2) the gathered information is used to learn a predictive
model of (non-Markovian) NSEs, using a finite state con-
troller (FSC) and the EM algorithm (Dempster, Laird, and
Rubin 1977); and (3) the agent replans to mitigate NSEs
using the learned model, given a tolerance threshold and a
slack, by solving a CMDP using a variant of the standard
dual linear program for MDPs (Puterman 1990) to factor the
learned FSC and NSE constraints.

FSCs have been previously used to take actions in a par-
tially observable MDP (POMDP) where the next action can
depend on the agent’s action-observation history (Hansen
1998). In our framework, a controller representation is
learned to summarize the history for NSE prediction. As
learned controller node transitions are Markovian, it is easy
to integrate them into MDP solution techniques such as the
dual LP (Puterman 1990). FSCs also provide a more explain-
able model of NSEs than black-box methods.

Empirical evaluations on two domains show that our ap-
proach efficiently learns to mitigate Markovian and non-
Markovian NSEs from a limited amount of historical data,
outperforming the previous best method (Saisubramanian,
Kamar, and Zilberstein 2020, 2022).

Problem Formulation
Consider an agent operating based on a Markov decision
process (MDP), defined by the tuple ⟨S,A,T, r, γ, b0⟩. Be-
ing in state s ∈ S and taking an action a ∈ A causes the
agent to stochastically transition to a new state s′ with prob-
ability Pr(s′|s, a) = T(s, a, s′), and receive a reward r(s, a).
We assume an infinite-horizon setting with discount factor
γ<1 and start state distribution b0(s). The agent’s policy is
represented by π(a|s) = Pr(a|s).

Figure 2: Overview of CASP framework for mitigating
NSEs using FSCs.

We assume the planning setting with known transition and
reward functions. The primary objective of the agent is to
find a policy π that maximizes V (π) = E

[∑∞
t=0 γ

trt|π
]
,

with the optimal value denoted by V ∗. We assume that the
state representation has all the necessary features required to
complete the primary task. A solution obtained by optimiz-
ing the primary task alone may result in NSEs.
Negative side effects (NSEs) We define NSEs similar
to Saisubramanian, Zilberstein, and Kamar (2022). We con-
sider episodic tasks where each complete trajectory τ =
⟨s0, a1, s1, . . . , aH , sH⟩ can be of arbitrary, but finite length,
terminating in some state sH .
Definition 1. Let Λ denote a partition of the space of all pos-
sible complete trajectories for the given MDP into mutually
exclusive sets of categories of NSEs: Λ = λ1∪λ2∪. . .∪λK .

Intuitively, each λi defines a category of NSEs. We as-
sume that one set λj represents the absence of NSE in the
corresponding trajectories. Without loss of generality, we as-
sume that a trajectory is associated with a single category of
NSEs, which is generally the most severe form of NSE that
occurs in the trajectory. When a trajectory τ ∈ λi is en-
countered during plan execution, we say that the NSE i has
been observed. We consider NSEs that are non-Markovian
as the category may depend on the entire trajectory, in con-
trast to Markovian NSEs that depend on a single state-action
pair (Saisubramanian, Kamar, and Zilberstein 2022). Non-
Markovian NSEs are significantly richer than Markovian
NSEs, and can model complex NSEs without the need to
expand the state representation.

Practically, it is infeasible to accurately define such parti-
tions. For example, in Figure 1, a λi may correspond to driv-
ing fast through puddles at least k times. There are multiple
possible ways in which this can happen; it is infeasible to list
all such trajectories. One can only observe some representa-
tive samples for different partitions, and learn to generalize
from such observed data.
Objective Our goal is to mitigate NSEs by allowing for
some loss (also called slack) in the agent’s primary objec-
tive. Let E = {λ1, . . . , λK} denote the set of all trajectory
partitions, E ∈ {1, . . . ,K} denote the corresponding NSE
category and Et denote the category at time t. The optimiza-
tion problem is noted below.

max
π

∑
s

b0(s)V
π(s) (1)

V π(s) = E
[∞∑

t=0

γtrt|s, π
]

(2)∑
s

b0(s)[V
∗(s)− V π(s)] ≤ ζ (3)

∞∑
t=0

γtPr(Et = c;π) ≤ αc ∀c = {1, . . . , |E|} (4)

ζ denotes the allowed slack on the agent’s primary objective
(V ∗), obtained by ignoring NSEs, and Eqn. (4) constrains
the expected frequency of NSE occurrence. The threshold
αc denotes the tolerance for NSE category c. The param-
eters ζ and αc are typically specified by the user, based on
their tolerance, and are used to balance the trade-off between
optimizing the primary objective and avoiding NSEs.

