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Abstract. There has been growing interest in causal explanations of
stochastic, sequential decision-making systems. Structural causal mod-
els and causal reasoning offer several theoretical benefits when exact
inference can be applied. Furthermore, users overwhelmingly prefer the
resulting causal explanations over other state-of-the-art systems. In this
work, we focus on one such method, MeanRESP, and its approximate
versions that drastically reduce compute load and assign a responsibil-
ity score to each variable, which helps identify smaller sets of causes to
be used as explanations. However, this method, and its approximate ver-
sions in particular, lack deeper theoretical analysis and broader empirical
tests. To address these shortcomings, we provide three primary contribu-
tions. First, we offer several theoretical insights on the sample complexity
and error rate of approximate MeanRESP. Second, we discuss several
automated metrics for comparing explanations generated from approxi-
mate methods to those generated via exact methods. While we recognize
the significance of user studies as the gold standard for evaluating ex-
planations, our aim is to leverage the proposed metrics to systematically
compare explanation-generation methods along important quantitative
dimensions. Finally, we provide a more detailed discussion of Mean-
RESP and how its output under different definitions of responsibility
compares to existing widely adopted methods that use Shapley values.

Keywords: Causal Inference · Explainable AI · MDPs.

1 Introduction

Researchers from many fields have shown that developing trust in AI systems is
required for their timely adoption and proficient use [18, 35, 39]. It is also widely
accepted that autonomous agents with the ability to explain their decisions in-
crease user trust [7, 13, 22]. However, there are many challenges in generating
explanations. Consider, for example, an agent managing load on a power grid by
setting electricity prices and engaging other physical resources within the grid.

⋆ Authors contributed equally.
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Generating suitable explanations of such a system is hard due to the complexity
of planning, which may involve large state spaces, stochastic actions, imperfect
observations, and complicated objectives. Furthermore, useful explanations must
somehow reduce the internal reasoning process to a form understandable by a
user who likely does not know all of the algorithmic details. One significant class
of autonomous decision-making models for which there is a desire to generate
explanations is the Markov decision process (MDP) and its derivatives.

In our previous work [27], we developed a framework, based on structural
causal models (SCMs) [11], for applying causal analysis to sequential decision-
making agents. This framework creates an SCM representing the computation
needed to derive a policy for an MDP and applies causal inference to identify
variables that cause certain agent behavior. Explanations are then generated us-
ing these variables, for example by completing natural language templates. This
framework is both theoretically sound, based on formalisms from the causality
literature, as well as flexible, allowing multiple semantically different types of
explanans.

This method, known as MeanRESP, has many different approximate ver-
sions and is compatible with several definitions of responsibility [8]. The theo-
retical characteristics of approximate MeanRESP, as well as its performance
compared to the exact version, are yet to be explored in detail. Since in practice,
the approximate versions are the most likely to be deployed, we see this as a
critical gap in our current understanding of how to explain MDP agent behav-
iors. Moreover, as MeanRESP may produce many causes related to a decision,
it is often necessary to reduce the size of this set to make the explanations more
concise and therefore easier to understand. MeanRESP supports this type of
‘top k’ analysis natively, but little work has been done on understanding how to
compare different outputs, either against each other or against the output from
the exact version of the algorithm. To this end, we also propose several metrics
which may be used to compare MeanRESP outputs at different levels of ap-
proximation. These metrics capture diverse types of differences and underscore
the difficulty of devising a single metric for evaluating objects as complicated,
nuanced, and context-dependent as explanations.

Our results include theoretical analyses regarding the correctness and sam-
pling error rates for causal and responsibility determination for approximate
MeanRESP, discuss several potential metrics for comparing explanations, em-
pirical analyses of sampling error convergence rates and explanation dissimilar-
ity between different versions of MeanRESP and Shapley-value based methods.
Overall, these results establish several key facts about approximate MeanRESP
as well as open the door for a variety of avenues of continued research.

2 Related Work

While this paper focuses specifically on deepening analysis related to one par-
ticular algorithm for automatic explanation generation, MeanRESP, the body
of work on explainable machine learning (XML) — a focus area that aims to
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explain the decisions of black-box machine learning algorithms [15, 19, 26] — and
explainable planning (XAIP) — a focus area that aims to explain the outputs of
planning algorithms or modify planning algorithms so that they produce plans
that are inherently more explainable — is large and growing rapidly. In this
section, we aim to provide some context to the existing literature to highlight
the importance of MeanRESP.

