Monitoring Anytime Algorithms

Eric A. Hansen and Shlomo Zilberstein
Computer Science Department
University of Massachusetts
Amherst, MA 01003
{hansen,shlomo}@cs.umass.edu

Abstract

Anytime algorithms offer a tradeoff between solu-
tion quality and computation time that has proved
useful in applying artificial intelligence techniques
to time-critical problems. To exploit this tradeoff,
a system must be able to determine the best time
to stop deliberation and act on the currently avail-
able solution. If there is uncertainty about how
much solution quality will improve with computa-
tion time, or about how the problem state may
change after the start of the algorithm, monitoring
the algorithm’s progress and/or the problem state
can make possible a better stopping decision and so
improve the utility of the system. This paper ana-
lyzes the issues involved in run-time monitoring of
anytime algorithms. It reviews previous work and
casts the problem in a new framework from which
some improved monitoring strategies emerge.

1 Introduction

Anytime algorithms are being used increasingly for time-
critical problem-solving in domains such as planning and
scheduling [1][5], belief network evaluation [9][18], database
query processing [16][17], and others. The defining property
of an anytime algorithm is that it can be stopped at any time
to provide a solution, where the quality of the solution in-
creases with computation time. This property allows a trade-
off between computation time and solution quality, making it
possible to compute approximate solutions to complex prob-
lems under time constraints. It also introduces a problem of
meta-level control: making an optimal time/quality trade-
off requires determining how long to run the algorithm, and
when to stop and act on the currently available solution.

Meta-level control of an anytime algorithm can be ap-
proached in two different ways. One approach is to allocate
an algorithm’s running time before it starts, and to let the
algorithm run for the predetermined length of time no matter
what [1]. If there is no uncertainty (or minimal uncertainty)
about the rate of improvement of solution quality, or about
how the urgency for a solution might change after the start
of the algorithm, then this approach can determine an opti-
mal stopping time. Very often, however, there is uncertainty
about one or both. For AI problem-solving in particular,
variance in solution quality is common [11]. Because the best
stopping time will vary with fluctuations in the algorithm’s
performance, and/or with unexpected changes of the environ-
ment, a second approach to meta-level control is to monitor
the progress of the algorithm and/or the state of the environ-
ment and to determine at run-time when to stop deliberation
and act on the currently available solution [6][19].

In this paper, we discuss some of the issues involved in run-
time monitoring of anytime algorithms. We describe a for-
mal framework for monitoring both the progress of an algo-
rithm and the state of the environment. However, our discus-

Anytime Algorithms

sion focuses on issues involved in monitoring an algorithm’s
progress. This is the more interesting half of the problem
because it requires modeling the behavior of the anytime al-
gorithm itself, as opposed to modeling the environment. For
a large class of problems, uncertainty about how long to con-
tinue deliberation depends only on uncertainty about how
much and how fast solution quality will improve. Examples
include plannning and optimizing a database query [16], re-
formulating a belief net before solving it [2], and planning
the next move in a chess game [15]. There are other prob-
lems, however, for which utility also depends on the state of
a dynamic environment and performance can be improved by
monitoring the environment as well as the progress of the al-
gorithm. We reserve a place for this in our formal framework,
but we discuss the problem of monitoring the environment
only briefly.

The outline of the paper is as follows. Section 2 briefly re-
views a standard framework for meta-level control of anytime
algorithms without monitoring. Section 3 discusses how to
extend this framework for run-time monitoring by developing
sequential prediction models that can be used to make im-
proved predictions of solution quality at run-time. Section 4
describes how to determine an optimal stopping time in this
new framework, which requires sequential decision-making.
Section 5 discusses how to minimize the run-time overhead
for monitoring. Section 6 describes a simple example that
illustrates some of these ideas. Finally, section 7 discusses
related work.

2 Background

Meta-level control of an anytime algorithm — deciding how
long to run the algorithm and when to stop and act on the
currently available solution — requires both a model of how
solution quality improves with computation time and a model
of the time-dependent utility of a solution. The first model is
given by a performance profile of the algorithm. A probabilis-
tic performance profile maps computation time to a probabil-
ity distribution over solution quality, with P(q|t) denoting the
probability that running the algorithm for time ¢ produces a
solution of quality q. An ezpected performance profile maps
computation time to expected solution quality, E(g|t). In
the rest of this paper we rely on probabilistic performance
profiles, although most of the framework we describe works
with expected performance profiles as well.

