
Explanation-Guided Reward Alignment

Saaduddin Mahmud1 , Sandhya Saisubramanian2 , Shlomo Zilberstein1

1University of Massachusetts Amherst, USA
2Oregon State University, USA

smahmud@umass.edu, sandhya.sai@oregonstate.edu, shlomo@umass.edu

Abstract
Agents often need to infer a reward function from
observations in order to learn desired behaviors.
However, agents may infer a reward function that
does not align with the original intent, as there can
be multiple reward functions consistent with their
observations. Operating based on such misaligned
rewards can be risky. Furthermore, black-box rep-
resentations make it difficult to verify the learned
reward functions and prevent harmful behavior. We
present a framework for verifying and improving
reward alignment using explanations, and we show
how explanations can help detect misalignment and
reveal failure cases in novel scenarios. The prob-
lem is formulated as inverse reinforcement learning
from ranked trajectories. Verification tests created
from the trajectory dataset are used to iteratively
verify and improve reward alignment. The agent
explains its learned reward, and a tester signals
whether the explanation passes the test. In cases
where the explanation fails, the agent offers alterna-
tive explanations to gather feedback, which is then
used to improve the learned reward. We analyze
the efficiency of our approach in improving reward
alignment using different types of explanations and
demonstrate its effectiveness in five domains.

1 Introduction
Autonomous agents are increasingly being deployed in the
real world to complete complex and nuanced tasks [Zilber-
stein, 2015; Dietterich, 2017]. A predominant approach to
train such agents in the absence of a reward function is learn-
ing from demonstrations (LfD) [Argall et al., 2009]. Inverse
reinforcement learning (IRL) is a form of LfD that is designed
to retrieve a reward function that motivates the observed be-
havior [Sutton and Barto, 1998], enabling agents to learn and
generalize observed behavior to unseen situations.

However, the generalization capability is often affected by
the quality and size of the trajectory dataset used to learn the
reward function. In particular, we focus on situations where
(1) the reward function is learned from ranked sub-optimal
trajectories, and (2) the trajectory dataset covers only a sub-
set of states, providing no direct information about acceptable
behavior in other states. Additionally, the dataset may also

contain spurious state feature correlations—multiple features
always co-occur—causing the agent to learn a misaligned
reward. This can occur, for example, when training an au-
tonomous vehicle (AV) using data collected at a particular
geo-location and then deploying it in multiple different areas.

Figure 1 illustrates this challenge with an AV approaching
a pedestrian walking two dogs. Suppose that in the trajectory
dataset, the driver always stops when a human is crossing the
street with dogs. Since dogs are often accompanied by hu-
mans, the rare case of encountering dogs alone might be miss-
ing from the dataset. Consider four different reward functions
consistent with the trajectory dataset, (Ri, 1 ≤ i ≤ 4), each
with the same negative reward for not stopping in this case.
R1 does not account for dogs, R2 rewards stopping for pedes-
trians with dogs, R3 rewards stopping for pedestrians or dogs,
and R4 rewards stopping for all objects, including leaves or
a plastic bag on the road. Without additional information, the
AV may randomly learn one of these reward functions (say
R2), however, R3 represents the intended reward. When op-
erating based on R2, the AV may not stop for dogs unaccom-
panied by humans. This example illustrates the reward am-
biguity stemming from the incomplete trajectory dataset and
the consequences of operating based on a misaligned reward.
While increasing the diversity of the trajectories in the dataset
may help to some extent, it is often practically infeasible or
risky to demonstrate certain trajectories.

We propose to address this issue by using explanations to
verify and improve reward alignment. Explaining the learned
model reveals not only what the agent knows but also the
potential errors in its reasoning. Building on this insight, we
present a framework for reward verification and re-alignment
using explanations (REVEALE) that consists of a verification
phase and an improvement phase. Initially, the posterior over
the reward function is calculated from the trajectory dataset
using a Bayesian IRL method [Brown et al., 2020]. In the
verification phase, the tester verifies the maximum a posteri-
ori (MAP) reward function using verification tests in the form
of queries to the agent. The agent responds by explaining its
reward, and the tester signals whether the explanation passes
the verification test. If it fails, the agent presents additional
explanations from an alternative sample of the current poste-
rior. The tester provides feedback by selecting the explanation
that most closely matches the correct reasoning. This is fol-
lowed by the improvement phase, in which the agent updates
its posterior, based on the additional feedback.

Ranked Trajectories

Feedback

 Learn reward

Verify reward
 "Explain reward at

state "

 Generate explanations

Reward functions consistent
with the demonstration:

State : car approaching a
pedestrian walking two dogs

 Evaluate explanations

 Ranked explanations

 Execute task
 with

Pass

 Explain candidate
 reward functions

Fail

: car approaching a dog
accompanied by human

Updated

:stop for pedestrians
:stop for pedestrians dogs
:stop for pedestrians dogs
:stop for all objects

Example:

Ped
Ped +dogs

Dogs
Object

Ped
Dogs

Object

Ped +dogs

Ped
Dogs

Object

Ped +dogs

Figure 1: An example of reward verification and learning with REVEALE in autonomous navigation.

We use verification tests in the form of a query: “ex-
plain the reward at state s,” and explanations in the form
of feature attribution (e.g., saliency map [Simonyan et al.,
2014], the gradient of the function [Tayyub et al., 2022],
and LIME [Ribeiro et al., 2016]). An example of a verifi-
cation test for the scenario described in Figure 1 is “explain
the reward when the AV encounters a dog accompanied by
humans,” to which the agent would respond with its reward
value and feature attributions (for R2) indicating a low weight
for the ‘dogs’ feature. This reveals a potential weakness of
the model in the counterfactual scenario in which the dog
is not accompanied by a human (missing from the dataset).
When this verification test fails, the agent explains another
candidate reward function (for example, R3). The tester then
selects an explanation that is similar to the explanation that
their intended reward would generate (R3 in this case), indi-
cating that R3 is ranked over R2 and the desired behavior is
to stop for pedestrians or dogs. This example highlights two
key advantages of our method: (1) REVEALE exposes wrong
reward estimation in novel situations that do not appear in
the dataset, and (2) it improves the alignment of the reward
function offline without requiring additional trajectory sam-
ples containing the novel situations.

