
Trajectory Constraint Heuristics for Optimal Probabilistic Planning

John R. Peterson1, Anagha Kulkarni2, Emil Keyder2, Joseph Kim2, Shlomo Zilberstein1

1 College of Information and Computer Sciences,
University of Massachusetts Amherst, MA, USA
2 Invitae Corporation, San Francisco, CA, USA

{jrpeterson, shlomo}@cs.umass.edu, {emil.keyder, anagha.kulkarni, joseph.kim}@invitae.com

Abstract

Search algorithms such as LAO∗ and LRTDP coupled with
admissible heuristics are widely used methods for optimal
probabilistic planning. Their effectiveness depends on the de-
gree to which heuristics are able to approximate the optimal
cost of a state. Many common domain-independent heuris-
tics, however, rely on determinization, and ignore the proba-
bilities associated with different effects of actions. Here, we
present a method for decomposing a probabilistic planning
problem into subproblems by constraining possible action
outcomes. Admissible heuristics evaluated for each subprob-
lem can then be combined via a weighted sum to obtain an
admissible heuristic for the original problem that takes into
account a limited amount of probabilistic information. We use
this approach to derive new admissible heuristics for proba-
bilistic planning, and show that for some problems they are
significantly more informative than existing heuristics, giving
up to an order of magnitude speedup in the time to converge
to an optimal policy.

1 Introduction
In optimal probabilistic planning, planners must explore
the state space of a problem and find a policy with mini-
mum expected cost. The most effective techniques for solv-
ing such problems use admissible heuristics in conjunction
with optimal search algorithms such as LAO∗ (Hansen and
Zilberstein 2001) or LRTDP (Bonet and Geffner 2003b).
Such heuristics can also benefit fast approximate solvers
such as FLARES (Pineda, Wray, and Zilberstein 2017).
While a number of different methods for obtaining admis-
sible domain-independent heuristics have been proposed,
these methods often use a form of determinization, which
corresponds to an assumption that the agent can freely
pick between the possible outcomes of an action instead
of these occurring probabilistically. Once problems have
been determinized, heuristics can be obtained by comput-
ing shortest paths in the directed graph representing the state
space (Bonet and Geffner 2003b), or using other techniques
from the classical planning literature (Bonet and Geffner
2005; Teichteil-Königsbuch, Vidal, and Infantes 2011).

While determinization provides a convenient way to mod-
ify a problem so that it is easier to compute admissible

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

heuristics, estimates obtained this way can be uninformative.
In addition to any inherent limitations – such as ignoring
delete effects – heuristics may assume that an outcome with
arbitrarily low probability occurs when an action is applied.
Taking this to an extreme, the addition of a 0-cost action that
can be applied in the initial state and leads to the goal with
probability ε but a dead end with probability 1− ε will lead
to a heuristic estimate of 0 on the determinized problem.

A less extreme version of this phenomenon can be ob-
served in a family of problems that is of particular interest
here, referred to as information-gathering domains. In these
domains, an agent must gather various pieces of information
about the world, each of which has a known multinomial
distribution over its possible values, and then choose among
strategies of differing cost that are enabled or ruled out by
the discovered information. In this setting, heuristics based
on determinization always assume the values of information
variables that allow the cheapest possible course of action,
and therefore underestimate the true cost (which is closer to
a weighted average of the costs of the strategies, with the
weight for each given by the likelihood of the information
enabling the strategy). Such domains motivate the heuristics
developed in this paper, and are discussed in Section 6.

To address this limitation of determinization-based
heuristics, we introduce the notion of trajectory constraints,
which limit the outcomes of probabilistic actions to a sub-
set of their outcomes in the original problem. We show that
a carefully chosen set of such constraints induces a sub-
problem whose optimal cost reflects the cost of the original
problem when the probabilistic outcomes of the constrained
actions match those specified in the constraints. If a set of
trajectory constraints is chosen such that its elements are
pairwise disjoint and exhaustive (defined formally below),
admissible estimates computed for each subproblem can be
combined with an appropriate weighting to obtain a globally
more informative, but still admissible, heuristic. The weight-
ing for a subproblem is computed roughly as the probability
of the imposed constraint occurring in the original problem.
These estimates are more informative than the underlying
base heuristic evaluated on the original problem, even when
the base heuristic is itself based on determinization.

We now introduce the basic formalisms and notation used
in this paper, and briefly discuss related work. We then for-
mally define trajectory constraints, discuss their properties,

and introduce our heuristic approach. Finally, we present
the information-gathering domains that motivated this work,
and conclude with experimental results, showing that heuris-
tics with trajectory constraints can be more informative
than their counterparts computed on the original problem.
In our experiments, the approach yields up to an order-of-
magnitude speedup in computing an optimal policy.

2 Background & Related Work
Problem. A Stochastic Shortest Path Problem (SSP) is a
tuple M = 〈S,A, T,C, s0, Sg〉, where S is a finite set of
states, A a finite set of actions, T a transition function map-
ping S ×A× S → [0, 1], with T (s, a, s′) the probability of
transitioning to s′ ∈ S when a ∈ A is applied in s ∈ S, C
a cost function S × A → R≥0, where C(s, a) is the imme-
diate cost of taking action a ∈ A in state s ∈ S, s0 ∈ S the
initial state, and Sg ⊆ S the set of goal states. We assume
that C(s, a) =∞ when a is inapplicable in s.

A solution to an SSP is a policy π : S → A indicating an
action to be taken in each state, where an optimal policy π∗
minimizes the expected cumulative cost to a goal from the
initial state V π(s0), where

V π(s) = C(s, π(s)) +
∑
s′∈S

T (s, π(s), s′)V π(s′) (1)

if s 6∈ Sg and 0 otherwise. A proper policy reaches
some sg ∈ Sg with probability 1. In this work we
assume that a proper policy exists for any SSP M .
We denote an ordered sequence of transitions as λ =
〈(s1, a1, s

′
1), . . . , (sk, ak, s

′
k)〉, where ∀ i, T (si, a, s

′
i) > 0,

and write the subsequence of λ corresponding to applica-
tions of a particular action a as λa = 〈(s, a, s′) | (s, a, s′) ∈
λ〉. We call a sequence λ, where ∀ i, 1 < i ≤ k, s′i−1 = si
and s′k ∈ Sg , a trajectory, and denote it with τ . We write
π |= τ to denote that a trajectory τ is possible under π. We
define the probability of a sequence of transitions λ (or tra-
jectory τ) to be p(λ) =

∏
(s,a,s′)∈λ T (s, a, s′), and its cost

to be C(λ) =
∑

(s,a,s′)∈λ C(s, a).
In this work, we assume a STRIPS-like representation of

SSPs, given by Π = 〈F, I,O, C, G〉, where F is a set of
fluents, the full state set is a subset of the power set of F
denoted P(F), with state s ⊆ F described by the set of
fluents true in s, I ⊆ F is the initial state,G ⊆ F is the goal,
with Sg = {s | G ⊆ s}, O is the set of operators, where
each operator o ∈ O is given by a precondition pre(o) and
a set of n probabilistic effects eff(o) = {e1

o, . . . , e
n
o} with

respective probabilities p1
o, . . . , p

n
o such that

∑n
i=1 p

i
o = 11,

and each effect is of the form eio = 〈add(eio), del(eio)〉, and
C is a cost function O → R≥0. An operator o is applicable
in s if pre(o) ⊆ s. We denote the result of an effect eio in
s with s[eio] = s \ del(eio) ∪ add(eio). We denote the set of
states {s | pre(o) ⊆ s} in which o is applicable with Spre(o).

