
Heuristic Search for SSPs with Lexicographic Preferences over Multiple Costs

Shuwa Miura1, Kyle Hollins Wray2, Shlomo Zilberstein1

1 Manning College of Information and Computer Sciences, University of Massachusetts Amherst
2 Alliance Innovation Lab Silicon Valley

smiura@cs.umass.edu, kyle.wray@nissan-usa.com, shlomo@cs.umass.edu

Abstract
Real-world decision problems often involve multiple com-
peting objectives. The Stochastic Shortest Path (SSP) with
lexicographic preferences over multiple costs offers an ex-
pressive formulation for many practical problems. However,
the existing solution methods either lack optimality guaran-
tees or require costly computations over the entire state space.
We propose the first heuristic search algorithm for this prob-
lem, based on the heuristic algorithm for Constrained SSPs.
Our experiments show that our heuristic search algorithm can
compute optimal policies while avoiding a large portion of the
state space. We also analyze the theoretical properties of the
problem, establishing the conditions under which SSPs with
lexicographic preferences have a proper optimal policy.

Introduction
Many real-world stochastic planning problems inherently
involve multiple competing objectives. For example, in
building management, it is necessary to consider both power
usage and personal comfort (Kwak et al. 2012). In hybrid en-
gine activation planning, it is necessary to minimize energy
expenditure while reducing engine mode transitions (Wray,
Lui, and Pedersen 2021). However, there seldom exists a sin-
gle policy that optimizes all the objectives and striking a de-
sired balance between them is an active research challenge.

The field of multi-objective decision making offers sev-
eral fruitful approaches to formalize and solve decision
problems with multiple objectives. Which approach is suited
best for a particular problem depends on the available prior
knowledge about the problem. We briefly review the existing
approaches in the related work section at the end. In short,
previous approaches are based on combining all the objec-
tives using linear scalarization, computing the Pareto front
of the policy space (Roijers and Whiteson 2017), optimizing
the primary objective under constraints on the secondary ob-
jectives (Altman 1999), or solving problems that involve lex-
icographic preferences (Mouaddib 2004). We focus in this
paper on improving the latter approach.

The latter approach is exemplified by MDPs with lexico-
graphic preferences (LMDPs) (Mouaddib 2004), where the
objectives are strictly ordered according to their importance.
LMDPs provide an intuitive formulation for problems where

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

there is a clear ordering among objectives. Wray, Zilberstein,
and Mouaddib (2015) extended LMDPs with slack parame-
ters, which allow small deviations from optimal values. The
use of slack enables us to ignore small differences in one ob-
jective in order to improve lower priority objectives. For ex-
ample, in hybrid engine optimization, we can specify some
small amount of energy we are willing to compromise in or-
der to reduce the number of mode transitions.

Despite the simplicity of formulating multi-objective
problems using LMDPs, the existing solution methods for
LMDPs lack scalability and optimality guarantees. Pineda,
Wray, and Zilberstein (2015) proposed solving LMDPs as
a series of Constrained MDPs (CMDPs) (Altman 1999) us-
ing a naı̈ve linear programming formulation. However, solv-
ing MDPs using linear programming requires computations
over the entire state space. Another approach called local ac-
tion restriction (LAR) allocates local values of slack to each
state to restrict available actions to those satisfying local
slack conditions (Wray, Zilberstein, and Mouaddib 2015).
However, methods based on LAR overconstrain the avail-
able actions and therefore cannot guarantee optimality.

Given these challenges, we propose the first heuristic
search algorithm for stochastic planning problems with lexi-
cographic preferences over multiple costs. To that end, we
use a stochastic shortest path formulation of the problem
called L-SSP (Wray, Lui, and Pedersen 2021). To justify the
use of L-SSPs, we establish the conditions under which the
existence of an optimal proper policy is guaranteed (Theo-
rem 1). Finally, we show that optimal policies are not nec-
essarily deterministic (Remark 1), requiring optimal algo-
rithms to consider stochastic policies.

Our proposed algorithm solves L-SSPs as a series of Con-
strained SSPs (C-SSPs). Instead of using a naı̈ve linear pro-
gramming formulation, however, our algorithm uses heuris-
tic search for C-SSPs (Trevizan et al. 2016) to solve those
C-SSPs, which avoids processing the entire state space. Fur-
thermore, we propose a technique that exploits the fact that
the series of C-SSPs are closely related (i.e., they share the
initial state, state space and action space). We demonstrate
that optimal policies for L-SSPs achieve better trade-offs
among multiple objectives, and experimentally show that us-
ing heuristic search can avoid visiting irrelevant states and
can find an optimal policy faster than the naı̈ve linear pro-
gramming formulation.

Background
SSPs
A stochastic shortest path problem (SSP) is a tuple
⟨S,A, T,C, s0, G⟩where: S is a set of states. A is a set of ac-
tions. T : S×A×S → [0, 1] is a transition function such that
T (st, at, st+1) = Pr(st+1|st, at). C(st, at) : S × A → R
is the cost of performing at at st. s0 is the initial state. G ⊂ s
is a set of goal states. We assume that goal states are absorb-
ing and transitions out of goal states have zero costs. In this
paper, we only consider finite sets of states and actions.

