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Abstract— Ethically compliant autonomous systems (ECAS)
are the prevailing approach to building robotic systems that per-
form sequential decision making subject to ethical theories in
fully observable environments. However, in real-world robotics
settings, these systems often operate under partial observability
because of sensor limitations, environmental conditions, or
limited inference due to bounded computational resources.
Therefore, this paper proposes a partially observable ECAS
(PO-ECAS), bringing this work one step closer to being a
practical and useful tool for roboticists. First, we formally
introduce the PO-ECAS framework and a MILP-based solution
method for approximating an optimal ethically compliant pol-
icy. Next, we extend an existing ethical framework for prima
facie duties to belief space and offer an ethical framework
for virtue ethics inspired by Aristotle’s Doctrine of the Mean.
Finally, we demonstrate that our approach is effective in a
simulated campus patrol robot domain.

I. INTRODUCTION

As autonomous systems take an increased role in society
and individuals’ well-being, it is important that they operate
ethically. A promising approach to this challenge seeks to
implement ethical theories within autonomous systems in
order to leverage the extensive work of moral philosophers,
which mirrors the considerations of users and lawmakers.
Understandably, this is a hard task due to the tension between
the ambiguity inherent to ethical theories and the precision
demanded by autonomous systems. Naturally, one might try
to implement an ethical theory within an autonomous system
by directly modifying its objective function. However, mod-
ifying this objective function often results in unpredictable
behavior by introducing an incommensurable trade-off be-
tween task completion and ethical compliance [24].

Ethically compliant autonomous systems [24], [20] are the
prevailing approach to implementing ethical theories within
autonomous systems. To do this, ECAS represents a decision-
making problem (i.e., a Markov decision process) as a math-
ematical program with an additional ethical constraint that
encodes an ethical theory. Hence, solving this mathematical
program results in a policy that is guaranteed to comply with
the ethical theory. However, while ECAS has been shown to
be effective, it is limited to fully observable environments
and cannot be used in partially observable environments.
This is often critical for real-world robotics settings because
of sensor limitations, environmental conditions, or limited
inference due to bounded computational resources.
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Fig. 1. A campus patrol robot monitors different security feeds and resolves
incidents across locations ℓ0 and ℓ1. Top: The trajectory of the POMDP
with belief-action pairs (b, a) connected by observations ω. Here, the action
ξP monitors MAJOR incidents with a police scanner, ξC monitors MINOR
incidents with a camera system, aℓ navigates to the location ℓ, and σW

resolves an incident by warning campus security. Each observation ω is
given by a security feed (P or C) and an incident status for the locations ℓ0
and ℓ1 (Y indicates an incident and N indicates no incident). ωr indicates a
destination has been reached. Center: The agent’s belief bℓ for MINOR and
MAJOR incidents at locations ℓ0 and ℓ1. Bottom: The cumulative penalty
Jπ of a policy π due to performing actions outside of the virtuous means
Θ(f) given each virtue f (prudence/courage) for a strength function κ(f)
that reflects where along the extremes an action falls and a tolerance τ that
allows for deviations from the virtuous mean.

Therefore, in this paper, we propose a novel approach to
building partially observable ECAS. In particular, starting
with the mathematical program for a decision-making prob-
lem in a partially observable environment (i.e., a partially
observable Markov decision process), we formally repre-
sent PO-ECAS as a mixed integer linear program (MILP)
with an additional ethical constraint that encodes an ethical
theory. Importantly, in our experiments, we demonstrate the
effectiveness of our approach in a simulated campus patrol
robot domain in order to assess whether our approach can
correctly, reliably, and predictably adjust the operation of an
autonomous system in a partially observable environment.

The effectiveness of ECAS-based approaches heavily de-
pends on the expressiveness of the given ethical theory. To
improve this expressiveness, we introduce an ethical theory
for virtue ethics inspired by Aristotle’s Doctrine of the
Mean—which requires an agent to act virtuously according
to virtues that fall as mean values between vices of excess
and deficiency—as illustrated in Figure 1. Intuitively, this
ethical constraint enables an autonomous system to flexibly
modulate its operation while maintaining virtuous character.