In XAIP literature, one common method for explaining complex planners is
via policy summarization, where either A) the original reasoning problem is made
simpler and then the solution is explained exactly, or B) the original problem is
not reduced, but the solution (e.g., policy) is simplified post-hoc and the simpli-
fied policy is explained. For example, Pouget et al. [30] identify key state-action
pairs via spectrum-based fault localization, and Russell et al. [31] use decision
trees to approximate a given policy and analyze the decision nodes to deter-
mine which state factors are most influential for immediate reward. Panigutti et
al. [29] used similar methods to explain classifiers. These methods are appealing
in that they parallel our intuitions about simplification in a number of other set-
tings, such as analogizing during an explanation [9], science communication [32],
and even other AI tools, like automated text simplification [28, 34] or summa-
rization [1]. However, these methods are driven primarily by heuristics and may
be difficult to generalize to the many different forms of planners and models.

Research on explanations of stochastic planners specifically, such as MDPs,
is relatively sparse. However, there are several notable existing efforts. Most
present heuristics that are specifically designed for MDPs, such as generating
counterfactual states and then identifying important state factors by analyzing
how the value function changes given perturbations to different state factors [10].
Wang et al. [38] try to explain policies of partially observable MDPs by commu-
nicating the relative likelihoods of different events or levels of belief. However,
research clearly indicates that humans are not good at using this kind of numer-
ical information [23].

A more common heuristic approach is to analyze (and produce explanations
that reference) the reward function. Khan et al. [16] first presented a technique
to explain policies for factored MDPs by analyzing the expected occupancy fre-
quency of states with extreme reward values. Later, Sukkerd et al. [36] proposed
explaining factored MDPs by annotating them with “quality attributes” (QAs)
related to independent, measurable cost functions. Explanations describe the
QA objectives, expected consequences QA values given a policy, and how those
values contribute to the policy’s expected cost. The system also explains whether
the policy achieves the best possible QA values simultaneously, or if there are
competing objectives that required reconciliation and proposes counterfactual
alternatives. Thus, it explains entire policies, not individual actions, using cus-
tom graphics and natural language templates, the latter of which has become
the de facto standard for automatic explanations. Instead of looking at how the
policy is affected by the reward function overall, Juozapaitis et al. [14] analyze
how extreme reward values impact action selection in decomposed-reward RL
agents, and Bertram and Peng [4] look at reward sources in deterministic MDPs.
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While these approaches are computationally cheap and easy to implement,
they have limited scope in the explanations they provide, and do not have many
theoretical advantages, if any. Thus, recently, some research has investigated
the application of causal modeling and causal analysis to the automatic genera-
tion of explanations for planners, including MDPs. One particularly compelling
framework for doing so, which we study in this paper, is a method called Mean-
RESP [27]. MeanRESP is based on a responsibility attribution method called
RESP, introduced in [3] to explain classification outcomes, which has its roots
in prior work on formal definitions of causality and responsibility [11, 12, 8]. In
this paper, we examine several choices related to the definitions of responsibility
for use within MeanRESP.

The most similar work to this paper is other research that has proposed us-
ing SCMs for explaining MDPs and their variants in both planning and learning
scenarios. Madumal et al. [21] use SCMs to encode the influence of particular
actions available to the agent in a model-free, reinforcement learning, where it
requires several strong assumptions including the prior availability of a graph
representing causal direction between variables, discrete actions, and the exis-
tence of sink states.

Finally, our approach to estimating causal responsibility can be viewed as a
form of feature attribution, which is a common approach in explainable Machine
Learning (XML) for feature ranking [25], most often via Shapley values and their
approximations [20, 33]. In this paper, we conduct a quantitative comparison be-
tween Shapley values and different versions of MeanRESP. Specifically, we an-
alyze the approximation error between a prominent Shapley value-based feature
attribution method [37] and various versions of approximate MeanRESP, con-
sidering the number of samples. Additionally, we assess the dissimilarity between
explanations generated by these two attribution methods. The purpose of this
comparison is to investigate whether there exists a significant disparity in the
content of the explanations produced by these methods, potentially motivating
future research on the relative advantages of each method.

