
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Efficient Heuristic Search for Optimal Environment Redesign

Sarah Keren,† Luis Pineda,‡ Avigdor Gal,‡ Erez Karpas,‡ Shlomo Zilberstein‡

†Harvard University, School of Engineering and Applied Sciences
‡Technion–Israel Institute of Technology

‡College of Information and Computer Sciences, University of Massachusetts Amherst
skeren@seas.harvard.edu, lpineda@cs.umass.edu∗

Abstract

Given an environment, the utility measure of the agents act-
ing within it, a set of possible environment modifications,
and a description of design constraints, the objective of equi-
reward utility maximizing design (ER-UMD) is to find a valid
sequence of modifications to apply to the environment in or-
der to maximize agent utility. To efficiently traverse the typ-
ically large space of possible design options, we use heuris-
tic search and propose new heuristics, which relax the design
process; instead of computing the value achieved by a single
modification, we use a dominating modification guaranteed
to be at least as beneficial. The proposed technique enables
heuristic caching for similar nodes thereby saving computa-
tional overhead. We specify sufficient conditions under which
our approach is guaranteed to produce admissible estimates,
and describe a range of models that comply with these re-
quirements. Also, for models with lifted representations of
environment modifications, we provide simple methods to au-
tomatically generate dominating modifications. We evaluate
our approach on a range of stochastic settings for which our
heuristic is admissible. We demonstrate its efficiency by com-
paring it to a previously suggested heuristic, that employs a
relaxation of the environment, and to a compilation from ER-
UMD to planning.

Introduction
Equi-reward utility maximizing design (ER-UMD) (Keren et
al. 2017) involves redesigning environments in order to max-
imize agent performance. The input of an ER-UMD prob-
lem consists of a description of a stochastic environment,
a utility measure of the agents acting within it, a set of
design constraints, and the available environment modifi-
cations (hereon, modifications), that represent the possible
ways to modify and redesign the environment. The objec-
tive is to find a sequence (or set when modifications are
unordered) of modifications to apply to the environment to
maximize agent utility. The design process is viewed as a
search in the often exponential space of possible modifica-
tion sequences, motivating the use of heuristic estimations
to guide the search.

ER-UMD is relevant to a variety of complex systems that
can be modified for improved utility. Given a wide range of

∗Last three authors email addresses: avigal@ie.technion.ac.il,
karpase@technion.ac.il, shlomo@cs.umass.edu

environment modifications, policy makers need to choose a
sequence of applied modifications that yields maximal ben-
efit, while respecting various design constraints, such as a
design budget. When it is impractical to exhaustively ex-
plore the large space of design options, heuristic search can
be applied to increase efficiency, using heuristics to estimate
the value of a given modification. Specifically, when opti-
mal solutions are sought, admissible estimations are those
guaranteed to over-estimate the value of a modification.

Typically, it may be hard or impossible to accurately pre-
dict the effect and potential benefit of each modification.
Moreover, in many cases, a large portion of the possible
modifications has little or no effect on utility. Computing
the heuristic value for each such modification is wasteful. In
this work we therefore present the simplified-design heuris-
tic, which relaxes the modification process by mapping each
modification that is expanded during the search to a modi-
fication that dominates it, i.e., a modification guaranteed to
yield a value at least as high, and use its value as an estima-
tion of the value of the original modification.

To generate dominating modifications, we propose two
approaches, namely modification relaxation and padding.
Modification relaxation consists of applying a hypothetical
modification whose effect is potentially easier to compute
than the original modification. Padding appends to the exam-
ined modification additional modifications. The computed
values of padded modifications are cached. When a modifi-
cation is mapped to a previously encountered padded mod-
ification, the cached value is reused. Both approaches can
be combined with the potential benefit lying in the ability to
avoid redundant computations of irrelevant sets of modifica-
tions, those that do not affect the agent’s expected utility.

For models with lifted modification representations, we
provide a simple way to automatically generate dominat-
ing modifications. We then specify sufficient conditions un-
der which this approach is guaranteed to produce admissi-
ble heuristics, i.e., heuristics that over-estimate the value of
the original modification. In addition, we formulate and im-
plement a family of models that comply with these require-
ments. We compare the efficiency of our proposed approach
with that of a previously suggested heuristic that employs
an environment relaxation and with a compilation from ER-
UMD to planning.

Our modification padding technique, which generates

246



Figure 1: An example ER-UMD problem

dominating modifications, is inspired by pattern database
(PDB) heuristic approaches, originally developed for plan-
ning problems (Culberson and Schaeffer 1998; Haslum et
al. 2007; Edelkamp 2006). PDBs are abstraction heuristics
that ignore some aspects of a search problem (the pattern)
in order to create a problem that can be optimally solved
efficiently. The key difference between padding and pat-
tern database heuristics is that the former does not neces-
sarily yield an easier-to-solve model. Instead, it potentially
avoids redundant computations of irrelevant modification
sets, those that do not affect the agent’s expected utility.

Example 1 To illustrate our simplified-design heuristic,
consider Figure 1(left) where an adaptation of the Vacuum
cleaning robot domain suggested by Keren et al. (2017) is
portrayed. The setting includes a robot (depicted by a black
circle) that needs to collect, as quickly as possible, pieces
of dirt (depicted by stars) scattered in the room. The robot
needs to navigate around the furniture in the room, depicted
by shaded cells. Accounting for uncertainty, the robot may
slip when moving, ending up in a different location than in-
tended. To facilitate the robot’s task, the environment can be
modified by removing furniture, or by placing high friction
tiles to reduce the probability of slipping. The design pro-
cess is constrained by a design budget, limiting the number
of allowed modifications.