Although it is sometimes possible to represent a performance
profile by a compact parameterized function, a more general
representation is a table of discrete values and this is the
representation we will assume. It requires discretizing time
into a finite number of time steps and discretizing quality
into a finite number of levels. The fineness of the discretiza-
tion fixes a tradeoff between the accuracy of the performance
profile and the space needed to store it. The values in the
performance profile are collected by statistical analysis of the
performance of the algorithm.

SIGART Bulletin, Vol. 7, No. 2

In addition to a performance profile that models the behavior
of an algorithm, meta-level control requires a model of the
time-dependent utility of a solution. If utility only depends
on solution quality and computation time, let U(g, t) denote
the utility of stopping the algorithm at time ¢ with a solution
of quality g. The running time of an anytime algorithm can
be determined prior to its execution, without monitoring, by
solving

arg mtax Z P(q|t)U(q,t).
q

For some problems, utility also depends on the state of the
environment when the solution is acted on — where a dynam-
ically changing environment introduces time pressure. To
model uncertainty about change in the environment after the
start of the algorithm, let P(s|t) denote the probability that
state s will obtain at time t. Let U(g, s,t) denote the utility
of stopping an anytime algorithm after time ¢ with a solution
of quality g in state s. In this case, the running time of an
anytime algorithm can be determined prior to its execution,
without monitoring, by solving

arg max Z Z P(q|t)P(s|t)U(s,q,t).

The framework for meta-level control reviewed so far assumes
a one-time decision about how long to run an anytime algo-
rithm is made before the algorithm starts. To allow a run-
time monitor to determine when to stop an anytime algo-
rithm, this framework must be extended in two ways. Sec-
tion 3 discusses sequential prediction: how to condition these
probabilities on information that can be monitored at run-
time. Section 4 discusses sequential decision-making: how a
run-time monitor can determine an improved stopping time
based on information gathered at run-time.

3 Dynamic performance profiles

A standard performance profile that predicts solution quality
as a function of an algorithm’s overall running time is suit-
able for making a one-time decision about how long to run
an algorithm, before the algorithm starts. To take advan-
tage of information gathered by monitoring the progress of
an anytime algorithm, a more informative performance pro-
file is needed that conditions predicted improvement of so-
lution quality on features of the currently available solution
that can be monitored. We call this a dynamic performance

profile.

An obvious approach to constructing a dynamic performance
profile is to condition a run-time prediction of further im-
provement on the quality of the currently available solution.
Let P(q'|g, At) denote the probability that resuming an al-
gorithm for time interval At when the currently available
solution has quality g results in a solution of quality ¢'. For
many anytime algorithms, conditioning a prediction of fu-
ture improvement on the quality of the currently available
solution works well — particularly if solution quality is easily
determined at run-time and is sufficient for predicting fur-
ther improvement in solution quality. (The latter condition
is equivalent to assuming that solution quality satisfies the
Markov property for this prediction problem.) We believe
these conditions can be assumed to hold for many anytime
algorithms, but they do not hold for all. In some cases, the
quality of the currently available solution may not be the best
(or only) predictor of likely improvement. In other cases, it
may not even be possible to determine the quality of the cur-
rently available solution at run-time. We proceed to discuss
some of these complications.

Anytime Algorithms

3.1 Estimating/predicting solution quality at
run-time

How easy it is to determine solution quality at run-time, or
predict improvement in quality based on the quality of the
currently available solution, depends to a great extent on how
solution quality is defined. For example, if solution quality
is defined as the value of an objective function that is it-
eratively improved by an optimization algorithm, solution
quality is very easy to determine at run-time. In the case of
the traveling salesman problem, for example, solution quality
would simply be the length of the currently available tour.
However, solution quality defined in this way may not be the
best predictor of subsequent improvement in solution qual-
ity. This follows from the observation that the optimal value
of an objective function usually differs from one problem in-
stance to the next. For example, the minimum tour length for
one instance of the traveling salesman problem may be 100,
while for another instance of the traveling salesman problem
it may be 250. Solution quality defined simply as tour length
will not distinguish these cases, and so will not be as good a
predictor of subsequent improvement as a definition of solu-
tion quality that takes into account how far the current tour
length is from the optimal tour length.