A solution of an SSP is a policy. A deterministic policy
π maps a state s to an action a ∈ A. A stochastic policy π
maps a state s to a probability distribution on A. A policy π
induces a value function V π(s) = E[

∑∞
t=0 C(St, At)|S0 =

s0, π], which represents the expected cost of reaching a goal
state from s by following π. An optimal policy π∗ is a pol-
icy that minimizes V π(s0). We restrict our attention to prob-
lems in which there exists at least one proper policy, which
reaches the goal from all states with probability 1, and any
improper policies incur infinite costs. Under this assump-
tion, an SSP is guaranteed to have an optimal policy that is
proper (Bertsekas and Tsitsiklis 1991).

Linear Programming for SSPs
An optimal policy for an SSP can be computed in poly-
nomial time using linear programming. Here, we introduce
the linear program in the dual form (d’Epenoux 1963) pre-
sented in (LP1) where: xs,a are the optimization variables
known as occupation measures, representing the expected
number of times action a ∈ A is taken in s ∈ S; in(s) =∑

s′∈S,a∈A xs′,aP (s|s′, a); and out(s) =
∑

a∈A xs,a.

min
x

∑
s∈S,a∈A

xs,aC(s, a) s.t. (C1)-(C4) (LP1)

xs,a ≥ 0 ∀s ∈ S, a ∈ A (C1)
out(s)− in(s) = 0 ∀s ∈ S \ (G ∪ {s0}) (C2)
out(s0)− in(s0) = 1 (C3)∑
s∈G

in(s) = 1 (C4)

An optimal policy π∗ can be obtained from the optimal so-
lution to LP1 (π∗(s, a) = x∗

s,a/out(s)). However, LP1 can
be intractable for an SSP with a large number of states.

Heuristic search algorithms utilize heuristic functions to
guide their search to only explore the relevant portion of
the state space. For SSPs in particular, heuristic search algo-
rithms such as LAO∗ (Hansen and Zilberstein 2001) can find
an optimal policy without expanding the entire state space.

SSPs with Lexicographic Preferences
A lexicographic stochastic shortest path (L-SSP) problem
(Wray, Lui, and Pedersen 2021) is a variant of SSP with
lexicographic preferences over multiple costs. Formally, an
L-SSP is a tuple L = ⟨S,A, T,

−→
C , s0, G,

−→
δ ⟩ where: S, A,

T , s0, and G are defined as in SSP.
−→
C : S × A → Rk

is a vector-valued cost function such that
−→
C (s, a) =

[C1(s, a), · · · , Ck(s, a)], where each Ci(s, a) denotes the
cost for the i-th objective.

−→
δ = [δ1, · · · , δk−1] ≥

−→
0 is

slack parameters. As with a regular SSP, a policy π induces
a value function

−→
V π(s) = E[

∑∞
t=0

−→
C (St, At)|S0 = s0, π].

An optimal policy π for L-SSP with k objectives is:

argmin
π

V π
k (s0)

s.t. V π
i (s0)− V ∗

i (s0) ≤ δi ∀i < k

where V ∗
i (s0) is the value of an optimal policy defined re-

cursively. V ∗
1 (s0) coincides with the optimal value of C1

for the unconstrained SSP. V ∗
2 (s0) is the optimal value of

C2 with the constraint V π
1 (s0) − V ∗

1 (s0) ≤ δ1. Similarly,
V ∗
3 (s0) is the optimal value of C3 with the constraints

V π
1 (s0)− V ∗

1 (s0) ≤ δ1 and V π
2 (s0)− V ∗

2 (s0) ≤ δ2.
Wray, Zilberstein, and Mouaddib (2015) proposed local

action restriction (LAR) to approximately solve LMDPs
(MDP counter-part of L-SSPs). LAR restricts the avail-
able actions via local slack −→η = [η1, · · · , ηk−1]

T at s by
Ai+1(s) = {a ∈ Ai(s)|V ∗

i (s) − Q∗
i (s, a) ≤ ηi} with

A1 = A. LVI is a value iteration algorithm based on LAR.
However, solutions computed by LAR are not guaranteed
to be optimal and can be arbitrarily worse than an optimal
policy (Pineda, Wray, and Zilberstein 2015).

Constrained SSPs
Another closely related variant of multi-objective SSP is
constrained stochastic shortest path problem (C-SSP). For-
mally, a C-SSP is a tuple C = ⟨S,A, T,

−→
C , s0, G,

−→
ĉ , p⟩

where
−→
ĉ = [ĉ1, · · · , ĉk] is the cost upper-bound vector and

p is the primary objective to optimize. An optimal policy for
a C-SSP is defined as:

argmin
π

V π
p (s0)

s.t. V π
i (s0) ≤ ĉi ∀i ̸= p

The linear program corresponding to a C-SSP can be ob-
tained by adding (C5) to (LP1) and replacing C in the ob-
jective function with Cp.∑

s∈S,a∈A(s)

xs,aCi(s, a) ≤ ĉi ∀i ̸= p (C5)

We refer to this linear program LP1′.

Heuristic Search for Constrained SSPs
I-dual (Trevizan et al. 2016, 2017) is a heuristic search algo-
rithm for C-SSPs. Similar to heuristic algorithms for uncon-
strained SSPs such as LAO∗ (Hansen and Zilberstein 2001),
I-dual incrementally expands nodes on the current best solu-
tion graph. I-dual can find an optimal policy without evaluat-
ing the entire state space with the help of heuristic functions
−→
H = [H1, · · · , Hk], where Hi is a heuristic function for Ci.

