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Abstract
This paper proposes an effective new model for decision mak-
ing in situations where full autonomy is not feasible due to
inability to fully model and reason about the domain. To over-
come this limitation, we consider a human operator who can
supervise the system and guide its operation by providing
high level advice. We define a rich representation for advice
and describe an effective algorithm for generating a new pol-
icy that conforms to the given advice. Advice is designed to
improve the efficiency and safety of the system by impos-
ing constraints on state visitation (either encouraging or dis-
couraging the system to visit certain states). Coupled with
the standard reward maximization criterion for MDPs, advice
poses a complex multi-criteria decision problem. We present
and analyze an effective algorithm for optimizing the policy
in the presence of advice.

Introduction
There has been significant progress in recent years with
the construction of autonomous systems for a wide range
of domains from household products such as the iRobot’s
Roomba vacuum cleaners to space exploration vehicles. But
limitations of the prevailing sensing and reasoning tech-
niques still limit the deployment of autonomous systems
in uncertain environments where a variety of unexpected
events may occur. Maintaining a safe and robust behavior in
such environments is a considerable challenge. In general,
systems use approximate and incomplete models for plan-
ning. Even if they compute an optimal policy, the approxi-
mate nature of the model makes it hard to produce reliable
operation, particularly in application domains where uncon-
trollable events can lead to catastrophic damage or perma-
nent failure of the system.

A general approach to address this challenge is to de-
velop semi-autonomous systems that work under the su-
pervision of a human operator who may have more com-
plete knowledge of the domain and better sensing abilities.
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The operator may intervene to correct the behavior of the
system when a deviation from the desired behavior is de-
tected, according to their knowledge. There are many ex-
amples of research efforts to support such capabilities. The
multiagent systems community has long been exploring var-
ious forms of adjustable autonomy, allowing autonomous
agents or robots to get help from humans (Côté et al. 2012;
Dorais et al. 1999; Goodrich et al. 2001; Mouaddib et al.
2010). Human help could come in different forms such as
teleoperation (Goldberg et al. 2000) or guidance in the form
of goal bias (Côté et al. 2012). Tools to facilitate human su-
pervision of robots have been developed. Examples include
a single human operator supervising a team of robots that
can operate with different levels of autonomy (Bechar and
Edan 2003), or robots that operate in hazardous environ-
ments under human supervision, requiring teleoperation in
difficult situations (Ishikawa and Suzuki 1997). There has
also been research on mobile robots that can proactively seek

help from people in their environment to overcome their lim-
itations (Hüttenrauch and Severinson Eklundh 2006; Rosen-
thal and Veloso 2012). In robotics, researchers have started
to develop robots that can autonomously identify situations
in which a human operator must perform a subtask (Shiomi
et al. 2008) and design suitable interaction mechanisms for
the collaboration (Yanco, Drury, and Scholtz 2004).

But human intervention is often costly and should be
minimized, and permanent supervision or tele-operation of
a system is not desired. Therefore, it is important to de-
velop mechanisms that allow external input to help a semi-
autonomous system avoid permanent failures, situations that
require external help or the activation of costly recovery
mechanisms.

In this paper, we develop a formal framework allowing
an operator to intervene and guide the behavior of a semi-
autonomous system. Interventions consist of advice sent by
the operator to the system to improve its behavior. Advice
takes the form of a list of states to target by the system for
efficiency reasons and a list of states to avoid for safety
reasons. To this end, we define advice as sets of forbid-
den states, desired states and undesired states. We develop a
model and algorithms to integrate such advice with an MDP-
based framework and to compute on-line a new policy upon
the arrival of a new advice, considering the advice as hard
and soft constraints on the policy. In this paper, we focus on
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MDPs with terminal goal states with no loops (cyclic poli-
cies including self-loops are left for future work).

Contributions We propose a new decision-making model
in which a semi-autonomous system operates while interact-
ing with an operator in charge of extending the abilities of
the system by sending it advice to improve the safely and
efficiently of the mission. The advice is based on external
knowledge that is not explicitly available to the system. To
this end, we consider an underlying Markov decision pro-
cess (MDP) where the standard reward-maximizing objec-
tive is augmented by advice from a supervisor (operator) that
guides the system in avoiding risky states or visiting desired
states. The paper provides:
• A formal definition of advice in terms of desired states,

forbidden states and undesired states and desired actions
at some states;

• A formal definition of MDP with advice, called A-MDP;
• A formal definition of policy properties in terms of com-

pleteness, safety and satisfaction;
• A multi-criteria approach to solve an A-MDP as a multi-

criteria MDP using a lexicographic regret-based tech-
niques;

• An efficient algorithm to derive an advice-based policy
respecting the properties defined above.