Heuristics. A heuristic function h : S → R≥0 estimates
V π
∗
(s), and h is said to be admissible if h(s) ≤ V π

∗
(s)

1Languages such as PPDDL describe an operator by enumerat-
ing a set of independent probabilistic effects, here we assume a set
of effects of which only one is triggered on action application.

for all s. Admissible heuristics are typically computed as
exact or lower bounds on the costs of relaxed versions of the
original problem.

A variety of admissible domain-independent heuristics
have been developed for both classical and probabilis-
tic planning. In the deterministic setting, these include
those based on the delete relaxation (Bonet and Geffner
2001), landmarks (Helmert and Domshlak 2009), merge-
and-shrink abstractions (Helmert et al. 2014), and others. In
the probabilistic setting, heuristics are often based on clas-
sical techniques applied to a determinized problem. For ex-
ample, hmin (Bonet and Geffner 2003b) is obtained as the
optimal cost of this problem, computed as the shortest path
in the problem’s state space. When the problem is described
in languages such as PPDDL (Younes and Littman 2004) or
RDDL (Sanner 2010), heuristics developed for determinis-
tic planning that operate on problem descriptions in terms
of fluents and operators have been successfully extended
and applied to SSPs (Bonet and Geffner 2005; Teichteil-
Königsbuch, Vidal, and Infantes 2011). Recently, occupa-
tion measure heuristics have been developed that directly
incorporate probabilistic information (Trevizan, Thiébaux,
and Haslum 2017), and that are similar to operator-counting
heuristics (Pommerening et al. 2014) in deterministic plan-
ning. Other approaches have extended pattern database
heuristics developed for classical planning to probabilistic
planning (Klößner et al. 2021).

The heuristics introduced in this paper use hmax, an admis-
sible classical planning heuristic that computes estimates in
the problem relaxation in which delete effects are ignored
(Bonet and Geffner 2001), as a base heuristic. To derive a
polynomial approximation of the NP-hard optimal delete re-
laxation heuristic, hmax makes use of the independence as-
sumption and computes estimates of the cost of a set of flu-
ents as the cost of the most expensive fluent in that set.

There is also a rich literature of approximate solu-
tion techniques for SSPs, including approaches involv-
ing replanning (Yoon, Fern, and Givan 2007; Teichteil-
Königsbuch, Kuter, and Infantes 2010; Yoon et al. 2010;
Keyder and Geffner 2008b), short-sightedness (Bonet and
Geffner 2003a; Pineda, Wray, and Zilberstein 2017), and
sampling (Kearns, Mansour, and Ng 2002; Kocsis and
Szepesvári 2006; Keller and Helmert 2013).
Search Algorithms. Optimal policies for SSPs are generally
computed with heuristic search algorithms such as LAO∗
(Hansen and Zilberstein 2001), RTDP (Barto, Bradtke, and
Singh 1995), and LRTDP (Bonet and Geffner 2003b). Used
with admissible heuristics, these algorithms search for an
optimal partial policy, in which the best action is computed
only for states that are potentially reached under the policy.
When a policy π is proper, Equation 1 is well-defined for the
set of states reachable under π.
Notation. In the following sections, we use ~c to denote an
ordered sequence, and~c[i] its ith element.~c[[i = c′]] denotes
~c in which~c[i] has been replaced with c′, but all other values
are unchanged. We sometimes abuse notation and write v ∈
~c to mean ∃i(~c[i] = v). ~vk for a scalar value v denotes the
sequence consisting of k repetitions of v.

s0 sg

T (s0, a, sg) = 0.5

T (s0, a, s0) = 0.5

(a) SSP 1, A = {a}

s0 sg

T (s0, a, sg) = 0.5

T (s0, b, sg) = 0.3

T (s0, b, s0) = 0.7

T (s0, a, s0) = 0.5

(b) SSP 2, A = {a, b}

Figure 1: Two simple SSPs, both with cost h∗(s0) = 2.

3 Trajectory Constraints
While efficient, determinization-based admissible heuristics
are commonly used to guide heuristic search for SSPs, they
tend to provide poor heuristic estimates as they ignore out-
come probabilities and may therefore dramatically under-
estimate the true expected cost to the goal. Trajectory con-
straints try to overcome these disadvantages by constructing
multiple deterministic subproblems and limiting the action
outcomes available in each for the first few applications of
the constrained actions. Standard all-outcome determiniza-
tions can then be constructed for each subproblem sepa-
rately. Heuristics evaluated on these subproblems are more
informed in aggregate, as they are forced to consider a larger
set of outcomes, instead of picking the most convenient one.

Consider the example shown in Figure 1a, where a is as-
sumed to have unit cost C(·, a) = 1. To solve this problem,
we might consider two separate subproblems; one in which
the first application of a deterministically results in the de-
sired transition to sg , and one in which it deterministically
results in the self-loop transition to s0. In both subproblems,
the outcome of a is unconstrained after that initial applica-
tion. Solving the determinized versions of these two sub-
problems gives optimal costs of 1 and 2 respectively, which
can be combined by weighting each with the probability of
the constraint for the associated subproblem. This gives a
heuristic estimate of (0.5 · 1) + (0.5 · 2) = 1.5, improving
over the h∗(s0) = 1 estimate for the cost of the standard all-
outcomes determinization. By constructing more subprob-
lems that enforce constraints on additional applications of a,
it is possible to obtain even more accurate estimates. When
the first two applications of a both result in s0, the cost is 3,
if the first results in s0 and the second in sg , the cost is 2,
and the cost of the other subproblem in which the first ap-
plication of a results in sg is unchanged at 1, leading to a
heuristic estimate of (0.25 ·3)+(0.25 ·2)+(0.5 ·1) = 1.75.

