Heuristic Search in Cyclic AND/OR Graphs

Eric A. Hansen and Shlomo Zilberstein
Computer Science Department
University of Massachusetts
Ambherst, MA 01003
{hansen,shlomo}@cs.umass.edu

Abstract

Heuristic search algorithms can find solutions that
take the form of a simple path (A*), a tree or an
acyclic graph (AO*). We present a novel generaliza-
tion of heuristic search (called LAO*) that can find
solutions with loops, that is, solutions that take the
form of a cyclic graph. We show that it can be used
to solve Markov decision problems without evaluat-
ing the entire state space, giving it an advantage over
dynamic-programming algorithms such as policy iter-
ation and value iteration as an approach to stochastic
planning.

Introduction

One of the most widely-used frameworks for problem-
solving in artificial intelligence is state-space search. A
state-space search problem is defined by a set of states,
a set of operators that map states to successor states,
a start state, and a set of goal states. The objective
is to find a sequence of operators that transforms the
start state into a goal state and also optimizes some
measure of the cost, or merit, of the solution.

Two well-known heuristic search algorithms for solv-
ing state-space search problems are A* and AO* (Nils-
son 1980). A* finds a solution that takes the form of
a sequence of operators leading from a start state to a
goal state. AO* finds a solution that has a conditional
structure and takes the form of a tree, or more gen-
erally, an acyclic graph. However no heuristic search
algorithm has been developed that can find a solution
that takes the form of a cyclic graph, that is, a solution
with loops.

For many problems that can be formalized in the
state-space search model, it does not make sense for
a solution to contain loops. For example, a loop in a
solution to a theorem-proving problem represents cir-
cular reasoning. A loop in a solution to a problem-
reduction problem represents a failure to reduce it to

Copyright (©1998, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

primitive subproblems. However there are some prob-
lems for which it does make sense for a solution to
contain loops. These include problems that can be
formalized as Markov decision processes (MDPs), a
framework widely used for stochastic planning in arti-
ficial intelligence (Dean et al. 1995; Barto et al. 1985;
Tash and Russell 1994; Dearden and Boutilier 1997).
A stochastic planning problem includes operators (or
actions) that transform a state into one of several possi-
ble successor states, with each possible state transition
occurring with some probability. A solution is usually
cast in the form of a mapping from states to actions
called a policy. A policy is executed by observing the
current state and taking the action prescribed for it.
A solution represented in this way implicitly contains
both branches and loops. Branching is present because
the state that stochastically results from an action de-
termines the next action. Looping is present because
the same state may be revisited under a policy. (As an
example of a plan with a conditional loop, consider an
operator that has its desired effect with probability less
than one and otherwise has no effect; an appropriate
plan might be to repeat the action until it “succeeds.”)

A policy for an MDP can be found using a dy-
namic programming algorithm such as policy iteration
or value iteration. A disadvantage of dynamic pro-
gramming is that it evaluates the entire state space;
in effect, it finds a policy for every possible starting
state. By contrast, heuristic search finds a policy for a
particular starting state and uses an admissible heuris-
tic to focus the search and remove from consideration
regions of the state space that can’t be reached from
the start state by an optimal solution. For problems
with large state spaces, heuristic search has an advan-
tage over dynamic programming because it can find
an optimal solution for a particular start state without
evaluating the entire state space.

This advantage is well-known for problems that can
be solved by A* or AO*. In fact, an important theorem
about the behavior of A* is that (under certain condi-



tions) it evaluates the minimal number of states among
all algorithms that find an optimal solution using the
same heuristic (Dechter and Pear] 1985) and a related
result has been established for AO* (Chakrabarti et al.
1988). In this paper, we generalize heuristic search to
find solutions with loops and show that the resulting
algorithm can solve stochastic planning problems that
are formalized as MDPs without evaluating the entire
state space.

Background

We begin by reviewing AND/OR graphs and the
heuristic search algorithm AQ* for solving problems
formalized as acyclic AND/OR graphs. We then
briefly review MDPs and show that they can be for-
malized as cyclic AND/OR, graphs.