2 Background and Related Work
Markov decision process (MDP) An MDP M is repre-
sented by the tuple M=(S,A, T,R, S0, γ) where S is a finite
set of states, A is a finite set of actions, T : S×A×S → [0, 1]
is the transition function, R : S → R is the reward func-
tion (bounded in absolute value by Rmax), S0 is the ini-
tial state distribution, and γ ∈ [0, 1) is the discount fac-
tor. A policy π : S → A is a mapping from states to ac-
tions. The state values of a policy π are defined as V π(s) =
E[
∑∞

t=0 γ
tR(st) | s0, π],∀s ∈ S. The optimal values are

denoted by V ∗(s) = maxπ V
π(s). While in this paper we

describe our approach using state-based reward functions, it
can be naturally extended to rewards defined as R(si, ai) or
R(si, ai, si+1).

Reward learning Most IRL algorithms learn a reward func-
tion using expert trajectories [Ng and Russell, 2000; Abbeel
and Ng, 2004; Ziebart et al., 2008]. Recent algorithms utilize
additional information to improve reward learning, such as

preferences over sub-optimal trajectories [Brown et al., 2020;
Palan et al., 2019], prior over reward functions [Ramachan-
dran and Amir, 2007], or feature queries [Basu et al., 2018].
However, most of these methods do not generalize well when
there is a mismatch between the training and deployment set-
tings. Further, unlike [Basu et al., 2018] that uses human
feedback to identify a feature that affects trajectory prefer-
ences, we use feedback to identify which automatically gen-
erated explanation provides correct reasoning about reward
estimation, thereby reducing reward ambiguity. While the for-
mer approach is limited to linear rewards, our approach gen-
eralizes to nonlinear cases. Finally, none of these previous
methods perform reward alignment verification.

Bayesian IRL A Bayesian framework for IRL defines a
probability distribution of reward functions given a dataset
D using Bayes rule, P(R|D) ∝ P (D|R)P (R). The form of
P (D|R) may vary depending on the specifics of the infor-
mation available in D. For scalability reasons, we utilize the
definition provided by BREX [Brown et al., 2020]. Let τ1i
and τ2i denote two different trajectories1 and τ1i ≻ τ2i , indi-
cating that τ1i is ranked over τ2i . Then the trajectory dataset
is denoted by D = {(τ11 ≻ τ21), (τ

1
2 ≻ τ22), ..., (τ

1
n ≻ τ2n)}.

BREX defines P(D|R) as:

P(D|R) =
∏

(τ1
i ≻τ2

i)∈D

eβR(τ1
i)

eβR(τ1
i) + eβR(τ2

i)
(1)

where, R(τ) =
∑

s∈τ R(s) and β ∈ [0,∞).

Value alignment Value alignment focuses on ensuring that
an agent’s behavior is aligned with its user’s intentions. It
has also been explored in efforts to avoid negative side ef-
fects of AI systems [Saisubramanian et al., 2022]. Notably,
the inverse reward design approach [Hadfield-Menell et al.,
2017] aims to retrieve the intended reward function by treat-
ing the specified reward function as a proxy. On the other
hand, we learn the true reward function using human feed-
back on automatically generated explanations of potential re-
ward functions. While some recent work focused on value
alignment verification (VAV) with a minimum number of

1Here a trajectory is a sequence of consecutive states visited
when following some policy π.

queries [Brown et al., 2021], our work differs in that (1) we
use feedback in the form of ranking of reward explanations
to verify the reward, while VAV uses reward weights, value
weights or trajectory ranking for verification, and (2) VAV
can detect but cannot amend misaligned reward, while our
approach verifies and rectifies incorrect reward. Furthermore,
VAV can only check the consistency of the value function in
situations that occur during training and cannot verify perfor-
mance in novel situations.

Explainable AI Explainable AI methods often use fea-
ture attribution to explain the relationship between input
features and the output of a learned model. Examples in-
clude LIME [Ribeiro et al., 2016], gradient as explana-
tion (GaE) [Tayyub et al., 2022] for tabular/feature-based
data, and saliency maps [Simonyan et al., 2014] for image
data [Alqaraawi et al., 2020]. GaE is a core component of
saliency maps and provides insight into the local structure of
the function. LIME learns a linear regression model for states
sampled in the neighborhood of the state being explained. Be-
sides feature attribution, there are other broad classes of au-
tomated explanation generation methods such as model rec-
onciliation [Chakraborti et al., 2017] and policy summariza-
tion [Amir et al., 2019]. While many works in this area can
be considered as methods for reward alignment verification
[Huang et al., 2018; Tabrez et al., 2020] none of them im-
prove reward alignment. Finally, [Guan et al., 2021] focuses
on using explanation to improve Q-value estimation but does
not retrieve any reward function.

3 The REVEALE Framework
Consider an agent trained to operate in an environment mod-
eled as an MDP, M = (S,A, T,R, S0, γ), where the reward
function R is initially unknown to the agent. The agent aims
to learn R using trajectory data D. We consider a factored
state representation and use ϕ(s) to donate the set of factors
of a state s.

Definition 1. Given an MDP M with an unknown reward
function R, a REVEALE instance is defined by a tuple
⟨M,D,R, SV , E ,X ,F⟩ where

• M is the underlying MDP with R initially unknown to
the agent;

• D denotes the trajectory dataset;

• R denotes the space of possible reward functions for M ;

• SV ⊆ S denotes the set of verification test states used
by the human to verify the agent’s learned reward;

• E is the space of explanations, corresponding to R;

• X : S × R → E is the agent’s explanation generation
function that generates an explanation e ∈ E , given a
verification test state sV ∈ SV and the reward function
R ∈ R; and

• The set F consists of feedback mapping functions, where
each function Fi ∈ F is responsible for mapping a par-
ticular type of feedback signals provided by a human in
response to the agent’s explanation.

