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Abstract

We present the Equi-Reward Utility Maximiz-
ing Design (ER-UMD) problem for redesigning
stochastic environments to maximize agent perfor-
mance. ER-UMD fits well contemporary applica-
tions that require offline design of environments
where robots and humans act and cooperate. To
find an optimal modification sequence we present
two novel solution techniques: a compilation that
embeds design into a planning problem, allowing
use of off-the-shelf solvers to find a solution, and
a heuristic search in the modifications space, for
which we present an admissible heuristic. Evalu-
ation shows the feasibility of the approach using
standard benchmarks from the probabilistic plan-
ning competition and a benchmark we created for a
vacuum cleaning robot setting.

1 Introduction
We are surrounded by physical and virtual environments with
a controllable design. Hospitals are designed to minimize the
daily distance covered by staff, computer networks are struc-
tured to maximize message throughput, human-robot assem-
bly lines are designed to maximize productivity, etc. Com-
mon to all these environments is that they are designed with
the intention of maximizing some user benefit while account-
ing for different forms of uncertainty.

Typically, design is performed manually, often leading to
far from optimal solutions. We therefore suggest to auto-
mate the design process and formulate the Equi-Reward Util-
ity Maximizing Design (ER-UMD) problem where a system
controls the environment by applying a sequence of modifi-
cations in order to maximize agent utility.

We assume a fully observable stochastic setting and use
Markov decision processes [Bellman, 1957] to model the
agent environment. We exploit the alignment of system and
agent utility to show a compilation of the design problem into
a planning problem and piggyback on the search for an opti-
mal policy to find an optimal sequence of modifications. In
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addition, we exploit the structure of the offline design pro-
cess and offer a heuristic search in the modifications space to
yield optimal design strategies. We formulate the conditions
for heuristic admissibility and propose an admissible heuris-
tic based on environment simplification. Finally, for settings
where practicality is prioritized over optimality, we present a
way to efficiently acquire sub-optimal solutions.

The contributions of this work are threefold. First, we
formulate the ER-UMD problem as a special case of envi-
ronment design [Zhang et al., 2009]. ER-UMD supports
arbitrary modification methods. Particularly, for stochastic
settings, we propose modifying probability distributions, an
approach which offers a wide range of subtle environment
modifications. Second, we present two new approaches for
solving ER-UMD problems, specify the conditions for ac-
quiring an optimal solution and present an admissible heuris-
tic to support the solution. Finally, we evaluate our ap-
proaches given a design budget, using probabilistic bench-
marks from the International Planning Competitions, where a
variety of stochastic shortest path MDPs are introduced [Bert-
sekas, 1995] and on a domain we created for a vacuum clean-
ing robot. We show how redesign substantially improves ex-
pected utility, expressed via reduced cost, achieved with a
small modification budget. Moreover, the techniques we de-
velop outperform the exhaustive approach reducing calcula-
tion effort by up to 30% .

The remaining of the paper is organized as follows. Sec-
tion 2 describes the ER-UMD framework. In Section 3, we
describe our novel techniques for solving the ER-UMD prob-
lem. Section 4 describes an empirical evaluation followed by
related work (Section 5) and concluding remarks (Section 6).

2 Equi-Reward Utility Maximizing Design
The equi-reward utility maximizing design (ER-UMD) prob-
lem takes as input an environment with stochastic action out-
comes, a set of allowed modifications, and a set of constraints
and finds an optimal sequence of modifications (atomic
changes such as additions and deletions of environment el-
ements) to apply to the environment for maximizing agent
expected utility under the constraints. We refer to sequences
rather then sets to support settings where different application
orders impact the model differently. Such a setting may in-
volve, for example, modifications that add preconditions nec-



Figure 1: An example of an ER-UMD problem

essary for the application of other modifications (e.g. a dock-
ing station can only be added after adding a power outlet).

We consider stochastic environments defined by the
quadruple ε = 〈Sε, Aε, fε, s0,ε〉 with a set of states Sε, a set
of actions Aε, a stochastic transition function fε : Sε ×Aε ×
Sε → [0, 1] specifying the probability f(s, a, s′) of reach-
ing state s′ after applying action a in s ∈ S, and an initial
state s0,ε ∈ Sε. We let E , SE and AE denote the set of all
environments, states and actions, respectively. Adopting the
notation of Zhang and Parkes (2008) for environment design,
we define the ER-UMD model as follows.