Unlike LAO∗, the current best solution for C-SSP needs to
respect the constraints, thus I-dual repeatedly solves LP2 for
partial problems ⟨Ŝ, s0, Ĝ, T,

−→
C ,
−→
ĉ ,
−→
H, p⟩, where Ŝ ⊂ S,

G ∩ Ŝ ⊂ Ĝ, Â ⊂ A, and
−→
H is the heuristic functions. LP2

computes the current best solution for the states generated
so far. It treats fringe states (states not yet expanded) as arti-
ficial terminal states, and use heuristic values to derive cost
estimates toward the terminal state. After computing the cur-
rent best solution, the algorithm expands all the fringe states
with some incoming flows.

min
x

∑
s∈Ŝ,a∈Â

xs,aCp(s, a) +
∑
s∈Ĝ

Hp(s)

s.t. (C1)-(C4), (C6) (LP2)∑
x∈Ŝ,a∈Â

xs,aCi(s, a) +
∑
s∈Ĝ

in(s)Hi(s) ≤ ĉi ∀i ̸= p

(C6)

When
−→
H is admissible, I-dual returns an optimal policy

(Trevizan et al. 2016). From an Operations Research point of
view, I-dual can be thought of as a column and row genera-
tion algorithm (Trevizan et al. 2016, 2017). At each iteration
of the algorithm, new variables xs,a (columns) and new flow
constraints (rows) are added to LP2. The algorithm decides
which variables (columns) to add based on the current best
solution, which in turn is directed by the heuristic function.

Solving L-SSPs as a Series of Constrained SSPs
Existing methods for L-SSPs optimally transform an L-SSP
to a series of C-SSPs (Pineda, Wray, and Zilberstein 2015)1.

Algorithm 1: CM-Map (Pineda, Wray, and Zilberstein 2015)

Input: L = ⟨S,A, T,
−→
C , s0, G,

−→
δ ⟩

−→
ĉ ← []

for i = 1, · · · , k do
Create C-SSP Ci ← ⟨S,A, T,

−→
C , s0, G,

−→
ĉ , i⟩

π∗ ← Solve Ci
ĉi ← V ∗

i (s0) + δi
end for
return π∗

Algorithm 1 illustrates the procedure (CM-Map) to trans-
form an L-SSP to a series of C-SSPs. For each i = 1, · · · , k
objectives, CM-Map creates a C-SSP Ci such that i is the
primary objective (p = i) and ĉj = V ∗

j (s0) + δj for all
j < i. Note that C1 is an unconstrained SSP optimizing C1.
C2 is a C-SSP optimizing C2 with ĉ1 = V ∗

1 (s0) + δ1 and so
on. When each Ci is solved optimally, CM-Map returns an
optimal policy. Pineda, Wray, and Zilberstein (2015) used a
naı̈ve linear programming formulation (LP1′) to solve a se-
ries of C-SSPs. We denote the version of CM-Map that uses
LP1′ to solve C-SSPs as CM-Map (LP).

Theoretical Analysis
The theoretical properties of L-SSPs (Wray, Lui, and Peder-
sen 2021) have not yet been analyzed. Hence, we begin with
a theoretical analysis of some key properties of L-SSPs.

1The algorithm was originally proposed for LMDPs, but can be
easily adapted for L-SSPs.

Existence of a Proper Optimal Policy
We first show the existence of a proper optimal policy for
L-SSPs under the assumptions similar to SSPs. Indeed, for
general L-SSPs, the existence of a proper optimal policy is
not guaranteed (e.g., environment with zero-cost loops in
terms of the primary objective (C1)).

We show that L-SSPs have a proper optimal policy under
the following assumptions:

Assumption 1. There exists at least one proper policy.

Assumption 2. For the primary objective, all improper poli-
cies yield infinite cost from the initial state.

Note that we only require Assumption 2 for the primary
objective but not for the secondary objectives (C2, · · · , Ck).
That is, we can have zero cost loops for the secondary ob-
jectives. In fact, allowing zero (negative) cost loops can be
convenient for specifying real-world problems, where a sec-
ondary objective can be zero for many of the states. For ex-
ample, when a secondary objective penalizes the agent for
hitting some object, the agent may not incur that cost in the
majority of the states.

Theorem 1. Under Assumptions 1 and 2, an L-SSP has a
proper optimal policy.

Proof. We prove the theorem by induction on the number of
objectives.

Base Case: when k = 1, the problem is a regular SSP.
The existence of a proper optimal policy has been proven by
Bertsekas and Tsitsiklis (1991) for this case.

Induction Step: we assume the claim is true for L-SSPs
with k objectives. Given an L-SSP with k + 1 objec-
tives Lk+1, let Lk be the corresponding L-SSP using the
first k objectives. Then by the induction hypothesis, Lk

has a proper optimal policy π∗
k. By definition, we have

V ∗
j (s0) − V

π∗
k

j (s0) ≤ δj for all j < k. Moreover, triv-

ially V ∗
k (s0)− V

π∗
k

k (s0) = 0 ≤ δk must hold. Therefore, by
the definition of L-SSPs, π∗

k is a feasible policy for Lk+1 as
well. Consider LP1′ forLk+1. The linear program is feasible
as the occupation measure induced by π∗

k is a feasible solu-
tion, satisfying all the flow constraints and cost constraints.
Furthermore, the objective function is bounded from below.
Therefore, LP1′ for Lk+1 has an optimal solution. Let π∗

k+1
be a policy induced by an optimal solution (occupation mea-
sure) from LP1′, then π∗

k+1 is an optimal policy for Lk+1.
We now argue that π∗

k+1 must be proper. Note that π∗
k+1

needs to have bounded cost in terms of the primary objec-
tive due to the cost constraint (C5). Therefore, π∗

k+1 must be
proper as otherwise, π∗

k+1 would be an improper policy with
bounded cost, which violates Assumption 2.