3 Background

Here, we review some concepts and notations relevant to the three main ideas
this paper builds upon: structural causal models (SCMs), our working definition
of cause, and Markov decision processes (MDPs).

3.1 Structural Causal Models, Actual Causes, and Responsibility

SCMs model scenarios S = ⟨U, V,M⟩, which break causality or attribution prob-
lems down into three components:

1. A set of variables U , known as the context, which are required to define the
scenario, but which should not be identified as causal. These variables are
considered fixed for a given scenario. The choice of which variables belong
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in the context is a design choice, and the main function of the context is to
bound the size of the total problem.

2. A set of variables V , known as the endogenous variables, which we may want
to identify as causal or highlight in an explanation. All variables in a scenario
must be in U ∪ V .

3. A set of equations, M, which model how variables in V are calculated as
functions of variables in U or other variables in V .

Nashed et al. [27] define several SCM representations of an MDP with differ-
ent choices of the context U . For the purpose of analysis, throughout the rest of
this paper, we will consider one of the most natural of those choices and describe
its mathematical definition and interpretation in the following subsection. We
now review our working definition of cause from [12].

Definition 1. Let X ⊆ V be a subset of the endogenous variables, and let x be
a specific assignment of values for those variables. Given an event ϕ, defined as
a logical expression, for instance ϕ = (¬a ∧ b), a weak cause of ϕ satisfies the
following conditions:

1. Given the context U = u and X = x, ϕ holds.
2. Some W ⊆ (V \X) and some x̄ and w exist such that:

A) using these values produces ¬ϕ.
B) for all W ′ ⊆ W , Z ⊆ V \ (X ∪W ), where

w′ = w|W ′ and z = Z given U = u, ϕ holds when X = x.

Here, condition 2B) is saying that given context U = u, X = x alone is sufficient
to cause ϕ, independent of some other variables W . This and similar definitions
of cause are often called “but-for” definitions. There is a related, slightly older
definition due to [11] in which condition 2B) is replaced with the following,
simpler statement: for all Z ⊆ V \ (X ∪ W ), where w = W and z = Z given
U = u, ϕ holds when X = x.

Actual causes are defined as minimal weak causes. That is, an actual cause
is a weak cause CW for which no set C ′

W ⊂ CW is also a weak cause. Note that
in this paper, we only consider |CW | = 1, and therefore the above definition
also defines actual causes. Table 1 provides a reference for the common related
notation used throughout the paper.

3.2 Markov Decision Processes

A Markov decision process (MDP) is a model for reasoning in fully observable,
stochastic environments [2], defined as a tuple ⟨S,A, T,R, d⟩. S is a finite set
of states, where s ∈ S may be expressed in terms of a set of state factors,
⟨f1, f2, . . . , fN ⟩, such that s indexes a unique assignment of values to the factors
f ; A is a finite set of actions; T : S × A × S → [0, 1] represents the probability
of reaching a state s′ ∈ S after performing an action a ∈ A in a state s ∈ S;
R : S × A × S → R represents the expected immediate reward of reaching a
state s′ ∈ S after performing an action a ∈ A in a state s ∈ S; and d : S → [0, 1]
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Notation Meaning

X A set of decision variables, X = {X1, X2, X3}
x An assignment of values to the set X, {X1 = x1, X2 = x2, X3 = x3}
P(X) Power set of X

D(X1) Domain of the joint assignments of all x ∈ X

x′ ← x|X ′ x
′ is the restriction of x to X ′, e.g., if X ′ = {X1} and

x = {X1 = x1, X2 = x2, X3 = x3}, then x′ = {X1 = x1}

x← [x⟨x′]
Replace values of x with values from x′, e.g., if x = {X1 = x1, X2 = x2}
and x′ = {X1 = b}, then x = {X1 = b,X2 = x2}
Table 1: Important notations, summarized from [11].

represents the probability of starting in a state s ∈ S. A solution to an MDP is
a policy π : S → A indicating that an action π(s) ∈ A should be performed in
a state s ∈ S. A policy π induces a value function V π : S → R representing the
expected discounted cumulative reward V π(s) ∈ R for each state s ∈ S given
a discount factor 0 ≤ γ < 1. An optimal policy π∗ maximizes the expected
discounted cumulative reward for every state s ∈ S by satisfying the Bellman
optimality equation V ∗(s) = maxa∈A

∑
s′∈S T (s, a, s′)[R(s, a, s′) + γV ∗(s′)].