Definition 1 An equi-reward utility maximizing (ER-UMD)
model ω is a tuple 〈ε0ω,Rω, γω,∆ω,Fω,Φω〉 where
• ε0ω ∈ E is an initial environment.
• Rω : SE × AE × SE → R is a Markovian and station-

ary reward function, specifying the reward r(s, a, s′) an
agent gains from transitioning from state s to s′ by the
execution of a.
• γω is a discount factor in (0, 1], representing the depre-

cation of agent rewards over time.
• ∆ω is a finite set of atomic modifications a system can

apply. A modification sequence is an ordered set of mod-
ifications ~∆ = 〈∆1, . . . ,∆n〉 s.t. ∆i ∈ ∆ω . We denote
by ~∆ω the set of all such sequences.
• Fω : ∆ω × E → E is a deterministic modification tran-

sition function, specifying the result of applying a modi-
fication to an environment.
• Φω : ~∆ω ×E → {0, 1} is an indicator that specifies the

allowed modification sequences in an environment.

Whenever ω is clear from the context we use ε0, R, γ, ∆,F ,
and Φ. Note that a reward becomes a cost when negative.

The reward function R and discount factor γ form, to-
gether with an environment ε ∈ E an infinite horizon dis-
counted reward Markov decision process (MDP) [Bertsekas,
1995] 〈S,A, f, s0,R, γ〉. The solution of an MDP is a con-
trol policy π : S → A describing the appropriate action to
perform at each state. We let Πε represent the set of all pos-
sible policies in ε. Optimal policies Π∗ε ⊆ Πε yield maximal
expected accumulated reward for every state s ∈ S [Bellman,
1957]. We assume agents are optimal and let V∗(ω) represent
the discounted expected agent reward of following an optimal
policy from the initial state s0 in a model ω.

Modifications ∆ ∈ ∆ can be defined arbitrarily, support-
ing all the changes applicable to a deterministic environment
[Herzig et al., 2014]. For example, we can allow adding a
transition between previously disconnected states. Particu-
lar to a stochastic environment is the option of modifying the
transition function by increasing and decreasing the proba-
bility of specific outcomes. Each modification may be as-
sociated with a system cost C : ∆ → R+ and a sequence
cost C(~∆) =

∑
∆i∈~∆ C(∆i). Given a sequence ~∆ such that

Φ(~∆, ε) = 1 (i.e., ~∆ can be applied to ε ∈ E ) we let ε~∆
represent the environment that is the result of applying ~∆ to ε
and ω~∆ is the same model with ε~∆ as its initial environment.

The solution to an ER-UMD problem is a modification se-
quence ~∆ ∈ ~∆∗ to apply to ε0ω that maximizes agent utility
V∗(ω~∆) under the constraints, formulated as follows.

Problem 1 Given a model ω = 〈ε0,R, γ,∆,F ,Φ〉, the ER-
UMD problem finds a modification sequence ~∆ ∈ ~∆

argmax
~∆∈~∆|Φ(~∆)=1

V∗(ω~∆)

We let ~∆∗ω represent the set of solutions to Problem 1 and
Vmax(ω) = max

~∆∈~∆|Φ(~∆)=1
V∗(ω~∆) represent the maximal

agent utility achievable via design in ω. In particular, we seek
solutions ~∆∗ ∈ ~∆∗ω that minimize design cost C(~∆∗).

Example 1 As an example of a controllable environment
where humans and robots co-exist consider Figure 1(left),
where a vacuum cleaning robot is placed in a living room.
The set E of possible environments specifies possible room
configurations. The robot’s utility, expressed via the reward
R and discount factor γ, may be defined in various ways;
it may try to clean an entire room as quickly as possible or
cover as much space as possible before its battery runs out.
(Re)moving a piece of furniture from or within the room (Fig-
ure 1(center)) may impact the robot’s utility. For example,
removing a chair from the room may create a shortcut to a
specific location but may also create access to a corner the
robot may get stuck in. Accounting for uncertainty, there may
be locations in which the robot tends to slip, ending up in a
different location than intended. Increasing friction, e.g., by
introducing a high friction tile (Figure 1(right)), may reduce



the probability of undesired outcomes. All types of modifica-
tions, expressed by ∆ and F , are applied offline (since such
robots typically perform their task unsupervised) and should
be applied economically in order to maintain usability of the
environment. These type of constraints are reflected by Φ that
can restrict the design process by a predefined budget or by
disallowing specific room configurations.