Problem setting We consider the setting where the reward is
learned offline, using a limited number of pairwise rankings
of sub-optimal trajectories, D= {(τ11 ≻ τ21), . . . , (τ

1
n ≻ τ2n)},

similar to [Brown et al., 2019b]. The learned reward is later
used to solve different instances of the domain. The quality
of the retrieved reward depends on the composition of the
dataset, which, in turn, depends on the source of the dataset.
Increasing the size of the training data does not guarantee to
learn the intended reward, as the additional trajectories gen-
erated from the same source may not provide novel informa-
tion critical for learning an aligned reward. Furthermore, it is
practically infeasible to foresee and construct a dataset that
contains information pertaining to novel states that the agent
will encounter when deployed.

REVEALE address this without making any assumptions
about the composition or the source of the trajectory dataset
and utilizes explanations and a human tester. The tester is as-
sumed to be an entity capable of reasoning about reward es-
timation (e.g., identifying a feature that makes a state good
or bad). The tester is not required to be aware of all possi-
ble novel scenarios missing from the dataset a priori. Instead,
REVEALE exposes wrong reward estimation in novel states
using explanations of states that appear in the dataset. An al-
ternative to REVEALE would be to train and deploy the agent
using the unverified reward function and collect additional
data about undesirable behavior. However, this approach can
be unsafe, costly, and time-consuming in many scenarios.

Based on [Brown et al., 2019a], the space of reward func-
tions consistent with the ranked dataset is defined below.

Definition 2. Given an MDP M and ranked dataset D, a
data-consistent reward set, denoted ∆(D), is a set of reward
functions under which the higher ranked trajectories have a
higher reward than the lower ranked trajectories, ∆(D) =
{R∈R | R(τ1i) > R(τ2i),∀(τ1i ≻ τ2i) ∈ D}.
Explanation generation function (X) The agent’s explana-
tions involve two components: (1) the reward at the verifica-
tion test state sV , R(sV), following the most likely reward
function; and (2) feature attribution indicating the influence
of each state features of sV , ϕ(sV), on the reward function.

Feature attribution-based explanations are widely used in
interpretable machine learning [Molnar, 2022]. A feature at-
tribution is a scoring function of form X : S ×R → R|ϕ(s)|,
evaluating the contribution of each state feature to the output.
It is a form of local explanation as it only explains the reward
function at each state in isolation. We use established local
explanation techniques mentioned earlier: gradient as expla-
nation (GaE), LIME, and saliency maps.

Verification and feedback We use verification tests of the
form “Explain the reward at state sV ” with sV ∈SV selected
by the tester. The set SV is selected from the trajectory dataset
D. The agent responds by automatically generating explana-
tions, consisting of the reward value at sV , R(sV), and the
feature attribution X (sV , R) = XR(sV) describing the rea-
soning behind the reward estimation. Different types of feed-
back are provided for the agent’s response in the following
two situations:

• Approval: A binary signal indicating the tester’s approval

FA(XR(sV)) = 1 or disapproval FA(XR(sV)) = 0 of the
explanation, denoting the outcome of the verification test.

• Explanation feedback: When the verification test fails, the
tester provides accurate feedback on explanations gener-
ated by the agent in one of the following two forms:

1. Oracle explanations, typically provided by the human, in
the form of exact feature attribution corresponding to their
intended reward, FO(XR(sV)) = XO(sV),∀sV ∈ SV ,
where XO(sV) denotes the exact feature attribution gen-
erated by the Oracle. Though this is an ideal setting as
XO(sV) provides features that are critical to learning the
intended reward, this type of feedback can be harder to
collect in practice, except for simpler domains.

2. Pairwise ranking over feature attributions generated by
the agent, FP (XR1

(sV),XR2
(sV)) ∈ {(XR1

(sV) ≻
XR2

(sV)), (XR2
(sV) ≻ XR1

(sV))},∀sV ∈SV . Here,
XR1

(sV) and XR2
(sV) denote explanations of two reward

functions, R1, and R2 respectively. This is a more realistic
form of feedback that identifies the explanation that better
captures the intended reward.

Definition 3. Given an MDP M and a set of test states SV ,
an explanation-consistent reward set, denoted ∆(XSV), is
a set of reward functions whose corresponding explanations
are approved by the tester:
∆(XSV) = {R ∈ R | FA(XR(sV)) = 1,∀sV ∈ SV }.

Definition 4. Reward ambiguity is a measure proportional
to the size of the consistent reward set ∆, such as |∆| when
∆ is finite and discrete, and volume of ∆, V(∆), when ∆ is
continuous, as in a simplex in Rk.

REVEALE aims to decrease the reward ambiguity by re-
ducing the size of the data-consistent reward set, ∆(D). This
is accomplished by considering only the subset of reward
functions in ∆(D) that successfully passes all the verification
tests.

Definition 5. A solution of a REVEALE instance is a reward
function, R ∈ ∆(D) ∩ ∆(XSV). An optimal solution is a
reward function, R ∈ ∆(D) ∩∆(XSV) that is aligned most
closely with the actual human intent.

While ideally, we would want to completely reduce re-
ward ambiguity, as it would guarantee an optimal solution,
it may not always be feasible. In the next section, we will
first present an algorithm that can find a solution to the RE-
VEALE instance. Subsequently, we will theoretically analyze
a simple scenario in which this algorithm will guarantee an
optimal solution and measure the extent of reward ambiguity
when it deviates from optimality.

4 Solution Approach
The input to our algorithm, iterative learning and verification
of reward (ILV), consists of a set of ranked trajectories D and
the verification test states SV . The test states can be selected
randomly from D or by the tester, who possesses a broader
scope of knowledge and can identify critical states that affect
performance. The algorithm begins by initializing an empty

set of feedback C and retrieves the initial reward function2

Rm using Equation 1. Then the algorithm alternates between
the verification and improvement phases until a reward func-
tion is found that passes all the verification tests.