One of the most natural ways to represent an MDP as an SCM is to let U con-
sist of all variables related to the reward function R, transition function T , start
distribution d, and discount factor γ. Then, V can be defined as F∪Π, where F is
the set of variables representing state factors, F = {f1, f2, . . . , fN}, and Π is the
set of variables representing the optimal policy, Π = {πs1a1

, πs1a2
, . . . , πs|S|a|A|}.

Here, πsa is a variable that is true when action a may be taken in state s. Thus,
an obvious choice for an event ϕ is a subset of Π and their assignment. For
example, if action a is taken in state s instead of a′, we have

ϕ = ⟨[π(s) = a], [π(s) = a′]⟩ = ⟨True,False⟩.

Under this modeling setup, counterfactual settings to F do not result in
new MDP policies as they would be variables from R or T to be used in V .
Instead, this setup represents a fixed world model and a fixed model of agent
capability, where counterfactual inputs represent different situations, or states,
that the agent may encounter. Although MeanRESP may be applied to other
components of the MDP using different definitions of U and V , we focus on this
particular setup as it is computationally less demanding for empirical analysis.
We should note that none of our theoretical analysis relies on this particular
definition of U and V , or even that MeanRESP is used to analyze an MDP
instead of a classifier.

4 MeanRESP

Chockler and Halpern [8] defined the responsibility (RESP), of an actual cause
X ′ with contingency set W as 1

1+|W | . Based on that, we define the MeanRESP
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score, ρ, of an actual cause X ′, to be the expected number of different ways X ′

satisfies the definition of actual cause weighted by a responsibility share. Hence,
the MeanRESP score equates the strength of the causal effect with the number
of different scenarios under which X ′ can be considered a cause for the event.

There are several plausible versions of MeanRESP, all of which detect sets
of variables that satisfy the definition of actual cause given above. To facilitate
understanding throughout the rest of the paper, we now provide a novel, high-
level description of a generalized version of MeanRESP and its relation to
different definitions of cause. Moreover, we would like the MeanRESP score to
behave in a manner summarized by the following properties:

1. Property 1: A set of variables X ′ ⊆ X that is not a cause of the event ϕ
should have ρ = 0. A set of variables X ′ ⊆ X that is a cause of the event ϕ
should have ρ > 0.

2. Property 2: As the cause allows a set of witness variables, ρ should divide
the causal responsibility among the cause and witness in a principled manner.

3. Property 3: A relatively higher value of ρ for a cause X ′ ⊆ X should
indicate the event ϕ is relatively more affected by the assignment x|X ′ of X ′.

Responsibility scores are important in practice since they allow both users
and developers to differentiate between causes that are highly relevant to the
given scenario and those which may have less explanatory value. Here, we present
a generalized version of MeanRESP (Algorithm 1) that has all three of these
properties. The algorithm considers witness sets of size up to |W |max = |X| − 1
(Line 4). After fixing a witness W = w (lines 6-7), it calculates the RESP score
(line 9) using either RESP-UC (Algorithm 2) if we use weak cause Definition
1 or RESP-OC (Algorithm 3) if we use the original weak cause definition. In
RESP-UC, if 2B holds from Definition 1 (lines 4-9), then we check for 2A (lines
10-12). Notice that RESP-UC will return a value greater than 0 whenever both
2A and 2B hold. This ensures property 1. Note that the condition in definition
1 always holds for a deterministic policy or classifier, and therefore is not ex-
plicitly checked. Additionally, in both RESP-UC and RESP-OC, accumulating
the RESP scores in lines 13 and 10, respectively, provides property 2. Intuitively,
the RESP score scales with the number of different ways X ′ satisfies the defini-
tion of actual cause weighted by a responsibility share. Hence, the RESP score
equates the strength of the causal effect with the number of different scenarios
under which X ′ can be considered a cause for the event. This gives MeanRESP
property 3. We use the following notation to denote whether event ϕ occurred.