3 Finding ~∆∗

A baseline method for finding an optimal modification se-
quence involves applying an exhaustive best first search
(BFS) in the space of allowed sequences and selecting one
that maximizes system utility. This approach was used for
finding the optimal set of modifications in a goal recogni-
tion design setting [Keren et al., 2014; Wayllace et al., 2016].
The state space pruning applied there assumes that disallow-
ing actions is the only allowed modification, making it non-
applicable for ER-UMD, which supports arbitrary modifica-
tion methods. We therefore present two novel techniques for
finding an optimal design strategy for ER-UMD.

3.1 ER-UMD Compilation to Planning
As a first approach, we embed design into a planning prob-
lem description. The DesignComp compilation (Definition 2)
extends the agent’s underlying MDP by adding pre-process
operators that modify the environment off-line. After initial-
ization, the agent acts in the new optimized environment.

The compilation uses the PPDDL notation [Younes and
Littman, 2004] which uses a factored MDP representation.
Accordingly, an environment ε ∈ E is represented as a
tuple 〈Xε, s0,ε, Aε〉 with states specified as a combination
of state variables Xε and a transition function embedded
in the description of actions. Action a ∈ Aε is rep-
resented by 〈prec, 〈p1, add1, del1〉, . . . , 〈pm, addm, delm〉〉
where prec is the set of literals that need to be true as
a precondition for applying a. The probabilistic effects
〈p1, add1, del1〉, . . . , 〈pm, addm, delm〉 are represented by
pi, the probability of the i-th effect. When outcome i oc-
curs, addi and deli are literals, added and removed from the
state description, respectively [Mausam and Kolobov, 2012].

The policy of the compiled planning problem has two
stages: design - in which the system is modified and exe-
cution - describing the policy agents follow to maximize util-
ity. Accordingly, the compiled domain has two action types:
Ades, corresponding to modifications applied by the design
system andAexe, executed by the agent. To separate between
the stages we use a fluent execution, initially false to allow
the application of Ades, and a no-cost action astart that sets
execution to true rending Aexe applicable.

The compilation process supports two modifications types.
Modifications ∆X change the initial state by modifying the
value of state variables X∆ ⊆ X . Modifications ∆A change
the action set by enabling actions A∆ ⊆ A. Accord-
ingly, the definition includes a set of design action Ades =
Ades-s0 ∪ Ades-A, where Ades-s0 are actions that change the
initial value of variables andAdes-A includes actionsA∆ that
are originally disabled but can be enabled in the modified en-
vironment. In particular, we include in A∆ actions that share

the same structure as actions in the original environment ex-
cept for a modified probability distribution.

The following definition of DesignComp supports a design
budgetB implemented using a timer mechanism as in [Keren
et al., 2015]. The timer advances with up to B design actions
that can be applied before performing astart. This constraint
is represented by ΦB that returns 0 for any modifications se-
quences that exceeds the given budget.

Definition 2 For an ER-UMD problem

ω = 〈ε0ω,Rω, γω,∆ω,Fω,ΦBω 〉

where ∆ω = ∆X ∪∆A we create a planning problem

P ′ = 〈X ′, s′0, A′,R′, γ′〉, where:

• X ′ = {Xε0ω
} ∪ {execution} ∪ {timet | t ∈ 0, . . . , B} ∪

{enableda | a ∈ A∆}
• s′0 = {s0,ε0ω

} ∪ {time0}
• A′ = Aexe ∪Ades-s0 ∪Ades-A ∪ astart where

– Aexe = Aε0 ∪A∆ s.t.
{〈prec(a) ∪ execution, eff(a)〉 | a ∈ Aε0}
{〈prec(a) ∪ execution ∪ enableda, eff(a)〉 | a ∈
A∆}

