
Choosing the Right Tool for the Job:
Online Decision Making over SLAM Algorithms

Samer B. Nashed1, Roderic A. Grupen1 and Shlomo Zilberstein1

Abstract— Nearly all state-of-the-art SLAM algorithms are
designed to exploit patterns in data from specific sensing modal-
ities, such as time-of-flight and structured light depth sensors,
or RGB cameras. This specialization increases localization
accuracy in domains where the given modality detects many
high-quality features, but comes at the cost of decreasing perfor-
mance in other, less favorable environments. For robotic systems
that may experience a wide variety of sensing conditions, this
difficulty in generalization presents a significant challenge. In
this paper, we propose running several computationally cheap
SLAM front ends in parallel and choosing the most promising
feature set online. This problem is similar to the Algorithm
Selection Problem (ASP), but has several complicating fac-
tors that preclude application of existing methods. We first
provide an extension of the ASP formalism that captures the
unique challenges in the SLAM setting, and then, based on
this formalism, we propose modeling the SLAM ASP as a
partially observable Markov decision process (POMDP). Our
experiments show that dynamically selecting SLAM front ends,
even myopically, improves localization robustness compared to
selecting a static front end, and that using a POMDP policy
provides even greater improvement.

I. INTRODUCTION

Deployed robotic systems are complex, often comprised
of dozens or even hundreds of sub-systems and algorithms,
each designed for a specific purpose and specific operating
conditions. For example, different methods for simultaneous
localization and mapping (SLAM) may be designed for
different sensors (camera [22], LiDAR [23]), extrinsic sensor
calibrations (front facing [7], top facing [9]), or environmen-
tal structures or affordances [25]. While such specialization
often allows greater performance by leveraging structure in
data to perform more efficient or accurate computation, it
comes at the cost of restricting the set of operating conditions
in which the system can perform reliably. Moreover, outputs
of these sub-systems are often inputs to other sub-systems
and thus affect the quality of future computation in ways that
are frequently too uncertain or too complex to model.

One strategy to combat these complexities is modularity.
Roboticists have identified common processes (e.g. SLAM)
where similar data (e.g. RGB or depth images) are processed
to produce similar outputs (e.g. pose estimates). Here many
algorithms may be interchanged without affecting the mod-
ule’s interface with other parts of the system. However, as
robot deployments encounter greater variety in operational
conditions, it becomes increasingly difficult to design singu-
lar, one-size-fits-all modules (algorithms) that can perform
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Fig. 1. Time series of localization errors for several approaches to the
SLAM ASP. The POMDP-based approach is the only one capable of
reasoning about both the immediate quality of particular sensors and the
long-term effects of constructing optimization problems using these sensors.

reliably under all possible conditions. Moreover, as sensors
become cheaper, and sensor suites larger, it may be difficult
for robots deployed in demanding or dangerous environments
to incorporate all possible strategies for contingencies with
different operational sensor suites within a single module.
We term the development of single modules the ‘one-size-
fits-all’ approach to system design, and our hypothesis is that
this is not always the best approach to developing robust,
broadly capable robotic systems.

This paper presents an alternative to the ‘one-size-fits-all’
architecture. Instead, we propose storing several redundant
algorithms in memory, each of which may be substituted
within a particular module in the stack, and then select-
ing the most appropriate instance of that module online.
This approach essentially replaces the task of designing
singular modules that operate reliably under all possible
conditions with the task of efficiently identifying which
existing algorithm is most reliable in the current situation.
This architecture relieves the tension between specialization
and generalization inherent in many robotics choices, since if
a reliable algorithm exists for the current conditions and we
can identify it, the system can ‘generalize’ to that situation
without compromising performance in other situations.

Our primary contributions are (1) a formal definition of
the ASP extension this architecture presents that highlights
the fundamentally sequential nature of this task in robotics,
(2) a solution concept using a combination of classification
and belief-space planning, and (3) a detailed simulation and
set of experiments showing the potential benefit (see Figure
1) of online decision making over SLAM algorithms and in
particular the effectiveness of belief-space planning.