Background on Markov decision process
A Markov decision process (MDP) is a mathematical tool
for robust sequential decision making and planning un-
der uncertainty. Formally, an MDP is specified by a tuple
hS,A, T,R,Hi as follows :
• S is a set of possible system states
• A is the set of actions
• T is the transition function: T : S⇥A⇥S ! [0, 1] where

T (s, a, s0) represents the probability of reaching a state s0
when taking action a in state s

• R is the reward function: R : S ! < representing the
reward of the agent in state s.

• H is the horizon, representing the number of decision
steps. When H is infinite, we say that the MDP is with
an infinite horizon and when H is finite but unknown, we
say that the MDP is with indefinite horizon.
The core decision problem for MDPs is to find a “policy”

for the decision maker: a function ⇡ that specifies the action
⇡(s) that the decision maker should choose when in state s.
The goal is to find a policy ⇡ that will maximize the expected
cumulative value of the rewards, possibly discounting future
rewards with a factor of � per decision cycle. The Bellman
equation defines a value function over states, V ⇤(s), from
which an optimal policy ⇡

⇤ can be extracted:

V
⇤(s) = argmaxa2A[R(s) + �

X

s0

T (s, a, s0) · V ⇤(s0)]

(1)

We consider MDPs with indefinite horizon and terminal
goal states. In this case, a process unfolds over a finite, but
possibly unknown, number of steps and ends when the sys-
tem reaches one of the terminal states. Many algorithms
have been developed to solve such MDPs and derive an op-
timal policy such as value and policy iteration (Sutton and
Barto 1998).

A-MDP definition and policy properties
Definition of advice
Advice can come in the form of state visitation (telling the
system to visit or not visit certain states during plan execu-
tion), such as “avoid the bridge” or “visit the park”, or in the
form of actions to perform or not to perform in some states,
such as “don’t cross the bridge” or “don’t take the highway,
go through the forest”. To capture such guidance, we define
advice A to be a tuplehSf , Sd, Su, ⇡̂i such that:
• Sf ⇢ S is a set of forbidden states that the system must

avoid;
• Sd ⇢ S is a set of desired states whose visitation is pre-

ferred;
• Su ⇢ S is a set of undesired states whose avoidance is

preferred;
• ⇡̂ is a partial policy recommending some actions in some

states.

An MDP-based model with advice
An A-MDP is a classical MDP where some states are la-
beled desired, undesired and forbidden and some actions are
recommended at some state. More formally, an A-MDP is
a pair defined by hMDP,Ai. A goal-based A-MDP is de-
fined by hMDP,Ai and G, a set of terminal goal states that
the agent has to reach. In this paper, we address goal-based
A-MDPs with no loops. Self-looping and cyclic policies are
left for future work.

A goal-based A-MDP presents a multi-criteria problem
where we have to consider first ⇡̂, then (G,Sf ) as hard con-
straints to satisfy and then (Sd,Su), which are soft con-
straints to satisfy. The best policies should guarantee that
a goal is reached, all forbidden states are avoided, desired
states are visited and undesired states are avoided as much
as possible. Hence, we face a multi-criteria MDP problem
with ordered criteria.

Different techniques have been dedicated to solving such
MDPs. Most of them are focused on the determination of
the set of Pareto-optimal solutions. However, this set could
be very large making its computation highly complex. The
good news is that policies offering a good well-balanced
tradeoff between criteria (Roijers, Vamplew, and Whiteson
2013) or fairly sharing the expected rewards among agents
(Mouaddib, Boussard, and Bouzid 2007) present promis-
ing solution techniques to this class of MDPs. Minimizing
the ordered weighted average of regrets (OWR) (Roijers,
Vamplew, and Whiteson 2013) has been proposed to com-
pute such policies. This approach is considered an extension
of minmax regret technique, relaxing egalitarianism with a
milder notion of fairness. The OWR approach overcomes the
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limitation of minmax and weighted sum methods, which are
known to reach respectively pessimistic or non-balanced so-
lutions. OWR is then a good alternative, but it suffers from
initial state dependence (its optimality depends on the initial
state) and violation of the Bellman optimality principle (that
each subpolicy of an optimal policy is optimal).