ϕ(xa) =

{
True if Π(x) = Π(xa)

False if Π(x) ̸= Π(xa)
(1)

Overall, there are several design choices one can make regarding how exactly
to compute the mean RESP scores, generating a family of closely related algo-
rithms. First, either RESP-UC or RESP-OC may be used, depending on the
desired definition of cause. Not only will this affect the resultant RESP scores,
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Algorithm 1 MeanRESP

1: Input: All Causal Variables X, Variable of Interest X ′, Inference Model Π,
Variable assignment x, Responsibility function RESP

2: Output: Mean Responsibility Scores ρ.
3: MEANRESP ← 0
4: for all β = 0...|W |max do
5: σ, T ← 0
6: for all W ∈ P(X \X ′) such that |W | = β do
7: for all w ∈ Dom(W ) do
8: T ← T + 1
9: σ ← σ +RESP (Π,X,X ′, x, d ∼ Dom(X ′),W,w)
10: MEANRESP ←MEANRESP + σ

T

11: return MEANRESP
|W |max+1

Algorithm 2 RESP-UC

1: Input: Π,X, x, d,W,w
2: Output: score, σ.
3: D1, D2 ← 1
4: for all W ′ ∈ P(W ) do
5: w′ ← w|W ′

6: xp ← [x⟨w′]
7: if ¬ϕ(xp) then
8: D1 ← 0
9: break
10: xm ← [x⟨(d ∪ w)]
11: if ϕ(xm) then
12: D2 ← 0
13: return D1

1+|W |D2

but most importantly, it will change what is identified as a cause; some sets of
variables will have RESP scores of zero under one definition but not the other.

Second, the mean RESP score can be calculated in two ways. It may be tallied
over only the witness sets of size βmin, where βmin is the smallest β for which
there exists a satisfying witness set (as in [27]). Or, it may be tallied overall
witness sets, regardless of β, as in Algorithm 1. Actual causes with at least some
small witness sets will receive lower RESP scores under the latter design.

Third, as responsibility incrementally accrues with respect to an actual causal
set, these increments can either be counted equally or can be normalized by the
size of the domain of the actual cause. We refer to this as the option to perform
domain normalization, and the theory behind it is that with a larger domain
the chance that some assignment X = x̄ will meet the conditions of Definition
1 increases, and thus the responsibility should correspondingly decrease.

None of these choices interfere with properties 1-3, but they may subtly alter
relative responsibility assigned to different actual causes. As there is no clear
reason based on first principles as to the correct choice, these decisions involve
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Algorithm 3 RESP-OC

1: Input: Π,X, x, d,W,w
2: Output: score, σ.
3: D1, D2 ← 1
4: xp ← [x⟨w]
5: if ¬ϕ(xp) then
6: D1 ← 0
7: xm ← [x⟨(d ∪ w)]
8: if ϕ(xm) then
9: D2 ← 0
10: return D1

1+|W |D2

Algorithm 4 Sampled MeanRESP

1: Input: All Causal Variable X, Variable of Interest X ′, Inference Model Π,
Variable assignment x, Responsibility function RESP , Sample Size, T

2: Output: Mean Responsibility Scores ρ.
3: σ ← 0
4: for all t = 0...T do
5: W ∼ P(X \X ′)
6: w ∼ Dom(W )
7: σ ← σ +RESP (Π,X,X ′, x, d ∼ Dom(X ′),W,w)
8: return σ

T

tradeoffs. For example, short-circuiting after finding a single witness set of size β
that satisfies Definition 1 will save compute time, but may give a slightly higher
or lower ρ score depending on whether the variables of interest are important
under many counterfactual scenarios or only a few.

4.1 Approximating MeanRESP

Algorithm 1 is an exact algorithm that iterates over all possible scenarios to
count where X ′ satisfies the definition of cause. When the state space is very
large, due to either continuous variables or large discrete domains, we can use
essentially the same algorithm adapted to sample witness set assignments using
Monte Carlo sampling. Algorithm 4 approximates exact MeanRESP, and re-
produces the exact algorithm in the limit. Sampling may be constrained along
several dimensions independently, depending on the most expensive features of
the problem. Here, we present in detail a novel sample-based algorithm to calcu-
late responsibility scores. We then discuss its connection to the popular Shapley
value-based attribution score. In subsequent sections, we will theoretically and
empirically analyze this algorithm.