II. RELATED WORK

The “Algorithm Selection Problem” (ASP) was first out-
lined by Rice in 1976 [29], and has since been studied
more closely in several sub-fields of computer science. In
particular, combinatorial search [14], [11] and optimization
[19], [13], [21] have been among the most prolific adopters,
with the SAT solver SATzilla [36] likely one of the most
successful applications of ASP methods to-date. Systems
that solve ASPs vary substantially in how they operate. For
example, they may select a single algorithm at the beginning
of the problem [36], select a schedule of multiple algorithms
to run sequentially [28], select a subset of algorithms to run
in parallel [8], or monitor progress and revisit these decisions
during the solve [1]. Because our goal is to choose between
SLAM front ends in order to maintain highly accurate
location estimates indefinitely, we focus on the online, or
dynamic, version of this problem.

Many ASP methods employ machine learning techniques
to either evaluate potential algorithm performance or select
algorithms directly. This application has strong ties with
meta-learning [33], [12]. There have also been proposals to
use sequential decision making in the form of reinforcement
learning (RL) for algorithm selection when the algorithms
have a recursive nature [15], [27], [26]. In some cases meta-
RL systems, such as RL3 [3], may eventually allow a form
of automatic adaptation to new ASPs. However, in this paper
we focus on understanding the unique challenges of robotics
ASPs, particularly for SLAM, and thus we are concerned
more with formalizing the decision-making problem and
developing a performant decision-making model.

Despite applications of ASP methods to other hard prob-
lems there have been few serious efforts to bring insights
from ASP research into practice in robotics. The idea of
using portfolios of models has been explored for localiza-
tion [24], and the closely related problems of hyperparameter
optimization and online hyperparameter tuning have been
studied in the context of motion planning [20], [4]. However,
engagement with formal ASP constructs has been, to the
best of our knowledge, limited to the study of decentralized
heuristic selection for coordination [30], and some computer
vision tasks with relevance to robotic perception [17], [18]. In
summary, this work offers the first formalisms, models, and
solution methods that address the unique and fundamental
challenges of applying the spirit of algorithm selection to
SLAM and similar robotic perception problems. While not
theoretically limited to perception systems, we see SLAM as
a natural and important application of this formalism.

III. ALGORITHM SELECTION PROBLEMS FOR ROBOTICS

Most applications of algorithm selection have been able to
use essentially the original formalism from Rice with little
modification. In this section we will briefly introduce this
formalism, explain how robotics applications such as SLAM
require more complex considerations to solve optimally due
to their recursive nature and potential indefinite and reactive
operation requirements, and then present an extended for-
malism that captures these aspects of the ASP for robotics.

A. The Algorithm Selection Problem

Formally, the ASP considers a set of algorithms A,
sometimes called a portfolio, and a problem instance x drawn
from a some space of possible problems P . Solving problem
instance x ∈ P with algorithm A ∈ A results in a perfor-
mance (often time or cost), which in our SLAM application
we will call solution error ε(A, x). The original ASP is thus
to design or learn some selector function S : P → A such
that ∀x ∈ P , S(x) = A∗, where A∗ ∈ argminA∈Aε(A, x).

In general, there may be other notions of maximizing per-
formance, such as minimizing processor time or minimizing
the cost of a plan for solving x generated by A. Additionally,
in many cases it is not possible to guarantee S(x) =
A∗∀x ∈ P , and in practice this depends on the quality of the
features that can be derived from x in order to inform S(x).
Common extensions include selecting a set of algorithms
A ⊂ A to run on x in parallel, i.e. S(x) = {A1, A4, A11},
selecting a sequence or schedule of algorithms to run, i.e.
S(x) = {A1 : (t0, t4), A4 : (t4, t11), A11 : (t11, tf )}, or
dynamically adjusting the algorithm selected online, i.e.
S(xt) = S(S(xt−1)(xt−1)).

B. Additional Robotics Considerations

There are four properties of SLAM systems that preclude
some of the most common ASP approaches, as well as make
the base objective a less accurate descriptor of success. First,
most of the time, even after the algorithm has run, a SLAM
system will not know the true value of ε(A, x). This is in
contrast to most other applications where, for example, the
total processing time or the cost of the resultant plan is
available. This makes dynamic selector functions, typically
implemented as classifiers or regressors that rely specifically
on fully observable features or feedback, less applicable.
We could of course still apply such methods, but as we
will see there are alternative frameworks that more naturally
handle this partial observability constraint and do so while
maintaining decision-theoretic optimality.