Our main contributions in this paper are: (1) a formal defi-
nition of partially observable ethically compliant autonomous
systems and a MILP-based solution method, (2) an extension
of an existing ethical framework for prima facie duties to
belief space, (3) an ethical framework for virtue ethics based
on Aristotle’s Doctrine of the Mean, and (4) a demonstration
of our approach in a simulated campus patrol robot domain.



II. RELATED WORK

The application of ethical reasoning to automated sys-
tems at conception, regulation, design, and deployment is
a broad and nuanced field of research. This paper focuses
on ethical reasoning during stochastic planning, specifically
for sequential decision-making models. Readers seeking a
holistic treatment of this literature are directed to the ECAS
framework [24], [20] that we build on in this paper along
with related surveys [10], [19], [29], [28]. Most work that
constrains decision making to follow an ethical theory uses
logic systems [26], [7], [27], [3], including some that reason
over a set of logics [8] or use Answer Set Programming [5].

Logic systems have several benefits, including their in-
terpretability and their accessibility to theoretical tools and
guarantees. However, these systems present a drawback: nu-
anced behavior can become difficult to specify as the capabil-
ity of an agent grows, and deploying such systems in stochas-
tic environments presents still unsolved challenges [1]. As a
result, there is work that models ethical behavior using other
mechanisms, such as game-theoretic concepts [13] and se-
mantic orderings over logical statements as in Belief-Desire-
Intention architectures [12], [11], case-supported principle-
based behavior models [2], or multi-coherence theory [28].
Moreover, there are approaches that combine elements of
rule-based systems with human oversight [9].

Still, these approaches pose two problems. First, they
do not result in guarantees as they blend task completion
and ethical compliance into a single objective function.
Second, they do not consider partial observability. The ECAS
framework [24], [20] addresses the first problem well: it
allows developers to separate task completion from ethical
compliance by constraining the space of policies of the
decision-making model with an ethical theory. However, the
framework and solution methods provided by ECAS require
the decision-making model to be a Markov decision process,
which assumes full observability.

Work on ethically-aware reasoning under partial observ-
ability has received far less attention. Many problems are
partially observable due to their multi-agent or decentral-
ized nature, so much of existing research focuses on this
area, for example signaling normative intent in multi-agent
systems [14], [4] or decentralized decision-making for au-
tonomous vehicles [25]. Recently, there has been work on the
fairness-privacy tradeoff that arises in decentralized systems
when sharing information [22]. Most similar is work on the
“resilience” of decentralized partially observable systems,
modeled as hidden Markov models, where resilience is
defined in terms of different metrics related to the expected
cost of executing certain trajectories [21].

In summary, existing approaches fail to offer a general
framework for decision-making, ethical constraints, and so-
lution methods that can be applied to ethical reasoning
in partially observable, stochastic environments. Moreover,
in most approaches, the task objective cannot be cleanly
separated from any ethical constraints, which is the primary
advantage of the original ECAS framework.

III. BACKGROUND

A partially observable Markov decision process (POMDP)
is a formal decision-making model for reasoning in partially
observable, stochastic environments [15]. A POMDP is a
tuple ⟨S,A, T,R,Ω, O⟩. S is a set of states of the world. A
is a set of actions of the agent. T : S × A × S → [0, 1] is
a transition function that maps each state s ∈ S and action
a ∈ A to the probability of ending up in state s′ ∈ S. R :
S×A→ R is a reward function that maps each state s ∈ S
and action a ∈ A to the expected immediate reward. Ω is the
set of observations of the agent. O : S×A×Ω → [0, 1] is the
observation function that maps each state s ∈ S and action
a ∈ A to the probability of emitting observation ω ∈ Ω.