The simplified-design heuristic is implemented by parti-
tioning the environment into zones (Figure 1(center)). To
heuristically evaluate the impact of removing the piece of
furniture indicated by the arrow in Figure 1(right), we re-
move all furniture from its entire zone and use this value as
an (over) estimation of the single modification. When con-
sidering the removal of another piece of furniture in the
same zone, the already computed value is reused.

While the example above provides a simple illustration
of the ideas we present in this work, we view them as rel-
evant to various real-world applications. Consider, for ex-
ample, a large road network, used by both autonomous and
manned vehicles, where a limited number of costly sensors
can be distributed in specific locations to enhance the ability
to perceive the current road conditions, such as the position
of human pedestrians, road blockage, etc. In such settings,
sensors are often noisy and inaccurate, making it hard to
predict the exact value (i.e., benefit) of each sensor place-
ment. In addition, modifying the sensor distribution in areas
with light traffic may have little effect on the overall utility.
In such settings, the value of a sensor can be over-estimated
using the value of a set of noiseless sensors. This value can
be reused for the estimation of sensors in adjacent locations.

This is useful in particular when the application of the su-
perset sensor is useless, and the computation effort invested
in more accurate overestimations would be redundant.

The main contributions of this work are threefold. First,
we propose a new class of heuristics for ER-UMD, called
simplified-design. Specifically, we suggest caching heuris-
tic values as a way to avoid many repeated computations
and increase efficiency. Second, we identify conditions un-
der which this class of heuristics is admissible. Finally, we
describe a concrete procedure to automatically generate such
heuristics. Our empirical evaluation shows the benefit of our
proposed approach on a variety of domains.

In the remaining of the paper we first overview the ER-
UMD framework, and then describe our novel techniques
for solving the ER-UMD problem. Our empirical evaluation
is followed by a description of related work and concluding
remarks.

Background: Equi-Reward Utility Maximizing
Design as Heuristic Search

The equi-reward utility maximizing design (ER-UMD) prob-
lem, recently suggested in (Keren et al. 2017), takes as in-
put an environment with stochastic action outcomes, a utility
measure of the agents that act in it, a set of allowed modifi-
cations, and a set of design constraints. The aim is to find an
optimal sequence of modifications to apply to the environ-
ment for maximizing agent utility (alternatively, minimizing
expected cost) under the specified constraints.

The ER-UMD framework considers stochastic environ-
ments defined by the quadruple ε = 〈S,A, f, s0〉 with a set
of states S, a set of actionsA, a stochastic transition function
f : S×A×S → [0, 1] specifying the probability f(s, a, s′)
of reaching state s′ after applying action a in s ∈ S, and an
initial state s0 ∈ S. We let E , SE and AE denote the set of
all environments, states and actions, respectively.

An ER-UMD model is a tuple ω = 〈ε0,R, γ,F ,∆,Φ〉
where, ε0 ∈ E is an initial environment,R : SE×AE×SE →
R is a Markovian and stationary reward function specifying
the reward r(s, a, s′) an agent gains from transitioning from
state s to s′ by the execution of a, and γ is a discount fac-
tor in (0, 1], representing the deprecation of agent rewards
over time. Letting ∆u represent the set of all modifications,
F : E ×∆u → E is a deterministic modification transition
function, specifying the result of applying a single modifica-
tion to an environment in ω. In the following, we assume any
modification is applicable to any environment, and invalid
modifications leave the model unchanged. The set ∆ ⊆∆u

contains the atomic modifications that are available in ω.
A modification sequence is an ordered set of modifications
~δ = 〈δ1, . . . , δn〉 s.t. δi ∈ ∆u and ~∆ is the set of all such
sequences. Equivalently, the set ~∆ω is the set of sequences
available in ω, which includes the empty sequence ~δ∅. Fi-
nally, Φ : E × ~∆→ {0, 1} represents the design constraints
and specifies allowed modification sequences in an environ-
ment.

An environment ε ∈ E , discount factor γ, and re-
ward function R represent an infinite horizon discounted
reward Markov decision process (MDP) (Bertsekas 1995)

247



〈S,A, f, s0,R, γ〉. We assume agents are optimal, i.e., they
follow a policy that maximizes their utility, expressed as
their expected accumulated reward.

Given an ER-UMD problem ω, our objective is to find a
legal modification sequence that, when applied to the initial
environment ε0, maximizes agent utility. Keren et al. (2017)
propose to view the design process as a search in the space
of modification sequences. Our search is therefore a search
in the space ~∆ω of possible modifications sequences in ω.
A search node is a modification sequence ~δ ∈ ~∆ω applied
to ε0. Accordingly, the value of each node ~δ is denoted by
V∗ω(~δ), which represents the maximal agent utility achiev-
able via redesign from node ~δ.

Note that we use ~δ to characterize a node rather then
the modified environment it imposes, since we want to sup-
port preferences over modification sequences that achieve
the same utility (by leading to the same environment). To
represent the utility achievable via design, a node needs to
represent the value of the possible modifications that can be
applied to its underlying environment, reflected by its corre-
sponding modification sequence.