– Ades-s0 = {〈〈¬execution, timei〉, 〈1, 〈x, timei+1〉,
〈timei〉〉〉 | x ∈ X∆}

– Ades-A = {〈〈¬execution, timei〉, 〈1, 〈enableda,
timei+1〉, timei〉〉 | a ∈ A∆}}

– astart = 〈∅, 〈1,¬execution, ∅}〉〉

• R′ =

{
R(a), if a ∈ Aexe
0, if a ∈ Ades, ainit

• γ′ = γ

Optimally solving the compiled problem P ′ yields an op-
timal policy π∗P ′ with two components, separated by the ex-
ecution of astart. The initialization component consists of a
possibly empty sequence of deterministic design actions de-
noted by ~∆P ′ , while the execution component represents the
optimal policy in the modified environment.

The next two propositions establish the correctness of the
compilation. Proofs are omitted due to space constraints. We
first argue that V ∗(P ′), the expected reward from the initial
state in the compiled planning problem, is equal to the ex-
pected reward in the optimal modified environment.

Lemma 1 Given an ER-UMD problem ω and an optimal
modification sequence ~∆ ∈ ~∆∗ω

V ∗(P ′) = V ∗(ω~∆).

An immediate corollary is that the compilation outcome is
indeed an optimal sequence of modifications.

Corollary 1 Given an ER-UMD problem ω and the compiled
model P ′, ~∆P ′ ∈ ~∆∗ω

The reward function R′ assigns zero cost to all design ac-
tions Ades. To ensure the compilation not only respects the
budget B, but also minimizes design cost, we can assign a
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Figure 2: Search space of an ER-UMD problem

small cost (negative reward) cd to design actions Ades. If cd
is too high, it might lead the solver to omit design actions that
improve utility by less than cd. However, the loss of utility
will be at most cdB. Thus, by bounding the minimum im-
provement in utility from a modification, we can still ensure
optimality.

3.2 Design as Informed Search
The key benefit of compiling ER-UMD to planning is the
ability to use any off-the-shelf solver to find a design strat-
egy. However, this approach does not fully exploit the special
characteristics of the off-line design setting we address. We
therefore observe that embedding design into the definition
of a planning problem results in an MDP with a special struc-
ture, depicted in Figure 2. The search of an optimal redesign
policy is illustrated as a tree comprising of two component.
The design component, at the top of the figure, describes the
deterministic offline design process with nodes representing
the different possibilities of modifying the environment. The
execution component, at the bottom of the figure, represents
the stochastic modified environments in which agents act.

Each design node represents a different ER-UMD model,
characterized by the sequence ~∆ of modifications that has
been applied to the environment and a constraints set Φ, spec-
ifying the allowed modifications in the subtree rooted at a
node. With the original ER-UMD problem ω at the root, each
successor design node represents a sub-problem ω~∆ of the
ancestor ER-UMD problem, accounting for all modification
sequences that have ~∆ as their prefix. The set of constraints
of the successors is updated with relation to the parent node.
For example, when a design budget is specified, it is reduced
when moving down the tree from a node to its successor.

When a design node is associated with a valid modification,
it is connected to a leaf node representing a ER-UMD model
with the environment ε~∆ that results from applying the mod-
ification. To illustrate, invalid modification sequences are
crossed out in Figure 2.

Using this search tree we propose an informed search in
the space of allowed modifications, using heuristic estima-

Algorithm 1 Best First Design (BFD)
BFD(ω, h)
1: create OPEN list for unexpanded nodes
2: ncur = 〈design, ~∆∅〉 (initial model)
3: while ncur do
4: if IsExecution(ncur) then
5: return ncur.~∆ (best modification found - exit)
6: end if
7: for each nsuc ∈ GetSuccessors(ncur, ω) do
8: put 〈〈design, nsuc.~∆〉, h(nsuc)〉 in OPEN
9: end for

10: if Φσ(ncur.~∆) = 1 then
11: put 〈〈execution, ~∆new〉, V∗(ω~∆new

)〉 in OPEN
12: end if
13: ncur = ExtractMax(OPEN)
14: end while
15: return error

tions to guide the search more effectively by focusing atten-
tion on more promising redesign options. The Best First De-
sign (BFD) algorithm (detailed in Algorithm 1) accepts as
input an ER-UMD model ω, and a heuristic function h. The
algorithm starts by creating an OPEN priority queue (line 1)
holding the front of unexpanded nodes. In line 2, ncur is
assigned the original model, which is represented by a flag
design and the empty modification sequence ~∆∅.