The above problem is challenging because the constraints
in Equation (4) are non-linear and non-convex in policy pa-
rameters π. In addition, it is impractical to enumerate all tra-
jectories τ that define an NSE category. Therefore, the agent
learns to estimate the probability of different categories of
NSEs from historical data, as described below.

Controller Design and Learning for NSE
When the agent has no prior knowledge about the side ef-
fects of its actions, it must learn a predictive model of NSEs.
Learning about NSEs We assume that the agent has ac-
cess to a dataset that contains trajectories for different NSE
categories i∈E. Let Êi denote the collection of trajectories
for NSE category i. In general, Êi⊆λi, that is, the available
data does not exhaustively list all the trajectories constitut-
ing the category i. Such data can be collected using various
forms of feedback, such as by exploring the environment,
from human feedback, or from the past deployment of the
system (Saisubramanian, Zilberstein, and Kamar 2022). For
our empirical results, we used an ϵ-greedy policy using the
optimal primary value function V ⋆ to collect this data.

Our goal is to learn a classifier f , using the available
dataset, that takes as input any trajectory τ and predicts the
category of NSE for τ . We assume no-NSE is also a cate-
gory. Note that trajectories τ can be of variable length. We
focus on using FSCs as the classifier representation for this
multi-class classification problem.
NSE representation using FSC The existing approaches
use a tabular representation for NSEs. However, this ap-
proach suffers from two key limitations: (1) it is not scalable
to large problems with Markovian NSE; and (2) it cannot
represent non-Markovian NSEs. To overcome these draw-
backs, we propose using an FSC to learn about and com-
pactly represent both Markovian and non-Markovian NSEs.

An FSC can compactly summarize information contained
in a state-action trajectory, and can be easily integrated into
solution methods for MDPs by defining a joint-state space
over the environment states and FSC nodes, also called the
cross-product MDP (Meuleau et al. 1999a). This decoupled
representation eliminates the need for updating the MDP to
represent NSEs, which may require extensive testing to en-
sure no new risks are introduced. Furthermore, FSCs provide
an explainable form for learning NSEs, and empirically, a
small dataset was sufficient to learn their structure.

Let [L] denote the set {1, . . . , L} for any positive integer
L. We assume there are K NSE categories, |E| = K.
Definition 2. An NSE controller for a given MDP is denoted
by C = ⟨Σ, E, U, us, u⊥, δ, ω⟩:

!! !!"#

"!

E!"#

!: #×%×# → 2!

(:)×2! →)

*:)×2!×) → E

FSC node

Output
symbol

Observation

$!"#

%!"#%!

Figure 3: 2-Slice dynamic Bayesian net representing the FSC clas-
sifier structure. The state-action trajectory (bottom row, red color)
is observed; ut, ut+1 denote the controller nodes at time t, t + 1;
σt+1 is the high level observation received, Et+1 is the output
symbol representing the observed NSE category for the input state-
action trajectory. The ω and δ are the key parameters to learn.

• Σ is a finite set of propositions representing high level
features of the problem;

• E = [K] ∪ ρ is a finite set of output symbols that denote
various NSE categories, with an empty output symbol at
intermediate nodes to handle non-Markovian NSE;

• U is a finite set of nodes, with us as the initial node and
u⊥ as the terminal node;

• δ : U × 2Σ → ∆U is the transition function, denoting
the probability of transitioning between the nodes after
receiving an observation σ ∈ 2Σ, with ∆U denoting the
distribution over successor controller nodes; and

• ω : U×2Σ×U → ∆E is a function denoting probability
of a NSE category, given the nodes and input symbol.

Figure 3 shows the relation between different variables.
The propositions, Σ, represent the high-level features of a
state-action pair. The high-level observation σ correspond-
ing to an experience (s, a, s′) is determined via a labeling
function L : S×A× S→2Σ. The labeling function assigns
truth values to propositions Σ, given (s, a, s′).

Intuitively, the observation σ is a high level view of the
low-level environment states and actions, and are important
for the generalizability of the learned controller. Such label-
ing functions have been used previously for learning con-
trollers for POMDPs (Rodrigo et al. 2019). Similar to their
work, we assume that a labeling function is provided as part
of the problem definition.