In (Keren et al. 2017) two methods are suggested for
searching the space of modification sequences. The first, re-
ferred to as DesignComp, embeds the offline design stage
into the definition of the agent’s planning problem (i.e.,
MDP description), which can be solved by any off-the-shelf
MDP solver. The second approach, namely the Best First
Design (BFD) algorithm, applies a best first search (Pearl
1984) in the space of modification sequences (see Figure 2
for illustration). The root node represents the initial environ-
ment (and empty modification sequence ~δ∅), and each suc-
cessor node is generated by applying an available modifica-
tion. The internal design nodes represent the design process
and are estimated using a heuristic function. The heuristic
is admissible if it never underestimates the maximal util-
ity achievable via redesign from a node. The leaf nodes of
the search tree, dubbed execution nodes, represent the re-
designed stochastic environments in which agents act. One
execution node is generated for each modification sequence
encountered during the search, and is evaluated by the ex-
pected agent utility in the modified environment. BFD it-
eratively explores the currently most promising node, halt-
ing when an execution node is deemed best. When using
an admissible heuristic, BFD is guaranteed to return an
optimal solution. To produce admissible estimation of the
value of a modification sequence efficiently, the simplified-
environment heuristic was proposed, relaxing the environ-
ment using relaxation approaches from the literature (e.g.,
delete relaxation that ignores the negative outcomes of an
action (Bonet, Loerincs, and Geffner 1997)), before evaluat-
ing a modification on the relaxed environment.

The simplified-design Heuristic
To estimate the value of a modification, we relax the design
process by mapping the modification to a modification that
dominates it, meaning it achieves a utility at least as high
as the original modification’s utility. This approach can be

exploited in two ways. First, if the value of the dominating
modification is easier to compute, it can be used to estimate
the value of the original modification. In addition, we can
cache the computed values and reuse them for each encoun-
tered node (and corresponding modification) that is domi-
nated by the same relaxed modification.

We start with a definition of the simplified-design heuris-
tic. Then, we characterize ER-UMD settings where modifi-
cation relaxation is easy to implement, and in which our ap-
proach is guaranteed to yield admissible heuristic, i.e., over-
estimations of the expected value of the applied modifica-
tions.

Recall that ~∆ω represents all possible modification se-
quences in ω. In addition, we let ~δ · δ represent the modifica-
tion sequence that results from appending δ to ~δ and define
a dominating modification as follows.

Definition 1 (dominating modification) Given an ER-
UMD model ω = 〈ε0,R, γ,∆,F ,Φ〉, a modification δ′

dominates modification δ in ω if for every ~δ ∈ ~∆ω

V∗ω(~δ · δ) ≤ V∗ω(~δ · δ′)

For each node ~δ, the simplified-design heuristic, denoted
by hsimdes, estimates the value of ~δ · δ by the value of ap-
pending to ~δ a modification δ′ that dominates δ.

hsimdes(~δ · δ) def= V∗ω(~δ · δ′) (1)

Lemma 1 hsimdes is admissible in any ER-UMD model ω.

Proof: Immediate from the definition of dominance.

Admissibility of dominating modifications
The simplified-design heuristic creates dominating modifi-
cations using two main methods, namely relaxation and
padding, to be discussed next.

Modification relaxation uses the dominance relation be-
tween modifications (Definition 1) to generate modifications
guaranteed to be at least as beneficial as the original ones.
Applying a relaxed modification is guaranteed to produce
admissible estimates since, by definition, the relaxed modi-
fication is guaranteed to return a value that is no lower than
the original modification. It is worth noting that the relaxed
modification is not necessarily applicable in reality, yet may
result in a model for which utility is calculated more effi-
ciently.

In Example 1, we can estimate the value of applying a
high friction tile that reduces the probability of slipping from
50% to 10% by using the value of applying a relaxed hypo-
thetical modification that reduces the probability of slipping
to 0. Ignoring the probabilistic nature of the modified envi-
ronment potentially reduces the computational overhead of
the actual setting.

Modification padding is a dominating modification that
involves integrating the explored modification into a se-
quence of modifications.

248



δ1

Execution nodes - each modified environment corresponds to a modification sequence

Design nodes - 
modification space δ∅

m1
m1

δ1, δ2

δ2 δ3

modified
environ
ment

modified
environ
ment

modified
environ
mentmodified

environ
ment

modified
environ
ment

modified
environ
ment

modified
environ
ment

modified
environ
ment

modified
environ
ment

ClearCell(*,*,1) 
5.3

ClearCell(*,*,2) 
6.4

ClearCell(*,*,3) 
6.4

 HighFriction(*,*,1)
6.2

...

ClearCell(*,*,1)ClearCell(*,*,1)
5.3

Heuristic Values Table

δ1, δ3 δ2, δ3 δ2, δ4 δ3, δ4 δ3, δ5

Initial Environment 

... ... ...

-->

Figure 2: An illustration of the design process using cached values

Definition 2 (padded modification) δ̂ = 〈δ1, . . . , δn〉, is a
padded modification of modification δ, if δj ∈ ∆u for all
1 ≤ j ≤ n and ∃i 1 ≤ i ≤ n s.t. δ = δi.

Note that the modification sequences that comprise the
padded modifications are distinct from the modification se-
quences of our state space ~∆ω . Padded modifications are
only used to extract heuristic estimations. Also note that,
as opposed to modification relaxation, the benefit of apply-
ing modification padding does not lie in the ability to create
models that are necessarily easier to solve. Instead, this ap-
proach potentially reduces the computational effort of the
search by avoiding redundant evaluations of modifications
that affect aspects of the model that have little or no im-
pact on the agent expected utility. Particularly, we can cache
values of previously computed nodes (and their padded se-
quences) and reuse theses values for ‘similar’ nodes that rep-
resent modifications that are mapped to the same padded se-
quence.

In Example 1, modification padding can be implemented
by estimating the value of removing a single piece of fur-
niture, using the value of removing all pieces of furniture
from an entire zone (depicted in Figure 1(right)). Similarly,
the value of adding a single high-friction tile can be esti-
mated by the value of adding a set of tiles to the entire zone
to which the cell belongs.

