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ABSTRACT
The use of robots in stroke rehabilitation has become a pop-
ular trend in rehabilitation robotics. However, despite the ac-
knowledged value of customized service for individual pa-
tients, research on programming adaptive therapy for indi-
vidual patients has received little attention. The goal of the
current study is to model teletherapy sessions in the form of
a generative process for autonomous therapy that approxi-
mate the demonstrations of the therapist. The resulting au-
tonomous programs for therapy may imitate the strategy that
the therapist might have employed and reinforce therapeutic
exercises between teletherapy sessions. We propose to en-
code the therapist’s decision criteria in terms of the patient’s
motor performance features. Specifically, in this work, we
apply Latent Dirichlet Allocation on the batch data collected
during teletherapy sessions between a single stroke patient
and a single therapist. Using the resulting models, the thera-
peutic exercise targets are generated and are verified with the
same therapist who generated the data.
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INTRODUCTION
Many countries are experiencing an increase in the elderly
population, which may lead to spiraling healthcare costs and
shortages of trained professionals to address the needs of
the aging population [26]. Robots are often considered for
healthcare applications including stroke rehabilitation which
is the focus of the proposed work. To date, a common ap-
proach is to develop multiple special-purpose robots each of
which is designed to serve a single particular rehabilitation
goal. Good examples include the exoskeleton rehabilitation
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robots that are built to reconstruct upper or lower limb move-
ments [4, 11]. Due to their size, cost, and special purpose
nature, these robots are most affordable when they are shared
by a large number of users in hospitals or rehabilitation cen-
ters [17]. This work takes a different approach by propos-
ing that general-purpose personal robots–those that can re-
side with a patient and deliver various services–can be pro-
grammed by service providers to deliver some services au-
tonomously, in a data-driven manner that adapts to chang-
ing client needs. In both cases, it is important to encourage
patients to exercise with voluntary movements and therefore
necessary to provide adpative exercise targets with appropri-
ate difficulty levels.

Recently, researchers have started exploring ways to adapt the
difficulty levels of exercise programs based on patient perfor-
mance. For instance, Perry et al. increase the difficulty levels
of exercise games when patients exceed predefined achieve-
ment thresholds [20]. Shirzad et al. explore various super-
vised learning methods to predict patients’ intention to ad-
just the difficulty levels of games [22]. However, these ap-
proaches rely on generic games with predetermined exercise
programs and difficulty levels. Also, they do not allow ther-
apists to prescribe exercise targets or specify difficulty levels
directly. Jung et al. allow therapists to select exercise targets
to meet the specific needs of individual patients [16]. How-
ever, their approah encodes the targets in the Cartesian space
and requires the frequent intervention of therapists to re-select
the targets as the motor performance of patients change.

The goal of our research is to develop a new approach to cre-
ate data-driven generative models that capture the decision
making capacity of human therapists during therapy sessions
with patients and verify that the new sessions generated by
the resulting models can be vetted and endorsed by therapists.
Specifically, we propose to use Latent Dirichlet Allocation
(LDA) and learn the underlying features of therapist-selected
targets. This may reveal the therapist’s strategy as well as
the motor characteristics that are specific to an individual pa-
tient. We test our approach using batch data of therapeutic
exercise targets prescribed by an actual therapist for an actual
stroke patient during teletherapy sessions. We contend that
these technologies can be used to reinforce therapy delivered
by remote service providers and may, thus, improve their pro-
ductivity while it also improves client outcomes.

BACKGROUND
Robot-Mediated Therapy Using robots for stroke rehabili-
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Figure 1: A research assistant demonstrating physical
teletherapy sessions. The robot presents a reaching target po-
sition in 3D Cartesian space, which is determined by the ther-
apist based on the individual client’s motor performance. In
task 1, the client is instructed to hold two hands together and
reach the target (a, b). In task 2, the client is instructed to lift
his impaired arm to reach the target (c, d). In task 3, the client
lifts and rotates his impaired forearm to reach the target (e, f).

tation has received a lot of attention. Most effort has focused
on developing new robot platforms and validating their fea-
sibility [2, 19, 21]. The rehabilitation robots realize hands-on
style therapy where stroke patients either hold onto or place
their impaired arm on the end-point or the exoskeletal compo-
nents of these robots. During therapy sessions, these robots
provide assistance for low functioning patients to complete
otherwise unattainable exercise targets in pre-programmed
computer games with various exercise targets [5]. Since it is
important that the patient makes voluntary movements with
minimum support, the patient may benefit from carefully se-
lected exercise targets tailored to his motor impairment.