Predicting the NSE associated with an agent trajectory,
using an FSC, involves three steps: (1) each (s, a, s′) in the
trajectory is mapped to an observation σ using the labelling
function L; (2) the controller transitions from the current
node to a successor node upon receiving σ; and (3) the con-
troller node outputs a symbol that indicates the NSE cat-
egory associated with the trajectory. For Markovian NSE,
each node in the controller may be able to predict the NSE
category associated with each (s, a, s′) experience. For non-
Markovian NSEs, all the states and actions in the trajec-
tory need to be accounted for, before determining the NSE.
Therefore, all intermediate nodes output ρ deterministically,
and the terminal node u⊥, corresponding to the end of the
trajectory, will determine the NSE category.

!! !"#$!%

E"

#! #"#$ #"

Figure 4: Markov chain representing the controller based classifi-
cation of a trajectory.

Example We briefly describe the NSE prediction using FSC
for the AV domain in Figure 1. Let controller nodes track
the number of times the AV navigated through a puddle
w/ and w/o pedestrians nearby, along with the speed and
whether the goal state has been reached. The proposition
set is Σ = {puddles pedestrians, puddles no pedestrians,
high speed, goal reached}. Let us first consider a Markovian
setting where mild NSE occurs when driving fast through a
puddle w/o nearby pedestrians, and severe NSE occurs when
driving fast through a puddle w/ pedestrians nearby. When
the AV follows the red trajectory and drives fast through the
first puddle, the corresponding label is σ = (T, F, T,¬g),
where T and F denote whether the proposition is true or
false in the current state-action pair, which the controller
uses to track the number of times the AV drove fast through
puddles. The σ causes a controller transition from u0 to
δ(u0, σ). The output symbol ω(u0, σ, δ(u0, σ)) is severe
NSE. Let us now consider a non-Markovian version where
navigating fast through puddles w/o nearby pedestrians for
> 25% of its trajectory length results in a mild NSE, and
driving fast through puddles with pedestrians nearby results
in severe NSE. Given σ= (T, F, T,¬g), the output symbol
ω(u0, σ, δ(u0, σ)) = ρ, as it is not the end of the trajectory.
However, at the end of the red trajectory, σ = (F, F, T, g),
δ(u, σ)=u⊥, and the output ω(u, σ, u⊥) is severe NSE.

Since NSEs are often discovered after deployment, it
is impossible to define the associated FSC during design.
Therefore, the agent must gather information about NSE to
learn the FSC.

Training data Let Êc denote the set of state-action trajecto-
ries of NSE category c. The training data for the classifier is
of the form {(x, y)} where x is the input to the classifier, and
y is the true label. In our case, it is {(τ, ⟨u⊥, c⟩) ∀τ ∈ Êc},
where the trajectory τ is the input and ⟨u⊥, c⟩ is the true
label indicating that control must terminate in terminal node
u⊥ and the output symbol in terminal node is c, denoting the
NSE category associated with Êc. Such training data can be
generated for all Êc.

Learning controller parameters Given a training data
point (τ, ⟨u⊥, c⟩), the trajectory τ is converted into a se-
quence of high level observations σ0:T using the labeling
function L. The Markov chain connecting observed and hid-
den variables for the FSC is shown in Figure 4. Observed
values are represented using square nodes, hidden variables
using ellipses. Assume τ is a T -step trajectory. In our set-
ting, the node at the last time step T must be terminal node
u⊥, and output symbol ET = c. Using the principle of max-

imum likelihood estimation (MLE), our goal is (to avoid no-
tation clutter, we formulate for a single training data point):

max
δ,ω

p(σ0:T , us, u⊥, ET | δ, ω). (5)

As u0:T−1 are hidden variables, we can treat (5) as an MLE
problem with missing data, and use the well-known EM
algorithms to estimate parameters δ, ω (Dempster, Laird,
and Rubin 1977). The EM algorithm has a particularly well
suited structure for exponential family distributions (Bishop
2006) with the MLE often solvable analytically. An expo-
nential family is a set of probability distributions with prob-
ability density function of the form:

log p(x, y | θ) = D(θ) · T (x, y)− C(θ) +B(x, y),

where T (x, y) is the sufficient statistic of the data (x, y).
Assume that variables x are hidden, and y are observed

(i.e., the missing data setting). Let the expected sufficient
statistic be given as T (x, y) = Ep(x|y;θ)

[
T (x, y)

]
, where

θ is the current parameter estimate. The EM algorithm pro-
vides the next improved estimate θ⋆ by solving the problem:

θ⋆ = argmax
θ′∈Ω

[
D(θ′) · T (x, y)− C(θ′)

]
. (6)

Next, we show that the joint-distribution for the model in
figure (4) belongs to the exponential family and characterize
its sufficient statistic to formulate the equivalent optimiza-
tion problem as (6). For our case, θ = (δ, ω). Let M denote
the total nodes in our FSC, including terminal and start node.
Let indices m,n ∈ [M] be used to index over FSC nodes.
Using an overcomplete representation, we define:
• ut as M -dimensional one hot vector, with um

t = 1
means controller node is m at time t.