Second, all SLAM systems, whether Kalman filters, par-
ticle filters, or pose-graph optimizers, are recursive, where
the state estimates produced at time t are used as inputs
at time t + 1. Thus, achieving particular intermediate data
values or representations is to some degree a function of the
choice of solution strategy, which is true for many complex
problems but not frequently modeled explicitly in ASP ap-
plications. As shown in Figure 2, instances of x encountered
at different points in the SLAM problem are generally not
independent. Moreover, most state-of-the-art SLAM systems
use sliding window pose-graph optimization [32], meaning
that optimization problems become generally more stable as
time progresses [16] and that switching modalities essentially
reduces the active optimization window size back to just
the current time step. Thus, there is a cost to the stability,
and therefore accuracy, associated with switching between
sensing modalities online in the context of a SLAM system.

Third, SLAM systems can only react to changes in data
quality or data quantity rather than preemptively act to
affect sensing conditions. At each time step, at least some



Fig. 2. A dynamic Bayesian network (DBN) representation of SLAM infer-
ence. As new data (Dt, yellow) from proprioception (µt) and exteroception
(zt) is observed in an uncontrolled process, it is used alongside one or more
previous location estimates (ft−1, purple), corresponding to the DBN nodes
{xt−k, . . . , xt−1}, to estimate the current pose xt (more generally, ft,
blue). Here, µt and zt represent geometric constraints on the transformation
of the robot’s position over time. In practice, these geometric constraints
must be derived from raw data, and it is precisely this process which may
produce large errors when sensing conditions diverge from expectations.
While many SLAM systems use different optimization procedures, including
loop-closures and other explicit references to a persistent map or other
model of the world, we note that the recursive, reactive, and indefinite
characteristics of the problem remain the case in all SLAM systems.

component of the data required for localization is provided
in a manner beyond the control of the agent. For this reason,
selecting a single algorithm at the outset is only robust if the
deployment is very constrained. Moreover, robotic systems
are often highly compute bound, and SLAM optimization is
a notoriously computationally expensive process. While it is
possible to run multiple SLAM front end feature extraction
routines for various sensing modalities in parallel, it is not
possible to run multiple full SLAM systems in parallel.

Last, indefinite simply indicates that total the size of
the problem or number of steps is not known. As SLAM
algorithms operate indefinitely while the robot is deployed,
selecting a schedule of different algorithms to run during
the deployment is not possible due to the unknown duration.
We now formalize the robotics ASP, designed to capture the
recursive, reactive, and indefinite properties specifically for
SLAM and similar robotics problems. Selecting an algorithm
to sort a list [15], for example, is recursive but neither
reactive nor indefinite. Together, these properties create a
more challenging problem requiring sequential reasoning.

We retain the notation for the portfolio of algorithms
A. Instead of a problem x ∈ P , we must represent data
processed in a sequence, part of which is recursive and
influenced by the algorithm selected in the previous time
step and part of which is generated independently by the
environment and only available to the robot incrementally.
We represent the latter data at time t as Dt, and the former
as ft = At(ft−1, Dt); see Figure 2 for more details. Both
ft−1 and Dt affect the performance of At. We will denote
the entire, unbounded sequence of data as τ = D0, . . . , D∞,
and let τ ∈ P . Of course, τ is not known at run time, but in
some cases we may have domain knowledge that indicates
some τ are more likely than others.

Because we care about the output quality at every interme-
diate time step in addition to the final time step, our objec-
tive is instead to minimize the sum

∑t∞
t=t0

ε(At, ft−1, Dt).
However, as the actual error is not fully observable,

ε(At, ft−1, Dt) is instead a probability distribution and
our objective is to minimize this sum in expectation:∑t∞

t=t0
E[ε(At, ft−1, Dt)]. Finally, we see that since ft =

S(ft−1, Dt)(ft−1, Dt), S must represent a sequence of
dependent decisions with stochastic outcomes, which are
naturally expressed by the notion of a policy from sequential
decision making. We now give a formal definition of this
problem using the notation developed above.