For just this reason, solution quality is often defined as the
difference between the current value of an objective function
and its optimal value. For combinatorial optimization prob-
lems, solution quality is customarily defined as the “approxi-
mation ratio” of a solution. For cost-minimization problems,
this is Cost(Approzimate solution)/Cost(Optimal solution),
and for value maximization problems, it
is Cost(Optimal solution)/Cost(Approzimate solution). This
definition of solution quality makes possible general claims
about the performance of an algorithm on a class of prob-
lem instances. However, defining solution quality in this way
poses a problem for run-time monitoring: assessing solution
quality requires knowing the optimal solution. This is no
obstacle to using this measure of quality to construct a per-
formance profile for an anytime algorithm, because a perfor-
mance profile can be constructed off-line and the quality of
approximate solutions measured in terms of the quality of the
eventual optimal solution. But a run-time monitor needs to
make a decision based on the approximate solution currently
available, without knowing what the optimal solution will
eventually be. As a result, it cannot know — with certainty
— the actual quality of the approximate solution, if quality
is measured with reference to the optimal solution. In some
cases, it will be possible to bound the degree of approxima-
tion to an optimal solution, but a run-time monitor can only
estimate (probabilistically) where the optimal solution falls
within this bound.

This observation holds for other classes of problems besides
combinatorial optimization problems. For problems that in-
volve estimating a point value, the difference between the es-
timated point value and the true point value can’t be known
until the algorithm has converged to an exact value [6]. For
anytime problem-solvers that rely on abstraction to create
approximate solutions, solution quality may be difficult to
assess for other reasons. For example, it may be difficult for
a run-time monitor to predict the extent of reactive planning
needed to fill in the details of an abstract plan [20].

When a run-time monitor cannot easily determine the quality
of the currently available solution, or when solution quality
itself is not the best predictor of subsequent improvement,
the success of run-time monitoring depends on being able
to design a reliable scheme for estimating/predicting solu-

SIGART Bulletin, Vol. 7, No. 2

tion quality at run-time. It is impossible to specify a general
solution to this problem — it will vary from algorithm to algo-
rithm. However, we can adopt the following general notation.
Let f denote some “feature” of the currently available solu-
tion that is either highly correlated with solution quality, or
else a good predictor of improvement. If improvement in solu-
tion quality does not depend exclusively on this feature (i.e.,
we cannot assume the Markov property), run-time prediction
can be further improved by conditioning on the cumulative
running time of the algorithm, ¢.

Let P(q|f,t, At) denote the probability that resuming an al-
gorithm for time At when the currently available solution
exhibits feature f after running time ¢ results in a solution
of quality q. These probabilities can be determined by sta-
tistical analysis of the behavior of the algorithm. An algo-
rithm’s running time provides probabilistic evidence about
the quality of the currently available solution that supple-
ments the evidence provided by the observed feature. It also
makes possible an important guarantee: conditioning a per-
formance profile on both running time and some feature of
the currently available solution ensures a prediction that is
at least as good as a prediction based on running time alone.

In section 6, we describe a simple example in which this
run-time prediction scheme is used. For that example, the
“feature” that is monitored is the cumulative improvement
in solution quality from the start of the algorithm. Con-
ditioning an estimate/prediction of quality on both cumu-
lative improvement and running time means that both the
amount and slope of improvement are considered, but not
the actual trajectory of improvement. A more accurate es-
timator/predictor might be achieved by conditioning on the
trajectory also, or on other run-time information. For ex-
ample, Raman and Wah [12] predict future improvement in
solution quality based on the observed trajectory of improve-
ment from the start of the algorithm, using nonlinear regres-
sion to make the prediction. But as they note, reliance on
nonlinear regression incurs a substantial run-time overhead.
This suggests a tradeoff between the accuracy of a run-time
estimator/predictor and the overhead it incurs, an issue we
will look at more closely in section 5.