• Let i ∈ [2|Σ|] index over all observations. Let σt be a
2|Σ|-dimensional one hot vector; σi

t = 1 indicates obser-
vation i is true at time t.

• Let c ∈ [|E|] index over output symbols. Let ET be |E|-
dimensional one hot vector defined analogously to σt.

FSC parameters The parameters to learn are δ, ω;
δ(n|m, i) denote the probability of transitioning to node n
given current node is m, and observation received is i. For
non-Markovian NSE, the output symbol is only received
when the current node is u⊥. Let ω(c|m, i, u⊥) denote the
probability of receiving output symbol c given last node was
m, current observation is i and current node is u⊥. We use
shorthand ω(c|m, i) by omitting u⊥.
Theorem 1. Let u = (us, u0:T−1, u⊥), σ = σ0:T . The com-
plete data distribution p(u,σ, ET ; δ, ω) for model in Fig-
ure 4 belongs to the exponential family, specified using:

• D(δ, ω)← log[δ(n|m, i)], log[ω(c|m, i)] ∀n,m, i, c
• Sufficient statistic vector is:

T (u,σ, ET)← [um
0 σi

0] ∀m, i; , [um
T−1σ

i
T] ∀m, i;[T−2∑

t=0

um
t un

t+1σ
i
t+1

]
∀m,n, i; [Ec

Tu
m
T−1σ

i
T] ∀c,m, i

• B(u,σ, ET)←
∑T

t=0 log p(σt); C(δ, ω)← 0

max
δ,ω

∑
m,i

E
[
um
0 σi

0

]
log[δ(m|us, i)] +

∑
m,n,i

E
[T−2∑

t=0

um
t un

t+1σ
i
t+1

]
×

log[δ(n|m, i)] +
∑
m,i

E
[
um
T−1σ

i
T

]
log[δ(u⊥|m, i)]

+
∑
c,m,i

E
[
Ec

Tu
m
T−1σ

i
T

]
log[ω(c|m, i)] (7)∑

n∈[M]

δ(n|m, i) = 1 ∀m ∈ [M], i ∈ [2|Σ|] (8)∑
c∈[|E|]

ω(c|m, i, u⊥) = 1 ∀m ∈ [M], i ∈ [2|Σ|] (9)

δ(u⊥|u⊥, i) = 1 ∀i ∈ [2|Σ|] (10)

δ(us|m, i) = 0 ∀m ∈ [M], ∀i ∈ [2|Σ|] (11)

ω(ρ|u⊥, i, u⊥) = 1 ∀i ∈ [2|Σ|] (12)

Table 1: Optimization problem for controller parameter learning

Using the above terms, the equivalent optimization prob-
lem to (6) for FSC learning is given in table 1. To avoid clut-
ter, we show terms only for a single training data point; fi-
nal optimization problem involves summation of analogous
terms for all the training data points.

The constraints (8) and (9) are standard probability nor-
malization constraints. Constraint (10) ensures that u⊥ is
an absorbing node without any outgoing transitions. Con-
straint (11) ensures that there is no incoming transition to the
starting node us. Constraint (12), along with constraint (10),
ensure that we only receive a valid output symbol c ̸= ρ
when the control reaches the terminal node u⊥ for the first
time; when the last node is u⊥ and the current node is also
u⊥, we receive a null output symbol (ρ). We also note that
although total observations are 2|Σ|, often many observa-
tions are infeasible in a domain. Therefore, the complexity
of above program is often much lower than exponential in
the number of propositions.

We show in the supplement how to compute the expected
sufficient statistics using a forward-backward algorithm,
similar to the well known Baum-Welch algorithm (Bishop
2006) adapted to our setting, and use the KKT condi-
tions (Bertsekas 1999) to analytically solve the problem in
table 1 to obtain improved estimates of δ, ω parameters.