We argue that the existence of a proper optimal policy is
an advantage of L-SSPs over C-SSPs, where having a con-
straint that is too tight can make the problem infeasible.

Need for Stochastic Policies
We next point out an important characteristic of optimal
policies for L-SSP, which justifies our approach to solving
the problem.

Remark 1. For L-SSPs, stochastic policies dominate deter-
ministic policies.

Example: Consider the L-SSP in Figure 1. The optimal
policy for the primary objective is to go above to the goal
with V ∗

1 (s0) = 0. With δ1 = 0.3, the optimal stochastic
policy takes the path below with the probability 0.3 and
the path above with the probability 0.7, which results in
V ∗
2 (s0) = 0.7. On the other hand, the only feasible deter-

ministic policy (π) is to take the path above, which results in
V π
2 (s0) = 1.0.

s0 g

[0, 1]

[1, 0]

Figure 1: Sample L-SSP with a stochastic optimal policy

The result is in contrast to the existence of determinis-
tic optimal policies for regular SSPs (Bertsekas and Tsit-
siklis 1991), and essentially identical to the same result for
CMDPs/C-SSPs (Altman 1999). Due to the need for ran-
domization, previous methods that look for deterministic
policies such as LVI or linear scalarization inherently can-
not find optimal policies.

Furthermore, computing optimal deterministic policies
for L-MDPs/L-SSPs is shown to be NP-hard (Pineda, Wray,
and Zilberstein 2015), using the corresponding result for C-
MDPs/C-SSPs (Feinberg 2000). Note, however, that com-
puting deterministic optimal policies can still be useful when
the policy needs to be interpretable.

Heuristic Search for Lexicographic SSPs
In this section, we propose a new heuristic search algorithm
for L-SSPs. The basic idea is very simple; instead of solv-
ing a series of C-SSPs with LP1′, we use heuristic search
to solve a series of C-SSPs. In particular, when a vanilla I-
dual is used to solve C-SSPs, we denote the algorithm as
CM-Map (I-dual).

From the optimality of CM-Map and I-dual, we immedi-
ately get the following result:

Remark 2. When
−→
H is admissible, CM-Map (I-dual) finds

an optimal policy for given L-SSPs.
However, we observe that the C-SSPs being solved have

some similarities. Hence, we propose a technique to improve
CM-Map (I-dual) based on this property.

Using Unconstrained Problems as Heuristics
While CM-Map (I-dual) avoids expanding the entire state
space, solving the linear programs (LP2) can still be expen-
sive when the heuristic function is not informative. To rem-
edy this issue we can reuse information obtained from solv-
ing C1 to solve C2, · · · , Ck. In particular, we propose to use
lower bound value estimates V i for an unconstrained prob-
lem (Ui) as a heuristic function for Ci as any lower bound
value estimate for Ui is trivially also a lower bound for the
optimal value of Ci.

Algorithm 2: CM-Map (LRTDP or LAO∗, I-dual)

Input: L = ⟨S,A, T,
−→
C , s0, G,

−→
δ ⟩,
−→
HU ,

−→
HC .

1:
−→
V ← Solve C1 with LRTDP or LAO∗ using

−→
HU

2:
−→
H ′ = max(

−→
V ,
−→
HC)

3:
−→
ĉ ← [V ∗

1 + δ1]
4: for i in 2, · · · , k do
5: Create C-SSP Ci ← ⟨S,A, T,

−→
C , s0, G,

−→
ĉ , i⟩

6: π∗ ← Solve Ci with I-dual using
−→
H ′

7: ĉi ← V ∗
i + δi

8: end for
9: seturn π∗

To compute V i, we use standard SSP solvers that keep
lower bounds on values, such as LRTDP (Bonet and Geffner
2003) or LAO∗ (Hansen and Zilberstein 2001), to update
the heuristic values. We denote these variants CM-Map
(LRTDP, I-dual) and CM-Map (LAO∗, I-dual), respectively.

As shown in Algorithm 2, the algorithm takes as input L-
SSP (L), heuristic function for unconstrained SSPs (

−→
HU),

and heuristic function for corresponding constrained SSPs
(
−→
HC) if available. LRTDP or LAO∗ are first used to solve
C1 = U1. We make a slight modification to LRTDP or LAO∗

so that whenever LRTDP or LAO∗ update their current value
estimates with regard to C1, they update the value estimates
for the other objectives as well. This gives us lower bound
value estimates for each objective

−→
V to be used later (see

further discussion below). We combine
−→
V with

−→
HC to get

a new heuristic function
−→
H ′. For C2, · · · , Ck, we solve C-

SSPs with I-dual using
−→
H ′.

Note that we did not change LRTDP or LAO∗ except
where they update their value estimates. For example, in
both algorithms, greedy actions are selected based on C1,
and termination conditions are checked only for C1. There-
fore, our slight modification preserves theoretical properties
of LRTDP or LAO∗ such as guaranteed termination in finite
steps in case of LRTDP. As a consequence of selecting ac-
tions only based on C1, however, V i does not necessarily
converge to the optimal values of unconstrained problems
for i = 2, · · · , k. Note also that

−→
V does not necessarily

correspond to
−→
V π∗

, where π∗ is an optimal policy for U1.
Rather,

−→
V is a lower bound value estimates for each objec-

tive. As LRTDP and LAO∗ can visit different set of states,−→
V can be different for the two algorithms. This incurs lit-
tle overhead because the first iteration of CM-Map requires
solving an unconstrained SSP (C1 = U1).