To specify the construction of subproblems such as those
in the example above, we now introduce the idea of trajec-
tory constraints, which comprise all of the information nec-
essary to describe a single subproblem. Informally, a trajec-
tory constraint γ maps each action a in a subset γa ⊆ A to a
constraint χa, made up of a sequence of sets 〈σa1, . . . , σan〉
in which σaj describes the set of possible outcomes the jth
time that a is applied. The possible outcomes are described
as a set of tuples (sqaj , S

q
aj) for every state sqaj in which a

is applicable (has non-infinite cost), with the only allowed
transitions from sqaj under a being s′ ∈ Sqaj . More formally:

Definition 1 (Trajectory constraint). Given an SSP M =
〈S,A, T,C, s0, Sg〉, a trajectory constraint γ consists of
a set of pairs {(a1, χa1), . . . , (ak, χak)}, where each χai
is an ordered sequence 〈σai1, . . . , σain〉, and each σaij
is a set of tuples {(s1

aij
, S1
aij

), . . . , (sqaij , S
q
aij

)}, where
∀i, l, ai 6= al, ∀(sraij , S

r
aij

) ∈ σaij , S
r
aij
6= ∅, ∀s′ ∈

Sraij , T (sraij , ai, s
′) > 0, and {s | (s, S) ∈ σaj} = {s |

C(s, a) 6=∞}.
Example 1. The subproblem in which a results in the self-
loop s0 → s0 the first two times it is applied is described by
the trajectory constraint

γ = {(a, 〈{(s0, {s0})}, {(s0, {s0})}〉)}

We refer to the set of actions {a | 〈a, ·〉 ∈ γ} constrained
by γ as γa. We say that a sequence of transitions λa complies
with γ if a 6∈ γa or ∀j, 1 ≤ j ≤ min(|λa|, |χa|), λa[j] =
(sj , a, s

′
j) ∧ ∃(s, S) ∈ σaj , (s = sj ∧ s′j ∈ S). In other

words, a sequence of transitions for a complies with γ if
either a is unconstrained by γ, or if the transition at every
application index j that is constrained by γ is one of the
transitions listed in σaj . We say that a sequence λ complies
with γ if λa complies with γ for all {a | (s, a, s′) ∈ λ}.

Given an SSP M and a trajectory constraint γ, we can
now formulate an SSP Mγ that incorporates γ as follows:
Definition 2 (Trajectory constrained SSP). Given an SSP
M = 〈S,A, T,C, s0, Sg〉 and a trajectory constraint γ =
{〈a1, χa1〉, . . . , 〈ak, χak〉}, the trajectory-constrained prob-
lem Mγ is given by 〈Sγ , Aγ , T γ , Cγ , sγ0 , Sγg 〉, where

• Sγ = {(s,~c) |s ∈ S ∧ |~c| = k∧

∀i, 1 ≤ i ≤ k, ~c[i] ≤ |χai | ∧ ~c[i] ∈ Z≥0

• Aγ = A
• T γ((s,~c), a, (s′, ~c′)) =

T (s, a, s′) if ~c = ~c′

∧(a 6∈ γa ∨ (a = ai ∈ γa ∧ ~c[i] = |χi|))
T (s,a,s′)

α
j
sa

if a = ai ∈ γa ∧ j = ~c[i] + 1 ∧ (s, S′) ∈ σaij
∧s′ ∈ S′ ∧ ~c′ = ~c[[i = j]]

0 otherwise
where αjsa =

∑
{s′′|(s,S′)∈σaij∧s

′′∈S′} T (s, a, s
′′).

• Cγ((s,~c), a) = C(s, a)

• sγ0 = (s0,~0
k)

• Sγg = {(s,~c) | s ∈ Sg ∧ (s,~c) ∈ Sγ}
In order to ensure that the constraint on the action out-

comes is satisfied, the states of the original SSP are aug-
mented with a sequence ~c whose values are non-negative
integers that track the number of times that each of the con-
strained actions a ∈ γa has been applied. In the initial state
sγ0 , this value is 0 for all a ∈ γa. The transition function
T γ is identical to T for a 6∈ γa as long as ~c remains un-
changed. When a = ai ∈ γa and its current application
count is less than the number of constrained applications,
T γ((s,~c), ai, (s

′, ~c′)) is renormalized with a denominator
that considers only the constrained outcomes available at
state s for the jth application of ai, and transitions are re-
stricted to ensure that the counts vector ~c is correctly up-
dated by incrementing the corresponding entry. After ai has
been applied |χai | times, ~c[i] = |χai | becomes true and the

transition function is identical to that of the original prob-
lem. Goal states in M remain goal states in Mγ regardless
of the value of ~c, and the cost function is unchanged.
Example 2. Incorporating γ from Example 1 into the SSP
in Figure 1a, initial state (s0, 〈0〉) encodes that a has been
applied 0 times. On the first application of a, the only al-
lowed transition is to (s0, 〈1〉) with probability 1, since the
numerator and denominator in the second case of T γ are
equal. The same is true for the second application of a in
(s0, 〈1〉). Once state (s0, 〈2〉) is reached, there are no fur-
ther constraints and a transitions to (s0, 〈2〉) or (sg, 〈2〉)
(the only reachable goal state) with equal probability.

4 Trajectory Constraint Heuristics
We now turn to the problem of how to use trajectory-
constrained SSPs to obtain more informative heuristic es-
timates. Intuitively, for a set of trajectory constraints to be
useful for the purposes of defining a heuristic, it must satisfy
two conditions: (i) the trajectory constraints must not “over-
lap” with each other in a way that leads to overcounting of
cost, and (ii) all possible transition sequences must comply
with at least one of the trajectory constraints in the set so
that possible solutions are not omitted. We formalize these
properties as disjointness and exhaustiveness respectively:
Definition 3 (Disjoint trajectory constraints). Given
an SSP M = 〈S,A, T,C, s0, Sg〉, trajectory con-
straints γi = {(ai1, χai1), . . . , (ain, χain)} and γj =

{(aj1, χaj1), . . . , (ajm, χajm)} are disjoint iff there exists an
action a ∈ γai ∩ γaj such that no sequence of transitions
λa with |λa| = max(|χia|, |χja|) that complies with both γi
and γj exists.
Example 3. For the example shown in Figure 1b,

γ1 = {(a, 〈{(s0, {s0})}, {(s0, {s0})}〉), (b, 〈{(s0, {s0})}〉)},
γ2 = {(a, 〈{(s0, {s0})}, {(s0, {sg})}〉), (b, 〈{(s0, {s0})}〉)}
can be seen to be disjoint, considering action a. However,
neither γ1 nor γ2 is disjoint with

γ3 = {(a, 〈{(s0, {s0})}〉), (b, 〈{(s0, {s0})}〉)}.
Definition 4 (Exhaustive trajectory constraints). Given an
SSPM = 〈S,A, T,C, s0, Sg〉, a set of trajectory constraints
Γ = {γ1, . . . , γn} is exhaustive iff for any sequence of tran-
sitions λ, there exists a trajectory constraint γi ∈ Γ such
that λ complies with γi.
Example 4. The constraint set Γ = {γ1, γ2, γ3} with