Verification phase In this phase, for each verification test
state sV ∈ SV , the reward value Rm(sV) and the corre-
sponding explanation XRm(sV) are shown to the tester for
approval. If approved, then XRm(sV) is added to C as an Or-
acle explanation. If disapproved, additional feedback is re-
quested from the tester. When possible, the tester can provide
the correct explanation, i.e., XO(sV). Otherwise, the agent
generates an alternative explanation XR′(sV) and collects the
tester’s ranking over XRm

(sV) and XR′(sV). Here, R′ is a
different reward function sampled from the posterior. Finally,
all the feedback is added to C. Note that if the tester fails to
distinguish between the two explanations, additional alterna-
tive explanations can be generated to help the tester. If the
agent does not pass all the tests, the algorithm goes to the
improvement phase.

Improvement phase In the improvement phase, new pos-
terior distribution over the reward function is calculated by
combining D and C using Equation 2,

P (R|D, C) ∝ P (C|D, R)P (D|R)P (R). (2)

Since explanations only depend on the reward function,
P (C|D, R) = P (C|R). Based on this posterior distribution, a
new MAP reward Rm is calculated. Then the algorithm goes
back to the verification phase.

Thus, our algorithm iteratively guides the reward align-
ment using explanations. In the rest of this section, we define
P (C|R) and analyze the proposed method for different types
of explanation generation methods.

4.1 Linear Reward Alignment
In this section, we define and analyze P (C|R) for linear re-
ward models3, which are described by a linear weighted com-
bination of features describing the state, R(s) = wTϕ(s),
w ∈ Rn. For a linear reward, explanations generated using
LIME (LM) will produce the same output as GaE. Therefore,
we only present results using GaE and saliency maps (SM).
Note that we defined GaE as the gradient of reward function

w.r.t. input state features, i.e.,
dR(s)

dϕ(s)
and SM as abs(

dR(s)

dϕ(s)
).

Here, abs(.) is used to indicate absolute value. Given an or-
acle feedback explanation XO(si) for state si and a distance
measurement D(.) (e.g., L2, cosine similarity), the learned
reward function R must satisfy the following constraint:

D(XO(si),XR(si)) = 0. (3)

This is because we want the learned reward function to pro-
duce the same explanation as the Oracle. Similarly, given
the ranking over two explanations XR1(si) ≻ XR2(si), the

2Rm can be initialized using the existing IRL method used in
conjunction with REVEALE, BREX in our case.

3Our implicit assumption is that the intended reward function can
be represented with a vector in Rn.

learned reward function R must satisfy the following con-
straint:

D(XR1
(si),XR(si)) < D(XR2

(si),XR(si)). (4)

This is because we want the explanation generated by the
leaned reward function to look more similar to the higher-
ranked explanation. We henceforth use C to denote the set of
all such constraints constructed from Equations 3-4 using the
feedback. Since an aligned reward function will satisfy all the
constraints, we can define P (C|R) as:

P (C|R) =
1

Z
I(C, R), (5)

with, I(C, R) = 1 when R satisfies all the constraints in C
and 0 otherwise. When using P (C|R) from Equation 5 in
Equation 2, the posterior probability of all the reward func-
tions that do not produce the correct explanations are evalu-
ated to 0 in the improvement phase. The posterior probability
of all the reward functions that do produce correct explana-
tions remains proportional to the original probability derived
by BREX [Brown et al., 2020]. Intuitively, the key role of RE-
VEALE is to eliminate deceptive reward functions—reward
functions that accurately estimate rewards for the training
dataset and therefore are selected by BREX—but would fail
to produce correct estimates in novel situations.

We first show4 that ILV returns a correct solution, i.e., a
reward function R ∈ ∆(D) ∩∆(XSV).
Proposition 1. As limβ→∞ in Equation 1, P (R|D, C) =
0, ∀R /∈ ∆(D) ∩∆(XSV).

Proof Sketch. This comes directly from the fact that
P (C|R) = 0, ∀R /∈ ∆(XSV) by definition and P (D|R) =
0, ∀R /∈ ∆(D) as limβ→∞.

Based on Propositon 1 we know that ILV is guaranteed
to produce a correct solution. We now focus on showing
that feedback on explanation reduces reward ambiguity using
Definition 4. Remember that showing a complete reduction in
ambiguity is sufficient to guarantee an optimal solution. We
assume that the agent and the tester share the same similarity
measure, and discuss results with cosine similarity. We also
assume that all the ranking in the trajectory dataset D and
explanation feedback constraint in C are correct.
Proposition 2. ILV can remove reward ambiguity completely
with 1 Oracle-generated GaE explanation feedback.

Proof Sketch. Let the intended reward be R∗(s) = w∗Tϕ(s).
Now, ∀s ∈ S, the explanation given by the Oracle is
FO(XR(s)) =w∗. Hence, a single GaE explanation is suffi-
cient to reveal all the parameters of the intended reward, and
completely reduce the reward ambiguity.

Proposition 2 considers the most ideal scenario and estab-
lishes a direct bridge between the feature attribution methods
and reward alignment. Intuitively, it tells us that in the most
ideal case, ILV is guaranteed to produce an optimal solution
using only 1 sample feedback. The next proposition provides
a sample complexity for pairwise ranking feedback.

4Note that this also holds for non-linear reward models when
using Equation 5.

Proposition 3. To reduce reward function ambiguity by x%
in expectation, it suffices to have ranked feedback over a set
of k = log2(1/(1−x/100)) randomly generated GaE expla-
nation pairs.

Proof Sketch. Let R denote the set of all reward functions,
where R = Rn and the intended reward be R∗(s) =
w∗Tϕ(s). We also make the common assumption that ∀w ∈
R, ∥w∥1 ≤ 1; so that R is bounded [Abbeel and Ng, 2004;
Brown and Niekum, 2018].