The design process of our example is depicted in Figure 2,
with the left part of the image representing the search in the
space of modification sequences. On the top left, we have
the design nodes of the BFD search tree, where each node
represents a legal modification sequence. Each node corre-
sponds to a modified environment (execution node) at the
bottom of the image. To estimate the value of a modification,
padding is applied, and the computed value is stored in a ta-
ble (on the right). When expanding a modification sequence
that is mapped to the same padded sequence, the precom-

puted value is reused.
Naturally, both relaxation and padding techniques can be

combined by first applying a modification relaxation and
then padding it with a sequence of additional modifications.
We call this a relaxed padded modification, for which the
definition is an immediate extension of definitions 1 and 2.
Note that modification relaxation is a special case of re-
laxed modification padding when the sequence appended to
the modification is empty. Similarly, modification padding
is also a special case where a modification δ is mapped to
itself and then padded.

While using modification relaxation always yields ad-
missible estimates, padding sequences may under-estimate
the value of a modification. This can happen, for example,
when modifications can cancel the effect of other modifi-
cations (e.g., modifications that add objects to a room can-
cel the effect of those that remove them). We show that
when an ER-UMD model is both independent (modifica-
tion sequences applied in any order yield the same result)
and monotonic (no modifications can reduce agent utility),
sequence padding never under-estimates a modification and
can therefore be used to extract admissible estimates. We
give an exact characterization of both notions below.

Definition 3 (monotonic model) An ER-UMD model ω is
monotonic if for every modification δ ∈∆ and modification
sequence ~δ ∈ ~∆ω

V∗ω(~δ) ≤ V∗ω(~δ · δ)

Definition 4 (independent model) An ER-UMD model ω
is independent if for any modification sequence ~δ ∈ ~∆ω ,
and modification sequence ~δ′ that is a permutation of ~δ,

V∗ω(~δ) = V∗ω(~δ′)

249



Lemma 2 Given a monotonic independent ER-UMD model
ω, a modification δ and a relaxed padded modification δ̂, for
every node ~δ ∈ ~∆ω

V∗ω(~δ · δ) ≤ V∗ω(~δ · δ̂)

Proof: (sketch) Since the model is independent, we can ap-
ply the modifications in any order. In particular, we can first
apply δi ∈ δ̂ that dominates δ, and get a value that overes-
timates V∗ω(~δ · δ). Since the model is monotonic, applying
the additional modifications in the sequence is guaranteed to
yield a value at least as high as V∗ω(~δ · δ).

Corollary 1 The simplified-design heuristic is admissible
in any monotonic and independent ER-UMD model ω.

The proof for Corollary 1 is immediate from Lemma 2.
A direct implication of Corollary 1 is in providing condi-

tions under which the simplified-design heuristic can be used
by an optimal heuristic search algorithm, and BFD (Keren
et al. 2017) in particular, to produce an optimal solution to a
ER-UMD problem.

Modifications for Independent Monotonic
ER-UMD models
After specifying the conditions under which our approach
is guaranteed to yield admissible estimations, we now char-
acterize ER-UMD models that comply with these require-
ments. Specifically, we characterize monotonic and indepen-
dent models where modification padding can be used to pro-
duce admissible estimates.

For this purpose, we define action addition modifications
that add applicable actions to some states of the model. We
then show that ER-UMD models that allow only action ad-
dition modifications are both independent and monotonic.

To formally define action addition modifications, we let
app(s, ε) ⊆ A represent the actions applicable in state s of
environment ε.

Definition 5 (action addition modification) Modification
δ is an action addition modification (ADM) in ER-
UMD model ω, if for any environment ε ∈ E , F(ε, δ)
is identical to ε except that for every state s ∈ S
there exists a (possible empty) set of actions As,δ s.t.
app(s,F(ε, δ)) = app(s, ε) ∪As,δ .

In Example 1, action addition is exemplified both by re-
moving furniture, implemented by enabling move actions
between previously disconnected states, and by placing
high-friction tiles, implemented by adding to the model ac-
tions with a reduced probability of slipping.

Lemma 3 An ER-UMD model with only action addition
modifications is independent and monotonic.

Proof: (sketch) Every action applicable in any state of the
original model is applicable in the modified one. The ex-
pected utility of the initial state cannot be reduced as a result

of applying a modification and is therefore monotonic. Fol-
lowing Definition 5, any two modifications δ, δ′ ∈ ∆ can
be applied in any order to yield the same set of applicable
actions. This can be applied for any pair of modifications in
a sequence, indicating that the model is independent.

It is worth noting that all modifications used in (Keren et
al. 2017), including those implemented as initial state mod-
ifications, were in fact action addition modifications, since
they changed the initial state in such a way that enabled
more actions in some of the states reachable from the initial
state. As demonstrated above, removing a piece of furniture
in Example 1 can be modeled as enabling the movement to
a previously occupied cell. In general, however, not all ini-
tial state modifications are monotonic. For example, when
we remove from the initial state a fact that is a precondition
of an action or add a fact that is a negative precondition, we
may cause an action to become non-applicable and reduce
utility.

Automatic Dominating Modification Generation
Having characterized ER-UMD models where our
simplified-design approach, implemented via padding
and modification relaxation, is guaranteed to produce
admissible estimations, we now show two examples of how
dominating modifications can be automatically generated.

First, to characterize models where modification padding
is easily implemented, we focus our attention on lifted modi-
fications that represent a set of parameters whose (grounded)
instantiations define single modifications. Each lifted mod-
ification δ(p1, . . . , pn) is characterized by a set of parame-
ters p1, . . . , pn and a set of valid values dom(pi) for each
parameter pi. A (grounded) modification δ(v1, . . . , vn) is a
valid assignment to all parameters s.t. vi ∈ dom(pi).