NSE Mitigation Using Dual LP for MDPs

We now show how the learned FSC can be integrated into the
dual LP formulation (Altman 2021). The optimization for-
mulation we develop approximates the problem (Eqn. (1))
as the learned FSC may not be fully accurate. We first define
the cross-product MDP over the joint space U×S (Meuleau
et al. 1999b). We also develop additional constraints to take
into account NSE limits in (4). The transition function over
the cross product MDP’s state space is:

P (u′, s′|u, s, a) = T(s, a, s′)δ(u′|u, σ = L(s, a, s′)),
(13)

where L(·) is the labeling function. The reward function is
unaffected by the controller state and remains the same as

max
{y(·)}

∑
u,s,a

r(s, a)y(u, s, a) (15)

//Dual LP flow constraints∑
a

y(u′, s′, a)=b0(u
′, s′)+γ

∑
u,s,a

P (u′, s′|u, s, a)y(u, s, a)∀(u′, s′)

(16)
y(u, s, a) ≥ 0 ∀(u, s, a) (17)

//NSE frequency computation

y(c) =
∑
u,s,a

y(u, s, a)
∑
s′

P (u′ = u⊥, s
′|u, s, a)×

ω(c|u, u⊥, σ = L(s, a, s′)) ∀c ∈ E (18)

//NSE satisfaction constraints

y(c) ≤ αc ∀c ∈ E (19)

//Primary objective slack∑
s

b0(s)V
∗(s)−

∑
u,s,a

r(s, a)y(u, s, a) ≤ ζ (20)

Table 2: Dual Linear Program for Safe Policy Optimization

r(s, a). The probability of NSE Et = c is:

P (Et = c|ut−1, ut = u⊥, st−1, at−1, st) =

ω
(
c|ut−1, u⊥, σt = L(st−1, at−1, st)

)
. (14)

The dual LP for the cross-product MDP incorporating
NSE constraints is given in Table 2. The structure and in-
terpretation of this dual LP is similar to the standard dual
LP for MDPs (Puterman 1990), with the occupancy mea-
sures defined over the cross-product state space U × S.
The occupancy measures y(u, s, a) denote the total expected
number of times the controller state is u, world state is s,
and action taken is a (represented by ‘dual LP flow con-
straints’). b0(u, s) denotes the probability of starting in con-
troller state u and world state s. We assume the agent ob-
servers the joint state (u, s). The policy π can be extracted
from the optimal solution y⋆ as follows: π⋆(a|u, s) =
y⋆(u, s, a)/

∑
a′ y

⋆(u, s, a′). Constraints (18)-(20) are the ma-
jor differences from the standard dual LP. Constraints (18)
compute the probability of different NSEs c ∈ E as per our
learned controller. Following results show the correctness of
constraints (18), (19).
Definition 3. Let y(c;π) be the total expected number of
times NSE c is encountered as per policy π:

y(c;π) =

∞∑
t=0

γtP (Et+1 = c;π) (21)

In the above, we assume that it takes at least one time step
to emit an output symbol, as it takes at least one step to reach
the terminal node u⊥ from the start node us.
Proposition 1. The occupancy measure y(c;π) for an NSE
c ∈ E as per the policy π can be computed as:

y(c;π) =
∑
u,s,a

y(u, s, a;π)
∑
s′

P (u′ = u⊥, s
′|u, s, a)×

ω(c|u, u⊥, σ = L(s, a, s′)) (22)

Proof is in Appendix. As a result of this proposition, con-
straint (18), (19) model the constraints (4) in our original
problem, and constraint (20) models the constraint (3). Thus
program in Table 2 approximately solves the problem (1)
(up to the accuracy afforded by the learned controller). Em-
pirically, we run multiple simulations to accurately estimate
y⋆(c) to test if the final policy avoids NSEs.

Empirical Evaluation
We evaluate the effectiveness of our approach, controller-
assisted safe planning (CASP), in learning to predict and
mitigate Markovian and non-Markovian NSEs. We assume
Markov state representation for the primary objective. In the
interest of clarity, we test with three NSE categories: mild
NSE, severe NSE, and no NSE. Each action/trajectory can
result in a mild, severe, or no NSE.
Baselines We compare the performance of our approach
with three baselines: (1) executing the Initial policy that
optimizes the primary objective, with no NSE learning in-
volved; (2) a multi-objective approach to mitigate NSEs
(LMDP) (Saisubramanian, Kamar, and Zilberstein 2020)
with a perfect model of NSE (LMDP Optimal); and (3)
LMDP with a predictive model of NSE learned using ap-
proval feedback (LMDP Learned). Since the LMDP can
handle only Markov NSEs, we calculate the non-Markovian
NSEs encountered by simulating the policy for comparison.