Some explore the possibility of utilizing general purpose
robots. Jung et al. explore the idea by Dijkers et al. [7] and in-
duce voluntary exercise movements from post-stroke patients
in both automated and tele-operated modes [13, 16]. In this
approach, the challenge level of exercise is mostly regulated
by the way the exercise targets are presented while the patient
attains these targets through voluntary movements. If appro-
priate exercise targets are provided, empirical studies report
that this can lead to larger range of motion [13–15]. Hence, it
is apparent that the selection of the targets need to be tailored
to the impairment and meet the needs of individual patients.

Latent Dirichlet Allocation LDA [1] is an unsupervised ma-
chine learning technique commonly used in text analysis. The
underlying concept behind LDA is that an observed collec-
tion of D documents contains information about T topics,
distributions φt∈{1,...,T} over a list of words. However, these
topics are not known a-priori and a single document may dis-
cuss more than one of these topics, represented by a distri-
bution θd∈{1,...,D}. The topics are concepts which may be
used as keywords to summarize the collection of documents,
and a bag-of-words assumption (ordering does not matter) is
applied to the collection of documents to emphasize this key-
words notion. Thus identifying words such as “carrot” and
“orange” anywhere in a document implies that it is likely to
contain a topic about food, produce, or orange edible items;
the unsupervised approach requires human experts to inter-
pret the learned topics.

LDA finds these topics by clustering words in order to maxi-
mize underlying parameters that are part of a generative pro-
cess explaining how the documents were created. In sum-
mary, the θd and φt distributions are each drawn from re-
spective Dirichlet distributions, and then each word wi in
document d is generated by sampling topic zi ∼ θd so that
wi ∼ φzi . This means that the likelihood of θ, φ, and the
latent topic assignments z should be maximized for text w:

P (z,θ,φ |w, α, β ) = P (w|z,φ)P (z|θ)P (θ|α)P (φ|β)
P (w|α, β)

where the denominator is a normalizing constant and α, β are
hyperparameters describing the Dirichlet distributions. Once
these parameters are learned using Gibbs sampling, we may
use them to infer topics of newly observed documents as-
sumed to be derived from the same generative process as
well as find the likelihood that such documents were actu-
ally generated by the same model. LDA has also been widely
used outside of text analysis by applying the bag-of-words
assumption to other collections of objects including pixel re-
gions [24] for semantic image analysis, streams of sensor
data [8, 12, 18, 27] for activity recognition, and sequences of
images [3, 25] for activity recognition and segmentation.

PROPOSED APPROACH
Learning Therapy Strategies The fundamental idea behind
our approach is that the therapist’s decision making criteria is
reflected in the runtime performance of the patient during the
prescription of therapeutic exercises. Given therapeutic tasks,
exercise targets should be prescribed in a way that challenge
an individual patient to an appropriate extent. In each therapy
session, let us assume that the therapist determines N exer-
cise targets. For each described exercise target pn, the run-
time motor performance of the patient xn = [x1, · · · , xM ]

T

can be measured where M is the number of features describ-
ing the motor performance while the patient is attaining the
target. We hypothesize that (x1, · · · , xN ) can describe the
dynamics of the challenges that the therapist wants to impose
during the therapy sessions for the particular patient. In this
work, each feature’s measurement xm is mapped to a repre-
sentative symbol and xn concatenates these M symbols to
form word token wn. Each therapy session then contains a
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vector of word tokens w = [w1, · · · , wN ]
T so that the session

has a formalized document representation. This allows us to
apply state-of-the-art topic modeling methods to capture the
underlying structure of these words, i.e. the patient’s perfor-
mance features. We use LDA as it is a well-studied algorithm
and we are uncertain which criteria best cluster reaching tar-
gets for physical therapy sessions. We consider two perfor-
mance features in this work: the success of reaching move-
ment and the duration taken while reaching. The difficulty of
each given exercise target is modeled using these features.

