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Abstract
In realtime planning domains, such as service robot control,
an agent receives a task and must minimize the combined
cost of planning and plan execution necessary to complete
the task. To reduce the total cost, we examine the feasibil-
ity of performing planning continuously, while parts of the
intermediate plan are being executed. The main challenges
are to guarantee the completeness of the approach and make
sure that planning does concentrate on regions of the state
space that are most crucial given the state of execution. Sur-
prisingly, simple modifications of existing stochastic planners
yield an efficient approach for concurrent planning and plan
execution. We formalize this approach and analyze its char-
acteristics. Experimental results show that such a continuous
planning paradigm offers significant benefits, most notably a
significant cost reduction relative to existing realtime plan-
ning and execution strategies.

1 Introduction
We address realtime stochastic planning scenarios in which
an agent receives a goal and must minimize the combined
cost of planning and plan execution (Horvitz 1987; Dean
and Boddy 1988; Zilberstein and Russell 1993). The cost
can be simply the total time needed to reach the goal—be
it used to search for a plan or for plan execution—or it can
be measured using a time-dependent utility function (Boddy
and Dean 1989). Examples of such scenarios include service
mobile robots (Boddy and Dean 1994; Koenig et al. 1996),
real-time fault diagnosis (Rish et al. 2002), and real-time
planning for satellite systems (Kortenkamp et al. 2011).

Figure 1 illustrates four possible strategies for realtime
scenarios, with black and red line segments representing, re-
spectively, the planning and plan execution durations. The
first three cases represent existing paradigms in which the
agent alternates between planning and executions, never per-
forming both concurrently. In method (a), first the agent
computes the optimal plan and then executes it. While ex-
ecution time is minimized, the combined time is substan-
tial. In method (b), first the agent computes a complete but
non-optimal plan and then it executes that plan. While plan
execution takes more time, the combined cost is reduced.
Research aimed at minimizing the combined cost of plan-
ning and execution—including any required meta-reasoning
time—was proposed by Dean and Boddy (1988) and Horvitz
and Breese (1990) among others.

In method (c), the agent performs a limited amount of
search that results in an incomplete plan and then it exe-
cutes that plan until additional planning is needed, repeat-
ing this cycle until the task is completed. This approach
has been used in determinization-based planners such as FF-
Replan (Yoon et al. 2007) and in various other online plan-
ning methods and autonomous robot architectures (Nour-
bakhsh 1997). The combined cost in this case can be lower
or higher compared to the previous methods depending on
the application domain and online planning technique.

The fundamental question addressed in this paper is
whether it is feasible to perform planning continuously dur-
ing plan execution so that the plan is constantly improving
in both value and domain coverage, and neither planning nor
execution delay the other process. This approach, illustrated
by method (d), requires planning and plan execution to share
access to the current partial plan with proper synchroniza-
tion mechanisms to guarantee the correctness and integrity
of each process. The potential benefit of such a continuous
planning paradigm is that it can fully exploit execution time
for planning, reducing the overall cost of the solution.

There have been significant efforts to develop continuous
planning or continual planning systems in which plan gener-
ation and plan execution are interleaved (Brenner and Nebel
2009; desJardins et al. 1999; Myers 1999). Existing con-
tinual planning architectures often include sequential plan-
ning and execution stages, sometimes due to lack of domain
knowledge. That is, they generate an approximate plan and
execute it without making any further changes to the plan
until a problem is detected during execution. At that point,
execution is stopped and the plan is modified to account for
previously unforeseen conditions; the new plan is then ex-
ecuted and the process repeats until a goal is reached. Our
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Figure 1: Four strategies for interleaving periods of planning
(shown in black) and period of execution (shown in red).
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Figure 2: Data flow between planning and execution threads.

goal is to better exploit the fact that executing actions in the
real-world can take a significant amount of time that can be
used for planning, potentially reducing idle time during re-
planning and the overall cost.