To this end, we propose an approach that takes advan-
tage of the problem structure, particularly that our cri-
teria are ordered and the initial state is known, thereby
transforming OWR into a Regret Tchebychev-like measure
where ideal and worst regret measures are used to guar-
antee the Bellman optimality principle (Mouaddib 2004;
Roijers, Vamplew, and Whiteson 2013). In the following, we
formally define the key concepts and policy properties using
our regret value function. With such characteristics (ordered
criteria, a know initial state and our regret function), the
solutions we find using classical techniques such as value-
iteration or linear programming are regret-optimal solutions
(Roijers, Vamplew, and Whiteson 2013). We define the key
ingredients of the approach below.

Probability of visitation
Definition 1 Probability of visitation The probability of

visitation of a state s when following a policy ⇡ and starting

at state s0 is:

Pvis(s|s0,⇡) =
X

t2S

T (t,⇡(t), s) · Pvis(t|s0,⇡)

with conditions:

8 terminal state g Pvis(g|g,⇡) = 1

Pvis(s0|s0,⇡) = 1

Admissibility conditions of a policy
Goal states

Definition 2 We say that a policy ⇡ is proper and complete
when: Pvis(G|s0,⇡) =

P
g2G Pvis(g|s0,⇡) = 1

Forbidden states

Definition 3 We say that a policy ⇡ is safe when

Pvis(Sf |s0,⇡) = 0

Pvis(Sf |⇡) =
X

f2Sf

Pvis(f |s0,⇡)

Thus, 8f 2 Sf , Pvis(f |s0,⇡) = 0

Admissible policy

Definition 4 We say that a policy ⇡ is admissible when ⇡ is

proper and complete and when it is safe. More formally:

8⇡ : ⇡ is admissible when

Pvis(G|s0,⇡) = 1 and Pvis(Sf |s0,⇡) = 0

When admissible policies don’t exist, we consider poli-
cies that maximize the probability of reaching a goal in G
and minimize the probability of visiting Sf . To this end, we
define value functions V G,⇡ and V

Sf ,⇡ as follows:
V

G,⇡ = Pvis(G|s0,⇡)
V

Sf ,⇡ = Pvis(Sf |s0,⇡)
We present in the following sections methods to solve

these equations when an admissible policy doesn’t exist.

Optimization conditions
Desired states
Definition 5 Desired states are the states whose visitation

is preferred. We say that a policy is satisfying when the ex-

pected number of visitation Nvis of Sd is maximized. The

expected number of visitation Nvis of Sd when starting at

state s0 and following a policy ⇡ is as follows:

Nvis(Sd|s0,⇡) =
X

s2Sd

Pvis(s|s0,⇡)

Undesirable states
Definition 6 Undesirable states are the states for which

avoiding visitation is preferred. We say that a policy is sat-

isfying when the expected number of visitation Nvis of Su

is minimized. The expected number of visitation Nvis of Su

when starting at state s0 and following a policy ⇡ is as fol-

lows:

Nvis(Su|s0,⇡) =
X

s2Su

Pvis(s|s0,⇡)

Perfect satisfying condition
Definition 7 We say that a policy ⇡ is perfectly satisfying
when the following conditions hold:

[8⇡ : ⇡ is perfectly satisfying when

⇡
⇤ = argmin⇡Nvis(Su|s0,⇡) and

⇡
⇤ = argmax⇡Nvis(Sd|s0,⇡)

Solving these equations can lead to many solutions or
none. When there are many solution policies, we have to use
the value function to select solution policies that maximize
the value. However, the more interesting and more likely
case is that no solution is available for the above two equa-
tions. We introduce a multi-criteria optimization technique
to deal with such cases.