The main difference is that instead of going through all possible scenarios (i.e.
W ∈ P(X \X ′), w ∈ D(W ), d ∈ D(X ′)) we sample different scenarios uniformly.
The expression being estimated can be written as the following equation for
RESP-UC:
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EW∼P(X\X′),w∼D(W ),d∼D(X′)[
D1

1 + β
(ϕ(x)− ϕ(xm))] (2)

For RESP-OC it can be written as:

EW∼P(X\X′),w∼D(W ),d∼D(X′)[
ϕ(xp)

1 + β
(ϕ(x)− ϕ(xm))] (3)

It can be verified that this expression is the same as the following:

EW∼P(X\X′),w∼D(W ),d∼D(X′)[
ϕ(xp)

1 + β
(ϕ(xp)− ϕ(xm))] (4)

This rewrite provides us with insight into the connection between Shapley
value and RESP. In particular, the Monte Carlo approximation of the expected
Shapely value can be written as:

EW∼P(X\X′),w∼D(W ),d∼D(X′)[(ϕ(xp)− ϕ(xm))] (5)

Intuitively, from equations 4, and 5 MeanRESP can be thought of as dis-
tanced weighted Shapely Value. Here, 1+β captures the difference in the original
input x and xm. ϕ(xp) captures the difference in original outputΠ(x) andΠ(xp).

Finally, when the action space is not continuous the definition of ϕ might not
work as well due to the floating point values. Therefore, we can consider a softer
version of ϕ as below:

ϕsoft(xa) = e−β(|Π(xa))−Π(x))| (6)

Here, β → ∞ : ϕsoft(xa) → ϕ(xa). However, note that for ϕsoft equations 2
and 3 are no longer equivalent.

5 Theoretical Analysis

Proposition 1. MeanRESP Score ρ > 0 using the RESP-UC function im-
plies actual cause according to Definition 1.

Proof Sketch: MeanRESP Score ρ > 0 iff there exists at least one contingency
(W,w) for which all the in Definition 1 is satisfied.

Proposition 2. The false positive rate of sampled MeanResp is 0.

Proof Sketch: ρ > 0 iff all the constraint of the Definition 1 is satisfied at least
once.

Proposition 3. The false negative rate of sampled Mean Resp with n sample is
at most (1− (ρ∗(|W |max + 1)))n.
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Proof Sketch The probability of not classifying X ′ as a weak cause i.e. false
negative rate using 1 sample will be at most 1 − (ρ∗(|W |max + 1)). If samples
are drawn independently then the false negative rate using n samples is at most
(1− (ρ∗(|W |max + 1)))n.

Proposition 4. P (|ρ − ρ∗| ≥
√
ϵρ∗) ≤ 2e−ϵn/3k; k = Wmax + 1, n = number

of samples. In words, probability that the estimated ρ deviate by
√

ϵ
ρ∗ is at most

2e−ϵn/3k.

Proof Sketch According to Chernoff Bound:

P (|ρn
k

− ρ∗n

k
| ≥ δ

ρ∗n

k
) ≤ 2e−δ2ρ∗n/3k (7)

Setting δ =
√

ϵ
ρ∗ :

P (|ρn
k

− ρ∗n

k
| ≥

√
ϵρ∗n
k

) ≤ 2e−ϵn/3k (8)

This is same as:
P (|ρ− ρ∗| ≥

√
ϵρ∗) ≤ 2e−ϵn/3k (9)

Proposition 5. MeanRESP score is upper-bounded by Shapley Value.

Proof Sketch Since in Equation 3, 0 ≤ ϕ(xp)
1+β ≤ 1, MeanRESP score will always

be upper-bounded by shapely value when we consider Equation 4.

6 Empirical Analysis

In this section, we will first discuss several metrics for comparing feature rank-
ings generated using exact methods to those generated using different forms of
approximation. Then, we will use some of these metrics to empirically evaluate
the sampling error of the two proposed approximate MeanRESP methods (UC
and OC) in conjunction with the Shapley value [37]. Finally, we will examine the
disagreement in feature rankings among these three methods. This disagreement
will help us evaluate whether MeanRESP differs significantly from the widely
adopted Shapley value, potentially warranting a human-subject study.