Now, consider a set of randomly generated pairwise ranked
GaE explanations, CXP

GaE :

{(XR1
(s1)≻XR2

(s1)), . . . , (XR1
(sk)≻XR2

(sk))}

By Definition 4, all w in the explanation-consistent reward
set, ∆(X CXP

GaE), must satisfy the following half-space con-
straints ∀(XR1(si) ≻ XR2(si)) ∈ CXP

GaE :

wT (X̂R1
(si)− X̂R2

(si)) > 0

where X̂Rj
(si) is normalized vector of XRj

(si). We want to
find the bound k on the size of CXP

GaE that is sufficient for
reducing the size of R by x%. According to [Brown et al.,
2019a], |∆(CXP

GaE)| =
|R|
2k

in expectation where |CXP

GaE | = k.
Therefore, x = (1 − 1

2k
) ∗ 100% volume of R is removed

in expectation using feedback over a set of k = log2(1/(1 −
x/100)) randomly generated GaE explanation pairs.

Remark: that the proof of Proposition 3 relies on GaE ex-
planations being random vectors in Rn, which may not hold
in practice.

We now consider the efficiency of ILV when using SM-
based explanations.

Proposition 4. It is sufficient to have 1 Oracle-generated SM
Feedback to reduce |∆(X CXP

SM)| ≤ 2d, d = dim(w), CXO

SM is
the set of Oracle-generated SM feedback for SV .
Proof Sketch. Let’s consider the same definition of R and
R∗ as Proposition 3. Now, ∀s ∈ S, the explanation given by
the Oracle is FO(XR(s)) = abs(w∗). By Definition 4, the
explanation-consistent reward set, ∆(X CXP

SM) = {w ∈ R :

abs(w) = abs(w∗)}. Then we can construct a ∆(X CXP
SM) of

size at most 2d, by taking +,− sign combination of each ele-
ment of w∗. Therefore, |∆(X CXP

SM)| ≤ 2d.

An implication of Proposition 4 is that ILV might fail to
find an optimal solution when using SM-based explanations.
Therefore, based on Propositions 2 and 4 we can infer that
GaE can be more effective than SM in reducing reward am-
biguity under certain conditions. Our empirical results show
a similar trend for both linear and non-linear rewards.

4.2 Non-Linear Reward Alignment
We now define P (C|R) for non-linear rewards that are rep-
resented by a neural network parameterized by θ, denoted by
Rθ. While we can still use the posterior distribution we de-
rived in the previous section and use MCMC optimization to
retrieve the MAP reward function; however, getting a good

estimation can be computationally expensive. Therefore, we
focus on retrieving the maximum likelihood reward function
by minimizing the following loss:

L(D, C, θ) = − log(P (D, C|Rθ)) (6)

We decompose the loss from Equation 6 into two sepa-
rate components: data likelihood loss LD(D, θ) and expla-
nation loss LE(C, θ), corresponding to − log(P (D|Rθ)) and
− log(P (C|Rθ)) respectively. The data likelihood loss is de-
fined by TREX [Brown et al., 2019b] as follows:

LD(D, θ) =
∑

(τ1
i ≻τ2

i)∈D

− log
eβRθ(τ

1
i)

eβRθ(τ1
i) + eβRθ(τ2

i)
(7)

For oracle feedback, a natural choice is minimizing the dis-
tance function, analogous to Equation 3. The explanation loss
is defined as follows:

LE(C, θ) =
∑

XO(si)∈C

D(XO(si),XRθ
(si)). (8)

For ranked feedback, we want the explanation XRθ
to be

more similar to the higher-ranked explanation. We achieve
this by adopting a constructive representation learning loss.
More specifically, using generalized triplet loss [Sohn, 2016]:

LE(C, θ) =
∑

(XR1
(si)≻XR2

(si))∈C

− log
e−αD1

e−αD1 + e−αD2
, (9)

D1 =D(XRθ
(si),XR1

(si)) and D2 = D(XRθ
(si),XR2

(si))
respectively and α ∈ [0,∞). Finally, we optimize both loss
functions together:

LD(D, θ) + λLE(C, θ). (10)

5 Experimental Setup
We evaluate the effectiveness of learning aligned linear and
non-linear rewards with REVEALE using three explana-
tion generation techniques: gradient as explanations (GaE),
LIME, and saliency map (SM). We evaluate the performance
in five proof-of-concept domains. Training data is generated
by sub-optimally solving a set of training instances, and the
learned reward is evaluated on the test instances. Test in-
stances differ from training instances in terms of start state
distribution and location of risky regions. Reward learning is
challenging due to two factors: (1) the trajectories only cover
a subset of the states in the environment, and (2) the pres-
ence of spurious feature correlation, where two or more state
features always co-occur in the trajectory.

Metrics and benchmarks Reward alignment is measured
using (1) the accuracy of predicting the trajectory ranking in
test instances, (2) the quality of reward estimation in states
unseen during training, and (3) the average reward achieved
by executing a policy computed using the learned reward in
the test instances. The results of our approach are compared
with (1) the policy computed using the true reward function
(Optimal), and (2) two recent IRL algorithms: BREX [Brown
et al., 2020] (for linear rewards) and TREX [Brown et al.,