Definition 1. Given an unbounded data stream τ from the set
of streams P , the Perception Algorithm Selection Problem
is to, at each time step, select using selector S an algorithm
At from a portfolio of algorithms A such that the cumulative
expected error

∑t∞
t=t0

E[ε(At, ft−1, Dt)] is minimized.

This formulation generalizes several variants. For example,
if we relax the partial obervability condition on the data
quality or error, we no longer need to maintain belief over the
error and thus minimize the object

∑t∞
t=t0

ε(At, ft−1, Dt),
which we can see is solvable using an MDP. If we further
relax the recursive condition, we get an objective minimizing∑t∞

t=t0
ε(At, Dt) which is solvable via repeated classifica-

tion. Last, if we relax the reactive (streaming) data condition,
we minimize

∑tf
t=t0

ε(At, Dt), which could then be solved
using existing schedule building techniques from the ASP
literature since τ is known completely in advance.

IV. CHOOSING SLAM ALGORITHMS ONLINE

Given the key differences in robotics versions of the ASP
compared to traditional combinatorial search applications,
dynamic ASP methods that treat repeated algorithm selection
independently and thus employ classification or regression
techniques alone will not maximize the updated objective.
In this section we will first describe a POMDP decision-
making model we developed to solve this problem and cover
some key design choices. We will then discuss a method for
generating simulations of SLAM systems across a range of
sensing conditions which we use to conduct our experiments.

A. Sequential Algorithm Selection as a POMDP

Below, we denote members of the POMDP model with an
overbar to distinguish them from other variables. A partially
observable Markov decision process (POMDP) [10] is a tuple
⟨S̄, Ā, T̄ , R̄, Ω̄, Ō⟩. S̄ is a set of states of the world. Ā is a
set of actions. The transition function T̄ : S̄×Ā× S̄ → [0, 1]
gives the probability of ending up in state s′ after performing
action a in state s. The reward function R̄ : S̄ × Ā → R
maps each state s to an immediate reward. Ω̄ is a set of
observations. The observation function Ō : S̄ × Ā × Ω̄ →
[0, 1] maps each state s′ and action a to the probability of
emitting observation ω ∈ Ω̄. In a POMDP, the agent does
not know the true state of the world and instead maintains
a belief b, informed by noisy observations, over all states.
Upon taking action a and observing ω, the agent updates its
belief as b′(s′|b, a, ω) = αŌ(a, s′, ω)

∑
s∈S T̄ (s, a, s′)b(s),

where α is the normalization constant α = Pr(ω|b, s)−1. We
propose the following POMDP as a step towards decision-
theoretic solutions to the ASP for robotics sub-systems.



S̄: Dl×Dc×Dk×f×A, where A is the previous algorithm
{LASER, CAMERA, KINECT}, f is the quality (conditioning,
number of correct data associations) of the previous solve
{1, . . . 5}, and Dl, Dc, and Dk, all drawn from {1, . . . , 3}
represent the partially observable data quality for each
modality. Thus there are a total of 405 states.

Ā: Our set of actions is the set of algorithms, A.
T̄ : There is no uncertainty in algorithm execution. If

algorithm A is selected, algorithm A is executed. However,
there is uncertainty in the quality of the next data Dt+1

with respect to each modality and uncertainty with respect
to the quality of the output ft with respect to subsequent
solve attempts. We implement a small bias towards sensing
conditions remaining the same or similar since on balance
this is most likely, and we also encode a small chance of
increasing the quality of ft+1, provided the same algorithm
is used and the current optimization problem maintained.

R̄: Reward is the negative expected error of Equation (1),
given α, β, and δ, which are functions of either Dl, Dc, or
Dk, depending on the which algorithm is currently selected.
We also include a mitigating factor of quality(ft)−

1
2 .

Ω̄: Dl × Dc × Dk, where Dl, Dc, and Dk represent the
quality estimated by a classifier (e.g. a neural network).
Ō: The observation function encodes the noise character-

istics (roughly 80% accurate) of the classifiers evaluating the
quality of each SLAM front end on the current data Dt.