AND/OR graphs

We formalize a state-space search problem as a graph
in which each node represents a problem state and each
arc represents the application of an operator to a state.
Let S denote the set of all possible states; in this paper,
we assume it is finite. Let s € S denote a start state
that corresponds to the root of the graph and let S¢ C
S denote a set of goal states that occur at the leaves
of the graph. Let A denote a finite set of operators
(or actions) and let A(7) denote the set of operators
applicable to state 4.

Following Martelli and Montanari (1978) and Nils-
son (1980), we view an AND/OR graph as a hyper-
graph. Instead of arcs that connect pairs of nodes as
in an ordinary graph, a hypergraph has hyperarcs or k-
connectors that connect a node to a set of k successor
nodes. A k-connector can be interpreted in different
ways. In problem-reduction search, it is interpreted
as the transformation of a problem into k subprob-
lems. Here we interpret a k-connector as a stochastic
operator that transforms a state into one of k possible
successor states. Let p;;(a) denote the probability that
applying operator a to state ¢ results in a transition to
state j. A similar interpretation of AND/OR graphs is
made by Martelli and Montanari (1978) and Pattipati
and Alexandridis (1990), among others.

In AND/OR graph search, a “solution” is a general-
ization of the concept of a path in an ordinary graph.
Starting from the start node, it selects exactly one op-
erator (outgoing connector) for each node. Because a
connector can have multiple successor nodes, a solu-
tion can also be viewed as a subgraph called a solution
graph. Every directed path in the solution graph ter-
minates at a goal node.

We assume a cost function assigns a cost to each
hyperarc; let ¢;(a) denote the cost for the hyperarc that

corresponds to applying operator a to state i. We also
assume each goal state has a cost of zero. The cost of a
solution graph for a given state is defined recursively as
the sum of the cost of applying the operator prescribed
for that state and the weighted sum of the cost of the
solution graphs for each of its successor states, where
the weight is the probability of each state transition.
A minimal-cost solution graph is found by solving the
following system of recursive equations,

.. 0 if 4 is a goal node
f (Z) else minaeA(i) [Ci(a) + ZjES pt](a)f*(J)]

where f* denotes the optimal cost-to-go function and
f*(@) is the optimal cost for state . For an acyclic
AND/OR graph, a special dynamic programming al-
gorithm called backwards induction solves these equa-
tions efficiently by evaluating each state exactly once
in a backwards order from the leaves to the root.

AO*

Unlike dynamic programming, heuristic search can find
an optimal solution graph without evaluating the en-
tire state space. Therefore a graph is not usually sup-
plied explicitly to a search algorithm. We refer to G as
the implicit graph; it is specified implicitly by a start
node s and a successor function. The search algorithm
works on an explicit graph, G', that initially consists
only of the start node. A tip or leaf node of the ex-
plicit graph is said to be terminal if it is a goal node and
nonterminal otherwise. A nonterminal tip node can be
expanded by adding to the explicit graph its outgoing
connectors and any successor nodes not already in the
explicit graph.

Heuristic search works by repeatedly expanding the
best partial solution until a complete solution is found.
A partial solution graph is a subgraph of the explicit
graph that starts at s and selects exactly one hyper-
arc for each node. It is defined similarly to a solution
graph, except that a directed path may end at a non-
terminal tip node. For every nonterminal tip node ¢ of
a partial solution graph, we assume there is an admissi-
ble heuristic estimate h(i) of the minimal-cost solution
graph for it. A heuristic evaluation function h is said to
be admissible if h(i) < f*(i) for every node i. We can
recursively calculate an admissible heuristic estimate
f (i) of the optimal cost of any node ¢ in the explicit
graph as follows:

0 if 7 is a goal node
f(@) = { h(i) if i is a nonterminal tip node

else Mingea(s) [ci(a) + 2 jespij(@) f ()



1. The explicit graph G’ initially consists of the start
node s.

2. Forward search: Expand the best partial solution
graph as follows:

(a) Identify the best partial solution graph and
its nonterminal tip nodes by searching forward
from the start state and following the marked
action for each state.