In our experiments, we optimize costs, which are nega-
tions of the reward. We solve the planning problem us-
ing Advanced Process Optimizer (APOPT) solver,
with the controller learned using EM algorithm and γ =
0.99. All experiments were conducted on an Ubuntu ma-
chine with 80GB RAM. Following the planning, we com-
pute average NSE values by performing 10K simulations
(e.g., average NSE = 0.5 implies 50% of 10K simulations
encountered NSE).
Boxpushing In this domain, the agent aims to push a box
as quickly as possible to a goal location (Saisubramanian,
Kamar, and Zilberstein 2020). The state is represented by
⟨x, y, bx, by, b, c⟩, with x, y denoting the agent’s position,
bx, by denoting the box position, b is a Boolean variable in-
dicating whether the agent is pushing the box, c indicates
the type of surface: rug or plain. The agent can move in all
four directions, each costing +1. The agent can also load
the box with ‘pick up box’ action that costs +2, and wrap
the box with a protective sheet using ‘wrap box’ action that
costs +5. ‘Pick up’ and ‘wrap box’ actions are determin-
istic. The ‘move’ actions succeed with probability 0.9 and
slide to a neighboring cell with probability 0.1. Markovian
NSE occurs when the agent pushes the box over the rug. In
Non-Markovian NSE, the effects are mild when 1−25% rug
area is dirtied, and severe if > 25% is dirtied when the agent
completes its task. We experiment with grid size 15× 15.
Navigation Our second domain is the AV navigation de-
scribed in Figure 1, where the AV aims to navigate quickly
to a goal location (Saisubramanian, Kamar, and Zilber-
stein 2020). The AV can move in all four directions and
navigate at two speeds: slow and fast. Driving slow costs
+2, driving fast costs +1. Each state is represented by

Domain #Nodes F-1 scores Accuracy
No NSE Mild Severe (%)

Boxpushing
(15× 15)

4 0.65 0.48 0.45 67.00
5 0.67 0.49 0.52 68.00
6 0.68 0.52 0.54 69.00
7 0.80 0.75 0.76 86.00
8 0.86 0.84 0.83 91.40
9 0.89 0.89 0.89 91.30

Navigation
(15× 15)

4 0.51 0.51 0.67 67.03
5 0.47 0.48 0.65 66.69
6 0.52 0.67 0.70 74.32
7 0.85 0.85 0.87 89.28
8 0.90 0.90 0.91 92.78
9 0.87 0.86 0.88 91.70

Table 3: F-1 scores for each NSE category and overall accu-
racy with varying controller sizes (# nodes) on two domains.

⟨x, y, speed, pedestrian, puddle⟩. Pedestrian and puddle are
Boolean variables. The AV’s move actions succeed with
probability 0.9 or fail with probability 0.1 and slide to
a neighboring cell. The agent can transition between any
speed deterministically. Markovian NSE occurs when driv-
ing fast through puddles. Non-Markovian NSE: mild NSE
occurs when the AV drives fast through puddles, without
pedestrians in the vicinity, for > 25% of its route. Driving
fast through puddles with pedestrians nearby results in se-
vere NSE. We experiment with grid size 15× 15.

Results and Discussion
Learning FSC We evaluate the effectiveness of our ap-
proach in learning a FSC to predict NSEs using F-1 scores
for each NSE category and overall prediction accuracy, as
we vary the controller size (Table 3). We use 75 trajectories
for training and 305 for testing in the boxpushing domain,
and 300 for training and 1155 for testing the navigation do-
main. We use more trajectories for navigation domain, since
the trajectories are relatively longer and the NSE condition
is more complex. While the accuracy may improve as we
increase the controller size, it also increases the training
time (Fig. 6 in Appendix). Hence, we choose the smallest
size that achieves comparable performance across NSE cat-
egories and ∼ 90% accuracy. Based on these results, we use
a controller size of eight nodes for the boxpushing domain
and seven nodes for the navigation domain.
Effectiveness in slack utilization Consider two simple
boxpushing instances (4× 1 and 4× 2), where the shaded
area denotes the rug, B denotes box location, S and G de-
notes start and goal respectively (Figure 5). We evaluate with
Markovian NSE, slack ζ = 5, and NSE threshold α = 0.
The Initial policy always produces NSE. To avoid the NSE,
the agent can wrap the box, incurring an additional cost +5,
which matches the allowed slack. While our approach with a
learned FSC avoids NSE by wrapping the box, LMDP is un-
able to avoid NSE even with a perfect NSE model (LMDP
Optimal). This is because of the fundamental difference in
how the slack is distributed in the two approaches. The agent
can only execute actions that are within the allowed slack
in each state. Our approach allows the slack to be used in
whole in any state, so the agent can use the wrap action to
avoid the NSE. However, LMDP distributes the global slack
to each state using η=(1−γ)ζ, where η is the slack for each

(a) Instance (4× 1) (b) Instance (4×2)

(c) Average Markovian NSE with standard deviation.