For lifted modifications, modification padding can be
implemented using parameterized padding, by mapping
a grounded modification to a sequence of modifications
with the same values on a set of lifted parameters. In
Example 1, ClearCell(x, y, z) stands for the lifted rep-
resentation of furniture removal modifications, where pa-
rameter z is the zone and x and y denote the cell co-
ordinates within the zone. The value of the grounded
modification ClearCell(1, 3, 1) can be (over)estimated by
the value of applying the sequence ClearCell(1, 1, 1),
ClearCell(1, 2, 1), ClearCell(1, 3, 1), etc. This value is
cached, so when modification ClearCell(1, 2, 1) is exam-
ined, it is mapped to the same padded sequence, and the pre-
computed value can be reused. Specifically, in our empirical
evaluation, we use the lifted PPDDL (Younes and Littman
2004) representation to implement parameterized padding.
This lifted representation enables an automatic mapping of
a modification to its corresponding padded sequence.

Whenever modifications involve changing the probability
distribution of an action’s outcome, a relaxation can be auto-
matically generated by creating a separate action for each of
the outcomes (known in the literature as all outcome deter-
minization (Yoon, Fern, and Givan 2007)). Continuing with
Example 1, for a modification that adds high friction tiles to

250



reduce the probability of slipping from 50% to 10%, apply-
ing all outcome determinization creates a hypothetical dom-
inating modification by allowing an agent to choose between
two deterministic actions, either slipping or not.

Empirical Evaluation
Our empirical evaluation is dedicated to measuring the ef-
fectiveness of the proposed simplified-design heuristic on a
variety of independent monotonic ER-UMD models, com-
paring it to the previously suggested DesignComp com-
pilation and simplified-environment heuristic (Keren et al.
2017). In addition to reaffirming the benefit of using heuris-
tic search for ER-UMD, we show the efficiency gain brought
by caching and reusing previously computed values. We also
analyze the role of different heuristics used to solve the un-
derlying MDPs, that correspond to the applied modifications
and the modified environments.

We used six PPDDL (Younes and Littman 2004) do-
mains, adapted from Keren et al. (2017) that include five
stochastic shortest path MDPs with uniform action cost
domains from the probabilistic tracks of the eighth Inter-
national Planning Competition: Boxworld (IPPC08/BOX),
Elevators (IPPC08/ELE), Blocks World (IPPC08/BLOCK),
Exploding Blocks World (IPPC08/EX. BLOCK), and Trian-
gle Tire (IPPC08/TIRE). In addition, we used the vacuum
cleaning robot setting adapted from Keren et al. (2017) and
described in Example 1 (VACUUM). It is worth noting that
the VACUUM domain is tailored to test the ER-UMD set-
ting and the ability to improve upon an initial design.

deterministic - probabilistic-
enabled actions increase success probability

BOX move truck drive
ELEVATOR add shaft (enable step in and out) move

BLOCK put block on table (enable stack) picking up a block or tower
EX-BLOCK as for Blocks World as for Blocks World

TIRE add spare tires (enabled tire change) drive (no flat tire)
add road (enabled move)

VACUUM remove furniture (enable move) move

Table 1: Applicable modifications per domain

In all domains, agent utility is expressed as expected cost
and constraints as a design budget. For each domain, we ex-
tend the modifications described by Keren et al. (2017), by
including at least two modifications among which at least
one alters the initial state and the other, the probability dis-
tribution (see Table 1 for a detailed description of the mod-
ifications implemented for each domain). All modifications
were implemented as action addition modifications (Defi-
nition 5). Accordingly, all the tested models are indepen-
dent and monotonic, which means that all our generated es-
timations are admissible and therefore over-estimate the ex-
pected utility V∗ω(~δ) of the modified model, for any model ω
and sequence ~δ.1

Setup Each instance was solved using the following 7 solu-
tion approaches:

1Our set of benchmarks, code, and ER-UMD problem generator
can be found in https://github.com/sarah-keren/ER-UMD-2019

• BFS - an exhaustive breadth first search in the space of
modifications.

• DesignComp (DC)- a compilation of the design problem
to a planning problem, which embeds the design into the
domain description (Keren et al. 2017).

• BFD- Best First Design, a heuristic best first search in
the deterministic space of modifications. For BFD, we ex-
amined five heuristic approaches, the first of which was
presented by Keren et al. (2017) and the other four are
variations of the relaxed modification heuristic approach
proposed in this work.
– rel-env the simplified-environment heuristic where

node evaluation is done on a relaxed environment (im-
plemented by ignoring the delete effects of actions).

– rel-mod the simplified-design heuristic that estimates
the value of a modification by a single dominating mod-
ification.

– rel-comb the simplified-design heuristic that combines
both approaches above and estimates the value of a
modification by a single dominating modification in a
relaxed environment.

– rel-proc the simplified-design heuristic that estimates
the modification value using parametrized padding (on
the first parameter of a modification), caching, and
reusing the computed values.

– rel-comb-proc the simplified-design heuristic that
combines rel-proc and rel-mod, using parameterized
padding of relaxed modifications, caching, and reusing
pre-computed values.

BFD was implemented as a deterministic best first search
in the design space. To evaluate the execution nodes (the
leaf nodes of the BFD search space), i.e., the expected agent
utility in the modified stochastic environments, we used
LAO* (Hansen and Zilberstein 1998) with convergence er-
ror bound of ε = 10−6. LAO* was also used for solving
DC (the compilation). For LAO*, we used two heuristics.
The Min-Min heuristic (Bonet and Geffner 2005) (hMIN )
uses all outcome determinization with the zero heuristic. We
also implemented the bounded all-outcome determinization
(heuristic hBAOD) as a depth-bounded BFS exploration of
all outcome determinization (for each domain we examined
bounds of 5, 10, 15 and 20). Both heuristics are admissible.