3.2 Predicting environment change

At some length, we have discussed the issues involved in con-
ditioning a prediction of improvement in solution quality on
a run-time monitor’s observation of the progress of an algo-
rithm. Similar issues arise in predicting change in the state of
the environment. These have been well-studied in the liter-
ature on modeling dynamical systems and we do not review
them here. We simply note that most details of the envi-
ronment can be abstracted away and only those that reflect
the degree of time pressure must be modeled. For exam-
ple, we might model time pressure from the environment as
a simple stochastic deadline. As a general notation, we let
P(s'|s, At) denote the probability that the problem state will
be s' after time At if the current problem state is s. This
simple extension of the predictive model of the environment
given in section 2 makes possible dynamic prediction based
on run-time monitoring. In this respect, it is analogous to
our extension of performance profiles.

4 Optimal stopping

Instead of making a single decision about how long to run
an anytime algorithm before it starts, run-time monitoring
involves making a sequence of decisions. Each time an algo-
rithm’s progress is monitored, a decision must be made to

Anytime Algorithms

continue deliberation or stop. Deliberation should continue
as long as the ezpected value of computation (EVC) is posi-
tive, where the expected value of computation is defined as
the expected utility of the solution obtained by letting the
algorithm continue (for at least one more time step and pos-
sibly longer) minus the expected utility of acting immediately
on the current result.

Because exact determination of the EVC requires considering
all possible decisions about whether to continue or stop that
could be made at subsequent time steps, a myopic approxi-
mation of the EVC is often used. Computed myopically, the
EVC is the expected utility of acting on the result that will
be available after continuing the algorithm for exactly one
more time step minus the expected value of acting immedi-
ately on the result currently available. Formally, the myopic
stopping rule is to continue computation as long as this value
is positive,

> P(q'la, AYU(d', £+ At) — U(g, t),
ql

where At represents a single time step. Although a stop-
ping rule that relies on myopic computation of EVC is not
optimal under all circumstances, it can be shown to perform
optimally under some very reasonable assumptions. The fol-
lowing theorem gives a sufficient condition for its optimality.

Theorem 1 Myopic computation of EVC guarantees an op-
timal stopping time if for every time t and quality level q for
which myopic EVC is negative, myopic EVC is also negative
for every time t + At and quality level g + Ag.

Proof: If myopic EVC is positive when the currently avail-
able solution has quality level ¢ at time ¢, continuing the
algorithm for another time step has positive expected value
and is the optimal decision. If myopic EVC is negative when
the currently available solution has quality level g at time ¢,
then any policy for continuing cannot improve expected value
unless there is some time ¢t + At and quality level ¢ + Agq for
which myopic EVC is positive. Because by assumption there
is not, stopping the algorithm is the optimal decision.

The comprehensive value of a result of quality g at time ¢,
U(g,t), can sometimes be expressed as the difference between
two functions,

U(t,q) = Ur(q) — Cost(t),

where Ur(q) is called an intrinsic utility functionand Cost(t)
is the cost of time [14]. Under this separability assumption,
the above theorem has the following corollary.

Corollary 1 Myopic computation of EVC guarantees an op-
timal stopping time if the intrinsic utility function has a non-
increasing slope as a function of quality, and the time cost
function has a non-decreasing slope as a function of time.

The assumption that the intrinsic utility function has a non-
increasing slope is identical to the assumption of Dean and
Wellman that performance profiles have the property of di-
minishing returns. (See [4] page 364.) The assumption that
the time cost function has a non-decreasing slope character-
izes most real-time situations, including those with deadlines
and those in which the cost of time is constant. Therefore,
these conditions for the optimality of the myopic stopping
criterion are very reasonable.

SIGART Bulletin, Vol. 7, No. 2

Nevertheless, there are cases in which reliance on myopic
EVC can lead to a sub-optimal stopping decision. Horvitz
[6] describes a bounded conditioning algorithm for proba-
bilistic inference in belief networks for which myopic EVC
can mislead because expected improvement is “flat” in the
near term but substantial after some number of time steps.
Because myopic EVC gives rise to a premature stopping de-
cision in this case, he suggests various degrees of lookahead
to compute EVC more reliably.