Some continual planning efforts do allow planning to be
performed during plan execution, most notably the AMPLE
system (Chanel et al. 2014). However, our approach is eas-
ier to implement and, unlike previous works, is provably
complete. Our approach effectively minimizes the combined
execution and added planning time and it can achieve near
optimal results with respect to that objective.

We assume that the domain is modeled as a Markov deci-
sion process (MDP), specified compactly using PPDDL en-
coding of action schemas (Younes and Littman 2004). We
examine ways to perform planning and execution concur-
rently in an uninterrupted fashion. Our objective is to de-
velop a paradigm that is amenable to an analytical evaluation
and could provide performance guarantees.

Figure 2 shows the interaction between two threads that
perform planning and execution concurrently. The planning
thread maintains a data structure that represents the best par-
tial solution, given the current planning problem. The exe-
cution thread selects actions based on that plan, observes the
outcome and possibly updates the planning problem to ac-
count for the current state of execution. Implementing such
a system in which planning and execution progress simulta-
neously presents several fundamental questions. What hap-
pens to the current best partial solution when the planning
problem is updated? Is it possible to guarantee the complete-
ness of the approach? How can computation be focused on
the states that are most relevant to the actual execution path?
What sorts of synchronization mechanisms are necessary?
In this paper we answer these questions and present an ap-
proach that leverages effectively the time spent on action ex-
ecution for planning. The approach is designed for stochas-
tic shortest path problems and it exploits prior knowledge of
the time it takes to execute any action in the domain.

The rest of the paper is structured as follows. In Section 2
we formulate the problem. In Section 3 we introduce our
concurrent planning approach, followed by an analysis of its
theoretical properties in Section 4. In Section 5 we present
experimental results on three complex stochastic domains
and compare our approach with other continual planning ap-
proaches. Finally, in Section 6 we summarize the contribu-
tions and discuss future work.

2 Problem Formulation
We consider problems in which an agent is assigned a task
and the objective is to minimize the total time spent comput-
ing and executing a plan to complete it. The task itself can be
modeled as a special type of MDP called stochastic shortest-
path problem (SSPP), which is a tuple 〈S,A, T , C, s0,G〉,
where S is a finite set of states; A is a finite set of actions;
T (s′|s, a) is a stationary transition function specifying the
probability of outcome state s′ when action a is executed in
state s; C(s, a) is the positive cost of executing action a in
state s; s0 ∈ S is a given start state; and G ⊂ S is a set of
absorbing goal states.

Starting in state s0, the objective is to reach one of the goal
states while minimizing the expected cumulative cost. We
assume that the domain does not include dead ends—states
from which a goal cannot be reached; under this assumption,
there is always a proper policy that eventually reaches a goal
with probability 1, so there is no need to use discounting.

When the cost of planning is discarded, an optimal solu-
tion to a SSPP can be represented as a policy π∗ that maps
each (reachable) state to an action: π∗ : S → A. The Bell-
man equation defines a value function over states, V ∗(s),
from which an optimal policy π∗ can be extracted:

V ∗(s) = min
a

[C(s, a) +
∑
s′∈S
T (s′|s, a)V ∗(s′)] (1)

Computing optimal solutions to SSPPs is intractable.
While SSPPs can be solved in time polynomial in the size
of the state space, the state space itself is exponential in the
size of the problem description (we use compact representa-
tions such as PPDDL to represent the SSPP).

We use Π to denote a planning strategy that continuously
improves the partial plan and works concurrently with ex-
ecution. Since the planner produces a sequence of partial
plans that are influenced by the progress being made towards
the goal, it is not meaningful in this case to talk about the
value of a specific intermediate partial plan. Instead, we pro-
pose the following framework to define the comprehensive
utility of Π.

Each planning strategy Π induces a distribution of
runtime execution trajectories, where each trajec-
tory E consists of a sequence of state-action pairs
(s0, a0), (s1, a1), ..., (sk, ·), such that sk ∈ G and
∀1≤i≤kT (si|si−1, ai−1) > 0. The value of a trajec-
tory is defined as V (E) =

∑k
i=0 C(si, ai).