6.1 Environment Details

To conduct experiments in this section, we used three open-source environments
designed for sequential decision-making. The initial two environments were ob-
tained from the OpenAI Gym library [6]: Blackjack and Taxi. The Blackjack en-
vironment consists of 704 states and 2 actions, with each state being represented
by 3 features. As for the Taxi environment, it comprises 500 states and 6 actions,
with each state being represented by 4 features. Additionally, we employed the
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Ground Truth N = 2000 N = 1000 N = 500 N = 50

1. Vehicle-2 X 1. Vehicle-2 X 1. Vehicle-1 Y 1. Vehicle-1 Y 1. Vehicle-1 Y

2. Vehicle-1 Y 2. Vehicle-1 Y 2. Vehicle-2 X 2. Vehicle-2 X 2. Vehicle-3 X

3. Vehicle-3 Y 3. Vehicle-3 Y 3. Vehicle-3 Y 3. Vehicle-3 Y 3. Vehicle-Ego Y

4. Vehicle-Ego Y 4. Vehicle-Ego Y 4. Vehicle-3 X 4. Vehicle-3 X 4. Vehicle-2 Y

5. Vehicle-3 X 5. Vehicle-3 X 5. Vehicle-2 Y 5. Vehicle-2 Y 5. Vehicle-2 X

Table 2: Example of the top k = 5 features identified as causes by the exact
(ground truth) MeanRESP and approximate MeanRESP-OC methods after
different numbers of samples (N = 2000, 1000, 500, 50). We observe that: a) After
50 samples,MeanRESP identifies most of the causal variables (4 out of 5). b) By
500 samples, the first 3 rankings match exactly with the exact method. c) After
2000 samples, the ranking completely matches the exact method. While the score
estimates fluctuate with additional samples, highly influential variables (ranks
1, 2, and 3) are relatively easy to identify. Other weakly influential variables
appear frequently but may not always be ranked correctly. We observe this trend
of influential variables stabilizing early throughout our experiment.

highway-fast-v0 environment from the Highway-env library [17] (referred to as
”Highway” hereafter). This environment encompasses 20 features (we exclude
the features indicating presence from our experiment) within its feature space,
each with continuous values. To facilitate our analysis, we discretized the feature
domain into 20 equidistant points. Consequently, the total number of states in
this environment amounted to 2020. In this environment, the agent can select
from 5 different discrete actions. Note that due to such a large state space, it
is computationally infeasible to estimate exact MeanRESP. For the empirical
analysis, we used a very large sample size of 105 to emulate exact MeanRESP
For the Blackjack and Taxi environments, we employed value iteration [5] to
compute the optimal policy, while for Highway, we utilized Deep Q-learning [24]
to approximate an optimal policy.

6.2 Metrics

In this subsection, we will discuss several existing metrics used to compare fea-
ture rankings generated by exact methods with those generated using various
forms of approximation. Some of these metrics rely solely on the contents of the
explanations, others rely only on the relative rankings of feature sets, and some
require ranking scores.

To evaluate the effectiveness of these metrics, we employed the Highway envi-
ronment. In Table 2, we present snapshots of the top k most responsible variables
for a given action outcome, illustrating examples of both the exact MeanRESP-
OC method and various stages during the sampling process within the approxi-
mate MeanRESP-OC approach. The behavior of these metrics throughout the
sampling process is summarized in Figures 1.
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Ranking Only We can calculate the ranking of the features by sorting the ρ-
values in descending order. Using Kendall’s τ and Spearman’s ρ, we can calculate
a rank correlation coefficient to compare the ranks of features. This coefficient
should increase towards 1 as we increase the number of samples used to estimate.
Finally, one simple approach is to check if the two rankings are identical.

Responsibility Having access to the raw responsibility scores provides an op-
portunity for additional nuance in our metrics. Here, we present several options.

First, let us treat each feature in X as a 2D point. The x-value will be the
true ρ-value, as given by the exact method, ρ∗ for that set. The y-value will be
the estimated ρ-value. As the number of samples increases, the slope of the least
squares fit line on these 2D points should approach 1.

Second, we can use Pearson’s r correlation factor to calculate the correlation
between ρ∗ and ρ. As the number of samples increases the correlation factor
should reach 1.

Third, we take the top k features from both exact and approximate methods,
sum the ρ∗ values associated with the exact results, and call this ρ∗k. Then, sum

the ρ∗-values for approximate results and call this ρapproxk . The fraction
ρapprox
k

ρ∗
k

should approach 1 as number of samples increases.
Finally, we can calculate the Euclidean distance between the vectors repre-

senting ρ∗- and ρ-values for every potential feature set. As the number of samples
increases the distance should reach 0.

