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1 INTRODUCTION
As autonomous decision making becomes ubiquitous, researchers
agree that developing trust is required for adoption and proficient
use of AI systems [20, 35, 39], and it is widely accepted that au-
tonomous agents that can explain their decisions help promote
trust [4, 10, 28]. However, there are many challenges in generating
such explanations. Consider, for example, an autonomous vehicle
(AV) stopped behind a truck. Passengers may wonder whether the
AV is waiting for the truck to move, waiting for an opportunity to
pass the truck, or dealing with some technical problem. Generating
suitable explanations of such a system is hard due to the complex-
ity of planning, which may involve large state spaces, stochastic
actions, imperfect observations, and complicated objectives. Fur-
thermore, useful explanations must somehow reduce the internal
reasoning process to a form understandable by a non-expert user.

We introduce a novel framework (see also [31]) for causal ex-
planations of stochastic, sequential decision-making systems built
on the well-studied structural causal model (SCM) paradigm for
causal reasoning [9]. Our unified framework can identify multiple,
semantically distinct explanations of agent actions — something
not previously possible. We establish exact methods and several
approximation techniques for causal inference on Markov decision
processes using this framework, followed by results on the applica-
bility of the exact methods and some run-time bounds. We discuss
scenarios that illustrate the framework’s flexibility and experiments
with human subjects that confirm the benefits of this approach.

We operate on several established conclusions of philosophers,
psychologists, and cognitive scientists as to the purpose and logi-
cal mechanisms that underpin explanations [29, 30] — chiefly that
requests for explanations are often motivated by a mismatch be-
tween the mental model of the requester and a logical conclusion
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based on observation [11, 12, 14, 15, 22, 37], and that explanations
often require counterfactual analysis [13, 21, 24, 25], which in turn
requires causal determination [23, 34, 38]. There are several com-
putational paradigms for causal analysis, including those based
on conditional logic [8, 19], and statistics [7]. Among the most
well-studied paradigms is the structural causal model [9].

Research on explanations of stochastic planners, such as MDPs,
is relatively sparse, but there are several notable existing efforts.
Elizalde et al. [6] identify important state factors by looking at how
the value function would change were they to perturb that state
factor’s value, and Khan et al. [17] present a technique to explain
policies for factored MDPs by analyzing the expected occupancy
frequency of states with extreme reward values. Similarly, Juoza-
paitis et al. [16] analyze how extreme reward values impact action
selection in decomposed-reward RL agents. Wang et al. [36] try to
explain policies of partially observable MDPs by communicating
the relative likelihoods of different events or levels of belief.

Our framework, based on SCMs, applies causal analysis to se-
quential decision-making agents by creating an SCM representing
the computation needed to derive a policy for a Markov decision
process (MDP) and applying causal inference to identify variables
that cause certain agent behavior, which can then be used to gener-
ate explanations. This framework provides two main benefits. First,
it is theoretically sound, based on concepts and formalisms from
the causality literature, while most existing approaches use heuris-
tics. Second, it is flexible, allowing us to identify multiple types
of explanans, whereas existing approaches often explain events
in terms of a single set of variables in the decision-making model.
For example, they may use only state factors or only reward vari-
ables, whereas we may use any set. Furthermore, we offer several
approximate techniques for large problems or problems where the
topology of the causal graph prevents exact inference. We conclude
with results from a user study comparing the proposed method
to existing, heuristic methods and we find statistically significant
preferences in favor of explanations generated via causal reasoning.

2 STRUCTURAL CAUSAL MODELS FOR MDPS
We construct a causal model of the computation that solves for the
policy of an MDP and then use this model to determine causes for
agent actions. In the general case, this process follows four steps:
(1) A causal graph is generated from the relevant MDP components,
(2) The resulting graph is converted into a layered causal graph, (3)
The layered graph is pruned to remove any irrelevant nodes and



Method 𝐹 𝑅 𝑇 𝑉 Causal?
Elizalde et al. (2009) Yes - - - No

Russell and Santos (2019) Yes - - - No
Khan et al. (2009) - Yes - - No

Juozapaitis et al. (2019) - Yes - - No
Betram et al. (2018) - Yes - - No
Wang et al. (2016) - - Yes - No

Madumal et al. (2020) Yes Yes - - Yes
Proposed Yes Yes Yes Yes Yes

Table 1: Comparison of method applicability

edges given the parameters of the causal query, and (4) A recursive
algorithm identifies sets of causal variables in the graph. This pro-
vides a principled, general framework for causal inference on MDPs
while simultaneously supporting several types of explanations.

Although it is possible to create a single, monolithic causal graph
that simultaneously represents all components of the MDP tuple,
this is not helpful since it does not afford any additional types of
inference and is much less computationally efficient. Here, we give
an example of an SCM constructed by only analyzing the state-
factors of an MDP. In this work, we use the following definition of
cause from Halpern and Pearl [9].

Definition 1. Let 𝑋 ⊆ 𝑉 be a subset of the endogenous variables,
and let 𝑥 be a specific assignment of values for those variables. Given
an event 𝜙 , defined as a logical expression, for instance 𝜙 = (¬𝑎 ∧ 𝑏),
a weak cause of 𝜙 satisfies the following conditions:

(1) Given the context 𝑈 = 𝑢 and 𝑋 = 𝑥 , 𝜙 holds.
(2) Some𝑊 ⊆ (𝑉 \ 𝑋 ) and some 𝑥 and𝑤 exist such that:

A) using these values produces ¬𝜙 .
B) for all𝑊 ′ ⊆𝑊 , 𝑍 ⊆ 𝑉 \ (𝑋 ∪𝑊 ), where𝑤 ′ = 𝑤 |𝑊 ′ and

𝑧 = 𝑍 given𝑈 = 𝑢, 𝜙 holds when 𝑋 = 𝑥 .