The iterative exploration of the currently most promising
node in the OPEN queue is given in lines 3-14. If the current
node represents an execution model (indicated by the execu-
tion flag) the search ends successfully in line 5, returning the
modification sequence associated with the node. Otherwise,
the successor design nodes of the current node are generated
by GetSuccessors in line 7. Each successor sub-problem
nsuc is placed in the OPEN list with its associated heuristic
value h(nsuc) (line 8), to be discussed in detail next. In ad-
dition, if the modification sequence ncur.~∆ associated with
the current node is valid according to Φ, an execution node is
generated and assigned a value that corresponds to the actual
value V∗(ω~∆new

) in the resulting environment (lines 10-12).
The next node to explore is extracted from OPEN in line 13.

Both termination and completeness of the algorithm de-
pend on the implementation of GetSuccessors, which con-
trols the graph search strategy by generating the sub-problem
design nodes related to the current node. For example, when
a modification budget is specified, GetSuccessors generates
a sub-problem for every modification that is appended to the
sequence ~∆ of the parent node, discarding sequences that vi-
olate the budget and updating it for the valid successors.

For optimality, we require the heuristic function h to be
admissible. An admissible estimation of a design node n is
one that never underestimates Vmax

ω , the maximal system’s
utility in the ER-UMD problem ω represented by ncur.1

Running BFD with an admissible heuristic is guaranteed to
yield an optimal modification sequence.

1When utility is cost, it needs not overestimate the real cost.



Theorem 1 Given an ER-UMD model ω and an admissible
heuristic h, BFD(ω, h) returns ~∆∗ω ∈ ~∆∗ω .

The proof of Theorem 1 bares similarity to the proof of
optimality of A∗ [Nilsson, 1980] and is omitted here for the
sake of brevity.

The simplified-environment heuristic
To produce efficient over-estimations of the maximal system
utility Vmax(ω), we suggest a heuristic that requires a sin-
gle pre-processing simplification of the original environment
used to produce estimates for the design nodes of the search.

Definition 3 Given an ER-UMD model ω, a function f :
E → E is an environment simplification in ω if ∀ε, ε′ ∈ Eω
s.t. ε′ = f(ε), V∗(ω) ≤ V∗(ωf ), where ωf is the ER-
UMD model with f(ε) as its initial environment.

The simplified-environment heuristic, denoted by hsim es-
timates the value of applying a modification sequence ~∆ to ω
by the value of applying it to ωf .

hsim(ω~∆)
def
= Vmax(ωf~∆) (1)

The search applies modifications on the simplified model
and uses its optimal solution as an estimate of the value of
applying the modifications in the original setting. In partic-
ular, the simplified model can be solved using the Design-
Comp compilation presented in the previous section.

The literature is rich with simplification approaches, in-
cluding adding macro actions that do more with the same
cost, removing some action preconditions, eliminating neg-
ative effects of actions (delete relaxation) or eliminating un-
desired outcomes [Holte et al., 1996]. Particular to stochas-
tic settings is the commonly used all outcome determiniza-
tion [Yoon et al., 2007], which creates a deterministic action
for each probabilistic outcome of every action.

Lemma 2 Given an ER-UMD model ω, applying the
simplified-environment heuristic with f implemented as an
all outcome determinization function is admissible.

The proof of Lemma 2, omitted for brevity, uses the obser-
vation that f only adds solutions with higher reward (lower
cost) to a given problem (either before or after redesign). A
similar reasoning can be applied to the commonly used delete
relaxation or any other approaches discussed above.

