
Planning Under Uncertainty Using Reduced Models: Revisiting Determinization

Luis Pineda and Shlomo Zilberstein
School of Computer Science
University of Massachusetts
Amherst, MA 01003, USA

{lpineda, shlomo}@cs.umass.edu

Abstract

We introduce a family of MDP reduced models characterized
by two parameters: the maximum number of primary out-
comes per action that are fully accounted for and the max-
imum number of occurrences of the remaining exceptional
outcomes that are planned for in advance. Reduced models
can be solved much faster using heuristic search algorithms
such as LAO*, benefiting from the dramatic reduction in the
number of reachable states. A commonly used determiniza-
tion approach is a special case of this family of reductions,
with one primary outcome per action and zero exceptional
outcomes per plan. We present a framework to compute the
benefits of planning with reduced models, relying on online
planning when the number of exceptional outcomes exceeds
the bound. Using this framework, we compare the perfor-
mance of various reduced models and consider the challenge
of generating good ones automatically. We show that each
one of the dimensions—allowing more than one primary out-
come or planning for some limited number of exceptions—
could improve performance relative to standard determiniza-
tion. The results place recent work on determinization in a
broader context and lay the foundation for efficient and sys-
tematic exploration of the space of MDP model reductions.

1 Introduction
Determinization-based algorithms for solving MDPs have
gained popularity in recent years, motivated by the surpris-
ing success of the FF-Replan solver (Yoon et al. 2007) in the
IPPC-04 planning competition (Younes et al. 2005). The
main idea behind these algorithms is to generate a deter-
ministic version of the underlying MDP and solve it using
a classical planner such as FF (Hoffmann and Nebel 2001),
resulting in a partial plan for the original problem. When
confronted by an unexpected state during plan execution, the
planning process is repeated using the current state as the
initial state. The main advantage of determinization-based
algorithms is their ability to quickly generate partial plans,
particularly in intractable probabilistic domains.

Determinization-based approaches differ in the way they
add robustness to the partial plans. FF-Replan (Yoon et
al. 2007)—the most basic of these approaches—entirely ig-
nores future deviations from the plan. FF-Hindsight (Yoon
et al. 2008; 2010) uses a hindsight optimization approach to

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approximate the value function of the original MDP by sam-
pling multiple deterministic futures and solving them using
the FF planner. RFF (Teichteil-Königsbuch et al. 2010) gen-
erates a plan for an envelope of states such that the proba-
bility of reaching a state outside the envelope is below some
threshold. To increase the envelope, RFF chooses states not
considered in the current plan and, using an approach simi-
lar to FF-Replan, computes an action for each one of these
states. HMDPP (Keyder and Geffner 2008) introduces the
so-called self-loop determinization in order to trick the de-
terministic planner into generating plans with a low prob-
ability of deviations, using a pattern database heuristic to
avoid dead-end states.

Despite their success, determinization-based algorithms
have some drawbacks due to the fact that they consider each
of the outcomes of an action in isolation. This leads to an
overly optimistic view of the domain and can result in plans
that are arbitrarily worse than an optimal plan. Furthermore,
even when optimal plans could be obtained using isolated
outcomes, it is not always clear, nor intuitive, which out-
comes should be included in the determinization, as we il-
lustrate later. Nevertheless, solving reduced versions of an
MDP in an online fashion can be very useful in practice, es-
pecially for large domains. Thus, we want to take advantage
of this general idea while addressing its inherent drawbacks.

To this end, we introduce a more general paradigm in
which the single-outcome variant of FF-Replan (FFs) (Yoon
et al. 2007) is just one extreme point on a spectrum of
MDP reductions that differ from each other along two di-
mensions: (1) the number of outcomes per state-action pair
that are fully accounted for in the reduced model, and (2)
the number of occurrences of the remaining outcomes that
are planned for in advance. For example, FFs considers one
outcome per state-action pair and plans for zero occurrences
of the remaining outcomes in advance (i.e., it completely ig-
nores them). In contrast, we propose an approach that fully
considers a subset of the original outcomes—possibly with
cardinality greater than one—assuming that the remaining
outcomes will occur at most some k times during plan ex-
ecution. Similar treatments of exceptional outcomes have
been explored in fault-tolerant planning (Jensen et al. 2004;
Domshlak 2013; Pineda et al. 2013).

Other planning approaches have been developed for re-
duced or incomplete models. SSiPP (Trevizan and Veloso
2012), for example, relies on pruning all states beyond a
certain reachable envelope. Other works have examined ex-

plicitly the question of improving plan robustness to known
incompleteness of the domain model (Nguyen et al. 2013).
In this work we explore an entire spectrum of relaxations us-
ing an evaluation metric that minimizes the comprehensive
cost of reaching the goal, including replanning cost.

We begin with a definition of MDP reduced models, and
show how to efficiently solve reduced models using the
heuristic search algorithm LAO* (Hansen and Zilberstein
2001). We then introduce a continual planning paradigm
that handles situations where the number of exceptions ex-
ceeds the bound during plan execution, and study the the-
oretical properties of the resulting plans. In particular, we
present a closed-form framework to evaluate the benefits of
a particular reduced model. We then show how to use this
evaluation technique to choose a good determinization, and
more generally, how to find good reduced models. In the
experimental results section, we show that both model re-
duction dimensions contribute significantly to improving the
performance of a baseline determinization approach.

2 Problem Formulation
We focus on stochastic shortest-path MDPs, where the
goal is to minimize the expected cost of reaching a set
of goal states. These problems can be defined as tuples
〈S,A, T , C, s0,G〉, where S is a finite set of states; A is
a finite set of actions; T (s′|s, a) is a stationary transition
function specifying the probability of reaching state s′ when
action a is executed in state s; C(s, a) is the positive cost of
executing action a in state s; s0 ∈ S is a given start state;
and G ⊂ S is a set of absorbing goal states.