Figure 5: Simple boxpushing instances, with ζ = 5, that demon-
strates the limitation of LMDP approach in mitigating Markovian
NSE, due to its slack distribution method; CASP has zero NSE

Domain Approach Slack Average NSE

Boxpushing

Initial Policy - 0.9700± 0.1626

LMDP Learned
15% 0.9729± 0.1623
20% 0.9720± 0.1649
25% 0.9708± 0.1683

LMDP Optimal
15% 0.9735± 0.1606
20% 0.9715± 0.1663
25% 0.9688± 0.1738

CASP (#Nodes: 4)
15% −
20% 0
25% 0

Navigation

Initial Policy - 1.00± 0

LMDP Learned
15% 1.0000± 0
20% 1.0000± 0
25% 1.0000± 0

LMDP Optimal
15% 1.0000± 0
20% 1.0000± 0
25% 1.0000± 0

CASP (#Nodes: 4)
15% 0.0005± 0.0223
20% 0.0005± 0.0223
25% 0.0005± 0.0223

Table 4: Effect of varying slack on Markovian NSE, when
NSE threshold α=0.

state, which can lead to harsh pruning of the policy space
and result in poor performance (Pineda, Wray, and Zilber-
stein 2015). In our setting, the agent is unable to avoid NSE
as the wrap action violates the slack allotted to any one state.
This slack distribution method is a fundamental limitation in
LMDP that affects its performance. This experiment demon-
strates effective slack utilization by our approach to mitigate
NSEs, when feasible.

Mitigating Markovian NSE All Markovian NSEs are as-
sumed to have same severity. Results in Figure 5 and Table 4
show average Markovian NSE, along with standard devia-
tion, for α = 0 when slack is varied as % of primary ob-
jective value. Since Markovian NSEs are relatively easier to
predict, they can be avoided with a smaller controller size.

Mitigating non-Markovian NSE Tables 5 and 6 show the
results on non-Markovian NSEs for both the domains, with
NSE threshold α = 0 for both mild and severe NSE, and

Approach Slack Average NSE
Mild Severe

Initial Policy - 0.02± 0.16 0.95± 0.23

LMDP Learned
15% 0.02± 0.16 0.95± 0.23
20% 0.03± 0.16 0.95± 0.23
25% 0.03± 0.16 0.94± 0.23

LMDP Optimal
15% 0.95± 0.22 0.02± 0.16
20% 0.03± 0.16 0.95± 0.22
25% 0.03± 0.16 0.95± 0.23

CASP (#Nodes: 8)
15% - -
20% 0 0
25% 0 0

Table 5: Effect of varying slack on non-Markovian NSE in
boxpushing domain with α=0 for mild and severe NSE.

Approach Slack Average NSE
Mild Severe

Initial Policy - 0 1

LMDP Learned
15% 0 0.99± 0.017
20% 0 0.99± 0.014
25% 0 0.94± 0.241

LMDP Optimal
15% 0 0.99± 0.009
20% 0 0.99± 0.009
25% 0 0.99± 0.014

CASP (#Nodes: 7)
15% 0 0
20% 0 0
25% 0 0

Table 6: Effect of varying slack on non-Markovian NSE in
navigation domain with α=0 for mild and severe NSE.

varying slack. Controller sizes were selected based on Ta-
ble 3. For the boxpushing domain, CASP approach did not
find a solution with 15% slack but could avoid NSE when the
slack increased. LMDP was unable to avoid the NSE, despite
increasing the slack. This shows that besides its limitation in
effectively using the slack, LMDP is unable to mitigate non-
Markovian NSEs. We also test the effect of varying NSE
thresholds and controller sizes on the performance (Fig. 7
in Appendix). Results with seven nodes for navigation and
eight nodes for the boxpushing domain avoid all NSEs, for
the three (mild, severe) threshold configurations we tested.

Summary and Future Work
We present CASP, a paradigm to learn and mitigate
Markovian and and non-Markovian NSEs, with bounded-
performance guarantees with respect to the primary ob-
jective value and NSE occurrence. We use a finite state
controller to learn about, compactly represent, and pre-
dict NSEs, using EM algorithm. The problem of mitigat-
ing NSEs is formulated as a constrained MDP, and an
NSE-minimizing policy is computed by integrating the FSC
with our planning model. Our results with varying slack,
controller sizes, NSE thresholds on Markovian and non-
Markovian NSEs demonstrate the benefits of our approach.
In the future, we aim to extend our technique to partially
observable settings and to handle noise in the training data.
Extending our approach to handle continuous state space is
another interesting direction for future research.