All evaluations were performed on an Intel(R) Xeon(R)
CPU X5690 machine with a budget of 1 to 5. To implement
the budget constraint we added a counter to ensure that the
number of design actions does not exceed the budget. Each
run had a 20 minutes time limit.
Results Tables 2-7 summarize the results acquired for each
design budget (indicated by B = i), separated by domains
and heuristics. For each budget, we ran all 7 solution ap-
proaches presented above, each with hBAOD and hMIN , a
total of 14 runs for each setting. For clarity of presentation,
we present for each domain the dominating LAO* heuristic
results only (either hBAOD or hMIN ), indicated in paren-
theses below the domain name. For all but the EX. BLOCK
domain, hBAOD was the dominating approach. The five bot-
tom rows of each table represent the BFD approach, with the
corresponding design heuristic used (e.g., BFD-rel-mod rep-
resent the BFD search with rel-mod as the design heuristic).

251



Budget=1 Budget=2 Budget=3 Budget=4 Budget=5
(V∗ = 5.5) (V∗ = 5.2) (V∗ = 5.0) (V∗ = 4.6) (V∗ = 4.1)

sol time sol time sol time sol time sol time

BFS 1 0.68 1 3.04 0.3 229.65 0 NA 0 NA

DC 1 1.89 1 3.14 0.3 425.99 0 NA 0 NA

BFD-rel-env 1 0.20 1 3.11 0.5 28.65 0.3 198.95 0.2 206.43

BFD-rel-mod 1 0.26 1 3.15 0.5 29.35 0.3 203.71 0.2 202.51

BFD-rel-comb 1 0.21 1 3.81 0.5 28.88 0.3 204.95 0.2 203.51

BFD-rel-proc 1 0.14 1 2.84 0.5 5.79 0.3 32.28 0.2 38.67

BFD-rel-comb-proc 1 0.12 1 3.03 0.5 6.10 0.3 31.0 0.2 39.09

Table 2: Vaccum
(hBAOD)

Budget=1 Budget=2 Budget=3 Budget=4 Budget=5
(V∗ = 7.0) (V∗ = 5.3) (V∗ = 4.9) (V∗ = 4.1) (V∗ = 3.7)

sol time sol time sol time sol time sol time

BFS 1 0.08 1 0.68 0.7 3.41 0.4 13.2 0.3 46.96

DC 1 0.06 1 0.05 0.9 0.42 0.6 3.76 0.4 15.83

BFD-rel-env 1 0.01 1 0.03 0.9 0.09 0.6 0.35 0.6 1.15

BFD-rel-mod 1 0.01 1 0.06 0.9 0.19 0.6 0.73 0.6 1.34

BFD-rel-comb 1 0.02 1 0.08 0.9 0.22 0.6 0.79 0.6 1.3

BFD-rel-proc 1 0.02 1 0.04 0.9 0.05 0.7 0.10 0.7 0.16

BFD-rel-comb-proc 1 0.02 1 0.05 0.9 0.06 0.7 0.11 0.7 0.15

Table 3: Triangle Tire (TIRE)
(hBAOD)

For each design budget, the tables indicate V∗ as the ex-
pected cost achieved via redesign, while NA indicates set-
tings not solved by any approach (since all our solutions are
optimal, the value is the same for all approaches that com-
pleted within the allocated time). In all domains, the effect of
redesign is demonstrated by the reduction in expected cost
as the budget increases. This is to be expected, given that all
our examined models are monotonic and independent. For
each combination of budget and solution approach, sol is the
ratio of problem solved to completion and time is the aver-
age running time in seconds for problems commonly solved
by all methods (those that did not fail on all instances, a case
which is indicated by NA). For each budget, the dominating
approach is indicated in bold.

For most domains, the results clearly indicate the effi-
ciency of solving ER-UMD using the BFD heuristic search
approach as suggested by Keren et al. (2017). Even for set-
tings where the DC approach, that includes the solution of
single MDP that encapsulates the design modifications, out-
performs all other approaches for small budgets, the bene-
fit of the heuristic search and the design heuristics becomes
apparent as the budget increases. The only exception is the
BOX domain, where DC and the caching-based heuristic
approaches achieve similar results (our caching-based ap-
proach is slightly faster, and neither approach solves prob-
lems for budget 3 and higher). We associate this to the sav-
ings in the backward propagation of updated values, per-
formed at each iteration by LAO*. For DC, value updates of
each node are propagated all the way up to the single root,
while for BFD, the updates are done separately for each de-
sign node and its corresponding environment. The deeper
and wider the search tree, the greater the savings.

Among the five heuristics used by BFD, the superiority of
our caching based approaches, represented by BFD-rel-proc

Budget=1 Budget=2 Budget=3 Budget=4 Budget=5
(V∗ = 3.1) (V∗ = 2.8) (V∗ = 2.2) (V∗ = 2.0) (V∗ = NA)

sol time sol time sol time sol time sol time

BFS 1 0.19 1 2.92 1 32.09 0.8 367.87 0 NA

DC 1 0.07 1 1.12 1 14.72 1 214.43 0 NA

BFD-rel-env 1 0.19 1 3.67 1 43.89 0.8 493.36 0 NA

BFD-rel-mod 1 0.21 1 3.15 1 48.61 0.7 569.74 0 NA

BFD-rel-comb 1 0.25 1 2.93 1 51.58 0 NA 0 NA

BFD-rel-proc 1 0.19 1 0.59 1 14.28 1 171.44 0 NA

BFD-rel-comb-proc 1 0.18 1 0.48 1 10.13 1 122.23 0 NA

Table 4: Blocksworld (BLOCK)
(hBAOD)