In a POMDP, the agent does not necessarily know the
true state of the world at any given time. Instead, the agent
makes noisy observations that reflect its state and action. To
represent its uncertainty, the agent maintains a belief state
b ∈ B, a probability distribution over all states, where B
is the space of all belief states. Initially, the agent begins
with an initial belief state b0 ∈ B. After performing an
action a ∈ A and making an observation ω ∈ Ω, the
agent updates its current belief state b ∈ B to a new
belief state b′ ∈ B using the belief state update equation
b′(s′|b, a, ω) = αO(a, s′, ω)

∑
s∈S T (s, a, s

′)b(s), where α
is the normalization constant α = Pr(ω|b, a)−1.

A policy π of a POMDP can be represented as a finite-
state controller (FSC) of a fixed size. Formally, an FSC is a
tuple π = ⟨Q,λ, η⟩. Q is a set of nodes that each represent
a region of the belief space B. λ : Q → A is an action
function that maps each node q ∈ Q to an action a ∈ A.
η : Q × Ω → Q is a transition function that maps each
node q ∈ Q and observation ω ∈ Ω to a successor node
q′ ∈ Q. At each time step, the agent begins in a node q ∈ Q
associated with its current belief state b ∈ B, performs an
action a ∈ A given the action function λ, and ends up in
a successor node q′ ∈ Q given the transition function η.
An FSC π induces a value function V π : Q × S → R that
represents the expected cumulative reward of a node q ∈ Q
and a state s ∈ S. Naturally, an optimal FSC π∗ maximizes
this value function. Note that solution methods that yield
FSCs of a fixed size may not be optimal because they restrict
the space of policies [6].

IV. OPERATING UNDER PARTIAL OBSERVABILITY

In existing work, ECAS has operated under full ob-
servability [24], [20]. However, full observability is often
an impractical assumption in real-world robotics settings.
For instance, consider a robot that must patrol different
locations on a college campus to resolve potential incidents.
Naturally, it has uncertainty over the location and severity
of potential incidents but can monitor different feeds that
provide information, such as a camera system or a police
scanner. More generally, in the real world, robots often only
make observations that affect their belief about the world. As
a result, managing this belief subject to sensor limitations,
environmental conditions, and limited inference coupled with
the goal of completing a task efficiently and reliably in



a stochastic, unstructured environment makes this class of
decision-making problems ethically challenging.

A partially observable ethically compliant autonomous
system (PO-ECAS) has a POMDP as the decision-making
model for completing its task and an ethical context and a
moral principle for following its ethical framework [24]. The
POMDP P describes the information needed to complete
the task, the ethical context E describes the information
required to follow the ethical framework, and the moral
principle ρ : Π → B evaluates the morality of a policy for
the decision-making model within the ethical context. We
formally describe a PO-ECAS in the following way:

Definition 1. A PO-ECAS ⟨P, E , ρ⟩ optimizes completing
a task by using a POMDP P while following an ethical
framework by adhering to a moral principle ρ : Π → B
within an ethical context E . B is the Boolean set {0, 1}.

The objective of a PO-ECAS is to find an optimal pol-
icy that maximizes the expected cumulative reward of the
POMDP subject to following the ethical framework:

Definition 2. The objective of a PO-ECAS is to find an
optimal moral policy, π∗

ρ ∈ Π, by solving for a policy
π ∈ Π within the space of policies Π that maximizes a value
function V π subject to a moral principle ρ:

maximize
π∈Π

V π subject to ρ(π)

A PO-ECAS can follow an ethical framework that impacts
completing its task. This impact can be measured as the
maximum absolute difference across all states between the
value function of the optimal moral policy and the value
function of the optimal amoral policy:

Definition 3. Given the optimal moral policy π∗
ρ ∈ Π and

the optimal amoral policy π∗ ∈ Π, the price of morality, ψ,
can be represented by the expression ψ = ∥V π∗

ρ − V π∗∥∞.

It is possible to solve a PO-ECAS approximately by using
mathematical programming. Table I offers a novel mixed
integer linear program (MILP) for a POMDP that is based
on existing work on DecPOMDPs [17]. Unlike an MDP,
which can be expressed as a linear program that generates
a deterministic or stochastic policy depending on whether
or not there are constraints, a POMDP is expressed as a
MILP that generates a deterministic policy. A deterministic
policy of the MILP is represented as a deterministic FSC of a
fixed size for the POMDP. Deterministic FSCs are a standard
representation for policies in work on POMDPs [15].