2019b] (for non-linear rewards). Hence, we use REX to re-
fer to either BREX or TREX, depending on the problem and
(non-)linearity of the reward.
Implementation details Verification states SV are selected
from D. We implemented all algorithms in Python and tested
them on an Ubuntu machine with 32GB RAM and 12GB
GPU. The reported values are averaged over 60 different ran-
dom seeds. It is important to note that the generated dataset
varies for each seed. For non-linear rewards, we utilized a 4-
layer neural network with Relu activation. Below, we provide
a brief description of the domains used for evaluation.
WaterWorld This domain, based on [Leike et al., 2017],
tests the agent’s response to a distribution shift. There are
two types of surfaces in the problem: ‘water’ and ‘ground’.
We consider a linear reward function, with a negative reward
for stepping into the water. The water locations are fixed in
the training environment but are scattered in the test environ-
ments. Therefore, this scenario exhibits spurious feature cor-
relation, where water locations are correlated with fixed grid
positions in the dataset. Reward ambiguity arises as the agent
may struggle to differentiate whether the negative reward is
associated with the surface type or the grid location.
DogWalk In this domain, the AV needs to learn to stop
for both pedestrians and dogs (Figure 1). Each state is rep-
resented by ⟨location, human, dog, human+dog, harmless
objects⟩. We adopt a linear reward structure for this environ-
ment.
LavaLand This domain was introduced in [Hadfield-Menell
et al., 2017] consists of a grid with different terrain types,
each represented by binary indicators. In the training data,
the lava indicator is always false. Therefore, it is possible to
construct a reward function that produces the correct reward
estimation for all the training states without considering the
lava indicator. As a result, the agent may not learn to avoid
lava when it navigates to a goal location, potentially resulting
in unsafe behavior when deployed.
Navigation (AVNav) This domain, designed by us, repre-
sents a safe route planning problem where trajectories are
ranked based on different routes. Each state corresponds to
a road segment and is characterized by ⟨current goal, average
speed, #potholes, mobile network quality, and accident his-
tory in the segment⟩. The non-linear reward function incen-
tivizes the AV to select routes that are safe (with low potholes
and accident history) and comfortable (with good mobile net-
work quality) while reaching the destination. However, the
trajectory data exhibits spurious feature correlation as roads
with good mobile network quality also tend to have a bad ac-
cident history.
CoinRush This domain is similar to the CoinRun environ-
ment described in [Langosco et al., 2022]. The cells in the
grid have different types of coins and enemies. The target is
to gather as many coins as possible while avoiding enemies.
However, in the trajectory data, the enemies and coins always
have fixed colors, resulting in spurious feature correlation. In
the test environment, however, their colors can be different.

In WaterWorld and CoinRush, the ambiguity revolves
around which features should receive attribution. In the other

Figure 2: Effect of dataset size |D| on the accuracy of pairwise tra-
jectory rank prediction by REX.

domains, the ambiguity lies in determining which features
to attribute and whether the attribution should be positive or
negative. AVNav and CoinRush feature a non-linear reward
structure, while the other problems employ linear rewards.

6 Results and Discussion
Effect of the trajectory dataset size We examine whether
increasing |D| improves the prediction accuracy of REX by
varying |D| from 2 to 2048 (Figure 2) when using BREX
and TREX. We observe no improvement in the accuracy of
BREX beyond 128 trajectories and 1024 for TREX. This is
because the additional trajectories fail to provide information
about novel situations that the agent may encounter during
deployment. Thus, increasing the #trajectories does not guar-
antee improved prediction accuracy. This result emphasizes
the importance of incorporating alternative input forms, such
as feedback on explanations, instead of solely increasing |D|,
for learning aligned reward functions.

Effect of feedback size on accuracy We compare the accu-
racy by varying the feedback size from 2 to 512, with D size
of 128 and 1024 for linear and non-linear reward respectively.
We observe that 64 explanations for linear reward and 256
for non-linear reward help reach maximal accuracy. Based on
these two results, for all the subsequent experiments, we use
128 trajectories, 64 ranked feedback over pairs of explana-
tions, and cosine similarity for domains with linear rewards.
For non-linear rewards we use, 1024 trajectories, 256 ranked
feedback over pairs of explanations, and L2 distance.
Prediction accuracy Figure 3 shows the average accuracy
of ranking prediction tested on 2000 pairs of trajectories
from test environments. Oracle-generated explanations are
denoted by XO and pairwise rankings over explanations are
denoted by XP . In every domain, except CoinRush, RE-
VEALE with ranked GaE explanations achieves the highest
accuracy and matches the accuracy of prediction based on
Oracle-generated explanations. In LavaLand and DogWalk,
SM identified ‘lava’ and ‘dogs’ as important features, respec-
tively, but could not identify whether they should be posi-
tively attributed because it uses the absolute value of the gra-
dient. BREX also suffers from this drawback. In domains
where the ambiguity is about which features should be at-

Figure 3: Accuracy of pairwise trajectory rank prediction using dif-
ferent techniques.

Figure 4: Frequency (%) of avoiding risky regions during execution,
using the learned reward.

tributed, such as location or surface type in WaterWorld, SM
performs comparably to other approaches. However, BREX
often associated the reward with location, instead of sur-
face type. Overall, our results indicate that REVEALE with
any explanation improves the performance of traditional IRL
methods such as REX.

While all the approaches, including REX, achieve near-
optimal prediction accuracy on the trajectory dataset used to
learn the reward, the performance degrades in the test scenar-
ios. This is because (1) the agent encounters novel states and
doesn’t know how to estimate rewards, or (2) the agent learns
spurious correlation and estimates the wrong reward. As evi-
dent from Figure 3, REVEALE improves the prediction per-
formance in such cases by a large margin. In the absence of
prior knowledge about novel situations, it may be challeng-
ing to predict the agent’s performance solely by assessing its
reward, policy, or value function in states present in the train-
ing instances. However, by examining the consistency of the
agent’s explanations in states that appear in the training data,
the tester can infer its behavior in many novel situations and
provide valuable feedback. The agent then utilizes this feed-
back to reduce reward ambiguity.
Reward estimation We examine how novel states are ranked
under the learned reward compared to the intended reward.
Based on the ground truth, we divide the state space into
states that are ranked above median reward value and below
median reward value. Then we rank them under the learned
reward and present ranking differences in terms of overesti-
mation, underestimation, and proportional estimation in Fig-

Models WaterWorld DogWalk LavaLand AVNav CoinRush
REX −6.33± 0.42 [−7.1] −4.19± 0.12 [−6.8] −7.72± 0.08 [−7.8] −6.20± 0.31 [−24.0] 00.00± 0.0 [00.0]

GaE (XO) 2.00± 0.00 [2.0] −2.01± 0.01 [−2.1] −2.50± 0.00 [−2.5] −4.08± 0.0.2 [−4.5] 29.34± 0.00 [29.3]

GaE (XP) 2.00± 0.00 [2.0] −2.01± 0.01 [−2.1] −2.50± 0.00 [−2.5] −4.41± 0.07 [−4.7] 29.11± 0.00 [17.7]