Given a planning strategy Π (e.g., one of the methods in
Figure 1), we use the notation E ∈ Π to indicate that ap-
plying strategy Π to the SSPP could result in execution tra-
jectory E . Using this notation, our overall goal is to find
a planning strategy that minimizes the expected combined
cost of planning and execution, represented as follows:

min
Π

E
E∈Π

[V (E) + κT (E)] (2)

where T (E) is the total amount of time spent exclusively
on planning (i.e., not performed concurrently with action ex-
ecution) when trajectory E occurred, and κ is a constant that
relates units of time in the real world to unit of costs in the



SSPP formulation of the problem. For example, if executing
each action in the real world takes 1 second and planning
time is measured in milliseconds, then κ = 10−3, provided
that the goal is to minimize the cumulative combined plan-
ning and execution time.

3 Concurrent Planning and Execution
The combined cost to be minimized in Eq. (2) depends on
the expected value of the resulting trajectory as well as on
the total time the strategy spends exclusively on planning.
Therefore, ideally we would like to perform most of the
planning during action execution, yet produce trajectories
with expected cost that is near optimal.

A common approach to solving SSPPs is to employ
search-based algorithms that use heuristics to focus compu-
tation on relevant parts of the domain. In this work we use
FIND-and-REVISE (Bonet and Geffner 2003a), a general
schema for heuristic search algorithms that subsumes pop-
ular MDP solvers such as LAO* (Hansen and Zilberstein
1998; 2001a) and LRTDP (Bonet and Geffner 2003b).

FIND-and-REVISE (FaR) algorithms iteratively search
(FIND) the so-called greedy graph of the current value func-
tion for states that don’t satisfy some convergence criteria,
and then update these states using Bellman backups (RE-
VISE). The greedy graph of a value function—also known
as the best partial plan—is the set of states that can be
reached from the start state following a greedy policy on the
value function. To guide earlier stages of the search towards
the more relevant parts of the domain, FaR algorithms use
an heuristic function as an initial estimate for state values.
Moreover, FaR algorithms are guaranteed to converge to the
optimal value function (within some tolerance) as long as
the FIND procedure is systematic, that is, an infinite number
of calls to FIND would not starve any states in the greedy
graph. The planners we use satisfy this assumption.

To minimize the combined cost of execution and planning
time, we could try running a FaR algorithm with a fixed ini-
tial state in parallel to execution, and simply execute actions
as soon as they are available, regardless of whether the al-
gorithm has converged or not. We call this strategy naive
continual planning and show that it is incomplete.
Proposition 1. The naive continual planning strategy is in-
complete.

Proof. The strategy is incomplete because, before conver-
gence, FaR algorithms continuously modify the best partial
plan, and nothing prevents them from creating—during early
iterations in particular—a partial plan that leads to states that
are not reachable by the final optimal plan. Consequently, by
executing actions according to a plan generated in early it-
erations, the agent could reach a state that is no longer part
of the plan and may be ignored by all future iterations until
convergence. Therefore, this strategy cannot guarantee that
the agent reaches the goal and is thus incomplete.

Modifying the Planning Algorithm
We can get around this problem by forcing FaR to com-
pute plans rooted at the current state of execution, instead

Algorithm 1: PLAN-EX: A concurrent planning and execu-
tion strategy for solving MDPs

execution-thread
input: SSPP problem 〈S,A, T , C, s0,G〉

1 sc ← s0
2 Start planning-thread
3 Wait tI for initial plan

while sc /∈ G do
4 ac ← Partial-Plan.get-action(sc)
5 sc0 ← create-new-SSPP (sc,ac)
6 Update sc0 in planning-thread
7 sc ← ExecuteAction(sc,ac)

planning-thread
input: MDP problem 〈S,A, T , C, s0,G〉

8 ŝ← s0
9 while sc0 /∈ G do

10 ŝ← Updated sc0 from execution-thread
11 FIND a set of states SF in the greedy graph of ŝ
12 REVISE V (s) for all s′ ∈ SF with a Bellman

backup

of continuing to build a plan that starts at the original ini-
tial state. This has the additional advantage of potentially
reducing computation effort, since parts of the domain be-
come unreachable from the current state and can be ignored.