Partial Policy
Definition 8 Desirable actions at some states advice rec-

ommend some actions at some states, such as “by night take

the highway”. Such advice is considered a partial definition

of the policy ⇡advice which specifies the actions to perform

at some states defined by the set Sadvice. For such advice,

the policy to follow is defined as follows:

8s 2 Sadvice,⇡(s) = ⇡advice(s)

8s 2 S � Sadvice,

⇡(s) = argmaxa2A(R(s) +
X

s0

P (s, a, s0) · V (s0))
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Overall principles and algorithms
An MDP with an advice < G, Sf , Sd, Su, ⇡̂ > can be seen
as a Multi-criteria MDP where criteria have a partial order
to be respected such that we should solve the MDP consid-
ering the constraints in the following order ⇡̂ > (G, Sf ) >

(Sd, Su). Thus, solving an MDP with advice consists of:
1. Considering ⇡̂ as a constraint on possible policies;
2. Verifying if policies exist satisfying G, Sf with potability

1, named admissible;
3. if admissible policies exist then satisfying Sd, Su by max-

imizing Nvis of Sd and minimizing Nvis of Su using a
multi-criteria optimization based on a regret-based algo-
rithm inspired by OWR (Roijers, Vamplew, and Whiteson
2013).

4. If admissible policies don’t exist, select policies maximiz-
ing the probability to visit a goal in G and minimizing
the probability of visiting states in Sf and then optimize
Sd, Su. To this end, we use the OWR approach where re-
gret criteria on G and Sf satisfaction and on Sd, Su satis-
faction are computed and a lexicographic order over these
two regret criteria is used. The use of this lexicographic
method over ordered criteria guarantees a fair optimiza-
tion (Roijers, Vamplew, and Whiteson 2013).
In the next sections, we present different algorithms to

satisfy advice using a labeling algorithm to efficiently deter-
mine whether admissible policies exist or not and then we
use a regret-based algorithm to optimally satisfy the other
constraints.

Solving an MDP with (G, Sf ) constraints when an
admissible policy exists
When the advice comes in the form of (G, Sf ) constraints,
the solving algorithms of the MDP should derive a policy
respecting these constraints. To do that, we propose the fol-
lowing labeling and pruning algorithm.

The algorithm we propose labels states and actions ac-
cording to the satisfaction of (G, Sf ) constraints. To this end,
we use the following principle: (1) all terminal goal states
are labeled +1; (2) all forbidden states are labeled �1 ; (3)
all terminal non-goal states are labeled �1. For other states,
we use the following state and action labeling approach:

1. Assign a label +1 to goal terminal states and �1 to non-
goal terminal states and forbidden states.

2. Assign a label +1 to an action when it leads to states la-
beled +1. Otherwise, the label of the action is �1. This is
a min operator over the label of reached states with this
action.

3. Assign to states the label max of the labeled action. This
means that once an action ends at a goal state without
visiting forbiden states this action is labeled +1.

4. prune all states labeled �1 and their corresponding ac-
tions.
More formally: 8s 2 S, 8a 2 A,

Label(s) = max
a2A

Label(s, a)

input : S, A, (G, Sf )
output : Labeled safe state and action spaces
for s 2 Sf do

Label(s) = �1
end
for terminal state s do

if s 2 G then
Label(s) = +1

end
Label(s) = �1

end
for s 2 S do

for a 2 A do
Label(a) = mins02S:T (s,a,s0)>0 Label(s

0)
end
Label(s) = maxa2A Label(a)

end
Return Labeled A and Labeled S

Algorithm 1: The (G, Sf )-labeling algorithm

8a 2 A, 8s 2 S,Label(s, a) = min
s02Ssafe:T (s,a,s0)>0

Label(s0)

Thus,
Label(s) = max

a2A

min
s02S:T (s,a,s0)>0

Label(s0)

Theorem 1 An admissible policy exists when the label of

the initial state is +1.

Proof Let s0 be the initial state and Label(s0) = +1

Label(s0) = max
a2A

Label(a) = +1

Thus Label(a) = +1

Label(a) = min
s12S:T (s0,a,s1)>0

Label(s1) = +1

Thus, Label(s1) = +1 Iteratively, we can say t 2
{0 . . . H}, we have Label(st) = +1 and Label(a1) = +1.
Note that the only states sH with label +1 are the goal states,
thus sH 2 G. Then, when the label of initial state is +1, all
the trajectories ⌧ = {s0, a0, s1, a1, . . . , sH�1, aH�1, sH =
goal have states and actions labeled +1. Then, any policy ⇡

following these trajectories will reach a state sH = goal.
Thus Pvis(sH = goal|s0,⇡) = 1. The policy ⇡ is proper
and complete.