γ1 = {(a, 〈{(s0, {s0})}, {(s0, {s0})}〉), (b, 〈{(s0, {s0})}〉)},
γ2 = {(a, 〈{(s0, {s0})}, {(s0, {sg})}〉), (b, 〈{(s0, {s0})}〉)},
γ3 = {(a, 〈{(s0, {sg})}〉)}
is not exhaustive, as there is no γi ∈ Γ such that
λ = 〈(s0, a, s0), (s0, b, sg)〉 complies with γi. Adding
γ4 = {(b, 〈{(s0, {sg})}〉)} to Γ would make it exhaus-
tive. However, note that γ3 and γ4 are not disjoint as
〈(s0, a, sg)〉 and 〈(s0, b, sg)〉 comply with both. Adding
γ5 = {(a, 〈{(s0, {s0})}〉), (b, 〈{(s0, {sg})}〉)} to Γ instead
would render it both exhaustive and pairwise disjoint.

If a set of trajectory constraints Γ is both pairwise dis-
joint and exhaustive, any execution trajectory possible in
the original problem M is permitted by at least one of the
constrained problems Mγ for γ ∈ Γ, and all transition se-
quences of sufficient length are partitioned among the vari-
ous Mγ , even if shorter trajectories may belong to multiple.

Finally, we introduce a restriction on trajectory con-
straints that makes their behavior and properties easier to
reason about:
Definition 5 (Regular trajectory constraint). Given an SSP
M = 〈S,A, T,C, s0, Sg〉, a trajectory constraint γ is reg-
ular iff for every a ∈ γa and σaj ∈ χa, ∃paj such that for
every tuple (s, S) ∈ σaj ,

∑
s′∈S T (s, a, s′) = paj .

Regularity ensures that for each constrained action a at
application index j, the summed transition probabilities out
of any constrained state s total to a unique value paj . While
regularity may at first seem an overly restrictive property,
note that for typical state spaces expressed in PPDDL or
RDDL descriptions of SSPs, it is naturally satisfied by choos-
ing a subset E ⊆ eff(o) of the probabilistic effects of an
operator o to be active the jth time that the action is ex-
ecuted. The choice of E naturally induces a set of tuples
σoj = {(s, S) | s ∈ Spre(o) ∧ S = {s[eio] | eio ∈ E}}.

Given a set of regular trajectory constraints Γ that is pair-
wise disjoint and exhaustive, it can be shown that a weighted
sum of admissible heuristics computed for {Mγi | γi ∈ Γ}
is also admissible, where the weight for each is given by the
probability of the associated γi:
Definition 6 (Probability of a regular trajectory constraint).
Given an SSP M = 〈S,A, T,C, s0, Sg〉 and a regular tra-
jectory constraint γ = 〈(a1, χa1), . . . , (ak, χak)〉, the prob-
ability pγ of γ is given by

∏
{χai |(ai,χai)∈γ}

p(χai), where
for χai = 〈σai1, . . . , σain〉, p(χai) =

∏
σaij∈χai

p(σaij),
where p(σaij) =

∑
s′∈S T (s, a, s′), in which (s, S) ∈ σaij .

Note that the choice of the specific (s, S) in the last part
of the definition does not matter as the summed transition
probabilities are guaranteed to be equal due to regularity. In-
tuitively, the probability of a trajectory constraint pγ is the
probability of the transitions indicated in the constraint oc-
curring in the original unconstrained problem M .
Lemma 1. For a set of constraints Γ that is pairwise dis-
joint, exhaustive and regular,

∑
γ∈Γ p

γ = 1.
This can be seen by observing that for any action a that is

constrained in γi ∈ Γ but not in γj ∈ Γ, or that has a differ-
ent number of constrained repetitions in γi than γj , adding
additional dummy χa (if not present) or additional dummy
σaj (if the number of repetitions is different) that list all pos-
sible transitions for a results in an equivalent Γ in which a
is constrained for the same number of repetitions in each
γ ∈ Γ. If the possible transitions for |χa| instances of each
a from a state s in which a is applicable are enumerated, it
can be seen that each sequence of transitions complies with
exactly one γi (since Γ is disjoint and exhaustive), and that
the summed probability of the transitions belonging to γi
is equal to pγi by construction. Since all sequences of tran-
sitions for Γa for a particular state s are enumerated, their
probabilities sum to 1, and therefore

∑
γ∈Γ p

γ = 1.

Example 5. In the trajectory constraint set Γ =
{γ1, γ2, γ3, γ5} defined in Example 4, all constraints are
trivially regular, since |σaj | = 1 for all a, j. The constraint
probabilities for constraints in Γ are: pγ1 = pγ2 = 0.5 ∗
0.5 ∗ 0.7 = 0.175, pγ3 = 0.5, and pγ5 = 0.5 ∗ 0.3 = 0.15,
with

∑
γ∈Γ p

γ = 0.175 + 0.175 + 0.5 + 0.15 = 1.

We now introduce the weighted trajectory constraint
heuristic:

Definition 7 (Weighted Trajectory Constraint Heuristic).
Let M be an SSP, Γ = {γ1, . . . γk} a set of trajectory con-
straints, and h a heuristic. Denote the estimate given by h
evaluated on state s in SSP M ′ as h(s,M ′). The weighted
trajectory constraint heuristic htc for base heuristic h and Γ
is given by:

htc[h,Γ](s,M) =
∑
γ∈Γ

pγh((s,~0k),Mγ)

Theorem 1. Given an SSP M , an admissible heuristic h,
and a set of trajectory constraints Γ = {γ1, . . . , γk} that
is pairwise disjoint, exhaustive, and regular, htc[h,Γ] is an
admissible heuristic for M .