For LRTDP or LAO∗ to return lower bound value esti-
mates, we need the following assumption in addition to As-
sumption 1 and 2:

Assumption 3. All costs are non-negative.

which is a standard assumption in AI planning setting.
In Theorem 1, we considered a setting where costs can be
negative for the sake of generality.

For CM-Map (LRTDP, I-dual) and CM-Map (LAO∗, I-
dual) to compute optimal policies, LRTDP and LAO∗ must
return optimal values for C1. However, both algorithms re-
turn ϵ-optimal policies. As constraints on C1 are based on
V ∗
1 , policies returned by CM-Map (LRTDP, I-dual) and CM-

Map (LAO∗, I-dual) can fail to utilize slack values by ϵ. In
practice, and in all of our experiments, CM-Map (LRTDP, I-
dual) and CM-Map (LAO∗, I-dual) returned the same values
as CM-Map (LP) by using small enough value of ϵ.

Experiments
In the first set of experiments, we compare qualities of op-
timal policies for L-SSPs against suboptimal policies com-
puted using LVI. In the second set of experiments, we com-
pare planning time among algorithms that compute optimal
policies for L-SSPs.

Domains
We experimented with the following three problem domains.

RaceTrack This problem is a multi-objective variant of
the RaceTrack problem introduced by Pineda, Wray, and
Zilberstein (2015). The racetrack problem is a simulation of
a racing car, which starts from the starting line and ends at
the finishing line. The state of the car (agent) consists of
the current position as well as its velocity. At each state, the
agent can change its velocity in each dimension by at most
1, resulting in 9 possible actions in total. Figure 2 shows the
problem instances used in the experiments.

The multi-objective version of the problem has three cost
functions (C1, C2, and C3). C1 is the number of time-steps
taken to reach the finish line. C2 penalizes changes in the
car’s velocity. C3 penalizes entering unsafe locations.

SearchRescue (Trevizan et al. 2016) This environment
consists of an n × n grid. The goal is to find a single sur-
vivor, bring her on board the vehicle, and transport her to
safety. There is a known location at Hamming distance d
from the starting point that has a survivor. The environment
has r% of locations where the presence of survivors are
initially unknown. These locations initially have low (5%),
middle (10%), or high (20%) probability of having a sur-
vivor. The primary objective C1 is to minimize the time to
rescue a survivor. The time needed to move among grid lo-
cations depends on the speed of the vehicle as well as the
load of the vehicle. The secondary objective C2 is to mini-
mize fuel consumption. The problem was originally defined
as a C-SSP, where the constraint on C2 is half of the fuel the
vehicle would spend if it optimized only C1. We reformu-
lated the problem as an L-SSP. As in the original paper, we
experimented with random instances.

Route and Engine Activation Planning This problem is
a variation of the Engine Activation Planning problem for
series hybrid electric vehicles (HEVs) (Wray, Lui, and Ped-
ersen 2021). Series HEVs use gas powered engines to power
a compact battery that an electric motor uses to control the
wheels. The problem then is to come up with a route plan
with low expected travel time (C1) in minutes as well as a
gas engine activation plan to reduce different costs such as

(a) blank

(b) sym

(c) track1

Figure 2: RaceTrack Problems. The green and red squares
represent the start and goal locations, respectively. Locations
with grey dots are unsafe locations for the car.

energy expenditure (C2) and engine mode transitions (C3).
The states are the current position and the battery level of the
vehicle. We use the same model of the engine as in the orig-
inal paper. Due to the data availability, we used synthetic
data based on a map in Figure 3. The vehicle makes route
and engine activation decisions at intersections.

(a) Minimizing energy expenditure only.

(b) Optimizing the lexicographic objective.

Figure 3: Instance (Amherst-Northampton) of Route and En-
gine Activation. Red/green lines indicate engine is on/off.

Comparing Solution Qualities against LVI
We first compare qualities of optimal policies for L-SSPs
and deterministic policies computed by LVI. Recall that LVI
restricts local deviation from optimal value by −→η . Note that
optimal policies for L-SSPs allow some slack values, thus
values for C1, · · · , Ck−1 are not unique for optimal policies.
We used CM-Map (LRTDP, I-dual) to compute the values in
the plots; other CM-Map variants returned similar values.

Figure 4a shows values computed with different values
of δ1 and η1 for an instance of SearchRescue. Deterministic
policies computed by LVI resulted in sudden jumps in ob-
jectives as we changed η1. On the other hand, methods that
compute optimal stochastic policies for L-SSPs resulted in
a more intricate balance between C1 and C2. Note that with
δ1 = η1, having a global slack δ1 is a stronger constraint.
With large enough values of δ1 and η1, both algorithms re-
turn an optimal policy for C2.

Figure 5 shows values computed with different values of
−→
δ and −→η for instances of RaceTrack. While slacks are two-

dimensional in RaceTrack problems, we used vectors with
the same values. In Figure 5a, LVI failed to sacrifice C1 in
order to improve the other objectives. But the resulting val-
ues for C2 and C3 were not significantly different.