Furthermore, when an action is executed, the planner
should take that into account in order to further reduce com-
putational effort. However, since MDP algorithms compute
stationary policies, one challenge is to ensure that executing
a particular action (that appears best) at a given state, does
not commit us to executing that same action—which might
not be optimal—if this state is reached again in the future.

We solve this problem by introducing a new SSPP prob-
lem every time an action is to be executed, and modifying
FaR so that it always attempts to solve the latest SSPP
available. Before explaining how we modify the FaR
schema, we first describe how these SSPPs are constructed.
Formally, let sc be the agent’s current state, and let ac
be the current best action for that state. Consider SSPP
〈S ∪ {sc0},A, T c, Cc, sc0,G〉, where the transition function
T c is identical to T , except for the addition of:
T c(s′|sc0, ac) = T (s′|sc, ac) if s′ 6= sc0
T c(sc0|sc0, a) = 1 if a 6= ac

T c(s′|sc0, a) = 0 if a 6= ac and s′ 6= s0

(3)

This transition function is illustrated in Figure 4 in the
Appendix. The new cost function Cc is identical to C with
the addition of ∀a ∈A, Cc(sc0, a) = 0. Therefore, this new
SSPP is the same as the original one, except for the intro-
duction of sc0, a copy of the current state sc for which the
only action that can make progress towards the goal is ac—
the actual action to be executed next. This SSPP has the
following property.
Proposition 2. An optimal policy for the new SSPP with
initial state sc0 provides an optimal policy for every state in
the original SSPP that can be reached after executing ac.



Proof. It is easy to see that this is true, since sc0 has only one
action that can make progress towards the goal—leading to
all possible successors of sc after executing ac—and every
other state that can be reached in the new SSPP has the same
transition and cost functions as in the original SSPP.

We now show how to modify FaR so that during ex-
ecution it repeatedly attempts to solve the most recent
of these SSPPs. The resulting strategy, PLAN-EX, uses
two threads running simultaneously (see Algorithm 1) that
access the shared data structure Partial-Plan. The
execution thread executes actions specified by the plan
and updates the current state accordingly (line 7), calls
create-new-SSPP to create the next initial state sc0
(line 5) and updates this information on the planning thread
(line 6). The planning thread continuously runs a modified
version of FaR on the most recent SSPP (lines 10-12). Note
that the procedure create-new-SSPP uses a hash map
with keys given by state-action pairs, to guarantee that there
is a unique copy state sc0 for each pair (sc, ac). Algorithm 2
in the Appendix describes procedure create-new-SSPP
in more detail.
Partial-Plan maintains the values and best actions

for all states ever encountered by the FIND procedure. For
this it keeps a hash map that stores the current estimates for
the state values, using states as keys. All Bellman backups
performed by the REVISE procedure are done by accessing
the values stored by Partial-Plan and updating the hash
map. This information can be accessed by the execution
thread (see line 4 in Algorithm 1) through a call to method
Partial-Plan.get-action, which returns an action
chosen greedily on the current value estimates (initialized
with a heuristic function), breaking ties randomly. Note that
to prevent race conditions and ensure data integrity, some
care must be taken when performing concurrent Bellman
backups and accessing Partial-Plan. This is achieved
through the use of a mutex to guarantee that all reads/writes
to Partial-Plan are atomic.

To see how the planning thread works, note that stan-
dard FaR consists of two phases performed iteratively until
convergence. In our modified version of FaR, at each iter-
ation the planning thread checks if the initial state for the
search was changed by the execution thread (line 10 of Al-
gorithm 1), and starts the search (FIND step) on the corre-
sponding latest SSPP. As a consequence, in the REVISE step
PLAN-EX only performs Bellman backups of states that can
be reached from the current state of execution, ignoring parts
of the domain that are no longer reachable. This modified
version of FaR has the following property.

Proposition 3. If the initial heuristic is admissible, then ev-
ery cost estimated by PLAN-EX represents a lower bound on
the optimal cost of reaching a goal.