Proof Sketch. We give a proof sketch for the case where
|χ| ≤ 1 for all constraints, and sometimes omit the nota-
tion of applied action counts for simplicity. Let πM be an
optimal policy for M , V ∗γ the optimal value function for
Mγ , and V π

M,γ

the value function in Mγ following pol-
icy πM,γ((s,~c)) := πM (s). Since πM is proper in M , ac-
tions are constrained by γ for a finite number of applica-
tions, and successors in Mγ have nonzero probability in M ,
πM,γ is proper in Mγ . Since h is admissible and ∀γ ∈ Γ

V ∗γ((s,~0k)) ≤ V πM,γ ((s,~0k)),∑
γ∈Γ

pγh((s,~0k),Mγ) ≤
∑
γ∈Γ

pγV π
∗γ
((s,~0k)) (admissibility)

≤
∑
γ∈Γ

pγV π
M,γ

((s,~0k)) (def. of V ∗)

We argue that
∑
γ∈Γ p

γV π
M,γ

((s,~0k)) = V π
M

(s). First
observe that the (potentially infinite) set of trajectories pos-
sible under πM and the union of the sets of trajectories pos-
sible under each πM,γ are identical, since π is not modified
and every possible outcome of each action is captured in
some γi due to exhaustivity. We characterize V π

M

(s) as the
sum of the (potentially infinite) series of the product of the
probability of reaching the goal via trajectory τ while fol-
lowing πM and the cost of τ :

V π
M

(s) =
∑

{τ |πM |=τ}

pM (τ) · C(τ)

Since C(τ) is unchanged betweenM andMγ , and for every
{τ | πM |= τ} ∃γ s.t. πM,γ |= τ , we must show that the
effective multiplier for C(τ) summed over all γ is equal to

its probability in M :∑
γ∈Γ∧γ|=τ

pγ · pMγ (τ)

=
∑

γ∈Γ∧γ|=τ

pγ ·
∏

{(s,a,s′)∈τ |a6∈γa}

T (s, a, s′)
∏

{(s,a,s′)∈τ |a∈γa}

T γ(s, a, s′)

=
∑

γ∈Γ∧γ|=τ

∏
a∈γa

αγsa ·
∏

{(s,a,s′)∈τ |a6∈γa}

T (s, a, s′) ·

∏
{(s,a,s′)∈τ |a∈γa}

T (s, a, s′)

αγsa

= pM (τ) ·
∑

γ∈Γ∧γ|=τ

∏
a∈γa

αγsa ·
∏

{(s,a,s′)∈τ |a∈γa}

1

αγsa

= pM (τ) ·
∑

γ∈Γ∧γ|=τ

∏
a∈γa∧a6∈τ

αγsa

where αsa is defined in Definition 2.2 We construct Γ̂ =
{γ̂ | γ ∈ Γ ∧ γ |= τ} where γ̂ = {(a, χ) | (a, χ) ∈ γ ∧ a 6∈
τ}, and argue that it is pairwise disjoint, exhaustive, and reg-
ular. Then

∑
γ∈Γ∧γ|=τ

∏
a∈γa∧a6∈τ α

γ
sa =

∑
γ̂∈Γ̂ p

γ̂ = 1.0,

by Lemma 1. Γ̂ is regular, since all entries γ̂ ∈ Γ̂ appear in
Γ which is regular by assumption. For disjointness, note that
for γ̂1, γ̂2 ∈ Γ̂, γ1, γ2 ∈ Γ are disjoint by assumption, and
there exist a, λa s.t. γ1 |= λa, γ2 6|= λa. Since γ1, γ2 |= τ

by construction of Γ̂, a 6∈ τ ,3 and γ̂1, γ̂2 contain the same
entries for a as γ1, γ2, and are therefore also disjoint. For
exhaustiveness, consider for a contradiction a minimal λ sat-
isfying @γ̂ ∈ Γ̂ s.t. γ̂ |= λ.4 Since λ is minimal, no action a
appears in both λ and τ , since ∀γ̂ ∈ Γ̂, γ̂ |= τ . Consider the
concatenation λ′ = λ⊕ τ . Since Γ is exhaustive by assump-
tion, ∃γ ∈ Γ(γ |= λ′), and by definition, γ |= τ and γ |= λ.
Then γ̂ ∈ Γ̂ and γ̂ |= λ, a contradiction.

For intuition regarding how the |χ| ≤ 1 assumption can
be relaxed, note that given an MDP M , we can generate
an equivalent MDP M ′ in which a ∈ A is replaced with
a1, . . . , ak where each ai is identical to a except in requir-
ing that ai−1 has already been applied in order to enable it,
and a copy of the original action a requires that ak has been
applied. Γ for M that constrains the first k applications of a
is then equivalent to Γ′ for M ′ that constrains only the first
applications of a0, . . . , ak.

5 Building Trajectory Constraint Heuristics
In the previous section we formulated sufficient criteria for
a set of trajectory constraints to define an admissible heuris-
tic. We now consider the problem of choosing a specific Γ
to maximize the informativeness of htc[h,Γ] while keeping
Γ reasonably small. Since our primary interest in this work
is in showing the utility of the htc framework in large state
spaces, we use the hmax heuristic, which is cheap to compute
and scales with the number of fluents, rather than the size

2αsa includes s in the subscript to match Definition 2. The par-
ticular s does not matter here due to the regularity assumption.

3This relies on the simplifying assumption of |χ| ≤ 1.
4This relies on the simplifying assumption of |χ| ≤ 1.

Algorithm 1: Selecting Γ for htc(n)

Γ← {∅}
FIXPOINT ← FALSE
while ¬FIXPOINT do

FIXPOINT ← TRUE
Γ′ ← ∅
for γ ∈ Γ do

RP ← COMPUTE-RELAXED-PLAN(Mγ)
RP-PROB ← {eioγ | eioγ ∈ RP ∧ |eff(oγ)| > 1}
if RP-PROB = ∅ ∨ |γ| = n then

Γ′ ← Γ′ ∪ {γ}
continue

end if
eioγ ← arg minei

oγ
∈RP-PROB p

i
oγ

γ′ ← γ ∪ {(oγ , 〈{(s, {s[eioγ]})}〉) | s ∈ Spre(oγ)}
γ′′ ← γ ∪ {(oγ , 〈{(s, {s[ejoγ] | ejoγ ∈ eff(oγ)∧

ejoγ 6= eioγ})}〉)
| s ∈ Spre(oγ)}

Γ′ ← Γ′ ∪ {γ′, γ′′}
FIXPOINT ← FALSE

end for
Γ← Γ′

end while

of the state space, as our base heuristic. It is therefore also
a natural choice to inform the selection of a set of relevant
constraints Γ in every state encountered during search. We
note that the htc framework does not depend on the use of
hmax specifically, and could use any other probabilistic plan-
ning heuristic as its base heuristic.

To obtain an informative Γ, we consider the relaxed plan
computed using hmax best supporters.5 We select the oper-
ators associated with low-probability determinized effects
that are unlikely to occur in the original problem, but which
the heuristic (and therefore the computed relaxed plan) relies
on. We then build trajectory constraints that limit the possi-
ble effects of these operators in order to force the planner
to consider the consequences when the desired effect is not
obtained. This procedure is detailed in Algorithm 1. Note
that the procedure can be performed for each unique state
encountered during search in order to tailor the set of con-
straints for each heuristic evaluation to each state.