Figure 5b and 5c show that while both LVI and optimal
policies had similar values for each objective, the output of
LVI tended to fluctuate more. Note that it is possible for val-
ues to fluctuate: as we increase the slack for C1, we can have
a better policy in terms of C2, which in turn makes the con-
straint when optimizing C3 tighter. On the other hand, the
values for optimal policies change more smoothly. When the
constraints on costs (C5) are tight, increasing δ often meant
moving the solution in the same direction. We observed a
similar trend for an instance of Route and Engine Activation
Planning (Figure 4b).

(a) SearchRescue with n = 4, d = 3, and r = 0.5.

(b) Instance (Amherst-Northampton) of Route and Engine Activa-
tion Planning.

Figure 4: Values corresponding different
−→
δ and −→η

Comparing Planning Times
We next compare planning times to compute optimal poli-
cies among: a naı̈ve linear programming encoding (CM-
Map (LP)), CM-Map (I-dual), CM-Map (LRTDP, I-dual),
and CM-Map (LAO∗, I-dual). We refer to these algorithms
LP, I-dual, LRTDP, and LAO∗, respectively in tables.

For the heuristic functions, we used hmin heuristic, com-
puted as needed by LRTA∗ (Bonet and Geffner 2003). Note
that for problems that admit factored state representation
such as PPDDL (Younes and Littman 2004), other heuris-
tics such as hmax that exploit the representation exist. Most
notably, Trevizan, Thiébaux, and Haslum (2017) proposed
heuristics for (C-)SSPs represented in probabilistic SAS+.
We used hmin as some of the domains used in the experi-
ments do not have efficient factored state representation.

To solve linear programs, we used the Gurobi linear pro-
gramming solver v9.5 (Gurobi Optimization, LLC 2022),
using a single thread. All the algorithms were implemented
by us and solved on Intel Xeon E2-2680v4 computers. All
problem instances were solved with 60 minutes CPU-time
and 2GB memory limit. For LRTDP and LAO∗ we used
ϵ = 10−2 when checking convergence.

Table 1 shows the results for RaceTrack problems. For
blank, all the heuristic search variants solved the problem
much faster than CM-Map (LP), and expanded less than a
tenth of the entire state space. Among heuristic search vari-
ants, CM-Map (LRTDP, I-dual) was slower as it took more
time for LRTDP to solve C1.

(a) blank (b) sym (c) track1

Figure 5: Values corresponding different
−→
δ and −→η for RaceTrack Problems.

Instance Algorithm
−→
δ = [0.1, 0.1]

−→
δ = [1.0, 1.0]

−→
δ = [5.0, 5.0]

Time(s) |S| Time(s) |S| Time(s) |S|

blank

LP 361.8 74636 812.6 74636 883.5 74636
Idual 22.6 3766 30.0 4401 18.5 2632

LRTDP 45.5 2096 51.4 4297 50.1 2526
LAO 26.4 1952 26.0 3429 26.1 1885

sym

LP 57.9 61862 142.3 61862 246.8 61862
Idual 378.7 9184 193.1 8830 144.6 8830

LRTDP 78.8 3354 67.1 3338 74.3 5037
LAO 45.2 3161 47.7 3803 55.2 4336

track1

LP 54.2 14270 84.7 14270 159.3 14270
Idual 160.0 8268 187.0 8601 59.6 7337

LRTDP 65.7 7397 79.9 7980 20.9 6374
LAO 53.0 7039 81.1 7818 17.7 6114

Table 1: Results for RaceTrack Domains. |S| represents the
number of states generated.

For sym, CM-Map (I-dual) performed worst. As the
heuristic was not informative enough, it had to generate
about a sixth of the entire state space. On the other hand,
CM-Map (LRTDP, I-dual) and CM-Map (LAO∗, I-dual)
generated less than a tenth of the state space, and solved
problem faster than CM-Map (LP).

For track1, the heuristic variants were not significantly
better than CM-Map (LP) except when δ = 5.0. Due to the
structure of the problem instance, heuristic search had to ex-
pand more than half of the entire space. As heuristic search
needs to solve LP2 in each iteration of the algorithm, it has
a large overhead compared to CM-Map (LP) when it cannot
exclude many of the states.

Table 2 shows the results for SearchRescue problems.
Overall, heuristic search performed much better than CM-
Map (LP) in this domain. CM-Map (LP) could not solve any
problem instances with n = 5. On the other hand, heuristic
search was able to solve problems with millions of states
as it only needs to explore a small portion of the entire
state space. Note that as we increase r (the percentage of)
locations where the presence of survivors are initially un-
known, the number of possible states increases. The other
three heuristic search variants solved mostly the same set
of problems. Due to the more informed heuristic, CM-Map
(LRTDP, I-dual) generally solved these problems slightly

faster than the other two with fewer generated states.
Table 3 shows the results for Route and Engine Activation

Planning. As in the previous two domains, heuristic search
computed an optimal policy faster than CM-Map (LP) with
fewer generated states. However, there was no significant
difference among the heuristic search variants.

Related Work
As discussed earlier, LMDPs/L-SSPs can be thought of as a
way to specify a series of CMDPs/C-SSPs. However, formu-
lating problems as CMDPs/C-SSPs requires the designer to
know the appropriate constraints a priori. If the constraints
are too hard to satisfy, the problem would be infeasible. In
contrast, LMDPs/L-SSPs require specifying ordering among
objectives and slack values (allowable deviations from opti-
mal costs). The implicit assumption is that for some prob-
lems, the deviations from the optimal costs are easier to
specify than hard constraints on costs. We showed that L-
SSPs always have a proper optimal policy whenever the cor-
responding SSPs have one (Theorem 1). While some prob-
lems are easier to specify with CMDPs/C-SSPs, problems
with no clear a priori budget constraints can be easier to
specify with LMDPs/L-SSPs.