Starting in state s0, the objective is to reach one of the goal
states while minimizing the expected cumulative cost of the
actions taken. If dead-ends—states from which a goal can-
not be reached—are present in the domain, we circumvent
this by allowing the agent to perform a “give up” action in
all states at some very high fixed cost (Kolobov et al. 2012).
Hence, we do not use discounting as there is always a proper
policy that reaches a goal state with probability 1.

A solution is a policy π, represented as a mapping from
states to actions: π : S → A. The well-known Bellman
equation defines a value function over states, V ∗(s), from
which the optimal policy π∗ can be extracted:

V ∗(s) = min
a

[C(s, a) +
∑
s′∈S
T (s′|s, a)V ∗(s′)] (1)

Solving MDPs optimally is often intractable (Littman
1997), which has led to the development of many approx-
imate algorithms, often based on value function approxima-
tion methods. Here we explore a new paradigm to handle the
complexity of MDPs by defining a space of MDP reductions
that generalizes the idea of single-outcome determinization.

Reducing an MDP We propose a family of MDP reduced
models that are characterized by two key parameters: the
number of outcomes per action that are fully accounted for,
and the maximum number of occurrences of the remaining
outcomes that are planned for in advance. We refer to the
first set of outcomes as primary outcomes and to the remain-
ing outcomes as exceptional outcomes.

We consider factored representations of MDPs—such as
PPDDL (Younes et al. 2005)—in which actions are repre-
sented as probabilistic operators of the form:

a = 〈prec, cost, [p1 : e1, ..., pm : em]〉,
where prec is a set of conditions necessary for the action to
be executed, cost is the cost of the action (assumed to be the
same in all states), and for each i ∈ [1;m], pi is the proba-
bility of outcome (or effect) ei occurring when the action is
executed. The transition function T can be recovered from
this representation through a successor function τ , so that
s′ = τ(s, ei) and T (s′|s, a) = pi.

For any action a, let Pa ⊆ {e1, ..., em} be the set of
primary outcomes. Given sets Pa for each action a ∈ A,
we define a reduced version of the MDP that accounts
for a bounded number of occurrences of exceptional out-
comes. The state space of the reduced MDP is (s, j) ∈
S × {0, 1, ..., k}, where j is a bounded exception counter.
The initial state of the reduced MDP is (s0, 0), indicating
that no exceptions have occurred. The transition function
T ′ of the augmented MDP is defined as follows.

When j = k (the exception bound), we assume that no
more exceptions can occur, so the new transition function is:{

∀s, a T ′((s′, k)|(s, k), a)=p′i if ei ∈ Pa

0 otherwise
(2)

where we use the shorthand s′ = τ(s, ei) and p′i satisfies:

∀i : ei ∈ Pa p′i > 0 and
∑

i:ei∈Pa

p′i = 1 (3)

In this work we simply normalize the probabilities of the
primary outcomes so that they sum up to one. More com-
plex ways to redistribute the probabilities of exceptional out-
comes are mentioned in the conclusion.

When j < k, exceptions are fully accounted for, thus we
need to update the exception counter appropriately. The
transition function in this case becomes:{

∀s, a T ′((s′, j)|(s, j), a)=pi if ei ∈ Pa

∀s, a T ′((s′, j + 1)|(s, j), a)=pi otherwise
(4)

Finally, the costs and goal states of the reduced MDP are
the same as the original ones, ignoring the exception counter.

Note that while the complete state space of the reduced
MDP is actually larger than that of the original problem, the
benefit of the reduction is that, for well-chosen values of
k and sets Pa, the set of reachable states can become much
smaller—by orders of magnitude in our experiments. This is
desirable because the runtime of heuristic search algorithms
for solving MDPs such as LAO* (Hansen and Zilberstein
1998; 2001) and LRTDP (Bonet and Geffner 2003) depends
heavily on the size of the reachable state space. Further-
more, by changing k and the maximum size of the sets Pa,
we can adjust the amount of uncertainty we are willing to
ignore in order to have a smaller reduced problem. The fol-
lowing definition makes this idea more precise.
Definition 1 (Mk

l -reduction of an MDP). An Mk
l -

reduction of an MDP is an augmented MDP with the transi-
tion function defined by Eqs. 2 and 4, where j ∈ {0, 1, ..., k}
and ∀a |Pa| ≤ l.

For example, the single-outcome determinization used in
the original FF-Replan (Yoon et al. 2007) is an instance of
anM0

1-reduction where each setPa contains the single most
likely outcome of the corresponding action a.

Note that for any given values of k and l there might be
more than one possible Mk

l -reduction. We introduce the
notation M ∈ Mk

l to indicate that M is some instance of
an Mk

l -reduction; different instances are characterized by
two choices. One is the specific outcomes that are labeled as
primary. The other is how to distribute the probability of the
exceptional outcomes among the primary ones when j = k
(i.e., the choice of p′i in Eq. 2).

The concept ofMk
l -reductions raises a number of inter-

esting questions about their potential benefits in planning:

1. How should we assess the comprehensive value of an
Mk

l -reduction? Can this be done analytically?
2. Considering the space ofMk

l -reductions, is determiniza-
tion orM0

1-reduction always preferable?
3. In the space of possible determinizations, can the best

ones be identified using a simple heuristic (e.g., choosing
the most likely outcome)? Or do we need more sophisti-
cated value-based methods for that purpose?

4. How can we explore efficiently the space of Mk
l -

reductions? How can we find good ones or the best one?
5. Given a PPDDL description of an MDP and some k and
l, can one automatically generate a PPDDL description of
an Mk

l -reduction? How can we explore this space and
evaluate different reductions using a compilation scheme
and standard MDP solvers?