Acknowledgments
This research/project is supported by the National Research
Foundation, Singapore and DSO National Laboratories un-
der the AI Singapore Programme (AISG Award No: AISG2-
RP-2020-017), US National Science Foundation USDA-
NIFA grant number 2021-67021-35344, and Kohli Center
on Intelligent Systems, IIIT Hyderabad.

References
Alizadeh Alamdari, P.; Klassen, T. Q.; Toro Icarte, R.; and
McIlraith, S. A. 2022. Be Considerate: Avoiding Negative
Side Effects in Reinforcement Learning. In Proceedings
of the 21st International Conference on Autonomous Agents
and Multiagent Systems, 18–26.
Altman, E. 2021. Constrained Markov Decision Processes.
ISBN 9781351458245.
Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schul-
man, J.; and Mané, D. 2016. Concrete problems in AI safety.
CoRR, abs/1606.06565.
Bertsekas, D. 1999. Nonlinear Programming. Athena Sci-
entific.
Bishop, C. M. 2006. Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer-
Verlag. ISBN 0387310738.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Max-
imum Likelihood from Incomplete Data via the EM Algo-
rithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1): 1–38.
Dietterich, T. G. 2017. Steps toward robust artificial intelli-
gence. AI Magazine, 38(3): 3–24.
Hansen, E. A. 1998. Solving POMDPs by Searching in Pol-
icy Space. In International Conference on Uncertainty in
Artificial Intelligence, 211–219.
Krakovna, V.; Orseau, L.; Martic, M.; and Legg, S. 2019.
Penalizing Side Effects using Stepwise Relative Reachabil-
ity. In AI Safety Workshop, IJCAI.
Krakovna, V.; Orseau, L.; Ngo, R.; Martic, M.; and Legg, S.
2020. Avoiding Side Effects By Considering Future Tasks.
In Advances in Neural Information Processing Systems.
Meuleau, N.; Kim, K.; Kaelbling, L. P.; and Cassandra, A. R.
1999a. Solving POMDPs by Searching the Space of Finite
Policies. In Laskey, K. B.; and Prade, H., eds., International
Conference on Uncertainty Artificial Intelligence, 417–426.
Meuleau, N.; Peshkin, L.; Kim, K.-E.; and Kaelbling, L. P.
1999b. Learning Finite-State Controllers for Partially Ob-
servable Environments. In International Conference on Un-
certainty in Artificial Intelligence, 427–436.
Pineda, L. E.; Wray, K. H.; and Zilberstein, S. 2015. Re-
visiting Multi-Objective MDPs with Relaxed Lexicographic
Preferences. In Proceedings of the AAAI Fall Symposium
Series.
Puterman, M. L. 1990. Markov Decision Processes. Hand-
books in operations research and management science, 2:
331–434.

Rodrigo, T. I.; Waldie, E.; Klassen, T.; Valenzano, R.; Cas-
tro, M.; and McIlraith, S. 2019. Learning reward machines
for partially observable reinforcement learning. In Advances
in Neural Information Processing Systems.
Saisubramanian, S.; Kamar, E.; and Zilberstein, S. 2020.
A Multi-Objective Approach to Mitigate Negative Side Ef-
fects. In Proceedings of the 29th International Joint Confer-
ence on Artificial Intelligence, 354–361.
Saisubramanian, S.; Kamar, E.; and Zilberstein, S. 2022.
Avoiding Negative Side Effects of Autonomous Systems in
the Open World. Journal of Artificial Intelligence Research,
74: 143–177.
Saisubramanian, S.; Roberts, S. C.; and Zilberstein, S. 2021.
Understanding User Attitudes Towards Negative Side Ef-
fects of AI Systems. In Extended Abstracts of the CHI Con-
ference on Human Factors in Computing Systems, 368:1–
368:6.
Saisubramanian, S.; Zilberstein, S.; and Kamar, E. 2022.
Avoiding negative side effects due to incomplete knowledge
of AI systems. AI Magazine, 42(4): 62–71.
Zhang, S.; Durfee, E. H.; and Singh, S. 2020. Querying
to Find a Safe Policy Under Uncertain Safety Constraints
in Markov Decision Processes. In Proceedings of the 34th
AAAI Conference on Artificial Intelligence, 2552–2559.
Zhang, S.; Durfee, E. H.; and Singh, S. P. 2018. Minimax-
Regret on Side Effects for Safe Optimality in Factored
Markov Decision Processes. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence,
4867–4873.