In our MILP for POMDPs, the variables consist of (1)
occupancy measures that represent the frequency that the
FSC performs an action in a node and a state and (2)
probabilities that represent the FSC’s action/transition func-
tions. The objective maximizes the discounted cumulative
reward given the FSC’s occupancy measures x(q, s, a). Flow
Consistency Constraint 1 ensures that the FSC’s occupancy
measures are consistent given the observation and transition
functions of the POMDP and the initial node and state
distribution η0. Probability Constraints 2-5 ensure that the

TABLE I
A MIXED INTEGER LINEAR PROGRAM REPRESENTATION OF A POMDP.

Variables:
x(q, s, a), x(q, s, a, q′ω), x(q, a), x(q), x(q, q

′
ω), x(a|q), x(q′|q, ω)

∀q, s, a, ω, q′

Maximize:∑
s∈S

∑
a∈A R(s, a)

∑
q∈Q x(q, s, a)

Flow Consistency Constraint:∑
a∈A x(q′, s′, a) = η0(q′, s′)+

γ
∑

s∈S

∑
a∈A

∑
ω∈Ω O(a, s′, ω)T (s, a, s′) (1)∑

q∈Q x(q, s, a, q̃ω = q′) ∀q′, s′

Probability Constraints:
x(q, s, a) =

∑
q′∈Q x(q, s, a, q′ω) ∀q, s, a, ω (2)

x(q, a) =
∑

s∈S x(q, s, a) ∀q, a (3)
x(q) =

∑
a∈A x(q, a) ∀q (4)

x(q, q′ω) =
∑

s∈S

∑
a∈A x(q, s, a, q′ω) ∀q, ω, q′ (5)

x(q)− x(q, a) ≤ 1−x(a|q)
1−γ

∀q, a (6)

x(q)− x(q, q′ω) ≤
1−x(q′|q,ω)

1−γ
∀q, ω, q′ (7)∑

a∈A x(a|ω) = 1 ∀q (8)∑
q′∈Q x(q′|q, ω) = 1 ∀q, ω (9)

Integrality Constraints:
x(a|q) ∈ {0, 1} (10)
x(q′|q, ω) ∈ {0, 1} (11)

FSC’s occupancy measures are valid marginalizations. Prob-
ability Constraints 6-7 ensure that the FSC’s action/transition
functions are valid. Probability Constraints 8-9 ensure that
the FSC’s action/transition functions are probability distri-
butions. Integrality Constraints 10-11 ensure that the FSC’s
action/transition functions are deterministic. Note that x(a|q)
and x(q′|q, o) represent the FSC’s action/transition function
and the remaining variables are occupancy measures under
different marginalizations. For a detailed explanation of this
form of MILPs, see existing work on DecPOMDPs [17].

In general, while MILPs are NP-hard, reasonably sized
MILPs can be solved using modern processors and methods.
Our experiments execute the default simplex method in the
IBM CPLEX Optimization Suite using a MIP gap of 0.1,
an integrality tolerance of 0.005, and a discount factor γ of
0.99 on a MacBook Pro with an M1 CPU and 16 GB RAM.

V. ETHICAL FRAMEWORKS IN BELIEF SPACE

In this section, we extend an existing ethical framework
for prima facie duties to belief space and offer an ethical
framework for virtue ethics based on Aristotle’s Doctrine of
the Mean. Table II provides the ethical constraints that are
added to the MILP for each ethical framework. Conjunctions
is the number of logical conjunctions. Operations is an upper
bound on the number of mathematical operations. Computa-
tions is an upper bound on the number of computations.

a) Prima Facie Duties: This is a pluralistic, nonab-
solutist ethical theory that states that the morality of an
action is based on whether that action fulfills fundamental
moral duties that can contradict each other [23], [18]. We
approximate prima facie duties (PFD) by formalizing an
ethical framework that requires a policy to select actions that
do not neglect duties of different penalties within a tolerance.