This POMDP is too large to solve exactly, so we use
an approximate technique based on value iteration, imple-
mented in the pomdp py library [38], which we represent
compactly as a finite state controller [5]. There are many
possible extensions to this model, including using more
basic information, such as the residuals from the optimizer
after each step, analyzing the density of the information
matrix, or employing other, more complicated forms of error
estimation or correction prediction [2]. Moreover, using value
approximators, such as neural networks, in the context of
reinforcement learning could help make this formulation
tractable for higher dimensional variants, such as adding the
ability to control external entities in some capacity [37].

Overall, the key idea is to exploit the fact that most SLAM
back ends are modality agnostic, and thus provide substantial
opportunity to intercede between raw data acquisition and
factor graph construction. Intermediate data quality metrics
may be flexible, so long as they can be estimated and
correlate with solution quality in a manner learnable by, for
example, supervised learning. Thus, we can avoid singular,
monolithic front ends that in spite of their complexity are
often still susceptible to individual sensor failures.

B. Modeling SLAM Systems

Empirical measures of SLAM system performance, char-
acterized by the probability density function (PDF) of the
magnitude of their location estimate errors, rarely coin-
cide exactly with any known parametric distribution. Most
commonly, such error distributions are modeled as half-
normal distributions [35], or mixed distributions that include
the half-normal distribution [6]. This approach is adequate

Fig. 3. Error distributions used in the simulator. Half-normal, Rayleigh,
and log-normal distributions are shown in green, red, and blue respectively,
while several mixed distributions (bias-HM, bias-R, bias-LN) correspond to
α = 0.8, β = 0.8, and δ = 0.8 (others set to 0.1), respectively. Mixed
Avg has α = β = δ = 0.3̄.

although not perfect if the algorithms operate in the sensing
regimes for which they were designed. However, as sens-
ing conditions (localization affordances) change due to the
passage of time or the motion of the robot in the world,
these error distributions also shift in accordance with how
well the given SLAM algorithm can accurately estimate state
given the current quality of the sensing data. Since there
are virtually no models for SLAM algorithm performance
in unintended deployment conditions, we propose a mixed
distribution composed of a variable linear combination of
half-normal, log-normal, and Rayleigh distributions in order
to model empirically observed error distributions more real-
istically. This also allows more control over the shape of the
error PDF depending on the simulated sensing conditions.
More formally, we simulate the error distribution of SLAM
algorithm At on data Dt as

P(ε|At, Dt)=α
( √

2

σN
√
π
e

−ε2

2σ2
N

)
+β

( ε

σ2
R
e

−ε2

2σ2
R

)
+δ

( 1

εσL
√
2π

e
−ln(ε)2

2σ2
L

)
,

(1)

where α, β, and δ are functions of At and Dt, and α+ β+
δ = 1. σN , σR, and σL are the standard deviation values
for the half-normal, log-normal, and Rayleigh distributions,
respectively. They may be tuned to provide even finer control
although in our simulator and experiments we use constant
values of σN = 0.5, σR = 0.5, and σL = 1. Figure 3 shows
several example error distributions.

In addition to sensing conditions we also consider the
amount of data currently represented in the sliding window
of the optimizer. Changing modalities means that recent
features cannot be loop-closed against, for example because
ORB [31] features from RGB images and FLIRT [34]
features from lasers have no meaningful correspondence.
Thus, there exists a trade off between switching front end
algorithms immediately upon receiving bad data to avoid
a bad location estimate, and maintaining a fully populated
local map in order to be more robust to future bad inputs.
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Fig. 4. Example path consisting of 7 total waypoints an agent may take
in an environment with 6 sub-environments, each of which have potentially
unique localization affordances. These affordances are affected by 6 param-
eters: Level of ambient light, amount of clutter, level of dynamics, amount
of perceptual aliasing, amount of empty space, and natural versus artificial
light. Each parameter can take two possible values for a total of 64 unique
possible environments. In this example, the high pedestrian traffic area may
have a high level of dynamics, the courtyard may have a large amount of
open space and natural light, and the older building may have low ambient
light and no natural light.