Proof. This is easy to show by induction on the Bellman
backup operator used by the REVISE procedure.

4 Completeness of PLAN-EX
In this section we show that PLAN-EX is complete in that
it eventually reaches a goal state whenevWe use the fact

that create-new-SSPP generates a unique initial state
for each state-action pair (sc, ac). Note that this property is
not strictly necessary to ensure completeness of PLAN-EX,
but it simplifies the proof.

Lemma 1. The set of unique start states sc0 that will be cre-
ated by line 5 of PLAN-EX during an application of the algo-
rithm to a given SSPP is finite, even when trajectories have
unbounded length.

Proof. This is obviously true because every sc0 is uniquely
determined by sc and ac. Since S andA are finite sets, there
is a finite number of different states sc0.

Theorem 1. If the heuristic used by modified FaR is admis-
sible, PLAN-EX is complete.

Proof. Suppose PLAN-EX is not complete, that is, it results
in an infinite length trajectory. By Lemma 1 and the pi-
geonhole principle, there exists a finite set of states I that
will be backed-up infinitely often through calls to REVISE
(line 12). Since states in S \ I appear a finite number of
times, at some point during the course of PLAN-EX the
FIND procedure (line 11) must only return states in I . More-
over, set I must contain at least one goal state, since it can
be shown that otherwise the estimated costs grow without
bound, contradicting Proposition 3. Therefore, at some point
during execution PLAN-EX becomes equivalent to perform-
ing asynchronous value iteration with state set I , which is
known to converge to the optimal cost for all states in I . Fi-
nally, this implies that PLAN-EX has found an optimal path
to the goal for any state within I , contradicting the initial
assumption that PLAN-EX is not complete.

5 Experimental Results
We present experimental results on three stochastic domains,
showing the benefits of our concurrent planning and execu-
tion approach. For the first two domains, we compare seven
planning strategies: computing a complete optimal plan us-
ing LAO*/LRTDP and then executing it, computing a com-
plete approximate plan using weighted LAO* and then exe-
cuting it (w-LAO*), a continual planning approach based on
the most-likely-outcome determinization (DET), and three
versions of PLAN-EX: one using LAO* (PE-L*) as the core
planning algorithm, one using LRTDP (PE-LR) and another
using weighted LAO* (PE-w*). Additionally, in the third
domain we investigate the scalability of PLAN-EX to prob-
lems that cannot be completely solved off-line (e.g., due to
memory requirements).

Racetrack Domain
The first domain is a modified version of the racetrack do-
main (Sutton and Barto 1998), a well-known reinforcement
learning (RL) benchmark. The original problem involves a
simulation of a race car on a discrete track of some length
and shape, where a starting line has been drawn on one end
and a finish line on the opposite end. The goal is to reach
the finish line in the minimum number of steps. The state of
the car is determined by its location and its two-dimensional
velocity. The car can change its speed in each of the two



LAO* LRTDP w-LAO* DET PE-L* PE-w* PE-LR

E[V (E)] 57.43 57.43 67.72 78.07 62.23 66.75 68.80

E[κT (E)] 41.80 52.80 34.64 1.31 1.00 1.00 1.00

E[Total] 99.23 110.23 102.36 79.38 63.23 67.75 69.80

∆ Cost 72.78% 91.93% 78.23% 38.22% 10.10% 17.97% 21.54%

Table 1: Performance of seven planning strategies on the racetrack
domain. The last row represents the increase in overall cost with
respect to the theoretical lower bound.

dimensions by at most 1 unit, giving a total of nine possible
actions, all at a unit cost. After applying an action, there is
a probability ps that the resulting acceleration is zero, simu-
lating failed attempts to accelerate/decelerate because of un-
predictably slipping on the track.