B=1 B=2 B=3 B=4 B=5
(V∗ = 10.5) (V∗ = 7.2) (V∗ = 4.01) (V∗ = 3.43) (V∗ = NA)

sol time sol time sol time sol time sol time

BFS 1 2.04 1 66.24 0 NA 0 NA 0 NA

DC 1 0.86 1 21.38 0 NA 0 NA 0 NA

BFD-rel-env 1 0.33 1 7.82 0.9 98.59 0 NA 0 NA

BFD-rel-mod 1 0.58 1 12.31 0.9 124.52 0 NA 0 NA

BFD-rel-comb 1 0.66 1 23.28 0.9 148.25 0 NA 0 NA

BFD-rel-proc 1 0.32 1 2.82 0.9 22.48 0.3 434.5 0 NA

BFD-rel-comb-proc 1 0.26 1 3.34 0.9 26.01 0.3 492.34 0 NA

Table 5: Elevators (ELE)
(hBAOD)

and BFD-rel-comb-proc at the two bottom rows of each ta-
ble, is absolute. For all domains, the benefit of caching dom-
inating modifications and reusing these values for similar
modifications increases with the size of the examined prob-
lem (and the budget in particular). For bigger problems, our
caching based methods not only solve the commonly solved
problems more quickly, but solve more problems than any
other approach (e.g., for the ELE domain, our cashing ap-
proaches were the only ones to solve instances for budget of
4).

To investigate this trend further, we counted the number of
nodes expanded at each run by counting the number of calls
to the LAO* heuristic (hBAOD or hMIN ). Among these
nodes, we counted the number of design nodes, represent-
ing the different examined modification sequences. The re-
sults show that the number of calls to the LAO* heuristic is
not necessarily positively correlated to the overall running
time. In some instances, the number of calls to the heuris-
tic may be smaller than for instances with a lower running
time. However, in all cases, the caching approach examines
far fewer design nodes.

Taking the BLOCK domain, for example, with the
hBAOD as the LAO* heuristic, for a budget of 1 (where
DC is the dominating approach) the average total num-
ber of expanded nodes by the DC compilation is 902.3,
among which 558.4 are design nodes (many of which are
re-examined several times). The rel-comb-proc approach ex-
amines 2688.5, among which an average of 81.3 are design
nodes. In contrast, for a budget of 4, for which the rel-comb-
proc approach dominates all other approaches, DC examines
1163564.5 and 794577.4 of total and design nodes respec-
tively, while the rel-comb-proc examines a slightly higher
number of nodes (1283676.5), among which only 1920.5 are

252



B=1 B=2 B=3 B=4 B=5
(V∗ = 52.1) (V∗ = 12.3) (V∗ = 2.5) (V∗ = NA) (V∗ = NA)

sol time sol time sol time sol time sol time

BFS 1 50.51 1 582.92 0 NA 0 NA 0 NA

DC 1 41.40 1 104.05 0.4 181.56 0 NA 0 NA

BFD-rel-env 1 53.06 1 178.98 0.4 179.34 0 NA 0 NA

BFD-rel-mod 1 64.64 1 180.38 0.4 183.43 0 NA 0 NA

BFD-rel-comb 1 55.84 1 175.23 0.4 169.58 0 NA 0 NA

BFD-rel-proc 1 57.52 1 177.61 0.4 167.40 0 NA 0 NA

BFD-rel-comb-proc 1 52.05 1 178.52 0.4 179.48 0 NA 0 NA

Table 6: Exploding Blocks World (EX. BLOCK)
(hMIN )

B=1 B=2 B=3 B=4 B=5
(V∗ = 4.1) (V∗ = 3.9) (V∗ = NA) (V∗ = NA) (V∗ = NA)

sol time sol time sol time sol time sol time

BFS 0.8 257.25 0 NA 0 NA 0 NA 0 NA

DC 0.8 244.23 0.3 645.34 0 NA 0 NA 0 NA

BFD-rel-env 0.7 354.32 0 NA 0 NA 0 NA 0 NA

BFD-rel-mod 0.8 365.9 0 NA 0 NA 0 NA 0 NA

BFD-rel-comb 0.7 362.63 0 NA 0 NA 0 NA 0 NA

BFD-rel-proc 0.8 279.67 0.3 603.34 0 NA 0 NA 0 NA

BFD-rel-comb-proc 0.8 304.12 0.3 625.90 0 NA 0 NA 0 NA

Table 7: Boxworld (BOX)
(hBAOD)

design nodes.
We attribute this result to the benefit of using caching to

avoid redundant computation of costly design nodes. Since
the design nodes are closer to the root of the search tree, the
calculation of their heuristic value is typically more costly
than that of nodes that are closer to the leaf nodes. Accord-
ingly, the saving in computation time achieved by avoiding
their repeated computation is substantial.

We next analyze and compare the quality of the hMIN and
hBAOD heuristics. For most instances, the less informative
but easier to compute hBAOD heuristic outperformed the
hMIN heuristic and was used by the dominating approach.
The exception is for EX. BLOCKS, where we see that the
added informative value of the hMIN heuristic leads to an
overall lower running time.

To understand this trend, we compared the number of
nodes examined by each heuristic, to the number of unique
nodes for which the heuristic value is calculated. To avoid
repeated computations of previously encountered states,
both of the heuristics used saved values of previously en-
countered nodes. The results show that in all domains,
the methods that use hMIN do not necessarily examine
less nodes, but always evaluate the value of a substantially
smaller number of unique nodes. For example, for the Ex.
BLOCKS domain with the rel-proc heuristic, we see that for
budget of 1 and heuristic hBAOD, the average number of
nodes examined is 188535.6, while the number of unique
nodes is 29441.5. For hMIN , the average number of exam-
ined nodes is 518671.5, out of which 2809.6 are unique.
The fact that the additional computational effort required
to achieve the added accuracy of the hMIN heuristic was
beneficial in one of the domains we examined, stresses the
importance of finding the right balance between the compu-
tation time invested in evaluating each node, and the value

of high accuracy heuristic estimations that can prevent the
exploration of redundant nodes.