Generating New Exercise Targets Using a teleoperation in-
terface, the therapist can lay out therapeutic exercises in real
time which requires constant intervention. However, we can
use the learned parameters to generate new exercise targets
according to the criteria learned from demonstrations. This
will allow the therapist to see more patients per unit of time.
Because each word in a session’s document represents a sin-
gle point in space, the bag-of-words assumption appears more
applicable to our domain. Unlike text data in which word or-
dering is necessary for comprehensabilty, the set of points
may be reordered and yield a similar therapeutic treatment.
Hence we perform the generating process from which LDA
derived our training data in order to create original documents
that propose a set of points for new exercise targets in future
training sessions. That is, for a new session containing N ′
points, we sample z′1, . . . , z

′
N ′ ∼ θ′ ∼ Dirichlet (α) and then

sample w′i ∼ φz′
i

for each i ∈ {1, . . . , N ′}. For each w′i,
we can approximately invert the symbolic encoding to find
Cartesian position f−1(w′i) = p′i. Consequently, as the pa-
tient becomes tired or improves his motor performance, the
exercise target p′ is adjusted to yield similar motor perfor-
mance features. Due to limited space, we simply note that we
use the patient’s performance database to compute f−1.

EXPERIMENTS
Participants In order to validate the approach, we used a
small dataset collected from five teletherapy sessions with a
real patient and a real therapist. The patient was a 73-year-
old male who experienced a stroke 10.5 years prior to the
data collection. He scored 32 out of 66 points on the upper
extremity portion of the Fugl-Meyer Assessments [6, 9]. The
therapist had 22 years of experience with expertise in neuro-
logical patients including stroke patients.

Data Collection In a single day, three tasks were performed
using teleoperation. The therapist remotely controlled the
robot and determined exercise targets for three different tasks
following the method presented in Jung et al. [16]. See Fig-
ure 1 for a detailed description of the tasks. This was repeated
five times yielding fifteen sets of data (3× 5).

The exercise targets and the corresponding patient’s perfor-
mance were collected as batch data. For each reaching target
in the Cartesian space p ∈ R3, two motor performance fea-
tures were measured. The first was whether or not the patient
successfully attained the target, and the second was the du-
ration of time taken to reach the target from resting position.
Note that the first feature x1 ∈ {success, failure} is discrete
by nature while the second feature x2 ∈ R is continuous and

needs to be discretized. In this work, x2 is discretized sys-
tematically using a specified constant interval, i.e. i = 0.3
for task 1 and i = 0.5 tasks 2 and 3. The intervals were deter-
mined empirically. These feature values were mapped to the
corresponding symbols and concatenated.

Therapist’s Evaluation It is important that therapists find
the results useful. We investigated two criteria. First of all,
the learned topics describing exercise targets should make
sense, revealing some characteristics of the patient’s perfor-
mance and the pattern of exercise targets. The exercise tar-
gets were shown to the therapist in the form of plots and a list
of the patient’s corresponding motor performance. We asked
if the therapist could identify any patterns and whether the
learned topics made sense to her. Furthermore, we presented
some newly generated therapy sessions and asked if she be-
lieved that they would be appropriate in terms of difficulty.

RESULTS & DISCUSSION
The model was trained using different values of T and the
one providing the greatest log likelihood (LL) was chosen.
For task 1, x2 was discretized using i = 0.3 resulting in
five intervals. T = 2 topics had the best LL where the first
topic (red) included targets that were successfully attained in
0.6 ≤ t < 1.2 seconds by the patient. The second topic (blue)
included targets successfully attained mostly within t < 0.6
seconds. There were a small number of targets that took
t ≥ 1.2 seconds to attain or that the patient failed to attain.
When the results were presented to the therapist, she found
this plausible and stated that:

He has flexor tone and it is easier [for him] to use his
tone [to reach the targets]. For the external rotation,
it’s much more difficult to reach. It is easier to cross the
middle line and reach because he can use his torso.

For task 2, x2 was discretized using i = 0.5 resulting in five
intervals. The patient was instructed to make unassisted vol-
untary movements, taking more time in general. Based on the
LL, T = 3 topics were learned. The first topic (red) includes
targets attained in 0.5 ≤ t < 1.0 seconds, the second topic
(blue) includes targets attainable in either t < 0.5 seconds or
1.5 ≤ t < 2.5 seconds, and the last topic (green) includes
mostly targets the patient could not obtain (as well as a small
number of targets attained in 1.0 ≤ t < 1.5 seconds). As
seen in Figure 2b, topics were credited to the targets’ heights.