In the modified version, there is also a probability pe that
the outcome corresponds to that of a similar action, simu-
lating driving errors. Additionally, if the car collides with
a wall, it stops at the wall and can take normal actions in
the next turn but at a higher cost. Intuitively, higher action
costs in this domain correspond to higher execution periods,
giving us an opportunity to test PLAN-EX with variable du-
ration actions. In all the experiments we assumed that the
cheapest action takes 250 ms to execute, and the durations of
more expensive actions are proportional to their costs, which
implies a value of κ = 1/250 ms−1. Figure 5 in the Ap-
pendix shows the track we used in our experiments, which
includes approx. 78,000 states.

Table 1 shows the performance of all planning strategies
on the racetrack problem, based on 100 simulations. For w-
LAO* the weight was set to 50.0, which was the best value
based on trial-and-error with different weights in the range
[2.0 – 100.0]; we used the same weight for PE-w*. The last
row of Table 1 represents the increase in overall expected
cost defined by Eq. (2) as a percentage of the theoretical
lower bound, which equals the cost of executing an optimal
policy ignoring planning time. PE-L*, PE-w* and PE-LR
outperform all other methods by more than a 28%, 20% and
16% decrease in combined cost, respectively, the best one
being PE-L* with an increased cost of only 10%. PLAN-
EX instances dominate all off-line methods primarily due to
a much faster planning time. With respect to DET, whose
planning time was also low, the benefits offered by PE-L*
and PE-w* are due to a much lower expected cost of the
resulting trajectories.

We also analyzed the impact of action duration—which
affects the amount of time available for planning—on the
average cost of the trajectories obtained with PE-L*. Fig-
ure 3 shows the relative error with respect to the optimal
cost as a function of action duration, computed from 100
simulations; in all cases the initial planning time was set to
the equivalent of one action. As expected, the relative er-
ror decreases with increasing action duration, and for dura-
tions higher than 200 ms the average cost is very close to the
lower bound. These encouraging results suggest that with
modest action durations (> 200 ms), PLAN-EX can obtain
near-optimal results, with little initial planning time.

50ms 100ms 200ms 400ms 800ms
10
0
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40
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Figure 3: Relative difference between E[V (E)] (PLAN-EX)
and V ∗(s0) as a function of action duration on the racetrack
domain. The lines show 95% confidence intervals around
the mean.

Sailing Domain
The second domain is the sailing domain described by Van-
derbei (1996), in which a sailboat has to find the shortest
path between two points on a grid under dynamic wind con-
ditions. The sailboat’s position is represented as a pair of co-
ordinates on a two dimensional grid. The sailboat can move
to any neighboring position except directly against the di-
rection of the wind, giving a total of 7 applicable actions.
Actions are deterministic and uncertainty in the domain is
due to stochastic changes in the direction of the wind. Each
action has a cost that depends on the direction of movement
and the direction of the wind. We experimented on a 50×50
grid with 20,000 states, with the start state at (0, 0) and the
goal at (20, 20). As we did for the racetrack domain, we as-
sumed that the cheapest action takes 250 ms to execute, and
that durations of more expensive actions are proportional to
their costs. Hence, κ = 1/250 ms−1.

We again set an initial planning time for all PLAN-EX
instances to 250 ms (lowest action cost). The weight for
w-LAO* was 5.0, selected based on trial-and-error in the
range [2.0 – 10.0]; the same weight was used for PE-w*. We
should note that finding the best weight to use for w-LAO*
was a time-consuming process. Moreover, its performance
seems to be very sensitive to the choice of weight; with a
poor choice, the performance of w-LAO* can degrade to
that of standard LAO* or worse. Furthermore, experiments
not reported here suggest that the choice of weight doesn’t
carry over between different problem instances of the same
domain. In contrast, PLAN-EX seems to be less sensitive
to the choice of initial planning time, and simply using the
duration of one action worked well in all of our experiments
on both the racetrack and the sailing domain.

Table 2 shows the performance of the seven planning
strategies on the sailing domain, based on 100 simulations.
The best strategies for this problem were w-LAO* (5.51%)
and PE-w* (6.61%). The optimal off-line planning algo-
rithms (LAO* and LRTDP) performed poorly on this prob-
lem, with planning time cost significantly exceeding execu-
tion cost. Nevertheless, the concurrent versions of these al-
gorithms (PE-L* and PE-LR) significantly improved upon
their respective off-line versions. Finally, as in the case of
the racetrack problem, DET performed poorly due to poor
plan quality and a large increase in the expected trajectory
cost with respect to the optimal (164% increase).