TABLE II
THE ETHICAL CONSTRAINTS REPRESENTING THE MORAL PRINCIPLES OF EACH ETHICAL FRAMEWORK WHERE |T | = |S||A||S|.

Moral Constraint Observability Conjunctions Operations Computations

cFO
ρ∆

(µ) =
∑

s∈S,a∈A µs
a

∑
δ∈∆s,a

ϕ(δ, s, a) ≤ τ Full 1 2|T ||∆|+ 1 2|T ||∆|+ 1

cPO
ρ∆

(µ) =
∑

s∈S,a∈A,q∈Q µs,q
a

∑
δ∈∆s,a

ϕ(δ, s, a) ≤ τ Partial 1 2|Q||T ||∆|+ 1 2|Q||T ||∆|+ 1

cFO
ρF (µ) =

∧
f∈F

∑
s∈S,a∈A µs

a|κ(f, s, a)−Θ(f)| ≤ τ Full |F| 2|T |+ 1 |F|(2|T |+ 1)

cPO
ρF (µ) =

∧
f∈F

∑
s∈S,a∈A,q∈Q µs,q

a |κ(f, s, a)−Θ(f)| ≤ τ Partial |F| 2|Q||T |+ 1 |F|(2|Q||T |+ 1)

Definition 4. A PFD ethical context E∆ is represented by
a tuple E∆ = ⟨∆, ϕ, τ⟩:

• ∆ is a set of duties.
• ϕ : ∆ × S × A → R+ is a penalty function that

represents the expected immediate penalty ϕ(δ, s, a) for
neglecting a duty δ ∈ ∆ when performing an action
a ∈ A in a state s ∈ S.

• τ ∈ R+ is a tolerance.

Definition 5. A PFD moral principle ρ∆ is expressed as:

ρ∆(π) =
∑
s∈S

b0(s)J
π(q0, s) ≤ τ.

The expected cumulative penalty, Jπ : Q× S → R, is:

Jπ(q, s) =
∑
q′∈Q

∑
s′∈S

T̄ ss′

qq′
[∑
δ∈∆s′

ϕ(δ, s′, π(q)) + Jπ(q′, s′)
]
,

where we let T̄ ss′

qq′ = T̄ (⟨q, s⟩, π(q), ⟨q′, s′⟩).

This POMDP formulation is derived from the MDP for-
mulation of prima facie duties in existing work [24]. In the
moral principle, the initial belief distribution b0(s) of the
POMDP formulation replaces the initial state distribution
d0(s) of the MDP formulation. Multiplied by the initial
belief distribution b0(s), the expected cumulative penalty
Jπ(q0, s) is parameterized by both an initial controller node
q0, representing a region of belief space, and a state s instead
of only a state s. Moreover, in the expected cumulative
penalty, a sum over both controller nodes q and states s
replaces a sum over only states s, and the transition function
represents transitions between both controller nodes q and
states s instead of only states s. Note that if a belief MDP
formulation—equivalent to the POMDP formulation—were
used to represent prima facie duties, each state s would
simply be replaced with a belief state b. The POMDP
formulation is as expressive as the belief MDP formulation
but more naturally supports approximate policies like FSCs
that are commonly used in MILP-based solution methods.

b) Aristotelian Virtue Ethics: This is a monistic, ab-
solutist ethical theory that states that the morality of an
action depends on whether it embodies a set of virtues.
In particular, this formulation of virtue ethics is based on
Aristotle’s Doctrine of the Mean and identifies every virtue
as a condition that is intermediate or a “golden mean” falling
between vices of excess and deficiency [16]. We approximate
Aristotelian virtue ethics (AVE) by formalizing an ethical
framework that requires a policy to select actions that yield a
mean value between different vices of excess and deficiency
within a tolerance.

Definition 6. An AVE ethical context EF is represented by
a tuple EF = ⟨F ,Θ, κ, τ⟩:

• F is a set of traits.
• Θ : F → R is a virtue function that represents the

virtuous mean Θ(f) of a trait f ∈ F .
• κ : F × S × A → R is a strength function that

represents the strength κ(f, s, a) of a trait f ∈ F when
performing an action a ∈ A in a state s ∈ S.