In words, the algorithm computes the hmax best supporters
in each state, and uses these to extract a relaxed plan. Out of
the determinized effects of probabilistic actions that are in-
cluded in the relaxed plan RP, an effect eioγ associated with
a determinized instance of operator oγ with lowest proba-
bility pioγ in the current problem Mγ is selected, and the
current trajectory constraint γ is extended to construct two
new trajectory constraints γ′ and γ′′. In γ′, the constraint is
imposed that the low probability outcome is the only possi-
ble outcome, while in γ′′ the constraint is imposed that only
the other outcomes, currently unused in the relaxed plan, can
occur. For the heuristic denoted htc(n), this process is iter-

5Details of relaxed plan heuristics are outside the scope of this
paper. See Keyder and Geffner (2008a) for further information.

ated until all γ ∈ Γ have size n or no further constraints
can be added to any γ (e.g. because the relaxed plan does
not make use of any probabilistic effects, or the problem has
fewer than n probabilistic actions).
Restricting the Number of Action Applications. Heuristic
estimates given by htc can be greatly improved by incor-
porating information about the maximum number of times
an action can be applied. As an example, if an action can be
proven to be applicable at most once, and its first application
is constrained, the unconstrained version of the action that is
applicable after the first application can be omitted from the
problem entirely, often greatly (but admissibly) improving
the heuristic estimate. In order to derive these conditions,
we use the well-known method of computing the h2 heuris-
tic (Haslum and Geffner 2000) in the start state to identify
a set of mutex fluent pairs. Given the set of mutex pairs,
we can identify limitations on any (probabilistic) action a
by checking whether the precondition for its ith application
(which will contain fluents representing the fact that a has al-
ready been applied i− 1 times) contains mutex pairs. When
this is the case, a is guaranteed to be applicable at most i−1
times in any legal action sequence. This proves particularly
useful in the information gathering domains discussed be-
low, where actions used by the agent to determine an un-
derlying fact are provably only applicable once, and their
unconstrained versions can be completely omitted.

6 Information-Gathering Domains
One setting in which htc is especially useful is that of
information-gathering domains, where an agent must first
determine the values of a set of (probabilistic) information
variables, and then take actions of varying cost depending
on their values. Determinization-based heuristics give inac-
curate estimates in such settings as they consider only the
most advantageous values that give the lowest cost plans.
In contrast, htc considers plan costs resulting from different
values of information variables and computes estimates that
take into consideration some of their non-optimal values.
The Medical Necessity Domain. A medical services
provider must determine how to obtain reimbursement for
a patient from their insurance provider. The agent must first
establish medical necessity by either (a) using the known
medical history of the patient or (b) querying for additional
information, with cost dependent on the difficulty of obtain-
ing that information. The combinations of facts that make
a patient eligible for reimbursement at different levels are
specified by the insurer. Omitting some details, the domain
consists of the following sets of boolean variables:

• Vperson-info, the patient and relatives’ medical information
(e.g. person-infopatient, has-cardiovascular-disease),

• Vperson-info-known, whether a piece of information is known
(e.g. person-info-knownpatient-sister, has-breast-cancer-diagnosis),

• Vrule-selected, whether a particular medical necessity rule
was chosen (e.g. rule-selectedrule1),

• Vclaim-submitted, whether a billing claim was submitted,

and the following sets of actions:

• Odiscover-person-info(person, attribute) with precondition
¬person-info-knownperson, attribute), deterministic ef-
fect person-info-knownperson, attribute, probabilistic effect
person-infoperson, attribute, with probability pperson, attribute,
and cost attribute-discovery-costattribute,

• Oselect-rule(rule) with precondition φrule given for each rule
by a conjunction over the Vperson-info variables, effect
rule-selected(rule), and cost 0,

• Osubmit-claim(claim) with disjunctive precondition over
Vrule-selected for the rules that enable a particular claim, ef-
fect Vclaim-submitted, and reward equal to the expected reim-
bursement rclaim (or equivalently, cost equal to K− rclaim
for some large constant K).

Some subset of the Vperson-info and Vperson-info-known vari-
ables are true in s0. Given available rules, the agent must
decide what attributes of the patient and relatives to query in
what order and then choose a rule establishing medical ne-
cessity for the patient, while considering (a) the claims and
reimbursements possible under different rules, (b) the prob-
abilities of the different values in Vperson-info and (c) the asso-
ciated discovery costs. If it turns out to be too expensive or
impossible to find a rule that allows a valid claim, the agent
may instead declare that the account cannot be processed.
The goal is to submit a claim or to indicate explicitly that a
claim cannot be submitted.
The Discover-Key Domain. An agent must navigate in a
gridworld to a goal location after obtaining one of several
keys required to enter it. There are a known set of possible
key locations, with independent prior probabilities on each.
The agent must identify a location that has a key, navigate
there to pick it up, and then navigate to the goal. Unit costs
are accumulated at each time step. If no key is available after
querying all locations, the agent must pay a large cost to
bypass the locked door without a key.

We use two versions of this domain. In DK-remote, there
is a monitor at a fixed location, and the agent must be at
the location of the monitor to query for key availability. The
monitor is the only way to identify whether a grid cell con-
tains a key. In DK-local, the agent must visit a possible key
location to check whether it contains a key.
The Canadian Traveller Problem (CTP). An agent must
navigate to a goal location in a graph where edge presence
is initially unknown. The version used here is based on Ey-
erich, Keller, and Helmert (2010) where there is a known
prior on edge availability for each edge. At each step, the
agent can either move from its location if an edge is known
to be present (with cost dependent on the edge), or query the
presence of an edge connected to its current location (with
unit cost). The CTP is known to be intractable to solve op-
timally (Eyerich, Keller, and Helmert 2010; Bnaya, Felner,
and Shimony 2009). We therefore focus on small instances
for evaluation, generated as random Delaunay graphs with
edge costs drawn uniformly from [0, 50].

7 Experiments
We evaluate two versions of the weighted trajectory con-
straint heuristic against hmax, hmin, and a simple lookahead

heuristic as baselines, using the procedure described in Al-
gorithm 1 for n ∈ {1, 2}. We use improved LAO∗ (Hansen
and Zilberstein 2001) and LRTDP (Bonet and Geffner
2003b) as search algorithms. We measure the total time for
convergence to an optimal policy (including preprocessing
and search), as well as the number of node expansions (for
LAO∗) or the number of Dynamic Programming (DP) up-
dates required (for LRTDP).

Experiments were performed on a 3.6GHz AMD CPU
with 8GB of memory. A time limit of 10 minutes was used
for each configuration. Algorithms and heuristics are imple-
mented in C++ as an extension of mdp-lib (Pineda and
Zilberstein 2019), and will be released as an open-source
fork at a future date.

Results are reported in Table 1. For the Medical Necessity
Domain, 10 benchmark instances were used. On all prob-
lems solved by any configuration, htc(2) gives the fastest
time to convergence by at minimum an order of magnitude
and requires the fewest node expansions and DP updates for
both algorithms, with htc(1) the second best.