Though there has been work on optimizing the size of sliding
windows in SLAM solvers [16], there has been less on
characterizing the effect of window size on error distribu-
tions. The established wisdom is that window size offers
diminishing returns, reducing errors by a factor of roughly
1/n after n repeated observations [32]. Thus, after drawing
an error from the distribution in (1), we apply a slightly more
conservative reduction of 1/

√
n, up to 1/

√
nmax, where

nmax = 5 is the maximum sliding window size.
The agent moves continuously through the world between

waypoints, shown in Figure 4, according to some maximum
linear and angular velocities. It has a bounded field of
view and range for each sensor, roughly in accordance
with real-world parameters. The agent may view more than
one type of environment if accessible to its sensors (it
cannot see through walls), and multiple environments may
simultaneously affect the classifier predictions regarding the
localization affordances of the current location. For example,
camera-based SLAM systems operate well in cluttered, well-
lit environments, but struggle in highly aliased, high contrast,
or very low light settings. If the agent is viewing two areas
which each have these characteristics, the incoming data
Dt may be classified differently than if it was viewing an
obviously poor or obviously well-suited scene. We do not
include the effects of error accumulation over time or the
loop-closure detection process.

V. RESULTS

The primary measure of efficacy for SLAM systems is
localization error. In the following experiments, we measure
the effect of different modality selection strategies on the
average error magnitude, the distribution of errors, and the
robustness of the system to sensor failures. We also show
that certain strategies become relatively more effective as the
space of operating environments becomes less homogeneous.

In particular, we compare the following four strategies, each
of which select from the same set of 3 sensors at each time-
step: RANDOM, OFFLINE, CLASSIFY, and POMDP.

RANDOM selects a sensor randomly with uniform proba-
bility. OFFLINE first analyzes the entire map and estimates
the quality of data from each sensor for each part of the
map. The sensor with the overall highest average quality is
then selected and used exclusively for the entire deployment.
This method does not use information about the planned
trajectory of the robot, which may visit some regions of the
environment more often than others. Although this may seem
like a relatively weak baseline, this is in fact essentially the
current state-of-the-art approach, except that humans are the
ones typically doing the pre-deployment evaluation of the
environment and matching it with a SLAM front-end.

CLASSIFY runs an imperfect classifier at each time step,
and selects the highest scoring modality to use that frame
with probability 0.8 and a random other modality is chosen
otherwise. This is equivalent to acting in a greedy manner
exclusively on the POMDP observations. POMDP selects
an algorithm based on a policy representing an approximate
solution of a POMDP modeling the problem. The primary
qualitative difference between CLASSIFY and POMDP is
that the POMDP represents and reasons about the effects of
its current algorithm selection on the quality of future inputs,
whereas CLASSIFY does not.

For all experiments, data was collected by randomly gener-
ating an environment, establishing several waypoints for the
robot to navigate to, and then simulating and recording the
localization errors. For a given number of sub-environments
(2-10), all methods were run a total of 10 times over the
same 10 randomly generated maps.

A. Minimizing Cumulative Error

Unsurprisingly, the POMDP method accumulates the least
localization error in simulation,1 with an average per-pose
error across all 90 trails of 0.27m and a standard deviation
of 0.12m. CLASSIFY, OFFLINE, and RANDOM obtained
averages of 0.41 ± 0.14, 0.44 ± 0.15, and 0.93 ± 0.10
meters, respectively. The differentiating factor seems to be
approaches to transitions in sensing conditions. While the
CLASSIFY method always selects the highest scoring method
regardless of history, and is thus susceptible to noise, the
belief dynamics within the POMDP act as a sort of low-pass
filter on the noisy sensor quality observations, enabling the
POMDP to continue using high-quality optimization problem
initializations (ft−1) when the lapse in reported signal quality
is transient. In 81% of sequences where the robot moves from
one modality to another, it took more than two consecutive
observations where the current choice was ranked lower than
the sensor it eventually selected.

1When interpreting the simulation results, we focus on the relative
performance of different methods rather than their absolute performance,
since the latter has little meaning in the isolation of simulation.