Here, item 2 B) is saying that, given context𝑈 = 𝑢, 𝑋 = 𝑥 alone is
sufficient to cause 𝜙 , independent of some other variables𝑊 . If 𝜋𝑠𝑎
is a variable that is true when action 𝑎 may be taken in state 𝑠 , then
in an MDP, a natural choice for 𝜙 is a subset of the variables 𝜋𝑠𝑎 .
For example, if action 𝑎 is taken in state 𝑠 instead of 𝑎′, we have

𝜙 = ⟨[𝜋 (𝑠) = 𝑎], [𝜋 (𝑠) = 𝑎′]⟩ = ⟨True, False⟩.
However, it is less clear how to define potential explanans, denoted
by 𝑋 . Intuitively, we often define 𝑋 as being, for example, the set of
all state factors, the set of all reward variables, or the set of all values
for states ℎ actions away. That is, we tend to define 𝑋 according
to some semantic type. The following example model can answer
queries about the causality of state factors. Here, we letU = ∅, and

V = 𝜋𝑠𝑎 ∪ 𝑠 ∪ 𝑓𝑖 ∀𝑠 ∈ 𝑆,∀𝑎 ∈ 𝐴,∀𝑖 ∈ {1, . . . , 𝑛}
where 𝑓𝑖 denotes the 𝑖th state factor. Finally,M is composed of the
following three sets.

M𝐹 := 𝑓𝑖 = 𝑓 𝑡𝑖 , ∀𝑖 ∈ {1, . . . , 𝑛}.
Here 𝑓 𝑡

𝑖
is the value of state factor 𝑖 at time 𝑡 . A given set of state

factors ⟨𝑓1, . . . , 𝑓𝑛⟩ ∈ 𝑓 determines the state 𝑠 ∈ 𝑆 .

M𝑆 := [𝑠 = 𝑠𝑖 ] = [𝑓1 = 𝑓 𝑖1 ] ∧ . . . ∧ [𝑓𝑛 = 𝑓 𝑖𝑛 ], ∀𝑠 ∈ 𝑆.

Last, we have equations representing action selection.

M𝐴 := [𝜋 (𝑠) = 𝑎] = 𝜋𝑠𝑎 ∧ 𝑠 ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴.

Thus we define M := M𝐹 ∪M𝑆 ∪M𝐴 . In general, this definition
of SCMs for state factors permits exact inference regardless of the
underlying MDP topology. Importantly, this causal model repre-
sents a fixed policy. While this model cannot change state factors
to produce a different policy, it can understand how state factors
affect action selection for a given policy.

3 RESULTS
Here we present results from an algorithm similar to that presented
by Bertossi et al. (2020), based on the concept of responsibility
from Chockler and Halpern (2004). This algorithm iterates directly
through possible weak causal sets and then progressively checks
larger sets𝑊 for assignments𝑤 that satisfy Def. 1. In addition to
finding weak causal sets consistent with Def. 1, it also provides a
ranking over causal sets. The purpose of this study is to show how
(1) our approach can handle semantically different types of causal
queries (see Table 1, not all modeled in this abstract), corresponding
to different conceptions of MDP explanation in the literature, and
(2) formal definitions of causality identify sensible explanans.

We identify 4 general types of explanation in the literature, each
focusing on one component of the MDP tuple: state factors (𝐹 ) [6,
33], rewards (𝑅) [2, 16, 17], transitions (𝑇 ) [36], and future states
and values (𝑉 ) [32]. These papers define metrics and algorithms
particular to their type and lead us to define the following.

Definition 2. 𝑌-type explanations use explanans 𝑥 ⊂ 𝑌 . For
example, 𝐹-type explanations use the set of state factors.

Figure 1: Preference likelihoods of explanation methods. Color
indicates the probability that explanations generated using the row-
method are preferred to those generated by the column-method.

Here, we describe the results of a study investigating whether
users tend to prefer explanations generated using causal reasoning
over those generated using heuristics. In total, 189 participants aged
18-65 were shown simulated driving scenarios [18] where a car acts
based on a policy from an MDP. After each action participants were
shown automatically generated explanations and asked to rank
them, producing preference ordering. The explanations included
three baselines: [6] (𝐹 -type), [17] (𝑅-type), and [36] 𝑇 -type as well
as all four types of explanation generated by our method. Every
explanation was presented using the same basic template: "The car
<took action> because <explanan 1>, ..., <explanan N>."

Figure 1 summarizes our findings: for every explanation type,
users prefer the explanations generated via causal reasoning. We ap-
plied theMann-Whitney U-test [27] to each pair of generationmeth-
ods (21 in total), using an initial 𝛼-value of 0.5, and a Bonferroni-
corrected [3] 𝛼-value of 0.0024. We detected the following prefer-
ence ordering with p-values below 0.0001.
1) Prop-𝐹 ∼ Prop-𝑉 ≻ Elizalde ≻ Prop-𝑅 ∼ Prop-𝑇 ≻ Khan ≻ Wang
Here,𝐴 ≻ 𝐵 denotes a strict preference for 𝐴 over 𝐵, and ∼ denotes
preference equality. We believe the overall preference for causal
explanations is due to their consistent relevance across all scenarios.
Please see the full paper for more discussion and analysis [31].
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