The rest of the paper explores these questions, showing that
anM0

1-reduction is not always desirable. Furthermore, even
when determinization works well, a value-based approach is
needed to choose the most appropriate primary outcome per
action. In order to answer the above questions, however, we
need an exact method to evaluate the benefits of a particular
Mk

l -reduction. In the next section we show how, given k
and sets Pa for all actions in the original MDP, we can eval-
uate the expected cost of solving the original problem using
plans derived by solving the reduced problem.

3 Evaluating Reduced Models
Continual planning paradigm A plan generated using a
reduction M ∈ Mk

l could possibly be incomplete with re-
spect to the original MDP, because more than k exceptions
could occur during plan execution, leading to an outcome
state that may not be included in the plan. In order to evalu-
ate plans obtained using reduced models, we need a strategy
that guarantees goal reachability during plan execution.

To this end, we employ an online continual planning strat-
egy (Algorithm 1) that generates a new plan forM whenever
a state is reached with an exception counter j=k. Note that
at this point of execution there will still be an action ready
in the current plan, so we can compute the new plan while
simultaneously executing an action from the existing plan.
As long as the new plan is ready when the action finishes
executing, plan execution will resume without delay.

Algorithm 1: Continual Planning Paradigm
input: MDP problem 〈S,A, T , C, s0,G〉, k, l and Pa

1 (s, j)← (s0, 0);
2 π ← Find-Reduced-MDP-Plan((s0, 0), k, l,Pa);

while s /∈ G do
if j 6= k then

3 (s, j)← ExecutePlan(s, π(s, j));
else

4 Create new state ŝ with one zero-cost action â
s.t. ∀s′∈S : Pr((s′, 0)|ŝ, â) = T (s′|s, π(s, j));
do in parallel

5 (s, j)← ExecutePlan(s, π(s, j));
6 π′ ← Find-Reduced-MDP-Plan(ŝ, k, l,Pa);
7 π ← π′; (s, j)← (s, 0);

There is one complication in this online planning process.
Since the new plan will be activated from a start state that
is not yet known (when the planning process starts), all the
possible start states need to be taken into account, including
those reached as result of another exception. Therefore, we
create a new dummy start state in Line 4 that leads via a
single zero-cost action to all the start states we can possibly
encounter when the execution of the current action ends.

For the sake of clarity of the algorithm and its analysis,
we describe a straightforward implementation where the ex-
ecution time of one action is sufficient to generate a plan for
the reduced model. When planning requires more time, it
will delay the execution of the new plan. Several techniques
to avoid such delays are discussed in the conclusions.

Evaluating the continual planning paradigm Our con-
tinual planning paradigm is amenable to a precise closed-
form evaluation. Let πk be a universal optimal plan com-
puted using value iteration over the entire state space of a
reduction M ∈Mk

l of the original problem. At runtime, we
always execute πk using a partial plan and if we reach a state
(s, k), we execute πk(s, k), but move to state (s′, 0) and start
executing πk(s′, 0) using the newly computed partial plan
(s′ is the primary or exceptional outcome of the previous
action). More formally, consider the Markov chain defined
over states of the form (s, j), with initial state (s0, 0) and
the following transition function, for any s ∈ S, 0 ≤ j ≤ k:

Pr((s′, j′)|(s, j)) = T ′((s′, j′)|(s, j), πk(s, j)) if j<k
Pr((s′, 0)|(s, k)) = T (s′|s, πk(s, j)) otherwise

The transition probability from (s, k) to (s′, 0) indicates
the transition to a new plan. Let VM

cp denote the value func-
tion defined over this Markov chain with respect to reduction
M . Then we have:
Proposition 1. VM

cp (s0, 0) provides the expected value of
the continual planning paradigm for reduction M when ap-
plied to the original problem domain.

Continual planning paradigms often involve heuristic de-
cisions about the interleaving of planning and execution,
making it necessary to evaluate them empirically. In con-
trast, Proposition 1 enables us to evaluate our paradigm with
different reduced models based on their precise value.

o
2

o
5

o
0

o
3

o
4

Acceleration in x direction
A

cc
el

er
at

io
n

in
 y

 d
ire

ct
io

n

-1 0 +1

-1

0

+1

o
1

o
9

o
6

o
10

o
8

Acceleration in x direction

A
cc

el
er

at
io

n
in

 y
 d

ire
ct

io
n

-1 0 +1

-1

0

+1

o
7

o
13

o
11

Acceleration in x direction

A
cc

el
er

at
io

n
in

 y
 d

ire
ct

io
n

-1 0 +1

-1

0

+1

o
12

o
14

Group 1
No acceleration

Group 2
Accelerate in

only 1 direction

Group 1
No acceleration

Group 3
Accelerate in 2

directions

Figure 1: Action groups in the racetrack domain: dark squares
represent the intended action, gray squares represent the accelera-
tion outcome associated with slipping, and the light gray squares
represent the remaining outcomes.

4 Determinization as a Reduced Model
The defining property of all determinization-based algo-
rithms is the use of fully deterministic models in planning,
entirely ignoring what we call exceptional outcomes. In fact,
even the widely used all-outcome determinization, which is
not anMk

l reduction, treats each probabilistic outcome as a
fully deterministic one, completely ignoring the relationship
between outcomes of the same action. Such oversimplifi-
cations can lead planners to optimistically choose an action
with a small probability of success, just because one of its
outcomes appears very promising. Hence, we argue that an
M0

l -reduction with l > 1 could be significantly better for
some domains, particularly in comparison to the best M0

1
reduction. We use� to denote that in the following claim:

Claim 1. There are problemsM for which ∃M ′ ∈M0
l s.t.

∀M ∈M0
1 : VM ′

cp (s0, 0)� VM
cp (s0, 0), for some l > 1.