As we pointed out at the beginning of this section, deter-
mining an optimal stopping time by run-time monitoring is
a sequential decision problem. This suggests as an alterna-
tive the use of dynamic programming to compute a stopping
rule that is optimal under all conditions, following the well-
established use of dynamic programming for solving optimal
stopping problems. If utility only depends on solution qual-
ity and computation time, a stopping rule can be found by
optimizing the following value function,

U(g,t) if d = stop,
V(g,t) = max qu P(qllq, At)V (g1, t + At)
d if d = continue

to determine the following policy,

U(g,t) if d = stop,
n(g,t) = arg max qu P(qllq, At)V (g, t + At)
d if d = continue
where At represents a single time step and d is a binary
variable that represents the decision to either stop or con-
tinue the algorithm. The time complexity of the dynamic
programming algorithm is O(|g|?|t|). However, the stopping
rule can be computed off-line, reducing the run-time over-
head of monitoring. (An analogous solution of the stopping
problem can be developed for cases in which utility depends
not only on time and solution quality, but on the state of a
dynamic environment.)

5 Reducing run-time overhead of
monitoring

Although run-time monitoring makes it possible to take full
advantage of the potential for optimizing the value of com-
putation that anytime algorithms afford, it also incurs an
overhead or “cost” — both a design-time overhead for build-
ing the predictive models and profiles needed for dynamic
control, and a run-time overhead for monitoring itself. The
improvement in performance that monitoring makes possible
must be weighed against the overhead it incurs to determine
whether monitoring is worthwhile. We define the ezpected
value of monitoring as the expected utility of a result ob-
tained when a run-time monitor determines an algorithm’s
stopping time minus the expected utility of a result obtained
by allocating a fixed running time without monitoring.

The expected value of monitoring will always be non-negative
if monitoring does not incur a cost. However, it may be neg-
ative otherwise. (This is analogous to the expected value of
information.) Although the run-time overhead for monitor-
ing may be miniscule for some problems, for other problems
it can be significant, especially for problems in which it is dif-
ficult to determine solution quality at run-time without some
complex computation. There are two ways to reduce this run-
time overhead without forgoing monitoring. One is to per-
form as much metareasoning as possible off-line. Horvitz[6]
calls this strategy “compilation of metareasoning” and we
note that using dynamic programming to compute a stopping

Anytime Algorithms

rule off-line is one example of this. Not all of the overhead of
monitoring can be compiled off-line, however.

A second way to reduce the run-time overhead of monitoring
is to adjust the interval at which the algorithm’s progress is
monitored. Assuming periodic monitoring, there should be
an optimal interval for monitoring an algorithm’s progress
that depends on factors such as the cost of monitoring, the
cost of stopping too early or late, and the average overhead in-
curred for monitoring at this interval. Based on these factors,
Russell and Wefald [15] have derived a formula for determin-
ing the optimal interval for evaluating a stopping criterion
in the context of game tree search, although their derivation
makes assumptions (e.g., constant cost for time) that may
not suit other problems.

Another approach to finding a cost-effective monitoring in-
terval is to generalize the dynamic programming framework
described in the previous section so that it determines an
optimal monitoring interval, as well as an optimal stopping
time. Assume that monitoring the quality of the currently
available solution and deciding whether to continue or stop
incurs a cost (or time overhead) of C. Given this cost, an op-
timal policy should specify two decisions for each time step
t and quality level g: how much additional time to run the
algorithm, and whether to monitor at the end of this time
allocation and re-assess whether to continue, or whether to
stop without monitoring. Let At and d denote these two deci-
sions: At represents the additional interval of time to allocate
to the anytime algorithm, and d is a binary variable that rep-
resents whether to monitor at the end of this time allocation
or to stop without monitoring. The variable At makes it
possible to control the time interval between one monitoring
action and the next. The binary variable d makes it possible
to run the algorithm without monitoring; its value is either
stop or monitor. Given this formalization, dynamic program-
ming can be used to find a combined policy for monitoring
and stopping by computing the following value function,