Note that admissibility of a heuristic function depends on
specific characteristics of the ER-UMD setting. In particu-
lar, the simplified-environment heuristic is not guaranteed to
produce admissible estimates for policy teaching [Zhang and
Parkes, 2008] or goal recognition design [Keren et al., 2014;
Wayllace et al., 2016], where design is performed to incen-
tivize agents to follow specific policies. This is because the
relaxation itself may change the set of optimal agent policies
and therefore underestimate the value of a modification.

change init reduce probability
BOX relocate a truck driving to wrong destination

BLOCK — dropping a block or tower
EX-BLOCK — as for Blocks World

TIRE add spare tires having a flat tire
ELEVATOR add elevator shaft falling to initial state
VACUUM (re)move furniture add high friction tile

Table 1: Allowed modifications for each domain

B=1 B=2 B=3
solved reduc solved reduc solved reduc

BOX 8 28 8 42 7 44
BLOCK 6 21 3 24 3 24

EX-BLOCK 10 42 9 42 9 42
TIRE 9 44 8 51 6 54

ELEVATOR 9 22 7 24 1 18
VACUUM 8 15 6 17 0 —

Table 2: Utility improvement for optimal solvers

4 Empirical Evaluation
We evaluated the ability to maximize agent utility given a de-
sign budget in various ER-UMD problems, as well as the per-
formance of both optimal and approximate techniques.

We used five PPDDL domains from the probabilistic tracks
of the sixth and eighth International Planning Competition2

(IPPC06 and IPPC08) representing stochastic shortest path
MDPs with uniform action cost: Box World (IPPC08/ BOX),
Blocks World (IPPC08/ BLOCK), Exploding Blocks World
(IPPC08/ EX-BLOCK), Triangle Tire (IPPC08/ TIRE) and
Elevators (IPPC06/ ELEVATOR). In addition, we imple-
mented the vacuum cleaning robot setting from Example 1
(VACUUM) as an adaptation of the Taxi domain [Dietterich,
2000]. The robot moves in a grid and collects pieces of dirt. It
cannot move through furniture, represented by occupied cells,
and may fail to move, remaining in its current position.

In all domains, agent utility is expressed as expected cost
and constraints as a design budget. For each domain, we ex-
amined at least two possible modifications, including at least
one that modifies the probability distribution. Modifications
by domain are specified in Table 1 with change init mark-
ing modifications of the initial state and probability change
marking modifications of the probability function.

4.1 Optimal Solutions
Setup For each domain, we created 10 smaller instances op-
timally solvable within a time bound of five minutes. Each
instance was optimally solved using:
• EX- Exhaustive exploration of possible modifications.
• DC- Solution of the DesignComp compilation.
• BFD- Algorithm 1 with simplified-environment heuristic

using the delete relaxation to simplify the model and the
DesignComp compilation to optimally solve it.

We used a portfolio of 3 admissible heuristics:

2http://icaps-conference.org/index.php/main/competitions



Ex-h0 Ex-h0+ Ex-hMinMin DC-h0 DC-h0+ DC-hMinMin BFD-h0 BFD-h0+ BFD-hMinMin

BOX
B=1 158.4(8) 159.0(8) 158.9(8) 163.9(8) 70.7(8) 221.4 (8) 157.4(8) 68.2(8) 216.4(8)
B=2 264.7(7) 264.9(7) 267.8(7) 270.6(7) 92.1(8) 332.7(7) 260.8(7) 88.0(8) 325.3(7)
B=3 238.5(4) 236.5(4) 235.6 (4) 241.5(4) 73.5(4) 271.7(4) 234.3(4) 70.2 (7) 265.94(4)

BLOCKS
B=1 50.5(6) 50.5(6) 50.8(6) 50.7(6) 41.7(6) 77.1(6) 50.3(6) 41.6(6) 74.4(6)
B=2 28.0(4) 28.2(4) 28.0(4) 28.2(4) 17.4(4) 36.4(3) 28.0(4) 17.2(4) 35.4(3)
B=3 348.9(2) 347.3(2) 348.2(2) 354.5(2) 194.6(3) 363.5(2) 352.2(2) 118.2(3) 354.8(2)

EX. BLOCKS
B=1 69.4(9) 70.2(9) 69.9 (9) 68.4(9) 38.7(9) 6.7(10) 69.5(9) 40.3(9) 60.3(9)
B=2 161.7(9) 170.9(9) 168.1(9) 153.1(9) 88.2(9) 30.2(10) 153.9(9) 85.6(9) 135.0(9)
B=3 250.7 (9) 265.9(9) 292.2(9) 252.5(9) 134.9(9) 88.8(8) 285.9(9) 160.9(9) 237.4(9)