We illustrate the validity of this claim through an exam-
ple, using a modified version of the racetrack domain (Sut-
ton and Barto 1998)—a well-known Reinforcement Learn-
ing benchmark. The original problem involves a simulation
of a race car on a discrete track of some length and shape,
where a starting line has been drawn on one end and a finish
line on the opposite end of the track. The state of the car is
determined by its location and its two-dimensional velocity.
The car can change its speed in each of the two dimensions
by at most 1 unit, resulting in a total of nine possible actions.
After applying an action there is a probability ps that the re-
sulting acceleration is zero, simulating failed attempts to ac-
celerate/decelerate because of unpredictably slipping on the
track. Additionally, there is a probability pe that the result-
ing acceleration is off by one dimension with respect to the
intended acceleration. The goal is to go from the start line to
the finish line in as few moves as possible. For a complete
description of the original problem and its modified form
refer to (Sutton and Barto 1998) and (Pineda et al. 2013),
respectively.

To decrease the number of reductions to consider for this
problem, instead of treating the outcomes of all 9 actions
separately, we grouped symmetrical actions and applied the
same reduction to all actions in the same group. The race-
track domain has three groups of symmetric actions: 4 ac-
tions that accelerate/decelerate in both directions, 4 actions
that accelerate/decelerate in only one direction, and 1 action
that keeps the current speed. Figure 1 illustrates these groups

0 10 20 30 40 50 60
0

10

20

30

40

50

60

S

G1

G2

G3

Figure 2: An instance of the racetrack domain.

of actions and their possible outcomes; for each group, a de-
composition is specified by the set of outcomes, relative to
the intended outcome (shown in darker color), that are la-
beled as primary.

In our experiments we used the racetrack configuration
shown in Figure 2, which results in 34,991 states, and com-
pared the following two reductions, M1 and M2:

M1 := min
M∈M0

1

VM
cp (s0, 0) and M2 := min

M∈M0
2

VM
cp (s0, 0)

That is, we compared the best possible M0
1-reduction (de-

terminization) of this problem, with its best possible M0
2-

reduction. Table 1 shows the increase in cost of these re-
ductions with respect to the lower bound (optimal expected
cost obtained by solving the full model offline). In all three
cases, the use of determinization resulted in a 14% or higher
increase in cost, while the maximum cost increase for the
bestM0

2-reduction was less than 7%.
Incidentally, using an all-outcome determinization could

result in particularly poor performance in this domain. For
example, the no-acceleration action includes low probability
outcomes that accelerate in any one direction. A planner
based on the all-outcome determinization could potentially
choose that action with the intention of accelerating in some
direction, which is clearly undesirable.

Choosing the right determinization Determinization
does work well for some problems. That is, the cost of us-
ing continual planning with the bestM0

1-reduction may be
close to the optimal cost V ∗. However, the choice of primary
outcomes by inspecting the domain description may still

V M1
cp (s0, 0) V M2

cp (s0, 0)

G1 14.41% 0.83%
G2 28.74% 6.78%
G3 20.10% 3.75%

Table 1: Comparison of the best determinization (M1) and the
bestM0

2-reduction (M2) for the racetrack problem.

hhhhhhhhhhhhPrimary outcome
Instance # P01 P02 P03 P04 P05 ... P10

(not (not-flattire)) 100 100 100 100 100 ... 100

(not-flattire) 60 15 4 2 0 ... 0

Table 2: Comparison of two different M0
1-reductions for the

triangle-tireworld problem.

present a non-trivial challenge. In particular, the commonly
used most-likely-outcome heuristic may not work well.

To illustrate this issue we experimented with different de-
terminizations of the triangle-tireworld domain (Little and
Thiebaux 2007). This problem involves a car traveling be-
tween locations on a graph shaped like a triangle. Every
time it moves there is a certain probability of getting a flat
tire when the car reaches the next location, but only some
locations include a spare tire that can be used to repair the
car. Since the car cannot change its location with a flat tire,
the triangle-tireworld domain has dead-ends. As indicated
earlier, we circumvent this by allowing the agent to perform
a “give up” action in all states at a fixed cost of 500.

This domain has two possible determinizations, depend-
ing on whether getting a flat tire is considered an exception
or a primary outcome. Table 2 shows the results (number of
trials reaching the goal) of evaluating the two determiniza-
tions on 10 instances of this domain. The performance for
the omitted instances (P06, P07, P08, and P09) is the same as
for P10. The best determinization is undoubtedly the one in
which getting a flat tire is considered the primary outcome.
The resulting plan enabled the car to reach the goal in 100%
of the simulations, while the other determinization resulted
in complete failure to reach the goal for (P05 ... P10).

As it turns out, the right determinization for this prob-
lem is not very intuitive, as one typically expects primary
outcomes to correspond to the most likely outcomes of an
action or to its intended outcome when it succeeds. (The
most likely outcome is not having a flat tire with probability
60%.) This counterintuitive result might lead one to consider
the use of conservative heuristics, labeling the worst-case
outcome as primary. Although this would indeed work very
well in the triangle-tireworld domain, this heuristic performs
poorly in other domains such as the racetrack problem.

To sum up, some determinizations can indeed result in
optimal performance, but there seems to be no all-purpose
heuristic to choose the best one. This suggests that a more
principled value-based approach is needed in order to find a
good determinization or a good reduction in general.

5 Finding Good Reduced Models
In this section we propose a greedy approach to finding a
model M ∈ Mk

l with a low cost VM
cp (s0, 0) for some given

k and l. The main premise of the approach is that problems
in the given domain share some common structure, and that
the relative performance of differentMk

l -reductions gener-
alizes across different problem instances. Although this is a
strong assumption, experiments we report in Section 6 con-
firm that it works in practice.