Zq, P(ql|q, At)U(qt, t + At)
_ if d = stop,
Vot =mex | S Plale, AV (it + At) — C

if d = monitor
to determine the following policy,

Eq, P(qgl|g, At)U(gl,t + At)
m(g,t) = arg max if d = stop,
) Atd Eq, P(qgllg, At)V(gl,t + At) - C

if d = monitor

These equations assume that the quality of the currently
available solution can be measured accurately by the monitor.
If that is not possible, a good (but not necessarily optimal)
policy can be found by estimating solution quality based on
some run-time feature f and running time ¢, as discussed in
section 3, and by substituting [f,t] for ¢ in the above equa-
tions. An example that illustrates this is described in the
following section.

The monitoring policies computed by this method have the
interesting property that they recommend monitoring more
frequently near the expected stopping time of an algorithm,
an intuitive strategy. Moreover, the policies are sensitive to
both the cost of monitoring and to how well the quality of
the currently available solution can be estimated by the run-
time monitor. This makes it possible to evaluate a tradeoff
between these two factors. In many cases, there will be more
than one method for estimating a solution’s quality and the
estimate that takes longer to compute will be more accurate.

SIGART Bulletin, Vol. 7, No. 2

quality level | approzimation ratio
5 1.05 — 1.00

1.10 — 1.05

1.20 — 1.10

1.35 — 1.20

1.50 — 1.35

oo — 1.50

O = N W

Table 1: Discretization of solution quality.

Whether the greater accuracy is worth the added time cost
can be answered by computing a monitoring policy for each
method and comparing their expected values to select the
best one. Finally, if monitoring is not cost-effective, the dy-
namic programming algorithm will recommend allocating a
fixed running time without monitoring. Monitoring is only
recommended when it has a positive expected value.

6 Example

To illustrate some of the issues discussed in this paper, we use
as an example a randomized tour improvement algorithm for
solving the traveling salesman problem. This is a local op-
timization algorithm developed by Lin and Kernighan [10]
and also used as an example of an anytime algorithm by Zil-
berstein [19]. Beginning with an initial tour, the algorithm
repeatedly tries to improve the tour by swapping random
paths between cities. For a detailed description of the algo-
rithm, see [10] or [19]. All that is important for this exam-
ple is its representativeness. As an anytime algorithm that
has variance in solution quality over time, it can be used as
a testbed to see whether monitoring can find an improved
stopping time.

We define solution quality as the approximation ratio of a
tour, that is, Length(tour)/Length(optimal tour), which is
discretized into quality levels using Table 1. We define the
time-dependent utility of a solution of quality g at time ¢ by
the function,

U(g, t) = 100q — 20¢,

where the first term on the right hand side represents the
intrinsic utility of a solution and the second term represents
time cost. Making utility a function of solution quality and
time only, and not the state of a dynamic environment, allows
us to focus on monitoring the algorithm’s progress. Letting
one time-step of the algorithm correspond to 0.005 CPU sec-
onds, we compiled a dynamic performance profile for the algo-
rithm by generating and solving a thousand random twelve-
city traveling salesman problems.

Without monitoring, the optimal running time of the algo-
rithm is eight time-steps, with an expected value of 275.3.
Devising a monitoring scheme is difficult because a run-time
monitor cannot precisely measure the quality of the cur-
rently available solution because it does not yet know the
length of an optimal tour. Instead, it must somehow esti-
mate solution quality. We do so based on both the cumula-
tive improvement from the start of the algorithm, measured
as Length(tour)/Length(initial tour) and discretized using
Table 2, and based on the running time of the algorithm.
This is the same scheme for estimating/predicting solution
quality described in section 3.