For each Discover-Key domain, and each grid-size/key-
location configuration, 10 randomly-generated instances
were used. On both domains, htc(2) gives the fastest time
to convergence on all instances for LAO∗, with htc(1)
the second best. On the majority of configurations for
both domains, htc(2) gives the fastest time to convergence
for LRTDP. In DK-remote, htc(2) either outperforms all
heuristics or is competitive with hmin in number of node
expansions for LAO∗. In DK-local, htc(2) outperforms all
heuristics in number of node expansions. Finally, htc(2)
requires the fewest DP updates for all configurations on
both domains. In general, hmin and htc(2) are comparable
in terms of informativeness as measured by node expan-
sions for LAO∗, as the use of multiple subproblems is able
to compensate for the less informative base heuristic hmax.
However, htc(2) tends to converge to a solution faster as it
does not need to construct the full state space to compute its
estimates.

For the Canadian Traveller Problem, 3 randomly gener-
ated instances were used for each graph size. htc(2) outper-
forms all other heuristics in time and node expansions on all
instances solved within the time and memory limit.

For all domains, we additionally tested a single-step
lookahead heuristic, computed as the min over the available
actions of the transition probability-weighted sum of hmax
values for successor states. This baseline performed simi-
larly to or slightly worse than hmax in all cases. These results
are omitted for space. We were unable to compare to sev-
eral other baselines, including occupation measure heuris-
tics (Trevizan, Thiébaux, and Haslum 2017) and probabilis-
tic pattern database heuristics (Klößner et al. 2021), as open
source implementations were not available.

We also considered several domains drawn from
previous probabilistic planning competitions, such as
BLOCKSWORLD and ELEVATORS (Bonet and Givan 2006).
Information-gathering actions are absent in these problems,
and the gain in informativeness with htc is minimal. The tra-
jectory constraints increase heuristic estimates only slightly,
as the constrained actions can be quickly “used up” to al-

LAO∗ LRTDP
htc(1) htc(2) hmax hmin htc(1) htc(2) hmax hmin

t n t n t n t n t n t n t n t n

M
ed

ic
al

N
ec

es
si

ty

1 6.92 609 1.50 327 16.90 912 23.40 909 1.75 41384 0.59 5734 4.08 130007 10.63 129342
2 6.89 1623 0.63 153 25.92 3732 41.91 3651 3.98 66605 0.83 2428 10.31 255301 26.44 253987
3 3.06 491 0.60 24 15.20 1996 32.23 2062 2.45 28386 0.64 263 8.85 176074 26.33 180160
4 14.30 1060 0.53 24 36.05 1858 55.52 1858 6.50 117511 0.51 56 16.58 385644 35.69 385644
5 - - - - - - - - - - - - - - - -
6 237.63 17083 40.22 7351 - - - - 75.27 1196590 14.96 138860 241.46 4114697 - -
7 46.07 3885 3.18 329 142.52 6731 203.26 6772 21.43 283489 3.21 14413 60.60 969820 121.03 966828
8 - - - - - - * * - - - - - - * *
9 342.16 28156 71.43 13849 - - - - 107.57 1645636 34.06 316871 - - - -

10 - - - - - - * * - - - - - - * *

D
K

-r
em

ot
e

Dk

5 2 0.66 106 0.48 102 2.14 151 2.53 104 0.54 2675 0.49 590 0.52 13356 1.08 12665
4 11.27 818 1.55 542 22.98 938 24.90 545 2.42 30267 1.63 4007 2.67 57367 4.66 55253
6 63.11 4139 11.00 2733 112.97 4399 107.61 2014 12.10 119611 7.45 23594 13.55 176336 26.34 167003

6 2 1.97 150 1.56 141 4.65 203 5.12 136 1.63 4018 1.52 1016 0.93 18406 2.01 15288
4 20.57 1149 3.74 721 44.72 1317 48.14 654 5.16 36304 3.85 5302 4.76 75533 8.34 65997
6 94.00 5577 20.32 3726 177.97 5852 186.72 2236 23.39 172615 15.76 35243 25.45 275237 54.47 263097

7 2 6.35 205 5.11 192 11.77 290 13.10 181 5.29 6575 5.04 1356 1.96 30376 3.93 28390
4 49.81 1490 10.19 856 97.90 1707 106.18 979 12.84 63266 10.03 8636 8.50 115381 14.86 107245

7 6 136.09(1) 5623(1) 25.58 3518 268.27(4) 5949(4) 270.33(4) 2272(4) 33.42 178760 24.06 29409 32.88 309234 61.26 273336

D
K

-l
oc

al

5 2 0.81 58 0.39 42 3.00 98 3.23 90 0.55 4384 0.40 182 0.67 18148 1.22 17904
4 6.40 317 1.13 154 12.63 424 14.41 382 2.19 28157 1.21 2160 2.47 55406 4.00 55709
6 44.50 1492 7.36 668 77.44 1684 72.16 1542 9.35 121488 4.46 21440 11.23 182848 18.46 183436

6 2 2.03 101 1.58 87 4.34 154 5.08 130 1.72 3499 1.59 591 0.97 18588 2.00 17827
4 17.14 580 3.63 257 30.60 743 34.46 654 6.08 48855 3.68 4142 5.40 88123 8.33 86248
6 72.36 1912 11.99 846 133.00 2151 126.02 1949 17.14 145323 9.40 21130 18.95 240689 31.68 233827

7 2 6.11 98 5.05 82 10.25 172 11.72 156 5.30 5399 5.08 640 1.99 29624 3.84 28931
4 38.78 762 9.87 316 68.44 978 74.26 871 13.91 71053 9.87 5617 9.37 128570 14.19 125016
6 114.99 2406 21.81 990 211.84 2737 211.83 2325 31.55 186331 19.05 25161 26.63 277708 52.49 281047

C
T

P 4 0.81 977 0.66 729 1.23 1552 1.96 1552 0.87 3571 0.75 2490 0.90 9023 1.56 9023
5 15.32 8666 11.67 6734 21.64(1) 12343(1) 42.08(1) 12343(1) 20.98 67791 15.12 42265 26.09 131398 45.97 131398
6 - - - - - - * * - - - - - - * *

B
lo

ck
sw

or
ld 1 37.80 4035 71.03 3783 4.33 4179 11.46 428 - - - - 59.25 457384 16.70 26668

2 33.17 3072 57.30 2806 3.24 3098 11.17 291 - - - - 55.32 330545 14.63 15149
3 24.51 1747 38.39 1575 2.04 1853 9.72 146 - - - - 46.99 240183 14.26 9858
4 41.39 4552 78.52 4308 4.54 4612 11.93 725 - - - - 62.69 453828 17.47 30918
5 29.17 2688 48.58 2510 2.75 2736 9.48 237 342.26 289969 - - 52.53 297313 14.69 12881
6 - - - - - - * * - - - - - - * *