Let PM
a be the set of primary outcomes for action a on a

reduction M ∈ Mk
l of MDP 〈S,A, T , C, s0,G〉. Given k

and l, every reduction M ∈ Mk
l is uniquely determined by

the set
⋃

a∈A PM
a . Therefore, for simplicity of presentation,

in the rest of this section the notation M ∈ Mk
l refers

both to a reduction M or to the set containing its primary
outcomes; the right interpretation will be clear from the
context. Using this notation, finding a goodMk

l -reduction
amounts to solving the following combinatorial optimiza-
tion problem:

max
M⊆E

−VM
cp (s0, 0), E ≡

⋃
a∈A

outcomes(a)

s.t. ∀a ∈ A, 1 ≤ |{e : e ∈M ∩ outcomes(a)}| ≤ l

This optimization problem is particularly hard to solve
due to two complications. First, it is possible that some re-
ductions M introduce dead-ends even if the original MDP
had none. This can happen, for example, if all the outcomes
that can make progress towards the goal are outside the set
of primary outcomes, and the only path towards the goal
requires the occurrence of more than k of these outcomes.
Second, as we show below, the maximized objective func-
tion is not submodular (Nemhauser et al. 1978), making it
harder to develop a bounded approximation scheme.
Proposition 2. The function f(M) = −VM

cp (s0, 0) is not
submodular.

Proof. The proof is by counterexample, using the MDP
shown in Figure 3. Consider two M0

2-reductions M1 =
{eA1, eB1, eB2} and M2 = {eA1, eB2}. It is not hard to see
that f(M1) = f(M2) = −51. Now consider adding out-
come eA2 to both M1 and M2. Let ρe(S) = f(S ∪ {e}) −
f(S). Then we have ρeA2

(M1) = 31 and ρeA2
(M2) = 0,

implying ρeA2
(M2) < ρeA2

(M1) and M2 ⊂ M1, which
contradicts submodularity.

Similar counterexamples can be constructed for larger
values of k. Intuitively, this happens because the benefit
of adding a particular outcome to the reduction might not
become evident unless some other outcomes had been pre-
viously added.

We propose a greedy approach that starts withM equal to
the full probabilistic model, and iteratively removes fromM
an outcome e that minimizes f(M −{e}). We continue this
process until: i) the constraint on the number of primary out-
comes is satisfied, and ii) the decrease in f (increase in com-
prehensive cost) with respect to the value of the full model is
larger than some threshold. Additionally, during this greedy
process we discard any reduction that introduces dead-ends,

goalstart

eA1
eA2

eB1

eB2

cost =100

cost =10

cost =95

cost =5

P(eA1) = 0.1
P(eA2) = 0.9

P(eB1) = 0.5
P(eB2) = 0.5

cost =1

cost =1

Figure 3: Example showing that −V M
cp (s0, 0) is not submodular.

CPU Time
VI LNR DET M02 M11 M12

G1 9,205 4,852 5 57 19 396
G2 10,493 4,422 2 8 106 298
G3 8,664 3,521 5 58 100 445

Total Cost
VI LNR DET M02 M11 M12

G1 23.64 19.28 18.82 17.62 14.58 14.88
G2 23.92 17.85 18.76 15.97 13.78 13.82
G3 27.07 21.93 26.12 23.53 18.91 19.16

Table 3: Average planning time (in milliseconds) and total cost of
planning and execution for the racetrack domain

thereby ensuring that the value VM
cp (s0, 0) is always well-

defined. Note that starting with M = ∅ and adding out-
comes incrementally will inherently generate reduced mod-
els with dead-ends, for which the value is undefined.

Obviously, this greedy approach could be costly in terms
of computation time, since every evaluation of the objec-
tive function involves computing an universal plan for the
reduced model, and for k > 0 this is in fact more costly
than solving the original problem using value iteration. In
order to overcome this difficulty, we apply the greedy ap-
proach to relatively small problem instances so as to learn a
good reduced model for the domain. We use a small enough
problem so that computing universal plans for its reduced
models can be done very quickly. The underlying assump-
tion is that if a small problem instance captures the relevant
structure of the domain, then a good reduction for this in-
stance generalizes to larger problems. This is of course a
strong assumption, but it seems to work well in practice and
is used as an initial approach to this problem. We discuss
some way to improve this approach in the conclusions.

6 Evaluating Planning with Reduced Models
In this section we show thatMk

l -reductions with k=1 can
be used to quickly compute plans that produce near-optimal
performance. To this end, we evaluate and compare the use
of our continual planning approach with several reductions
on the racetrack problem shown in Figure 2, and compare
their performance with both value iteration and LAO* using
no reduction (referred to as VI and LNR, respectively). In
all the experiments we use a constant value of one second to
measure the execution time of an action, which also bounds
the re-planning time for the continual planning approaches.

We evaluate four continual planning approaches: DET
uses an M0

1-reduction (single-outcome determinization),
M02 uses anM0

2-reduction, M11 uses anM1
1-reduction and

M12 uses anM1
2- reduction. Reductions with equal l (e.g.,

M02 and M12) have the same set of primary outcomes, gen-
erated automatically using the greedy approach described in
Section 5 on a smaller track with 1,371 states, using k=0.

Note that neither DET nor M02 will have actions avail-
able when exceptions occur, so the agent must idle while a
new plan is computed. We simulate this situation by quickly
computing a reactive plan to stop the car (and adding its cost
to the total cost) before the next plan is computed. On the

other hand, this is not an issue for M11 and M12, since re-
planning can be done at the same time an action is being
executed (as explained in Section 3).