For this problem, the myopic stopping rule is optimal and
identical to the stopping rule computed by dynamic program-
ming when there is no cost for monitoring. Under this as-
sumption, expected value using this stopping rule is 280.4,
making the expected value of monitoring 5.1. When a mon-

Anytime Algorithms

improvement | percentage reduction in tour
level length relative to initial tour
6 120% — oo
5 100% — 120%
4 80% — 100%
3 60% — 80%
2 40% — 60%
1 20% — 40%
0 0% — 20%

Table 2: Discretization of the cumulative improvement metric
for estimating solution quality.

impr. time-step

level | O 1 2 3 4 5 6 7 8 9
6 1 1 0 0 0 00
5 3 3 2 1 1 0 00
4 4 4 3 3 2 0 00
3 2M 2M 2M 1M 1M 3 2 10
2 3M 2M 2M 2M 2M 1M 1M 1 0
1 3M 3M 3M 2M 2M 1M 0 O 0
0 4M 4M 3M 2M 1M 2

Table 3: Combined policy for monitoring and stopping with
solution quality estimated based on cumulative improvement
and running time. The cost of monitoring is 1.

itoring cost of 1 is included in the optimization problem,
the dynamic programming algorithm computes the combined
policy for monitoring and stopping shown in Table 3. The
number in each cell represents how much additional time to
allocate to the algorithm based on the estimated quality of
the currently available solution, as inferred from cumulative
improvement and running time. The letter M next to a num-
ber indicates a decision to monitor at the end of this time
allocation, and possibly allocate additional running time; if
no M is present, the decision is to stop at the end of this time
allocation without monitoring. A zero indicates a decision to
stop immediately. This policy has an expected value of 278.5,
making the expected value of monitoring 3.2 in this case.

For the tour improvement algorithm, variance in solution
quality is minor and the improved performance due to run-
time monitoring correspondingly small. We plan to apply
this technique to other problems for which variance in solu-
tion quality is larger and the payoff for run-time monitoring
promises to be more significant. However, the fact that this
technique improves utility even when variance is small, so-
lution quality is difficult to estimate at run-time, and mon-
itoring incurs a cost, is strong evidence for its validity and
potential value.

7 Related work

Interest in anytime algorithms as an approach to managing
tradeoffs between solution quality and computation time be-
gan with the work of Dean and Boddy [3][1], Russell and
Wefald [13] [14], and Horvitz [7] [6]. Dean and Boddy coined
the phrases “anytime algorithm” and “performance profile.”
Instead of using run-time monitoring for meta-level control,
they assumed a fixed amount of time is allocated to each any-
time algorithm before it starts. Their work focused on the
problem of scheduling multiple, independent anytime algo-
rithms, which they called deliberation scheduling.

Russell and Wefald [13][14] [15] used run-time monitoring
and a myopic value of computation criterion for meta-level
control of various search algorithms. They focused as much

SIGART Bulletin, Vol. 7, No. 2

on fine-grained control of which search step to take next as
on control of when to halt computation and act.

Many aspects of run-time monitoring explored in this paper
have been studied by Eric Horvitz [6] [7][8], including proba-
bilistic models of algorithm performance similar to what we
call dynamic performance profiles, the use of myopic EVC
as a stopping criterion with various degrees of lookahead for
problems in which myopic EVC can be misleading, and off-
line compilation of metareasoning to reduce run-time over-

head.

Our primary contribution in this paper is the description of
a dynamic programming framework for computing both an
optimal stopping rule and a policy for adjusting the moni-
toring interval to reduce run-time overhead. We have also
contributed a discussion of some complications of estimat-
ing/predicting solution quality at run time, and a theorem
that describes the conditions under which myopic EVC is an
optimal stopping rule.

Zilberstein [19] discusses the problem of monitoring a system
composed of elementary, anytime components. He describes
a scheme for compiling a performance profile for the complete
system based on the performance profiles of anytime compo-
nents. Run-time monitoring can improve performance when
the actual quality of a solution generated by an anytime com-
ponent differs from its expected quality, or when the environ-
ment changes unpredictably after the start of the algorithm.
In either case, a run-time monitor can re-allocate computa-
tion time to anytime components that remain to be executed,
improving the expected utility of the system. Rather than de-
scribe this work in detail, we simply note an analogy to the
problem of monitoring individual anytime algorithms as dis-
cussed in this paper. In both cases, run-time monitoring is an
option when the problem of allocating computation time can
be treated as a sequence of predictions and decisions instead
of a single, once and for all decision.