When the exact trade-offs among different objectives are
known a priori, we can linearly combine the multiple objec-
tives into one (linear scalarization). The advantage of this
approach is that we can make use of the existing solution
methods for single objective MDPs. However, specifying the
coefficients to strike the right balance among objectives is
hard, and could result in unexpected behaviors of the agent.
Furthermore, we showed (Remark 1) that optimal policies
for L-SSPs are not necessarily deterministic, but most al-
gorithms look for a single-objective produce deterministic
policies.

When the desired trade-offs among the different objec-
tives cannot be determined a priori, another approach to han-
dle multiple objectives is to compute the Pareto front of dif-
ferent objectives (Roijers and Whiteson 2017). The Pareto
front consists of all policies that are Pareto optimal, that is,
policies for which no single objective can be improved with-
out compromising another objective. Unlike the other ap-
proaches, Pareto-based approaches return a set of policies

n d r Algorithm
−→
δ = [0.1]

−→
δ = [1.0]

−→
δ = [5.0]

Time(s) C |S| Time(s) C |S| Time(s) C |S|

5 3
0.5

LP NA 0 88550400.4 NA 0 88645803.5 NA 0 88611512.6
Idual 283.2 26 3948.7 366.2 27 4441.8 665.1 27 6024.5

LRTDP 134.8 28 3312.2 224.0 28 3508.7 498.2 28 5601.7
LAO 248.1 26 3804.3 348.2 26 4227.7 622.4 28 6007.1

0.75

LP NA 0 NA NA 0 NA NA 0 NA
Idual 111.1 22 3863.4 272.0 23 5339.1 324.6 22 5298.9

LRTDP 98.6 22 3328.5 259.4 24 4573.0 239.7 24 5063.0
LAO 104.2 22 3795.0 275.1 23 5315.0 327.0 22 5363.1

4
0.5

LP NA 0 88952184.4 NA 0 88966559.9 NA 0 88966559.9
Idual 420.5 21 4496.7 560.1 22 5332.9 625.9 22 5987.0

LRTDP 273.9 22 3703.0 419.8 23 4351.2 544.1 23 5368.3
LAO 399.0 22 4300.0 494.2 22 5169.2 602.5 24 5967.2

0.75

LP NA 0 NA NA 0 NA NA 0 NA
Idual 373.9 18 7023.4 760.9 20 10507.7 533.7 20 8553.0

LRTDP 278.1 21 5526.4 602.6 21 8697.2 449.0 21 7878.1
LAO 341.6 18 6594.7 697.6 20 10209.8 495.0 17 8442.1

Table 2: Results for SearchRescue Domains with 30 random instances. C represents the number of instances solved. |S| is the
average number of generated states. Time(s) is the average time. The averages are computed for instances that all heuristic
search variants solved.

Instance Algorithm
−→
δ = [1.0, 1.0]

−→
δ = [1.0, 2.0]

Time(s) |S| Time(s) |S|

Amherst-Northampton

LP 195.4 34777 226.4 34777
Idual 82.7 2641 68.0 2023

LRTDP 67.2 2647 58.8 1982
LAO 67.6 2605 50.7 1925

Northampton-Holyoke

LP 83.5 34945 115.0 34945
Idual 49.0 2279 50.2 2265

LRTDP 37.9 2273 36.0 2260
LAO 41.4 2241 38.8 2295

Table 3: Results for Route and Engine Activation. |S| is the
number of generated states. Time(s) is the planning time.

and let users choose a policy from the Pareto front. This
could be a benefit in some applications, but when the set
of policies is very large, it may be hard to present.

Decision-making with lexicographic preferences offers
a natural representation of objectives that has proved use-
ful in several application domains, including safe and cost-
efficient operations of smart buildings (Lesser and Abate
2018), planning the distribution of emergency goods to vic-
tims of disasters (Laguna-Salvadó et al. 2019), and mitigat-
ing undesirable side effects of deployed AI systems (Saisub-
ramanian, Kamar, and Zilberstein 2020).

LMDPs/L-SSPs are special cases of Lexicographic Multi-
Objective Linear Programming (LMOLP) (Isermann 1982).
In this sense, our heuristic search algorithm can be viewed
as a column and row generation algorithm for a spe-
cial case of LMOLP with the guidance of the heuristic
function. While some existing algorithms are tailored for
LMOLP (Pourkarimi and Zarepisheh 2007; Cococcioni,
Pappalardo, and Sergeyev 2018), they work in settings with
strict lexicographic ordering and are not directly applicable
to LMDPs/L-SSPs with slacks.

Conclusions
We propose the first heuristic search algorithm for stochastic
planning problems with lexicographic preferences called L-
SSPs. Our approach builds on the heuristic search algorithm
for constrained SSPs. Unlike the naı̈ve linear programming
encoding of the problem in the literature, which expands the
entire state space, the algorithm gradually generates states
based on the current best solution. Unlike previous methods
that are based on local action restriction, our algorithm com-
putes an optimal policy. Furthermore, we propose a variant
of the algorithm that reuses value estimates as heuristic func-
tions for later iterations.