Table 3 (top) shows the average CPU time spent on plan-
ning for the three different goals, computed based on 50 sim-
ulations for each planner. Planning time includes the cumu-
lative time of all activations that delay plan execution (i.e.,
the initial planning time before the first action is taken plus
any subsequent planning time when planning is not done
during plan execution). Note that LNR doesn’t reduce plan-
ning time significantly with respect to VI (less than 60% re-
duction). However, all the continual planning approaches re-
duce time by more than an order of magnitude with respect
to LNR, with DET being the faster approach by far. Al-
though using reduced models with k=1 increases the plan-
ning time with respect to using k=0, both are significantly
faster than using no reduction at all (i.e., VI and LNR).

We quantify the trade-off between execution and planning
time by accounting for the execution time of an action, using
1 second per action in this example. This is equivalent to as-
sociating a cost of 0.001 per millisecond of planning, allow-
ing us to combine planning and execution costs and com-
pute the total expected cost of all four approaches. These
numbers are shown in Table 3 (bottom). For all three goals
the total cost of usingM1

l -reductions is smaller than that of
LNR by more than 12% (22% for G1 and G2). Even though
M02 and DET are the fastest approaches, they lose their ad-
vantage w.r.t. planning with k = 1, due to the approximate
nature of the plans (ignoring exceptions altogether) and the
overhead cost of stopping the car before re-planning.

Finally, we compare the total expected cost of the four
approaches with a theoretical (loose) lower bound equal to
the optimal cost obtained by solving the full model, with-
out considering planning time. Figure 4 shows the relative
increase in expected cost per method with respect to this
bound. In all cases, M11 and M12 differ from the bound
by 4% or less, while the rest of the approaches yield a much
greater increase of (at least) 19%, 19%, 30% and 47% for
M02, LNR, DET and VI, respectively. In general, the best
approach is M11, since the faster planning times makeup for
a small decrease in expected cost of the policy.

VI LNR DET M02 M11 M12
0

20

40

60

80

G1
G2
G3

Figure 4: Relative increase in total cost with respect to the lower
bound for the racetrack domain shown in Figure 2.

7 Solving Reduced Models via Compilation
In this section we propose a compilation scheme for gen-
erating Mk

l -reductions of a given PPDDL file, making it
easy to leverage existing probabilistic planners to solveMk

l -
reductions. The input to the compiler is a PPDDL descrip-
tion of the original problem, along with a set of tags that
identify the set of primary outcomes. The output is a PPDDL
description of the Mk

l -reduction of the original problem
with the specified set of primary outcomes. For the sake of
clarity, we describe the approach for the case where k = 1,
although it can be extended to higher values of k.

Tagging primary outcomes Our tagging scheme pre-
serves the integrity of the original problem description, al-
lowing the tagged file to be used as input for any planner
that accepts PPDDL descriptions. Our tags are designed to
be intuitive and easy to use, while adding only a negligi-
ble computational cost for planners operating on the tagged
PPDDL file. To accomplish these goals we introduce a new
predicate that will be used as a tag to designate primary out-
comes; we will refer to this predicate as primary. Let

(probabilistic p1 e1 p2 e2 ... pm em)

be a probabilistic outcome in the PPDDL description
and let ei be one of its primary outcomes. To tag
ei we simply replace ei with the conjunctive outcome
(and (primary) (ei)).

The compiler recognizes such special conjunctions
(where one component is the primary predicate) as a sig-
nal that the tagged outcome is a primary outcome. Note
that, as long as primary is set to true in the initial state of
a problem instance, this simple tagging scheme will result
in the same set of reachable states as the original problem
(ignoring the primary predicate). As a consequence, the
overhead for search-based probabilistic planners solving the
tagged version of the original MDP will be negligible, as we
confirmed experimentally using a set of tagged problems.

The compilation process We next show how to gen-
erate the reduced version of a tagged probabilistic out-
come. To accomplish that, we introduce an additional pred-
icate, exc, that represents the exception counter compo-
nent of the state. In the case k = 1, we simply use
true for j = 1 and false for j = 0. Using this
predicate, we substitute every tagged probabilistic outcome
(probabilistic p1 e1 p2 e2 ... pm em) by a conjunc-
tion of two conditional outcomes ce1 and ce2, with condi-
tions (not (exc)) and (exc), respectively. For ce1 (no ex-
ception occurred so far), the outcome is a probabilistic out-
come of equal size and probability distribution as the orig-
inal, but with every exceptional outcome ei substituted by
the conjunction (and (ei) (exc)). For ce2, the outcome is
a probabilistic outcome containing only primary outcomes
with normalized probabilities.

Figure 5 shows an example of a tagged PPDDL action
schema (top) and its reduced version (bottom). Note that
the primary predicate only appears in the tagged version
of the original MDP, but not on the reduced version. For
brevity we only show the parts that differ from the original.

�
(:action move-car
:parameters (?l1 - loc ?l2 - loc)
:precondition

(and (vehicle-at ?l1) (road ?l1 ?l2)
(not-flattire))

:effect
(and (vehicle-at ?l2) (not (vehicle-at ?l1))
(probabilistic

0.4(and (primary)
(not (not-flattire))))))
� ��

(:action move-car
...

:effect
(and (vehicle-at ?l2) (not (vehicle-at ?l1))
(when (not (exc))
(probabilistic

0.4 (not (not-flattire))
0.6 (and (exc))))

(when (exc)
(probabilistic

1.0 (not (not-flattire))))))
� �
Figure 5: Example of a tagged PPDDL description (top) and the
corresponding reduced PPDDL action (bottom).

We adopt a few conventions in our compilation scheme.
First, PPDDL allows a probability-outcome pair to be left
out from a probabilistic outcome description (i.e.,∑m

i=1 pi < 1), implying that the remaining probability is
assigned to the empty outcome (see Figure 5 for an exam-
ple). If this occurs on a tagged PPDDL file, the compiler
assumes the intended meaning is that the empty outcome is
considered an exception. Otherwise, the probability of the
empty outcome should be explicitly included in the descrip-
tion with a single primary predicate used to indicate the
desired outcome.