E
le

va
to

rs

1 0.09 338 0.11 324 0.06 335 0.06 27 0.13 2448 0.17 2427 0.08 2559 0.06 180
2 0.03 43 0.03 43 0.02 44 0.03 8 0.05 260 0.04 260 0.03 247 0.02 8
3 0.06 252 0.08 251 0.05 252 0.06 15 0.11 2369 0.15 2354 0.09 2417 0.06 15
4 0.05 182 0.05 181 0.04 182 0.04 13 0.10 1461 0.12 1453 0.07 1461 0.04 13
5 0.08 174 0.10 171 0.05 192 0.04 11 0.16 1508 0.21 1468 0.09 1600 0.04 11
6 2.61 2575 2.96 2568 1.53 2645 1.21 142 8.96 47597 11.38 46769 4.75 48779 1.35 1042

Table 1: t is average time over 3 trials in seconds. - and * indicate time/memory exhaustion, respectively. For Discover-Key and
CTP, (·) is number of instances with timeouts, if any. n is number of node expansions for LAO∗ and number of DP updates for
LRTDP. Best performers are bold. For Discover-Key, D indicates a D ×D grid and k is number of possible key locations.

low the application of the unconstrained, determinized ver-
sions that allow any desired outcome to be obtained. htc is
then outperformed by hmax and hmin due to their lower over-
head and higher informativeness, respectively. These results
show that determinization-based heuristics are better-suited
to problems where the impact of individual probabilistic out-
comes on expected policy cost is more limited. Other com-
petition domains with similar results are omitted here.

8 Conclusion
We have introduced a new method for constructing domain-
independent probabilistic planning heuristics. The method
consists of decomposing a problem into multiple subprob-
lems, each satisfying a different trajectory constraint. With

this decomposition, heuristics based on the all-outcome de-
terminization can be forced to consider a wider range of out-
comes, and the resulting values can be weighted by the prob-
ability of the constraint to obtain more informative heuristics
for the problem as a whole. On information-gathering do-
mains, these heuristics improve over baseline heuristics in
terms of both informativeness and search time.

In future work we plan to consider different base heuris-
tics, such as heuristics that are sensitive to deletes and can
therefore reason more effectively about different types of
probabilistic effects. Additionally, we will investigate alter-
native approaches for constructing relevant and informative
trajectory constraints, for instance by varying the number of
constrained problems that are considered in each node.

References
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learning
to Act Using Real-Time Dynamic Programming. Journal of
Artificial Intelligence, 72(1–2): 81–138.
Bnaya, Z.; Felner, A.; and Shimony, S. E. 2009. Canadian
Traveler Problem with Remote Sensing. In IJCAI 2009,
437–442.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. Journal of Artificial Intelligence, 129(1): 5–33.
Bonet, B.; and Geffner, H. 2003a. Faster Heuristic Search
Algorithms for Planning with Uncertainty and Full Feed-
back. In IJCAI 2003, 1233–1238.
Bonet, B.; and Geffner, H. 2003b. Labeled RTDP: Improv-
ing the Convergence of Real-Time Dynamic Programming.
In ICAPS 2003, 12–21.
Bonet, B.; and Geffner, H. 2005. mGPT: A Probabilistic
Planner Based on Heuristic Search. Journal of Artificial In-
telligence, 24: 933–944.
Bonet, B.; and Givan, R. 2006. ”The Fifth International
Probabilistic Planning Competition”.
Eyerich, P.; Keller, T.; and Helmert, M. 2010. High-Quality
Policies for the Canadian Traveler’s Problem. In AAAI 2010,
51–58.
Hansen, E. A.; and Zilberstein, S. 2001. LAO∗: A Heuristic
Search Algorithm that Finds Solutions with Loops. Journal
of Artificial Intelligence, 129(1–2): 35–62.
Haslum, P.; and Geffner, H. 2000. Admissible Heuristics for
Optimal Planning. In AIPS 2000, 140–149.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
ICAPS 2009, 162–169.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. Journal of the
ACM, 61(3): 16:1–63.
Kearns, M. J.; Mansour, Y.; and Ng, A. Y. 2002. A Sparse
Sampling Algorithm for Near-Optimal Planning in Large
Markov Decision Processes. Machine Learning, 49(2-3):
193–208.
Keller, T.; and Helmert, M. 2013. Trial-based Heuristic Tree
Search for Finite Horizon MDPs. In ICAPS 2013, 135–143.
Keyder, E.; and Geffner, H. 2008a. Heuristics for Planning
with Action Costs Revisited. In ECAI 2008, 588–592.
Keyder, E.; and Geffner, H. 2008b. The HMDPP Planner for
Planning with Probabilities. In ICAPS 2008.
Klößner, T.; Hoffmann, J.; Steinmetz, M.; and Torralba, A.
2021. Pattern Databases for Goal-Probability Maximization
in Probabilistic Planning. In ICAPS 2021.
Kocsis, L.; and Szepesvári, C. 2006. Bandit Based Monte-
Carlo Planning. In ECML 2006, 282–293.
Pineda, L.; and Zilberstein, S. 2019. Probabilistic Planning
with Reduced Models. Journal of Artificial Intelligence Re-
search, 65: 271–306.

Pineda, L. E.; Wray, K. H.; and Zilberstein, S. 2017. Fast
SSP Solvers Using Short-Sighted Labeling. In AAAI 2017,
3629–3635.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based Heuristics for Cost-optimal Planning. In
ICAPS 2014, 226–234.
Sanner, S. 2010. Relational Dynamic Influence Diagram
Language (RDDL): Language Description.
Teichteil-Königsbuch, F.; Kuter, U.; and Infantes, G. 2010.
Incremental Plan Aggregation for Generating Policies in
MDPs. In AAMAS 2010, 1231–1238.
Teichteil-Königsbuch, F.; Vidal, V.; and Infantes, G. 2011.
Extending Classical Planning Heuristics to Probabilistic
Planning with Dead-Ends. In AAAI 2011, 1017–1022.
Trevizan, F. W.; Thiébaux, S.; and Haslum, P. 2017. Oc-
cupation Measure Heuristics for Probabilistic Planning. In
ICAPS 2017, 306–315.
Yoon, S.; Ruml, W.; Benton, J.; and Do, M. 2010. Improv-
ing Determinization in Hindsight for On-Line Probabilistic
Planning. In ICAPS 2010, 209–216.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
Baseline for Probabilistic Planning. In ICAPS 2007, 352–
360.
Younes, H. L. S.; and Littman, M. L. 2004. PPDDL1.0: An
Extension to PDDL for Expressing Planning Domains with
Probabilistic Effects. Technical Report CMU-CS-04-167,
Carnegie Mellon University, School of Computer Science.