TIRE
B=1 32.9(9) 32.9(9) 33.1(9) 33.3(9) 30.2(9) 36.8(9) 33.0(9) 29.5 (9) 36.9(9)
B=2 55.2(7) 55.4(7) 55.0(7) 55.5(7) 51.1(8) 88.8(8) 55.0(7) 50.9(8) 89.1(8)
B=3 270.3(6) 136.5)6 258.4(6) 269.7(6) 136.5(6) 258.4(6) 267.6(6) 188.3(6) 256.2(6)

ELEVATOR
B=1 300.4(8) 299.6(8) 301.6(8) 301.9(8) 236.2(9) 192.6(9) 302.6(8) 238.3(9) 176.6(9)
B=2 361.8(5) 360.9(5) 366.2(5) 363.4(5) 261.0(5) 243.89(5) 360.8(5) 258.6(5) 231.2(5)
B=3 na na na na 1504.6(1) 1117.4(1) na 1465.8(1) 1042.5(1)

VACUUM
B=1 0.15(9) 0.16(9) 0.15(9) 0.17(9) 0.099(9) 0.15(9) 0.15(9) 0.096(9) 0.13(9)
B=2 3.6(9) 3.27(9) 3.44(9) 3.25(9) 2.13(9) 2.49(9) 3.39(9) 2.021(9) 2.61(9)
B=3 na na na na na na na na na

Table 3: Running time and number of instances solved for optimal solvers

• h0 assigns 0 to all states and serves as a baseline for the
assessing the value of more informative heuristics.
• h0+ assigns 1 to all non-goal states and 0 otherwise.
• hMinMin solves all outcome determinization using the

zero heuristic [Bonet and Geffner, 2005].
Each problem was tested on a Intel(R) Xeon(R) CPU

X5690 machine with a budget of 1, 2 and 3. Design actions
were assigned a cost of 10−4, and problems were solved us-
ing LAO* [Hansen and Zilberstein, 1998] with convergence
error bound of 10−6. Each run had a 30 minutes time limit.
Results Separated by domain and budget, Table 2 summa-
rizes the number of solved instances (solved) and average per-
centage of expected cost reduction over instances solved (re-
duc). In all domains, complexity brought by increased budget
reduces the number of solved instances, while the actual re-
duction varies among domains. As for solution improvement,
all domains show an improvement of 15% to 54%.

Table 3 compares solution performance. Each row repre-
sents a solver and heuristic pair. Results are separated by
domain and budget, depicting the average running time for
problems solved by all approaches for a given budget and the
number of instances solved in parenthesis (na indicates no
instances were solved within the time limit). The dominating
approach for each row (representing a domain and budget) is
emphasized in bold. In all cases, the use of informed search
outperformed the exhaustive approach.

4.2 Approximate Solutions
Setup For approximate solutions we used an MDP reduced
model approach that creates simplified MDPs accounting for
the full probabilistic model a bounded number of times (for
each execution history), and treat the problem as determin-
istic afterwards [Pineda and Zilberstein, 2014]. The deter-
ministic problems were solved using the FF classical plan-
ner [Hoffmann and Nebel, 2001], as explained in [Pineda and

Zilberstein, 2017]. We used Monte-Carlo simulations to eval-
uate the policies’ probability of reaching a goal state and its
expected cost. In particular, we gave the planner 20 minutes
to solve each problem 50 times. We used the first 10 instances
of each competition domain mentioned above, excluding Box
World, due to limitations of the planner. For the VACUUM
domain we generated ten configurations of up to 5 × 7 grid
size rooms, based on Figure 1.
Results Table 4 reports three measures (per budget): the num-
ber of problems completed within allocated time (solved), im-
proved probability of reaching a goal of the resulting policies
with respect to the policies obtained without design (δPs), and
the average percentage of reduction in expected cost after re-
design (reduc) (δPs and reduc are averaged only over prob-
lems solved 50 times when using both the original and mod-
ified model). In general, we observed that redesign enables
either improvement in expected cost or in probability of suc-
cesses (and sometimes both), across all budgets. For BLOCK
and EX-BLOCK, a budget of 2 yielded best results, while for
ELEVATOR, TIRE, and VACUUM a budget of 3 was better.
However, the increased difficulty of the compiled problem re-
sulted sometimes in a lower number of solved problems (e.g.,
solving only 3 problems on TIRE with budget of 3). Never-
theless, these results demonstrate the feasibility of obtaining
good solutions when compromising optimality.