For task 3, x2 was discretized using i = 0.5 resulting in four
intervals. Based on the LL, T = 2 topics were learned. The
first topic (blue) includes attainable targets in 0.5 ≤ t < 1.0
seconds while the second topic (red) includes the remaining
targets. This can be interpreted as one topic including the ex-
ercise targets that the patient can attain with some effort. The
other topic includes targets that are attainable with minimum
or significant effort in addition to those not attainable at all.

The therapist was given five suggested therapy sessions per
task that were generated using the trained LDA models. Be-
tween thirty and fifty targets were randomly generated per
session. For task 1, she felt that four out of five closely cap-
tured the therapy she would provide and would be willing to
let the robot use all five suggested sets of execise targets. One
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Figure 2: (a), (b), (c) are the target positions the therapist determined during her teletherapy sessions for tasks 1, 2, and 3
respectively. (d), (e), (f) are the target positions the trained model generated for autonomous therapy sessions for tasks 1, 2, and
3 respectively. A marker with cyan color at (0,−1.05, 0) is the approximate sitting position of the patient. Units are in meters.

of the suggested sets of targets had ‘less motions to the left
(horizontal adduction) the way that was harder for the patient
to reach.’ For task 2, the therapist thought all five suggested
sets captured the therapy and would let the robot use them.
However, for task 3, the therapist was satisfied with only one
out of the five suggested sets due to the small number of tar-
gets in the four sets. She responded she would have endorsed
them if the sufficient numbers were generated.

During the interview, the therapist thought the choice of fea-
tures made sense because both play an important role in how
she chooses exercise targets. However, she pointed out that
it would be useful to separate cognitive and motor movement
delay. In this work, they were encoded as a single duration
feature. Additionally, she suggested that different spatial ar-
eas may challenge the patient differently because of the flexor
tone specific to the patient. Lastly, she mentioned that it might
be useful if temporal patterns can be captured.

It was encouraging that she found the presented plots useful
for understanding the motor performance of the patient. This
implies that topic modeling may be used to both provide vi-
sual feedback and model the therapist’s strategy.

CONCLUSION
Through a single subject case study, we demonstrated that
therapy strategies can be modeled in terms of the patient’s
motor performance and that the models can be automatically
learned using LDA. We also showed that the learned param-
eters can be used to generate sets of new exercise targets that

conform with the therapist’s strategies. Using the proposed
approach, the robot might be able to imitate the therapist’s
strategies and provide appropriately challenging targets even
in his/her absence. This can increase the efficiency of the
therapist’s time in practice.

The proposed approach can be improved in multiple ways.
For example, it is well known that LDA needs a large amount
of training data. Here, the number of features and the avail-
able values were small which might have been the reason
that LDA worked using the small data set. Further investi-
gation needs to be done to determine whether simpler models
with fewer parameters, such as the Bayesian mixture model,
should be used. This is especially important because the size
of the data we can collect in practice is small.

As the therapist implied, it is possible for her decision making
process to evolve even within the same therapy session. Since
LDA treats the data as a bag-of-words, it cannot capture this
temporal distinction. It might be interesting to see if this can
be learned using temporal extensions of LDA which integrate
hidden Markov models or n-grams to acknowledge structure
in the data [10, 23]. There are many variations of LDA that
can address the new demands that are likely to arise as we
continue to enrich the domain.
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9. Fugl-Meyer, A., Jääskö, L., Leyman, I., Olsson, S., and
Steglind, S. The post-stroke hemiplegic patient: a method for
evaluation of physical performance. Scandinavian journal of
rehabilitation medicine 7, 1 (1975), 13–31.

10. Griffiths, T. L., Steyvers, M., Blei, D. M., and Tenenbaum,
J. B. Integrating topics and syntax. In Proceedings of the 18th
Annual Conference on Neural Information Processing Systems
(2004).

11. Hogan, N., Krebs, H. I., Charnnarong, J., Srikrishna, P., and
Sharon, A. MIT-MANUS: A workstation for manual therapy
and training I. In Proceedings of the IEEE International
Workshop on Robot and Human Communication (1992).
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