• τ is a tolerance for each trait f ∈ F .

Definition 7. An AVE moral principle ρF is expressed as:

ρF (π) =
∧
f∈F

[∑
s∈S

b0(s)J
π
f (q0, s) ≤ τ

]
.

The expected cumulative penalty, Jπ
f : Q× S → R, is:

Jπ
f (q, s) =

∑
q′∈Q

∑
s′∈S

T̄ ss′

qq′
[
|κ(f, s′, π(q))−Θ(f)|+Jπ

f (q
′, s′)

]
,

where we let T̄ ss′

qq′ = T̄ (⟨q, s⟩, π(q), ⟨q′, s′⟩).

Although an MDP formulation for virtue ethics has been
proposed in existing work [24], it differs considerably from
the POMDP formulation introduced in this paper. Specifi-
cally, the moral principle here checks—for every trait f—
that an agent starting with a belief b0 associated with a
controller node q0 and following a policy π deviates no more
than the tolerance τ in expectation from expressing that trait
f at the virtuous mean Θ(f). This deviation at a state s′ for a
trait f is given by the norm |κ(f, s′, a)−Θ(f)|. Note that this
ethical framework simplifies multiple concepts within virtue
ethics and primarily serves as an example that demonstrates
our approach but still retains rich descriptive and expressive
power even with only a handful of ethical constraints.

To provide an example of this moral principle, consider
the virtue courage that is often described as the golden mean
between cowardice and recklessness. If pure cowardice and
pure recklessness are represented by real numbers ζL and ζU
respectively, the strength function κ(fcourage, s, a) represents
where within the extremes [ζL, ζU ] performing an action a in
a state s falls. Accordingly, the virtue function Θ(fcourage) ∈
[ζL, ζU ] represents the optimal tradeoff between the two
extremes—the golden mean. Hence, any action a in which
κ(fcourage, s, a) ≈ Θ(fcourage) would be courageous.

A PO-ECAS can define the moral principle in terms of
a controller node q in an FSC, which covers a region of
belief space. Naturally, this is an intuitive representation
of a policy of a POMDP. However, unlike external factors
such as the traits, virtue function, strength function, and
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Fig. 2. The policies for the campus patrol robot domain generated for each version of AVE. These policies are illustrated as FSCs, where a circle denotes
a controller node labeled with the action taken at that controller node and an arrow denotes a deterministic transition from one controller node to another
controller node upon receiving the observation ω. Note that, in some policies, the observations ωP

Y Y or ωC
Y Y , indicating two simultaneous incidents of

the same severity at different locations, can deterministically transition to an arbitrary choice of controller nodes.

Fig. 3. The value functions for each version of AVE as a function of
tolerance. Here, the red dashed line denotes the value function of the amoral
policy that serves as an upper bound on the value function for each ethically
compliant policy. The difference (shaded red) between the amoral policy and
each ethically compliant policy denotes the price of morality.

tolerance that are used in the moral principle, the agent can
have a level of control over its belief depending on when
and which information gathering actions it performs. Hence,
under certain conditions, it may be possible for the agent to
deliberately avoid collapsing its belief or otherwise alter its
belief to avoid generating large penalties. We recognize that
this issue raises ethical questions concerning whether or not
ethical frameworks should embed a moral imperative to be
maximally informed and leave this issue for our future work.

VI. CAMPUS PATROL ROBOT DOMAIN

We now turn to an application of PO-ECAS to a campus
patrol robot. Here, the robot completes a campus patrol
task that involves patrolling different locations on a college
campus. During its patrol, it must resolve potential incidents
by either intervening or warning campus security. It can
make observations of the severity of a potential incident at
each location by monitoring different security feeds at the
base station. This means that the severity of each incident
cannot be observed directly and evolves stochastically. Most
importantly, the robot must follow the ethical framework for
Aristotelian virtue ethics by operating courageously and pru-
dently as discussed below. We describe both task completion
and ethical compliance of the campus patrol robot below.