B = 1 B = 2 B = 3

solved δPs reduc solved δPs reduc solved δPs reduc
BLOCK 8 0 19.1 8 0 21.2 8 0 18.6

EX-BLOCK 10 0.42 0 10 0.50 0 10 0.41 0
TIRE 7 0 6.98 7 0 17.9 3 0 33

ELEVATOR 10 -0.33 25 10 0.1 30 10 0.1 38.3
VACUUM 10 0.2 8.12 10 0.2 4.72 10 0.3 9.72

Table 4: Utility improvement for sub-optimal solver



4.3 Discussion
For all examined domains, results indicate the benefit of using
heuristic search over an exhaustive search in the modification
space. However, the dominating heuristic approach varied
between domains, and for TIRE also between budget allo-
cation. Investigating the reasons for this variance, we note
a key difference between BFD and DC. While DC applies
modifications to the original model, BFD uses the simplified-
environment heuristic that applies them to a simplified model.
Poor performance of BFD can be due to either the minor
effect the applied simplifications have on the computational
complexity or to an exaggerated effect that may limit the in-
formative value of heuristic estimations. In particular, this
could happen due to the overlap between the design process
and the simplification.

To illustrate, by applying the all outcome determinization
to the Vacuum domain depicted in Example 1, we ignore the
undesired outcome of slipping. Consequently, the heuris-
tic completely overlooks the value of adding high-friction
tiles, while providing informative estimations to the value of
(re)moving furniture. This observation may explain the poor
performance of BFD with EX-BLOCKS, where simplifica-
tion via the delete relaxation ignores the possibility of blocks
exploding and overlooks the value of the proposed modifica-
tions. Therefore, estimations of BFD may be improved by
developing a heuristic that uses the aggregation of several es-
timations. Also, when the order of application is immaterial,
a closed list may be used for examined sets in the BFD ap-
proach but not with DC. Finally, a combination of relaxation
approaches may enhance performance of sub-optimal solvers.

5 Related Work
Environment design [Zhang et al., 2009] provides a frame-
work for an interested party (system) to seek an optimal way
to modify an environment to maximize some utility. Among
the many ways to instantiate the general model, policy teach-
ing [Zhang and Parkes, 2008; Zhang et al., 2009] enables a
system to modify the reward function of a stochastic agent
to entice it to follow specific policies. We focus on a differ-
ent special case where the system is altruistic and redesigns
the environment in order to maximize agent utility. The tech-
niques used for solving the policy teaching do not apply to
our setting, which supports arbitrary modifications.

The DesignComp compilation is inspired by the technique
of Göbelbecker et al. (2010) of coming up with good ex-
cuses for why there is no solution to a planning problem.
Our compilation extends the original approach in four direc-
tions. First, we move from a deterministic environment to
a stochastic one. Second, we maximize agent utility rather
than only moving from unsolvable to solvable. Third, we em-
bed support of a design budget. Finally, we support arbitrary
modification alternatives including modifications specific to
stochastic settings as well as all those suggested for deter-
ministic settings [Herzig et al., 2014; Menezes et al., 2012].

6 Conclusions
We presented the ER-UMD framework for maximizing agent
utility by the off-line design of stochastic environments.

We presented two solution approaches; a compilation-based
method that embeds design into the definition of a planning
problem and an informed heuristic search in the modification
space, for which we provided an admissible heuristic. Our
empirical evaluation supports the feasibility of the approaches
and shows substantial utility gain on all evaluated domains.

In future work, we will explore creating tailored heuris-
tics to improve planner performance. Also, we will extend
the model to deal with partial observability using POMDPs,
as well as automatically finding possible modifications, sim-
ilarly to [Göbelbecker et al., 2010]. In addition, we plan to
extend the offline design paradigm, by accounting for online
design that can be dynamically applied to a model.
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