Assume that ⇡ is not safe. This means that Pvis(sf 2
Sf |s0,⇡) 6= 0. Pvis(sf 2 Sf |s0,⇡) 6= 0 and Pvis(sf 2
Sf |s0,⇡) =

P
t2S

T (t,⇡(sf ), sf )Pvis(t|s0,⇡) !
T (t,⇡(t), sf ) > 0. By definition, Label(⇡(t)) = +1,
then Label(⇡(t)) = mins02S:T (t,⇡(t),s0)>0 Label(s

0) = 1
! Label(s0) = 1, thus Label(sf ) = 1. This contradicts the
fact that sf 2 Sf and Label(sf ) should be �1. Thus ⇡ is
safe.

Solving an MDP with (G, Sf ) with no admissible
policy
In this section, we discuss the situation where an admissible
policy doesn’t exist. In this case, we use the labeling algo-
rithm to guide the search of the best satisfying policy. To de-
fine the best satisfying policy, we define the so-called ideal
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input : Labeled S, Labeled A

output : New state and action spaces
for t 2 {0 . . . H � 1} do

for s
t 2 S do

for a
t 2 A do

if label(at) = �1 then
Prune a

t

for s
t+1 : T (st, at

, s
t+1) > 0 do

Prune subtree with root(st+1)
end

end
end

end
end
Return new state and action spaces

Algorithm 2: The (G, Sf )-Pruning algorithm

policy which maximizes the value of states labeled +1 and
minimizes, the value of states labeled �1.

Hence, we define V
G,⇤ and V

Sf ,⇤ two ideal values to op-
timally satisfying G and Sf as follows :

V
G,⇤(s) = max

⇡

X

g2G
Pvis(g|s,⇡) (2)

V
Sf ,⇤(s) = min

⇡

X

f2Sf

Pvis(f |s,⇡) (3)

Definition 9 We say that a policy ⇡
⇤

is perfect when its val-

ues are the two ideal values V
G,⇤

and V
Sf ,⇤

Theorem 2 Any admissible policy is perfect.

Proof When ⇡ is admissible, by definition of the value
function, we have: V G,⇡(s) = 1, which is the upper bound
of V G,⇤(s) and V

Sf ,⇡(s) = 0, which is the lower bound of
V

Sf ,⇤(s).
To assess the value of a non-admissible policy ⇡ we com-

pute its values V G,⇡ and V
Sf ,⇡ as follows:

V
G,⇡(s) =

X

s0,label(s0)=+1

T (s,⇡(s), s0) · V G,⇡(s0) (4)

V
Sf ,⇡(s) =

X

s0,label(s0)=�1

T (s,⇡(s), s0) · V Sf ,⇡(s0) (5)

with 8g 2 G : V G,⇡(g) = 1 and 8f 2 Sf : V Sf ,⇡(f) = 0
We then compare the value vectors (V G,⇡ , V Sf ,⇡) and

(V G,⇤, V Sf ,⇤). This comparison leads to a multi-criteria op-
timization process. To this end, we propose to use a regret
Tchebychev measure to compare policies by preferring a
policy over another one when it minimizes the regret. To
this end, we consider (V G,⇤, 0) respectively the best value
without considering the second criterion (V Sf ,⇡) and an ap-
proximation of the worst value of V G,⇡ to compute a regret
measure of getting V

G,⇡ by policy ⇡ at a state:

regret(V G,⇡) =
V

G,⇤ � V
G,⇡

V G,⇤

with regret(V G,⇡) = 0 when V
G,⇤ meaning there is no re-

gret when it’s impossible to accomplish the goals.
The regret of V Sf ,⇡ considers (V Sf ,⇤, 1) respectively the

best value without considering the second criterion (V G,⇡)
and an approximation of the worst value of V Sf ,⇡ .

regret(V Sf ,⇡) =
V

Sf ,⇤ � V
Sf ,⇡

V Sf ,⇤ � 1

with regret(V Sf ,⇡) = 0 when V
Sf ,⇤ = 1 meaning there is

no regret when it’s impossible to avoid forbidden states.
Finally, we compute the Tchebychev measure as follows:

regret
G,Sf (⇡) = regret(V G,⇡) + regret(V Sf ,⇡)

The best preferred policy is given by:

⇡
⇤ = argmin⇡regret

G,Sf (⇡)

Solving an A-MDP with (Sd, Su) soft
constraints

To exploit the previous algorithms, we propose a new label-
ing algorithm as follows:

8s 2 Sd : NLabel(s) = +1

8s 2 Su : NLabel(s) = �1

and for all states belonging to G and Sf are neutral and thus
we label them accordingly. Thus, we propose, the following
new labeling: If an admissible policy doesn’t exist then

8s 2 G
[

Sf : NLabel(s) = 0

otherwise all states of Sf are pruned and,

8s 2 G : NLabel(s) = 0

and, for the other states we use the minmax labeling algo-
rithm as above.

From this new labeling we can compute the perfectly sat-
isfying policy using the same principle by computing the
ideal values to satisfy (Sd, Su). Similarly to the previous
section, we get:

V
Sd,⇤(s) = max

⇡

Nvis(Sd|s0,⇡) (6)

V
Su,⇤(s) = min

⇡

Nvis(Su|s0,⇡) (7)

and,

regret(V Sd,⇡) =
V

Sd,⇤ � V
Sd,⇡

V Sd,⇤

with regret(V Sd,⇡) = 0 when V
Sd,⇤ = 0

regret(V Su,⇡) =
V

Su,⇤ � V
Su,⇡

V Su,⇤ � 1

with regret(V Su,⇡) = 0 when V
Su,⇤ = 1

regret
Sd,Su(⇡) = regret(Sd,⇡) + regret(Su,⇡)

Note that for (Sd, Su) a simple weighted sum could be
considered but to find a good balance of (Sd, Su), we use
the regret measure.
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An overall solution method for A-MDPs with
advice (⇡̂,G, Sf , Sd, Su)

Taking the constraint ⇡̂ into account, consists in redefining
the value function where the value of states where the policy
is defined are the expectation of applying this policy at these
states. More formally,
Let S⇡̂ be the states where the policy is given and S 6⇡̂ are the
other states such that S 6⇡̂ = S � S⇡̂ .
The value function for a policy ⇡ where ⇡̂ is considered is
as follows:

V
⇡(s)=

⇢
s 2 S⇡̂ :R(s) +

P
s02S

�T (s, ⇡̂(s), s0) · V ⇡(s0)
s 2 S 6⇡̂ :R(s) +

P
s02S

�T (s,⇡(s), s0) · V ⇡(s0)
(8)

Then, we consider the other constraints as follows. The al-
gorithm uses the (G, Sf )-labeling and pruning algorithm to
detect the existence of admissible policy and then considers
the (Sd, Su) soft constraints using the regret-based method
to derive an admissible perfectly satisfying policy or a per-
fect eligible satisfying policy. This works as follows:

1. Assign to each state an action using ⇡̂ and let NS be the
state spaces non-assigned.

2. Use the (G, Sf )-labeling algorithm.

3. If the label of the initial state is +1, then optimize accord-
ing to (Sd, Su) in NS space by minimizing regret

Sd,Su .

4. If the label of the initial state is �1 (no ad-
missible policy exists), then optimize according to
(G, Sf , Sd, Su) in NS by using a lexicographic order on
(regretG,Sf , regret

Sd,Su ).

More formally:

⇡
⇤=

8
><

>:

8s 2 S⇡̂ : ⇡̂
8s /2 S⇡̂ :
argmin⇡ regret

Sd,Su
⇡ if label(s0) = +1;

arglexmin⇡(regret
G,Sf
⇡ , regret

Sd,Su
⇡ ) otherwise

Experimental Results
Real-robot target application
We have developed a robotic system for exploration and
recognition to map and recognize an area and we developed
a user-interface, Figure 1, allowing an operator to express
its advice. The operator with a simple clic can show the de-
sired, undesired or forbidden location on the map (shown in
the middle of the image. This interface allows also the oper-
ator to send actions to perform. This system is dedicated to
security application where robots evolve in an enemy area
and receive advice on the zone to avoid (undesired), to head
(desired), not to visit (forbidden) and the destination (goal).

To show how the policy computation are performed in
such real examples, a grid and maze based environments
have been used to assess the advice-based MDP in compari-
son with a classical MDP. Different situations have been de-
veloped where goals, desired, undesired and forbidden states
(cells) have been expressed to evaluate and to compare the
policies derived from an A-MDP and from a classical MDP.