Task Completion

The robot must complete a campus patrol task that in-
volves patrolling different locations L on a college cam-
pus. It begins at a base station LB . Here, it can either
navigate to a location ℓ ∈ L or monitor the severity
(NONE,MINOR,MAJOR) of a potential incident at each
location ℓ ∈ L using a camera system that noisily detects
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Fig. 4. The cumulative penalty functions for each version of AVE as a
function of time steps. Here, the dashed lines denote the cumulative penalty
for the courage trait and the dotted lines denote the cumulative penalty for
the prudence trait. The solid line denotes a tolerance τ of 5 and separates
the moral region (shaded green) and the immoral region (shaded red).

MINOR incidents or a police scanner that noisily detects
MAJOR incidents. At each location ℓ ∈ L, it can perform
no operation (∅) or resolve an incident by intervening (low
effectiveness) or warning campus security (high effective-
ness), which then returns it to the base station LB . Overall,
the objective of the robot is to resolve potential incidents
across the college campus.

Formally, we represent the decision-making model of the
campus patrol task by a POMDP P = ⟨S,A, T,R,Ω, O⟩.
The set of states S = {NONE,MINOR,MAJOR}|L| ∪
L ∪ LB represents all combinations of incident severities
{NONE,MINOR,MAJOR}|L| for each location ℓ ∈ L, and
the current location ℓ ∈ L or base state LB . The set of
actions A = AL ∪ AΣ ∪ AΞ ∪ ∅ has navigation actions
aℓ ∈ AL for navigating from the base station LB to a location
ℓ ∈ L, resolution actions AΣ = {∅, σI , σW } for performing
no operation (∅) and resolving an incident at a location
ℓ ∈ L by intervening (σI ) or warning campus security (σW ),
and monitoring actions AΞ = {ξC , ξP } for using a camera
system (ξC) to noisily detect MINOR incidents or a police
scanner (ξP ) to noisily detect MAJOR incidents. The set
of observations Ω = {YES,NO}|L| ∪ ωr has observations
{YES,NO}|L| for monitoring potential incidents for each
location ℓ ∈ L and an arrival observation ωr for reaching
the base station LB or a location ℓ ∈ L.

Moreover, the reward, transition, and observation functions
R, T , and O represent the dynamics of the campus patrol
task. The transition function T reflects that navigation actions
AL move the robot from the base station LB to a location
ℓ ∈ L, resolution actions AΣ resolve incidents by changing
the severity of an incident at a location ℓ ∈ L to NONE,
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Fig. 5. A heat map of the action probabilities of the policies for the campus
patrol robot domain generated for each version of AVE.

and monitoring actions AΞ that exogenously change the
severity of an incident at a location ℓ ∈ L. The reward
function R reflects that navigation actions AL yield nil
reward, resolution actions AΣ yield a small/large reward
for resolving an incident of MINOR/MAJOR severity, and
monitoring actions AΞ yield a small negative reward. The
observation function O reflects that navigation actions AL

emit an arrival observation ωr after navigating from the base
station LB to a location ℓ ∈ L, resolution actions AΣ emit an
arrival observation ωr after returning to the base station LB

from a location ℓ ∈ L, and monitoring actions AΞ yield an
observation ω ∈ {YES,NO}|L| after monitoring the severity
of potential incidents for each location ℓ ∈ L.

Ethical Compliance

The robot must follow the ethical framework for Aris-
totelian virtue ethics with the courage and prudence traits
f1 and f2. In any location state ℓ ∈ L, the courage trait f1 is
strengthened (high κf1 ) if the robot intervenes and weakened
(low κf1 ) if the robot performs no operation or warns the
campus security to resolve an incident of any severity. In the
base station LB , the prudence trait f2 is strengthened (high
κf2 ) if the robot checks the police scanner and weakened
(low κf2 ) if the robot checks the camera system to detect
potential incidents. Thus, the robot must avoid the value of
the courage and prudence traits f1 and f2 being higher/lower
than its virtuous mean Θ(f1) and Θ(f2) for a tolerance τ .