Second, PPDDL allows arbitrary nesting of probabilistic
and conditional outcomes to provide more compact repre-
sentations. The compilation scheme described here can han-
dle such nesting, using the convention that normalization of
primary outcomes is done at the local level. For example,
consider the following outcome:

(probabilistic
0.2 *e1
0.6 *(probabilistic 0.25 e2 0.3 *e3 0.45 *e4)
0.2 e5)

where a star indicates a primary outcome. In this case, for
j = 1 the reduced outcome will include the following prob-
abilities: 0.25 to e1, 0.75×0.40 to e3, and 0.75×0.60 to
e4.

Thus normalization at inner levels does not affect normal-
ization at outer levels. This is in fact a desired property,
since the probability of exceptional outcomes for j = 1 is
being redistributed among those outcomes that share struc-
tural similarity in the state space.

1 2 3 4 5 6 7 8 9 10
0

25
50

triangle−tireworld

1 2 3 4 5 6 7 8 9 10
0

25
50

blocksworld
1 2 3 4 5 6 7 8 9 10

0
25
50

zenotravel

Figure 6: Number of rounds ending up in success for each prob-
lem in the domains considered.

Experimental Results
To validate our compilation approach we applied it to several
problems taken from IPPC’08 (Bryce and Buffet 2008). In
particular, we used the first 10 instances of three domains:
blocksworld, triangle-tireworld and zenotravel. We use a
methodology similar to that of the IPPCs, in which the plan-
ner is given a fixed amount of time to solve several rounds
of the same problem (20 minutes for 50 rounds). In all prob-
lems we used the non-admissible FF heuristic for LAO* and
M1

1-reductions for planning (generated using our compiler).
We allow LAO* to reuse information obtained during past
rounds of the same problem, by labeling solved states and
keeping all values in the explicit graph for future use.

We chose the set of primary outcomes based on the per-
formance of the continual planning approach on the first
two problem instances of each domain. For the triangle-
tireworld domain the primary outcome was the one corre-
sponding to getting a flat tire. For blocksworld and zeno-
travel, to reduce complexity we only considered two possi-
bilities for primary outcomes, namely, the most-likely out-
come for all actions, or the least-likely outcome. For zeno-
travel, the best was labeling the least-likely outcomes as pri-
mary, while for blocksworld the best was choosing the most-
likely outcomes.

Figure 6 shows the results of these experiments. Using
the M1

1-reductions generated by our compiler, LAO* was
able to generate successful plans for many of the problem
instances in these domains. Although we didn’t perform a
direct comparison with other approaches (our goal in these
experiments was just to validate our PPDDL compiler), we
note that these results are on par with those reported for
state-of-the-art planners for these domains (Trevizan and
Veloso 2012).

8 Conclusions
We present a spectrum of MDP reduced models that can
help reduce planning time and improve the overall perfor-
mance of stochastic planning algorithms, when the cost of
planning is taken into consideration. Each reduced model
is characterized by two parameters: the maximum number
of primary outcomes per action and the maximum number
of exceptional outcomes in the plan. We show that reduced
models can accelerate planning by orders of magnitude. We

also introduce a continual planning paradigm that generates
new plans in parallel to plan execution when the number of
exceptions reaches the maximum allowed. A benefit of this
paradigm is that it is amenable to a precise evaluation of the
benefits of planning with reduced models.

Although the all-outcome determinization does not be-
long to this class of reductions, other commonly used de-
terminization approaches represent reductions with one pri-
mary outcome per action and zero exceptions. We show that
reduced models with either more than one primary outcome
per action or with some exceptional outcomes (or both) can
be beneficial, producing significantly better value.

We also investigate how to generate a good reduced
model, be it a determinization or not. We show that the
choice of primary outcomes is non-trivial, even when reduc-
tions are limited to determinization. We introduce a greedy
algorithm that can produce good reduced models automat-
ically, and evaluate its performance, again showing that
performance can be improved relative to a baseline deter-
minization technique or directly solving the original model.

Finally, to facilitate the use of these methods in practice,
we introduce a compilation technique that allows one to eas-
ily solve reduced models by compiling a PPDDL description
of the original problem into a description of the desired re-
duced model. Solving such compiled reduced models, we
were able to obtain results that are competitive with state-
of-the-art planners on a range of benchmark problems.

These results extend previous work demonstrating the
value of reduced models in reinforcement learning (Ravin-
dran and Barto 2002) and planning under uncertainty (Dean
et al. 1997; Dean and Givan 1997; Givan et al. 2003). In
particular, they place work on determinization in a broader
context and lay the foundation for further work to increase
the benefits offered by planning with reduced models.

There are a number of aspects of our approach that can be
further improved. First, we are exploring better ways to re-
distribute the probabilities of exceptional outcomes among
the primary outcomes based on various measures of struc-
tural similarity of the outcomes (e.g., similarity in outcome
states or their values). Second, we can use an anytime ver-
sion of LAO* (Zilberstein 1996), allowing us to produce the
new partial plan within any given budget of time. The in-
complete plan could be executed while we continue to in-
crease the envelope of reachable states until it covers fully
the desired reduced model. Third, we can start re-planning
as soon as the first exception occurs, rather than wait for k
exceptions to occur. In fact, planning could even start before
any exception happens, simply by projecting the most likely
exceptions to happen and planning ahead just in case, as in
the continual computation framework (Horvitz 2001). Fi-
nally, we are developing more efficient ways to explore the
space ofMk

l -reductions and find good ones, for example, by
using sampling to estimate the regret of labeling an outcome
as primary. These promising research avenues will further
increase the impact of planning with reduced models.