Figure 1: Interface to express advice

Model/Config 1G 1G2D2U 1G4D4U 1G8F 4G 8G
MDP 25, 9 24 25, 5 25, 7 26, 3 25, 6
A-MDP 9, 9 9, 6 9, 5 9, 8 9, 7 9, 6

Figure 2: Table summarizing computation time (in seconds)
of A-MDP and an MDP for a 40⇥40 grid with 40 time units
(deadline)

Performance
In this section, we evaluate the performance of A-MDP
in terms of computation time in comparison with a classi-
cal solving algorithm of MDPs to show that our approach
computes policies in reasonable time that allow us to con-
sider on-line policy computation. We also show the ability
of the approach to scale up well by considering very large
Maze and grid environments. We developed experiments
with grids 100 ⇥ 100 with 100 time units leading to one
million states solved in 3,3 second with our approach and
25s with a classical MDP. In general, our approach scales
up well and solves different instances (as show in Table 2)
in reasonable time more quickly than a classical MDP. The
main reason to that is the fact that with different kind of
states (goals, desired, undesired, forbidden) leads to a struc-
tured problem which is exploited with labeling and prun-
ing algorithms to speed up the resolution. A summary of
results are given in the following table with different con-
figurations (where notation xGyDzUtF, in the table, means
x goal states, y desirable states, z undesirable states and t
forbidden states):

Results
We conducted a set of experiments in a grid-based environ-
ments with different situations. We present the results con-
ducted in an environment where a goal is at the bottom right
cell of the grid, two undesired cells in the bottom of the grid
and along the frontier of the grid we set a set of desired
cells. According to different deadlines, we can notice that
when the deadlines are tight (deadline =4, Figure 3) both
approaches behave in the same way by reaching the goal
but violating the undesired states since the policy leads to
visit them. When the deadline is larger (6 time units), Fig-
ure 4, our approach allows to reach the goal and not visit-
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ing undesired states. As soon as the deadlines become larger
(deadlines 8 and 10, Figures 5 and 6), A-MDP behaves in a
better way since the policy allows the robot to avoid unde-
sired cells, reaching the goal and visiting some desired states
(1 desired state for deadline 8, Figure 5 and 3 desired states
for deadline 10, Figure 6). The MDP approach is an average
expectation based approach, the undesired states are often
visited.

Figure 3: Derived policies from A-MDP and classical MDP
with tight deadlines in a grid (4 time units)

Figure 4: Derived policies from A�MDP and classical MDP
with tight deadlines in a grid (6 time units)

Figure 5: Derived policies from A�MDP and classical MDP
with large deadlines in a grid (deadline 8)

We conducted a set of experiments in a Maze-based en-
vironments with two situations : first situation concerns one
goal state, two desired states and one undesired state and the
second situation is similar the first one but we replace the
undesired state with forbidden state. In the first situation A-
MDP behaves gracefully and leads to a desired policy where
the undesired state is often avoided and the desired states are
visited (Figure 7). In the second situation, Figure 8, the pol-
icy respects the hard constraint (forbidden state) even if this

Figure 6: Derived policies from A�MDP and classical MDP
with large deadlines in a grid (deadline 10)

avoid the robot to visit the goal state while the MDP-based
approach can violate this constraint.

Figure 7: Derived policies from A-MDP and classical MDP
with large deadlines in a Maze with 1 goal, 2 desired states
and 1 undesired state

Figure 8: Derived policies from A-MDP and classical MDP
with large deadlines in a Maze with 1 goal, 2 desired states
and 1 forbidden

Conclusion and future works
In this paper we present a new framework for handling ad-
vice in MDP to allow autonomous systems to consider ad-
vice from an external entity to overcome difficulties of sens-
ing or acting. This framework presents a definition of advice
in terms of goal, desired, undesired and forbidden states and
how these advice could be integrated in an MDP and how to
transform an MDP with advice into a multi-criteria decision-
making problem. Finally, an efficient algorithm to solve such
MDPs has been developed, implemented and evaluated in
grid and maze environments and how it can be used in
an existing robotic system. Experimental results show that
A-MDP outperforms classical MDP and that this decision
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model is suitable to semi-autonomous systems and bridging
the cap between them and full autonomous ones.
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