LAO* LRTDP w-LAO* DET PE-L* PE-w* PE-LR

E[V (E)] 91.28 91.28 92.51 241.03 109.01 96.31 111.54

E[κT (E)] 116.76 83.60 3.80 3.56 1.0 1.0 1.0

E[Total] 208.04 174.88 96.31 244.59 110.01 97.31 112.54

∆ Cost 127.91% 91.59% 5.51% 167.96% 20.52% 6.61% 23.29%

Table 2: Performance of the seven planning strategies on the sail-
ing domain. The last row represents the increase in overall cost
with respect to the theoretical lower bound.

As we did for the racetrack domain, we analyzed the im-
pact of action duration on the expected trajectory cost of
PLAN-EX. The results showed again a similar trend to what
is depicted in Figure 3, and are therefore omitted.

Scalability of PLAN-EX to Larger Problems
In the first set of experiments, we selected problems that
are complex, but can still be tackled using off-line solvers.
This allowed us to compute optimal plans, establish a lower
bound on the overall cost, and perform a comprehensive
comparison of different planners. Now, we try to assess the
scalability of PLAN-EX to harder problems that cannot be
solved off-line due to time and/or memory requirements.

To this end, we experimented on the Canadian Traveler
Problem (Papadimitriou and Yannakakis 1991). In this prob-
lem, an agent must find shortest paths on a graph in which
each edge can be blocked with some probability due to bad
weather. The objective is to minimize the expected cost of
reaching the goal from the start state; this expected cost is
evaluated only on those weather instances in which a path
between the start and goal exists. This problem can be mod-
eled as a belief-state MDP in which the state of the agent is
given by its location and a vector of edge beliefs; for each
edge there are three possibilities: unknown, known to be
open, known to be blocked. Therefore, the size of the belief
space is exponential in the number of edges and thus even
small instances are hard to solve.

We experimented on a problem instance reported by
(Bonet and Geffner 2012) consisting of 20 nodes and 49
edges. In all cases, both LAO* and w-LAO* quickly ran out
of memory (5 GB). However, PE-L* with 500 ms for plan-
ning during actions was able to solve 18 out of 20 runs of the
problem, with an expected cost of approximately 152, while
PE-w* (with a weight of 20.0) solved 14 instances with an
expected cost of approximately 155; for reference, the DET
strategy had an expected cost of 188. These result suggests
that PLAN-EX can be used to efficiently solve hard prob-
lems, even when the underlying FIND-and-REVISE planner
cannot solve them.

6 Conclusion
We present a novel approach to minimize the combined cost
of planning and execution in stochastic environments by per-
forming planning and execution concurrently. The proposed
approach, PLAN-EX, is based on a simple modification of
an existing heuristic search scheme (FIND-and-REVISE)
that allows the planning thread to adapt its operation to the

current state of execution with negligible overhead. The ap-
proach maintains continuous execution by choosing greedy
actions based on the current value estimates (initialized with
a heuristic function), and it can be easily extended to exploit
user-provided policies to choose actions reactively, without
losing any of its formal guarantees. We analyze the charac-
teristics of this new paradigm and show that it is complete.
Furthermore, it performs well in practice on three complex
stochastic domains.

Among the planning paradigms we considered, one in
particular was designed specifically as a way to minimize
the combined runtime of planning and execution albeit in
a different way. This existing approach employs an any-
time planning procedure to create the plan and then ex-
ecutes that plan (Horvitz 1987; Dean and Boddy 1988;
Zilberstein and Russell 1993; Zilberstein et al. 1999). We
used weighted LAO* (w-LAO*) as the anytime planner and
compared it to our approach, using the best possible weight
for w-LAO*. Even using the best weight for w-LAO*, the
concurrent planning approach significantly outperformed
w-LAO* and the other baseline approaches in one domain,
and had similar performance to w-LAO* in another. Fur-
thermore, our approach required no special parameter tun-
ing and it consistently performed well, while w-LAO* was
outperformed by a determinization-based re-planner in the
racetrack domain. Finally, we also show results suggest-
ing that our concurrent planning approach can be used to
efficiently solve problems even when the underlying search
algorithm fails to solve them due to memory requirements.