Acknowledgments
Support for this work was provided in part by the National
Science Foundation under grant IIS-1116917.

References
Blai Bonet and Hector Geffner. Labeled RTDP: Improving
the convergence of real-time dynamic programming. In Pro-
ceedings of the 13th International Conference on Automated
Planning and Scheduling (ICAPS’03), pages 12–21, 2003.
Daniel Bryce and Olivier Buffet. 6th international planning
competition: Uncertainty part. In Proceedings of the 6th
International Planning Competition (IPC’08), 2008.
Thomas Dean and Robert Givan. Model minimization in
Markov decision processes. In Proceedings of the 14th
National Conference on Artificial Intelligence (AAAI’97),
pages 106–111, 1997.
Thomas Dean, Robert Givan, and Sonia Leach. Model re-
duction techniques for computing approximately optimal so-
lutions for Markov decision processes. In Proceedings of
the 13th Conference on Uncertainty in Artificial Intelligence
(UAI’97), pages 124–131, 1997.
Carmel Domshlak. Fault tolerant planning: Complexity and
compilation. In Proceedings of the 23rd International Con-
ference on Automated Planning and Scheduling (ICAPS’13),
pages 64–72, 2013.
Robert Givan, Thomas Dean, and Matthew Greig. Equiva-
lence notions and model minimization in Markov decision
processes. Artificial Intelligence, 147(1–2):163–223, 2003.
Eric A. Hansen and Shlomo Zilberstein. Heuristic search
in cyclic AND/OR graphs. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence (AAAI’98),
pages 412–418, Madison, Wisconsin, 1998.
Eric A. Hansen and Shlomo Zilberstein. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence, 129(1-2):35–62, 2001.
Jörg Hoffmann and Bernhard Nebel. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research, 14(1):253–302, 2001.
Eric Horvitz. Principles and applications of continual com-
putation. Artificial Intelligence, 126(1-2):159–196, 2001.
Rune M. Jensen, Manuela M. Veloso, and Randal E. Bryant.
Fault tolerant planning: Toward probabilistic uncertainty
models in symbolic non-deterministic planning. In Pro-
ceedings of the 14th International Conference on Auto-
mated Planning and Scheduling (ICAPS’04), pages 335–
344, 2004.
Emil Keyder and Hector Geffner. The HMDPP planner for
planning with probabilities. The ICAPS 3rd International
Probabilistic Planning Competition (IPPC’08), 2008.
Andrey Kolobov, Mausam, and Daniel S. Weld. A theory
of goal-oriented MDPs with dead ends. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence
(UAI’12), pages 438–447, 2012.
Iain Little and Sylvie Thiebaux. Probabilistic planning vs.
replanning. In Proceedings of the ICAPS’07 Workshop on
the International Planning Competition: Past, Present and
Future, 2007.
Michael L. Littman. Probabilistic propositional planning:
Representations and complexity. In Proceedings of the 14th

National Conference on Artificial Intelligence (AAAI’97),
pages 748–754, 1997.
George L. Nemhauser, Laurence A. Wolsey, and Marshall L.
Fisher. An analysis of approximations for maximizing
submodular set functions–I. Mathematical Programming,
14(1):265–294, 1978.
Tuan Nguyen, Subbarao Kambhampati, and Minh Do. Syn-
thesizing robust plans under incomplete domain models.
Neural Information Processing Systems (NIPS’13), 2013.
Luis Pineda, Yi Lu, Shlomo Zilberstein, and Claudia V.
Goldman. Fault-tolerant planning under uncertainty. In Pro-
ceedings of the 23rd International Joint Conference on Ar-
tificial Intelligence (IJCAI’13), pages 2350–2356, Beijing,
China, 2013.
Balaraman Ravindran and Andrew G. Barto. Model mini-
mization in hierarchical reinforcement learning. In Proceed-
ings of the 5th International Symposium on Abstraction, Re-
formulation and Approximation (SARA’02), pages 196–211,
2002.
Richard S. Sutton and Andrew G. Barto. Introduction to
Reinforcement Learning. MIT Press, Cambridge, MA, USA,
1998.
Florent Teichteil-Königsbuch, Ugur Kuter, and Guillaume
Infantes. Incremental plan aggregation for generating poli-
cies in MDPs. In Proceedings of the 9th International Con-
ference on Autonomous Agents and Multiagent Systems (AA-
MAS’10), pages 1231–1238, 2010.
Felipe W. Trevizan and Manuela M. Veloso. Short-sighted
stochastic shortest path problems. Proceedings of the
22nd International Conference on Automated Planning and
Scheduling (ICAPS’12), pages 288–296, 2012.
Sung Wook Yoon, Alan Fern, and Robert Givan. FF-Replan:
A baseline for probabilistic planning. In Proceedings of the
17th International Conference on Automated Planning and
Scheduling (ICAPS’07), pages 352–359, 2007.
Sungwook Yoon, Alan Fern, Robert Givan, and Subbarao
Kambhampati. Probabilistic planning via determinization
in hindsight. In Proceedings of the 23rd National Confer-
ence on Artificial Intelligence (AAAI’08), pages 1010–1016,
2008.
Sungwook Yoon, Wheeler Ruml, J. Benton, and Minh B.
Do. Improving determinization in hindsight for online prob-
abilistic planning. In Proceedings of the 20th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’10), pages 209–216, 2010.
Håkan L. S. Younes, Michael L. Littman, David Weissman,
and John Asmuth. The first probabilistic track of the inter-
national planning competition. Journal of Artificial Intelli-
gence Research, 24(1):851–887, 2005.
Shlomo Zilberstein. Using anytime algorithms in intelligent
systems. AI Magazine, 17(3):73–83, 1996.