A cknowledgements

Support for this work was provided in part by the National
Science Foundation under grant number IRI-9409827 and
in part by Rome Laboratory, USAF, under grant number
F30602-95-1-0012. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily represent-
ing the official policies of endorsements, either expressed or
implied, of Rome Laboratory or the U.S. Government.

References
[1] M. Boddy and T. Dean. Deliberation scheduling for prob-

lem solving in time-constrained environments. Artificial
Intelligence 67:245-285, 1994.

[2] J.S. Breese and E.J. Horvitz. Ideal reformulation of be-
lief networks. In Proceedings of the Sizth Conference on

Uncertainty in Artificial Intelligence, pp. 129-143, 1990.

[3] T. Dean and M. Boddy. An analysis of time-dependent
planning. In Proceedings AAAI-88, pp. 49-54, 1988.

[4] T.L. Dean and M.P. Wellman. Planning and Control.
Morgan Kaufman, 1991.

[5] C. Elkan. Incremental, approximate planning: Abduc-
tive default reasoning. In Proceedings of the AAAI Spring

Anytime Algorithms

Symposium on Planning in Uncertain Environments, Palo
Alto, California, 1990.

[6] E.J. Horvitz. Computation and Action Under Bounded
Resources. PhD Thesis, Stanford University, 1990.

[7] E.J. Horvitz; G.F. Cooper; and D.E. Heckerman. Reflec-
tion and action under scarce resources: Theoretical prin-
ciples and empirical study. In Proceedings of the Eleventh
IJCAI pp. 1121-1127, 1989.

[8] E. Horvitz and G. Rutledge. Time-dependent utility and
action under uncertainty. In Proceedings of Seventh Con-
ference on Uncertainty in Artificial Intelligence, pp. 151-
158, 1991.

[9] E.J. Horvitz; H.J. Suermondt; and G.F. Cooper. Bounded
conditioning: Flexible inference for decisions under scarce
resources. In Proceedings of the Fifth Workshop on Uncer-
tainty in Artificial Intelligence, 1989.

[10] S. Lin and B.W. Kernighan. An effective heuristic al-
gorithm for the Traveling Salesman problem. Operations
Research 21:498-516, 1973.

[11] C.J. Paul; A. Acharya; B. Black; and J.K. Strosnider.
Reducing problem-solving variance to improve predictabil-
ity. CACM 34(8):80-93, 1991.

[12] S. Raman and B. Wah (1991). Quality-time tradeoffs in
simulated annealing for VLSI placement. In Proceedings of
the Fifteenth International Computer Software and Appli-
cations Conference.

[13] S. Russell and E. Wefald. On optimal game-tree
search using rational metareasoning. In Proceedings of the
Eleventh IJCAI, pp. 334-340, 1989.

[14] S. Russell and E. Wefald. Principles of metareasoning.
Artificial Intelligence 49:361-395, 1991.

[15] S. Russell and E. Wefald. Do the Right Thing: Studies
in Limited Rationality. The MIT Press, 1991.

[16] S. Shekhar and S. Dutta. Minimizing response times
in real time planning and search. In Proceedings of the
Eleventh IJCAI pp. 238-242, 1989.

[17] K.P. Smith and J.W.S. Liu. Monotonically improv-
ing approximate answers to relational algebra queries.

COMPSAC-89, Orlando, Florida, 1989.

[18] M.P. Wellman and C.-L. Liu. State-space abstraction for
anytime evaluation of probabilistic networks. In Proceed-
ings of the Tenth Conference on Uncertainty in Artificial
Intelligence, pp. 567-574, 1994.

[19] S. Zilberstein Operational Rationality through Compi-
lation of Anytime Algorithms. Ph.D. dissertation, Com-
puter Science Division, University of California at Berke-
ley, 1993.

[20] S. Zilberstein and S. Russell. Anytime sensing, planning

and action: A practical model for robot control. In Pro-
ceedings of the Thirteenth IJCAI, pp. 1402-1407, 1993.

SIGART Bulletin, Vol. 7, No. 2