SM (XO) 2.00± 0.00 [2.0] −15.6± 0.68 [−23.0] −5.50± 0.00 [−5.5] −4.94± 0.04 [−5.7] 28.34± 0.00 [17.7]

SM (XP) 2.00± 0.00 [2.0] −15.6± 0.68 [−23.0] −5.50± 0.00 [−5.5] −4.51± 0.02 [−4.8] 28.57± 0.01 [17.0]

LIME (XO) 2.00± 0.00 [2.0] −2.01± 0.01 [−2.1] −2.50± 0.00 [−2.5] −4.29± 0.03 [−4.8] 29.34± 0.00 [29.3]

LIME (XP) 2.00± 0.00 [2.0] −2.01± 0.01 [−2.1] −2.50± 0.00 [−2.5] −5.07± 0.02 [−5.5] 29.34± 0.00 [29.3]

Optimal 2.002.002.00 −2.00−2.00−2.00 −2.50−2.50−2.50 −3.58−3.58−3.58 29.3429.3429.34

Table 1: Average reward ± standard error and worst case reward (shown in brackets [.]) achieved by executing policies with the learned
reward functions.

(a) Proportional Estimation (b) Overestimation (c) Underestimation

Figure 5: Quality of reward estimation in novel states.

ure 5. We observe significant improvement in reward estima-
tion using REVEALE. While REX often over or underesti-
mates the reward in novel states, explanation-guided align-
ment of reward results in a more proportional estimation.

Average and worse case reward Table 1 shows the average
and worst reward obtained with different approaches in test
environments. We report the worst-case reward obtained by
executing policies with the learned model since it provides in-
sights into the degree of unsafe behavior that may arise when
the reward is not well-aligned. We also report the average re-
ward obtained with the true reward function in each setting,
denoted by Optimal. Our results show that REVEALE with
GaE using XP feedback performs better on most domains.
SM often identifies the magnitude of correlation but strug-
gles to determine whether it is positive or negative. LIME
performs similarly to GaE when feedback is XO, but per-
forms relatively poorly when feedback is XP . This is because
LIME works with a large set of states in the neighborhood of
the input states, unlike GaE and SM, which only work with
a single state. Therefore, when exact inputs are given, LIME
works very well. With XP feedback, the error can propagate
to many states, causing worse performance than GaE. Over-
all, our results show that REVEALE can learn reward func-
tions that are better aligned compared to existing approaches.

Avoiding risky states Aggregate metrics such as average
reward may hide important shortcomings of the techniques.
Therefore, we evaluate the efficiency of different techniques
in avoiding risky states, when operating based on learned re-
ward. In LavaLand, DogWalk, and WaterWorld domains, the

agent gets a large penalty for encountering risks such as a
state with lava, humans or dogs, and water, respectively. Fig-
ure 4 shows the percentage of times the agent manages to
avoid these states when executing the policy computed using
the learned reward with each technique in the test environ-
ments. We observe that GaE and LIME-based methods pro-
duce safer trajectories in WaterWorld and LavaLand domains,
and encounter relatively fewer risks (11%) in the DogWalk
domain when using ranked feedback. On the other hand, SM
produces a safe policy only in the WaterWorld domain. REX
fails in all three domains.

7 Summary and Future Work
We present the REVEALE framework, an interpretable ap-
proach for reward alignment and verification. Additionally,
we introduce an algorithm called ILV that can be utilized to
solve a REVEALE instance and infer more aligned reward
functions. Our empirical results on five domains demonstrate
that learning with REVEALE generalizes well and achieves
higher prediction accuracy and average reward, often match-
ing optimal performance. These results highlight the bene-
fits of our approach in learning the intended reward function,
thereby supporting a safer deployment of autonomous agents
in the open world. In the future, we aim to develop techniques
to automatically identify critical states for verification and
integrate REVEALE with active learning methods [Settles,
2012; Wray and Zilberstein, 2016] in order to minimize the
number of required feedback queries. Investigating the effi-
ciency of other explanation methods, particularly causal ex-
planations [Nashed et al., 2022], is another future direction.

Acknowledgments
This work was supported in part by the National Science
Foundation grant IIS-2205153.

References
[Abbeel and Ng, 2004] Pieter Abbeel and Andrew Y. Ng.

Apprenticeship learning via inverse reinforcement learn-
ing. In Proceedings of the 21st International Conference
on Machine learning, 2004.

[Alqaraawi et al., 2020] Ahmed Alqaraawi, M. Schuessler,
Philipp Weiß, Enrico Costanza, and Nadia Bianchi-
Berthouze. Evaluating saliency map explanations for con-
volutional neural networks: A user study. In Proceedings
of the 25th International Conference on Intelligent User
Interfaces, pages 275–285, 2020.

[Amir et al., 2019] Ofra Amir, Finale Doshi-Velez, and
David Sarne. Summarizing agent strategies. Autonomous
Agents and Multi-Agent Systems, 33:628–644, 2019.

[Argall et al., 2009] Brenna D Argall, Sonia Chernova,
Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and Autonomous
Systems, 57(5):469–483, 2009.

[Basu et al., 2018] Chandrayee Basu, Mukesh Singhal, and
Anca D. Dragan. Learning from richer human guid-
ance: Augmenting comparison-based learning with feature
queries. In Proceedings of the 13th International Confer-
ence on Human-Robot Interaction, pages 132–140, 2018.

[Brown and Niekum, 2018] Daniel S. Brown and Scott
Niekum. Efficient Probabilistic Performance Bounds for
Inverse Reinforcement Learning. In AAAI Conference on
Artificial Intelligence, 2018.

[Brown et al., 2019a] Daniel S. Brown, Wonjoon Goo, and
Scott Niekum. Better-than-demonstrator imitation learn-
ing via automaticaly-ranked demonstrations. In Confer-
ence on Robot Learning, 2019.

[Brown et al., 2019b] Daniel S. Brown, Wonjoon Goo, Na-
garajan Prabhat, and Scott Niekum. Extrapolating be-
yond suboptimal demonstrations via inverse reinforcement
learning from observations. In Proceedings of the 36th In-
ternational Conference on Machine Learning, pages 783–
792, 2019.