Feature Set Contents The previous metrics concern the relative importance
assigned to different causes identified by MeanRESP or a similar algorithm.
Here, we consider the presence or absence of information represented within the
causal sets, since in many cases, the user will ultimately see only the causes and
not their relative importance. If we create a set C∗

k that is the union of the top
k features from the exact algorithm, and similarly define a set Ck that is the
union of the top k features from the approximate algorithm, we then have a basis
to understand what has been erroneously included or omitted. In this case, we
propose simply finding the number of insertions and deletions required to make
the sets identical or the edit distance. This number should approach 0 as the
number of samples increases.

Discussion In the context of explanation generation, we argue that feature-set
content is a more interpretable metric as it tells us exactly how many different
factors will be communicated to the user. For sample error estimation, while all
the metrics under responsibility are good candidates, we found no clear winner.
We opted for using Euclidean distance for our experiments.

6.3 Sampling Error

In Figure 2 we show estimation error versus the number of samples used to
estimate the score. We use the following estimation error:
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Fig. 1: Traces of all 8 metrics over time as they compare exact and approximate
responsibility estimates. The solid blue line represents the mean (50 runs using
50 different states total), and the blue-shaded regions represent one standard
deviation. Clearly, some metrics are more sensitive than others. Moreover, some
shifts appear to be detected universally, for example, near 200 samples, while
at other points some metrics respond to updated estimates while others do not.
Notably, different is the boolean metric in (d) that checks whether the top k = 5
items in the set are identically ranked. The trace also shows us when the first
time results become identical to the exact methods. Due to the Monte Carlo
sampling, we see some oscillation. In addition, (a) is a version of edit distance,
measuring how many insertions or deletions need to be made before the sets are
identical. Here, both absolute and relative responsibility scores are irrelevant;
only inclusion somewhere in the top k is captured.
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1

|S|
∑
s∈S

√ ∑
i∈[1,|s|]

(ρ∗i (s)− ρi(s))2 (10)

Here, ρ∗i (s) and ρi(s) are the ground truth value and approximated value
respectively for the i−th feature of state s. Note that this is equivalent to the
average Euclidean distance. We use the average of 30 different evaluations of
Equation 10 to create Figure 2. In both environments, we see MeanRESP-
UC and MeanRESP-OC perform similarly. However, for the same amount of
samples, we see 10%-70% more error in the estimation for the Shapley Value
compared to both MeanRESP.
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Fig. 2: Convergence rates for different attribution methods. Horizontal axes rep-
resent the number of samples taken, and vertical axes represent the absolute
error in attribution value with respect to the exact solution. Color gradients
represent one standard deviation.

6.4 Explanation Dissimilarity

Environment OC vs. UC OC vs. Shapley UC vs. Shapley

BlackJack 0.05 0.15 0.13

Taxi 0.05 0.11 0.14

Highway 1.8 2.5 2.4

Table 3: The average Feature-set Difference among attribution methods. The
numbers appear surprisingly high, considering the relatively small number of
features in the problems and the relative similarity of the methods.

In this subsection, we show the ranking disagreement among MeanRESP-
OC, MeanRESP-UC, and Shapley in Table 3. The ranking is created by sorting
the features based on their attribution score in descending order and then se-
lecting the top 33% of the features (for Taxi, the top feature, for Blackjack,
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the top 2 features, and for Highway, the top 7 features). We then calculated
pairwise explanation dissimilarity using the Feature-set Difference metric dis-
cussed previously. We generated explanations for 100 sampled states in each
environment and reported the average Feature-set Difference. In all cases, we
see that the disagreement between MeanRESP-OC and MeanRESP-UC is
smaller than Shapley. Also, MeanRESP-OC is more similar to Shapley than
MeanRESP-UC, in two out of three environments. These results suggest that
there is a significant amount of difference in the explanations created by these
methods, especially in larger environments. This motivates a potential future
human subject study of explanation preference.

7 Conclusion

In summary, this study provides a comprehensive examination of MeanRESP,
a framework for causal analysis of MDPs using structural causal models. The
theoretical and empirical analyses shed light on crucial properties of approximate
MeanRESP, including the convergence of error rates. Additionally, we intro-
duce various metrics that contribute to a deeper understanding of the ranking
generated by approximate MeanRESP. Moving forward, future research will in-
volve conducting user preference studies to empirically evaluate the effectiveness
of these methods.
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