Fig. 5. Distribution of localization errors for all trails with a total of 4
sub-environment types. Other numbers of sub-environments show a similar
trend, although their means shift slightly. Note that errors exceeding 3m
were capped at 3m for the purposes of visualization.

B. Avoiding Catastrophic Failures

Perhaps the most important characteristic for deployed
SLAM systems is to avoid large errors. Large errors can
not only cause immediate problems in terms of trajectory
following or route planning, but they can also cause difficulty
when trying to re-localize or detect loop closures. Therefore,
techniques that can reduce such catastrophic state estimation
errors are employed frequently, and include a wide array of
methods from simple thresholds to complex graph optimiza-
tion. Here, we show the distribution of errors produced by
each approach (Figure 5).

There are two key takeaways. First, the POMDP-based
solution clearly enables the most robust data conditions for
localization. Second, we see that the OFFLINE method has 2
modes. The first (µ ≈ 0.1) results from localization when
it is operating in the environment for which its chosen
sensor is well-suited, and the second (µ ≈ 0.8) occurs when
it is operating in unfavorable sensing conditions. This set
of events represents types of deployments roboticists may
currently elect to avoid due to lack of generalizability.

C. Fault Tolerance

One key aspect of this system is that it can also deal with
unexpected sensor failures. In fact, there is no need to model
this event differently than, for example, entering a very dark
area while previously using a camera to localize. As long
as the meta-data or classifier for a given sensor can reliably
detect an abnormality in sensor function, it can output an
assessment of its quality as it would for any other frame.
This quality is then used as an observation as it would be if
the sensor was functioning nominally. Most powerfully, this
allows systems to employ multi-modal SLAM systems and
still have the opportunity to fall back on algorithms designed
for a subset of modalities.

Table I shows the results of a set of experiments designed
to test this capability. In these experiments, we artificially
restrict the set of sensors available to the RANDOM, OF-
FLINE, and CLASSIFY methods, while leaving the POMDP
policy unchanged. We then run simulations (10 trials with
5 different sub-environments) as before, but generate noisy

Fig. 6. Average localization error for all trials as a function the number of
sub-environments in the map. Vertical bars represent one standard deviation.

observations that reflect the ground truth that one sensor is
malfunctioning. Here, we can see that even without this prior
information the policy is able to reason about the available
options online and apply them at least as effectively as the
other baseline methods, which were designed specifically
leveraging this information.

TABLE I
ROBUSTNESS TO SENSOR FAILURE

Method Working Sensors Mean Error Standard Deviation
RANDOM 2/3 0.87 0.13
OFFLINE 2/3 0.43 0.09

CLASSIFY 2/3 0.39 0.14
POMDP 2/3 0.32 0.11

D. Effect of Environment Heterogeneity

While the OFFLINE method works well in cases where
we can predict pre-deployment how likely different sensing
conditions will be during deployment, we can see that the
more heterogeneous or unpredictable the operating environ-
ment becomes, the more challenging it is for non-reactive
systems to perform well. Figure 6 shows a graph of average
localization error across all trials as a function of the number
of sub-environments present in the map. Large values on the
x-axis indicate a less homogeneous operational environment.

Because OFFLINE selects one sensor, a uniform traversal
of the map provides a lower bound on the rate of optimal sen-
sor selection of just |A|−1. Moreover, if we consider arbitrary
multimodal systems, this becomes roughly 2−|A|. Therefore,
we expect the performance of OFFLINE to decrease initially
before converging as environment diversity increases.

VI. CONCLUSION

In this paper we outline a new type of algorithm selection
problem for robotic perception, devise a solution to this prob-
lem using partially observable Markov decision processes,
and detail several experiments showing the effectiveness of
online decision making and sequential reasoning for such
problems. We presented results from a detailed simulation of
SLAM algorithms based on multiple modalities which show
that SLAM systems the ability to modulate reliance on front-
end data resources experience less localization error on av-
erage as well as significantly fewer catastrophic localization
errors. Future work will include improving classifiers used
to establish the reliability of incoming data and establishing
these multi-SLAM systems on deployed robots.
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