Formally, given the AVE moral principle ρF , we represent
the AVE ethical context by a tuple EF = ⟨F ,Θ, κ, τ⟩. The set
of traits F = {f1, f2} represents the courage and prudence
traits f1 and f2; the virtue function Θ represents the virtuous
mean Θ(f) of the courage and prudence traits f1 and f2;
the strength function κ represents the strength κ(f, s, a) of
courage and prudence traits f1 and f2 when performing an
action a in a state s; and the tolerance τ allows for deviations
from the courage and prudence traits f1 and f2.

VII. EXPERIMENTS

In our experiments, we evaluate the PO-ECAS approach
in the campus patrol robot domain with Aristotelian virtue
ethics for different combinations of traits: no traits, courage,
prudence, and both traits. For each combination, we examine
the final policy, value function, and cumulative penalty.
To do this, after computing the final policy, we perform
100 simulations of the campus patrol robot domain with
Aristotelian virtue ethics to obtain the value function and
cumulative penalty. We focus on Aristotelian virtue ethics as
existing work offers an analysis of prima facie duties [24].

a) Policy Analysis: Figure 2 shows the FSC policies
generated for each version of Aristotelian virtue ethics (with
the action probabilities across unobserved states in Figure 5).
First, Figure 2a is the amoral policy (no traits) in which
the agent performs both monitoring actions (ξC and ξP ) but
always warns campus security (σW ) to resolve incidents due
to its high effectiveness. Second, Figure 2b is the courage
policy in which the agent only intervenes (σI ) instead
of warning campus security (σW ) as κ(fcourage, s, σI) is
closer to Θ(fcourage) than κ(fcourage, s, σW ). Third, Figure 2c
is the prudence policy in which the agent only monitors
the police scanner (ξP ) instead of monitoring the camera
system (ξC) as κ(fprudence, s, ξP ) is closer to Θ(fprudence)
than κ(fcourage, s, ξC). Fourth, Figure 2d is the courage
and prudence policy (both traits) that combines both the
courage and prudence policy: the agent resolves incidents by
intervening (σI ) and only monitors the police scanner (ξP ).
Intuitively, despite being highly constrained, this policy is a
natural combination of the policies in Figures 2b and 2c.

b) Value Function Analysis: Figure 3 shows the value
function of the FSC policies generated for each version of
Aristotelian virtue ethics over a range of tolerances. As
expected, regardless of the combination of traits used in
Aristotelian virtue ethics, the value function increases as the
tolerance increases until reaching the upper bound (the value
function of the amoral policy). This is because the tolerance
allows the agent to smoothly change how much it follows the
ethical theory. Moreover, the slope of these lines describes
how the value function increases as the tolerance increases:
when the value function slope is steep (gentle), actions that
yield high reward on the task are closer to (further from) the
virtuous mean for one or both traits. Hence, given just two
values for the tolerance τ , we can predict the performance
for each combination of traits. Lastly, as expected, both traits
provide a lower bound on all value functions.

c) Cumulative Penalty Analysis: Figure 4 shows the
cumulative penalty of the FSC policies generated for each
version of Aristotelian virtue ethics over the time steps of the
simulations. Here, the amoral policy is above the tolerance
for courage and prudence. The courage policy is below the
tolerance for courage and above the tolerance for prudence.
The prudence policy is above the tolerance for courage and at
the tolerance for prudence. The courage and prudence policy
is below the tolerance for courage and at the tolerance for
prudence. These observations are expected given the traits
optimized for by each version of Aristotelian virtue ethics.

VIII. CONCLUSION

This paper proposes a novel framework for ethically
compliant autonomous systems in partially observable en-
vironments and a MILP-based solution method. We then
extend an existing ethical framework for prima facie duties
to belief space and offer an ethical framework for virtue
ethics based on Aristotle’s Doctrine of the Mean. Finally, we
show that our approach is effective in a simulated campus
patrol robot domain. Future work will expand these ethical
frameworks and develop more efficient approximate solvers.
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