Our experiments show that by computing optimal poli-
cies using our heuristic search, we can strike a finer balance
among multiple objectives compared to the existing state-
of-the-art method. Moreover, when the number of relevant
states is much smaller than the number of possible states,
out algorithm can compute optimal policies much faster than
previous methods.

We additionally show that L-SSPs are guaranteed to have
a proper optimal policy under the same conditions as un-
constrained SSPs (Theorem 1). This is in contrast to C-SSP,
where setting arbitrary constraints can render the problem
infeasible. The result suggests an advantage of L-SSP over
C-SSP when there are no clear cost constraints. While a di-
rect consequence of the same result for CMDP/C-SSP, we
note that stochastic policies dominate deterministic policies
in L-SSP (Remark 1). The result provides a further indica-
tion that prior methods based on local action restriction or
linear scalarization may not find optimal policies.

Acknowledgments
This research was supported by the National Science Foun-
dation grants number IIS-1724101 and IIS-1954782, and by
the Alliance Innovation Lab Silicon Valley.

References
Altman, E. 1999. Constrained Markov Decision Processes,
volume 7. CRC Press.
Bertsekas, D. P.; and Tsitsiklis, J. N. 1991. An analysis of
stochastic shortest path problems. Mathematics of Opera-
tions Research, 16(3): 580–595.
Bonet, B.; and Geffner, H. 2003. Labeled RTDP: Improv-
ing the convergence of real-time dynamic programming.
In Proceedings of the Thirteenth International Conference
on International Conference on Automated Planning and
Scheduling, 12–21.
Cococcioni, M.; Pappalardo, M.; and Sergeyev, Y. D. 2018.
Lexicographic multi-objective linear programming using
grossone methodology: Theory and algorithm. Applied
Mathematics and Computation, 318: 298–311.
d’Epenoux, F. 1963. A probabilistic production and inven-
tory problem. Management Science, 10(1): 98–108.
Feinberg, E. A. 2000. Constrained discounted Markov de-
cision processes and Hamiltonian cycles. Mathematics of
Operations Research, 25(1): 130–140.
Gurobi Optimization, LLC. 2022. Gurobi Optimizer Refer-
ence Manual.
Hansen, E. A.; and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence, 129(1-2): 35–62.
Isermann, H. 1982. Linear lexicographic optimization. OR
Spectrum, 4(4): 223–228.
Kwak, J.; Varakantham, P.; Maheswaran, R.; Tambe, M.;
Jazizadeh, F.; Kavulya, G.; Klein, L.; Becerik-Gerber, B.;
Hayes, T.; and Wood, W. 2012. SAVES: A sustainable mul-
tiagent application to conserve building energy considering
occupants. In Proceedings of the Eleventh International
Conference on Autonomous Agents and Multiagent Systems,
21–28.
Laguna-Salvadó, L.; Lauras, M.; Okongwu, U.; and Comes,
T. 2019. A multicriteria Master Planning DSS for a sus-
tainable humanitarian supply chain. Annals of Operations
Research, 283(1-2): 1303–1343.
Lesser, K.; and Abate, A. 2018. Multiobjective optimal con-
trol with safety as a priority. IEEE Transactions on Control
Systems Technology, 26(3): 1015–1027.
Mouaddib, A. 2004. Multi-objective decision-theoretic path
planning. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation, volume 3, 2814–2819.
Pineda, L. E.; Wray, K. H.; and Zilberstein, S. 2015. Revis-
iting multi-objective MDPs with relaxed lexicographic pref-
erences. In AAAI Fall Symposium on Sequential Decision
Making for Intelligent Agents.
Pourkarimi, L.; and Zarepisheh, M. 2007. A dual-based
algorithm for solving lexicographic multiple objective pro-
grams. European Journal of Operational Research, 176(3):
1348–1356.
Roijers, D. M.; and Whiteson, S. 2017. Multi-objective de-
cision making. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 11(1): 1–129.

Saisubramanian, S.; Kamar, E.; and Zilberstein, S. 2020. A
multi-objective approach to mitigate negative side effects. In
Proceedings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, 354–361.
Trevizan, F.; Thiébaux, S.; Santana, P.; and Williams, B.
2017. I-dual: Solving constrained SSPs via heuristic search
in the dual space. In Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence, 4954–
4958.
Trevizan, F. W.; Thiébaux, S.; and Haslum, P. 2017. Occu-
pation measure heuristics for probabilistic planning. In Pro-
ceedings of the Twenty-Seventh International Conference on
Automated Planning and Scheduling, 306–315.
Trevizan, F. W.; Thiébaux, S.; Santana, P. H.; and Williams,
B. C. 2016. Heuristic search in dual space for constrained
stochastic shortest path problems. In Proceedings of the
Twenty-Sixth International Conference on Automated Plan-
ning and Scheduling, 326–334.
Wray, K. H.; Lui, R.; and Pedersen, L. 2021. Engine acti-
vation planning for series hybrid electric vehicles. In Pro-
ceedings of the IEEE Intelligent Vehicles Symposium (IV),
238–244.
Wray, K. H.; Zilberstein, S.; and Mouaddib, A.-I. 2015.
Multi-objective MDPs with conditional lexicographic re-
ward preferences. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, 3418–3424.
Younes, H. L. S.; and Littman, M. L. 2004. PPDDL 1.0: An
extension to PDDL for expressing planning domains with
probabilistic effects. Technical report.