[Brown et al., 2020] Daniel S. Brown, Scott Niekum, Rus-
sell Coleman, and Ravi Srinivasan. Safe imitation learn-
ing via fast bayesian reward inference from preferences. In
Proceedings of the 37th International Conference on Ma-
chine Learning, pages 1165–1177, 2020.

[Brown et al., 2021] Daniel S. Brown, Jordan Jack Schnei-
der, and Scott Niekum. Value alignment verification. In
Proceedings of the 38th International Conference on Ma-
chine Learning, pages 1105–1115, 2021.

[Chakraborti et al., 2017] Tathagata Chakraborti, Sarath
Sreedharan, Yu Zhang, and Subbarao Kambhampati. Plan
explanations as model reconciliation: Moving beyond ex-
planation as soliloquy. arXiv preprint arXiv:1701.08317,
2017.

[Dietterich, 2017] Thomas G. Dietterich. Steps toward ro-
bust artificial intelligence. AI Magazine, 38(3):3–24, 2017.

[Guan et al., 2021] Lin Guan, Mudit Verma, Sihang Guo,
Ruohan Zhang, and Subbarao Kambhampati. Widening
the pipeline in human-guided reinforcement learning with
explanation and context-aware data augmentation. In Pro-
ceedings of the Annual Conference on Neural Information
Processing Systems, pages 21885–21897, 2021.

[Hadfield-Menell et al., 2017] Dylan Hadfield-Menell,
Smitha Milli, Pieter Abbeel, Stuart J. Russell, and Anca
Dragan. Inverse reward design. In Advances in Neural
Information Processing Systems, 2017.

[Huang et al., 2018] Sandy H. Huang, Kush Bhatia, Pieter
Abbeel, and Anca D. Dragan. Establishing appropriate
trust via critical states. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
pages 3929–3936, 2018.

[Langosco et al., 2022] Lauro Langosco, Jack Koch, Lee
Sharkey, Jacob Pfau, and David Krueger. Goal misgen-
eralization in deep reinforcement learning. In Proceedings
of the 39th International Conference on Machine Learn-
ing, pages 12004–12019, 2022.

[Leike et al., 2017] Jan Leike, Miljan Martic, Victoria
Krakovna, Pedro A. Ortega, Tom Everitt, Andrew
Lefrancq, Laurent Orseau, and Shane Legg. Ai safety grid-
worlds. ArXiv, abs/1711.09883, 2017.

[Molnar, 2022] Christoph Molnar. Interpretable Machine
Learning: A Guide For Making Black Box Models Explain-
able. Lulu.com, 2022.

[Nashed et al., 2022] Samer B. Nashed, Saaduddin Mah-
mud, Claudia V. Goldman, and Shlomo Zilberstein. A
unifying framework for causal explanation of sequential
decision making. ArXiv, abs/2205.15462, 2022.

[Ng and Russell, 2000] Andrew Y. Ng and Stuart J. Russell.
Algorithms for inverse reinforcement learning. In Pro-
ceedings of the 17th International Conference on Machine
Learning, pages 663–670, 2000.

[Palan et al., 2019] Malayandi Palan, Nicholas C. Landolfi,
Gleb Shevchuk, and Dorsa Sadigh. Learning reward func-
tions by integrating human demonstrations and prefer-
ences. In Proceedings of Robotics: Science and Systems,
June 2019.

[Ramachandran and Amir, 2007] Deepak Ramachandran
and Eyal Amir. Bayesian inverse reinforcement learning.
In Proceedings of the 20th International Joint Conference
on Artifical intelligence, pages 2586–2591, 2007.

[Ribeiro et al., 2016] Marco Tulio Ribeiro, Sameer Singh,
and Carlos Guestrin. “Why should I trust you?” Explain-
ing the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 1135–1144, 2016.

[Saisubramanian et al., 2022] Sandhya Saisubramanian,
Shlomo Zilberstein, and Ece Kamar. Avoiding negative
side effects due to incomplete knowledge of AI systems.
AI Magazine, 42(4):62–71, 2022.

[Settles, 2012] Burr Settles. Active learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning,
6(1):1–114, 2012.

[Simonyan et al., 2014] Karen Simonyan, Andrea Vedaldi,
and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and
saliency maps. CoRR, abs/1312.6034, 2014.

[Sohn, 2016] Kihyuk Sohn. Improved deep metric learning
with multi-class N-pair loss objective. In Proceedings of
the Annual Conference on Neural Information Processing
Systems, pages 1849–1857, 2016.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G.
Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[Tabrez et al., 2020] Aaquib Tabrez, Shivendra Agrawal, and
Bradley Hayes. Explanation-based reward coaching to im-
prove human performance via reinforcement learning. In
Proceedings of the 14th ACM/IEEE International Confer-
ence on Human-Robot Interaction, pages 249–257, 2020.

[Tayyub et al., 2022] Jawad Tayyub, Muhammad Sarmad,
and Nicolas Schönborn. Explaining deep neural networks
for point clouds using gradient-based visualisations. arXiv
preprint arXiv:2207.12984, 2022.

[Wray and Zilberstein, 2016] Kyle Hollins Wray and
Shlomo Zilberstein. A POMDP formulation of proactive
learning. In Proceedings of the 30th AAAI Conference on
Artificial Intelligence, pages 3202–3208, 2016.

[Ziebart et al., 2008] Brian D. Ziebart, Andrew L. Maas,
J. Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In Proceedings of the 23rd
AAAI Conference on Artificial Intelligence, pages 1433–
1438, 2008.

[Zilberstein, 2015] Shlomo Zilberstein. Building strong
semi-autonomous systems. In Proceedings of the 29th
AAAI Conference on Artificial Intelligence, pages 4088–
4092, 2015.

	Introduction
	Background and Related Work
	The REVEALE Framework
	Solution Approach
	Linear Reward Alignment
	Non-Linear Reward Alignment

	Experimental Setup
	Results and Discussion
	Summary and Future Work