Note that although in this work we used FIND-and-
REVISE algorithms as the core planners, our approach can
be easily adapted to other stochastic problem solvers out-
side of this schema, such as UCT (Kocsis and Szepesvári
2006). It could also be trivially used in conjunction with the
more simple AO* algorithm, or its recent anytime variant,
for deterministic problems or problems without cyclic poli-
cies (Nilsson 1980; Bonet and Geffner 2012). Furthermore,
a concurrent planning approach similar to the one presented
here can be combined with incomplete methods that prune
parts of the state-space to reduce computation time (Tre-
vizan and Veloso 2012; Pineda and Zilberstein 2014). The
benefit of applying our approach in these contexts is that it
will continuously increase the coverage of the partial plan
during execution, which is likely to improve performance.

Another interesting direction for future work is to exam-
ine more general objective and cost functions that affect
the tradeoff between planning time and execution cost, and
study their impact on the time that should be dedicated to
planning before execution starts. In our formulation, we as-
sume that planning time and action costs are related by a
constant factor κ, and our experiments suggest that an ini-
tial planning time equivalent to the duration of one action
works well in this case. However, more complex relation-
ships between planning time and action cost are possible,
for example when a time-dependent utility function defines
the overall value (Dean and Boddy 1988). In that case, it
may be beneficial to use utility-driven meta-reasoning mech-
anisms to determine the most appropriate initial planning
time (Hansen and Zilberstein 2001b).
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Appendix
Generating the new SSPP
Figure 4 illustrates the transition function of the SSPPs cre-
ated during the course of running PLAN-EX. Briefly, given
a state sc and an action to be executed ac, the new SSPP
includes an additional copy state sc0 that is used as initial
state. The transition function for sc0 when action ac is ex-
ecuted is exactly the same as the transition function for the
state-action pair (sc, ac), and for any other action the transi-
tion results in sc0 with probability one. Therefore, given that
the cost of executing ac in state sc0 is 0, planning for initial
state sc0 is equivalent to finding a plan for all successors of
(sc, ac).

s0
c

sc

s1

s2

s3

a
c

ac

a0

p1

p1

p2

p2

p3

p4

p = 1

action to be executed next

initial state for the new SSPP

current state
of execution

a0

Figure 4: Illustration of the transition function for the new SSPPs.

Algorithm 2 shows the procedure to generate a new SSPP
given the current state of execution. We use a hash map
(InitialStates) to store all copy states generated dur-
ing the course of PLAN-EX. Every time a copy state is cre-
ated, InitialStates is queried to check if another copy
state for the given state-action pair (sc, ac) already exists
(lines 1-2). If not, then a state is created and stored in the
hash map (lines 3-7). This guarantees that for any given
state-action pair there is a unique copy state sc0.

Algorithm 2: Procedure to generate a new SSPP given
the current state of execution

create-new-SSPP
input: State-Action pair 〈s, a〉
HashMap InitialStates

1 if InitialStates.hasKey(〈s, a〉) then
2 return InitialStates.get(〈s, a〉)

else
3 Create state sc0
4 Create T c for sc0 using Eq. (3)
5 Create Cc for sc0 s.t. ∀a ∈A, Cc(sc0, a) = 0
6 InitialStates.set(〈s, a〉,sc0)
7 return sc0

Track used for our experiments on the Racetrack
domain
Figure 5 shows the track used for our experiments on the
Racetrack domain. This track has size 120 × 60 and 77,954
states can be reached from the start state defined by the lo-
cation labeled as S and zero speed in all directions. The goal
is to reach the location labeled as G.

S

G

Figure 5: Map of the racetrack domain used in the experiments.