Finally, we note that some of our examined problems, like
BOX with budget greater then 2, could not be solved by any
of the methods. These results are due to the time limit we
set on the computation of each instance and the limitation
of our evaluation resources, but have no implication on the
efficiency of the examined approaches.

Related Work
Environment design (Zhang, Chen, and Parkes 2009) pro-
vides a generic template for defining problems that involve
modifying environments in order to maximize some utility.
In addition, Zhang, Chen, and Parkes (2009) provide tech-
niques for redesign for the specific special case in which the
design objective is policy teaching, i.e., influencing the agent
to adopt a particular policy whose execution maximizes the
utility of the designer as an interested party. Keren et al.
(2017) formulated ER-UMD as a different and distinct spe-
cial case of environment design where the objective is to find
a sequence of modifications that maximize a shared utility of
agent and designer.

For solving ER-UMD settings, two methods were sug-
gested by Keren et al. (2017), namely the DesignComp com-
pilation (DC) that embeds the design problem into a plan-
ning problem and a heuristic search (BFD) in the space of
modifications. For the latter, they suggest applying modifi-
cations to a relaxed environment and show it generates an
admissible heuristic.

We extend this approach by offering a set of heuristics
based on the relaxation of the design process. By searching
in the relaxed modification space, we potentially avoid the
need to calculate the value of every possible modification,
and use cached values to estimate the value of similar modi-
fications. Our approach can be seen as complementary to the
previous approaches, since caching and modification relax-
ation can be combined with environment relaxation to yield
estimations that may be computed efficiently.

The relationship between the agent and designer utility
dictates the types of methods that can be used to solve each
environment design problem. In particular, ER-UMD ex-
ploits the correlation between agent and designer utilities to
develop planning-based methods for design. The heuristics
we propose (and show to be admissible) are not admissible
for environment design problems in general and in particu-
lar not for the policy teaching setting addressed by Zhang
and Parkes (2008), nor for many other variants of environ-
ment design such as goal recognition design (Keren, Gal,
and Karpas 2014), where redesign is performed to enhance
the ability to recognize the objective of an acting agent, with
its own utility measure. Similarly, the design methods sug-
gested by Zhang and Parkes (2008) and Keren, Gal, and
Karpas (2014), do not apply to the ER-UMD setting we ad-
dress.

Conclusions
This work proposed a new class of heuristics for ER-UMD,
called simplified-design, which relax the modification pro-

253



cess by mapping each examined modification during the re-
design process to a modification that dominates it. Instead of
the original modification, we calculate the value of the dom-
inating one, and cache the computed value for future use
on nodes mapped to the same dominating modification. We
identified conditions under which this heuristic class is ad-
missible and discussed automatic generation of modification
relaxations. Our empirical results showed the computational
savings achieved by our suggested approaches.

For future work, we intend to automate the process of se-
lecting the best relaxation approach for a given domain. In
particular, this automated process will extract domain spe-
cific information to choose the best way to apply padding
and the best underlying heuristic for solving each modi-
fied model. In addition, we intend to extend our simplified-
design heuristic approach by adopting a hierarchical model
and allow the search to alternate among different levels of
relaxation granularity; for padded modification sequences
that yields a utility gain, a more accurate (and costly) esti-
mation is acquired while for padded sequences that leave the
initial utility unchanged, we use the high level value. Finally,
following the successful implementation of our approach on
standard benchmarks, we seek additional settings and real-
world applications.

References
Bertsekas, D. P. 1995. Dynamic programming and optimal
control, volume 1. Athena Scientific Belmont, MA.
Bonet, B., and Geffner, H. 2005. mGPT: A probabilistic
planner based on heuristic search. Journal of Artificial In-
telligence Research 24:933–944.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism for planning. In Pro-
ceedings of the Conference of the American Association of
Artificial Intelligence (AAAI).
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Edelkamp, S. 2006. Automated creation of pattern database
search heuristics. In International Workshop on Model
Checking and Artificial Intelligence, 35–50. Springer.
Hansen, E. A., and Zilberstein, S. 1998. Heuristic search
in cyclic AND/OR graphs. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence, 412–418.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; Koenig, S.;
et al. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the Conference of the American Association of Arti-
ficial Intelligence (AAAI).
Keren, S.; Pineda, L.; Gal, A.; Karpas, E.; and Zilberstein,
S. 2017. Equi-reward utility maximizing design in stochas-
tic environments. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI).
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recogni-
tion design. In Proceedings of the Conference on Automated
Planning and Scheduling (ICAPS).
Pearl, J. 1984. Heuristics: intelligent search strategies for

computer problem solving. Addison-Wesley Pub. Co., Inc.,
Reading, MA.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan:
A baseline for probabilistic planning. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS).
Younes, H. L. S., and Littman, M. L. 2004. PPDDL1.0: The
language for the probabilistic part of IPC-4. In Proceedings
of the International Planning Competition (IPC).
Zhang, H., and Parkes, D. 2008. Value-based policy teach-
ing with active indirect elicitation. In Proceedings of the
Conference of the American Association of Artificial Intelli-
gence (AAAI).
Zhang, H.; Chen, Y.; and Parkes, D. 2009. A general ap-
proach to environment design with one agent. In Proceed-
ings of the Joint Conference on Artifical Intelligence (IJ-
CAI).

254