(b) If the best partial solution graph has no non-
terminal tip nodes, goto 4.

(¢) Else expand some nonterminal tip node n and
add any new successor nodes to G'. For each
new tip node i added to G' by expanding n, if
i is a goal node then f(i) = 0; else f(i) = h(7).

3. Dynamic programming: Update state costs as fol-
lows:

(a) Identify the ancestors in the explicit graph of
expanded node n and create a set Z that con-
tains the expanded node and all its ancestors.

(b) Perform backwards induction on the nodes in
Z by repeating the following steps until Z is
empty.

i. Remove from Z a node i such that no descen-
dent of ¢ in G’ occurs in Z.

it Set f(i) = mingeaq [ci(a) + 3 pis (@) £ ()]
and mark the best action for . (When deter-
mining the best action resolve ties arbitrarily,
but give preference to the currently marked
action.)

(¢) Goto 2.

4. Return the solution graph.

Figure 1: AO*

Figure 1 outlines the algorithm AO* for finding a
minimal-cost solution graph in an acyclic AND/OR
graph. It interleaves forward expansion of the best
partial solution with a dynamic programming step
that uses backwards induction. As with all heuristic
search algorithms, three classes of states can be dis-
tinguished. The implicit graph contains all possible
states. The explicit graph contains all states that are
generated and evaluated at some point in the course of
the search. The solution graph contains those states
that are reachable from the start state when a optimal
solution is followed.

The version of AO* we have outlined is described by
Martelli and Montanari (1973). Others have described

slightly different versions of AO* (Martelli and Mon-
tanari 1978; Nilsson 1980; Bagchi and Mahanti 1983).
One difference is to use a pathmax operation in step
(3bii), as follows:

f(@) := max | f(i), min |ci(a) + Y pij(a)f(j)

aEA(7) ies

If the heuristic is admissible but not consistent, this
ensures that state costs increase monotonically. An-
other difference is to try to limit the number of an-
cestors on which dynamic programming is performed
by not considering the ancestors of a node unless the
cost of the node has changed and the node can be
reached by marked connectors. To simplify exposition,
we have also omitted from our outline of AO* a solve-
labeling procedure that is usually included to improve
efficiency. Briefly, a node is labeled solved if it is a goal
node or if all of its successor nodes are labeled solved.
Labeling nodes as solved improves the efficiency of the
forward search step of AO* because it is unnecessary to
search below a solved node for nonterminal tip nodes.

Markov decision processes

MDPs are widely used in artificial intelligence as a
framework for decision-theoretic planning and rein-
forcement learning. Here we note that an infinite-
horizon MDP can be formalized in a straightforward
way as a cyclic AND/OR graph. The cycles in the
graph make infinite-horizon behavior possible. Let
each node of the graph correspond to a state of the
MDP and let each k-connector correspond to an action
with k£ possible outcomes. The transition probability
function and cost function defined earlier are the same
as those for MDPs. A solution to an MDP generally
takes the form of a mapping from states to actions, 4,
called a policy.

Closely related to heuristic search problems are
a class of infinite-horizon MDPs called stochastic
shortest-path problems (Bertsekas 1995). (The name
reflects an interpretation of costs as arc lengths.)
Stochastic shortest-path problems have a start state
and a set of absorbing states that can be used to model
goal states. A policy is said to be proper if it ensures
the goal state is reached from any state with probabil-
ity 1.0. For a proper policy, the undiscounted infinite-
horizon cost for each state 4 is finite and can be com-
puted by solving the following system of |S| equations
in | S| unknowns:

Fo) = es(8(s)) + Y pis(8(s)) 12 (4)- (1)

jes
In the rest of this paper we make the simplifying as-
sumption that all possible policies are proper. The re-



sults of this paper do not depend on this assumption.
When it cannot be made, other optimality criteria —
such as discounted cost over an infinite horizon or av-
erage cost per transition — can be adopted to ensure
every state has a finite expected cost under every pol-
icy (Bertsekas 1995).

A policy § is said to dominate a policy &' if f°(i) <
1% (i) for every state i. An optimal policy dominates
every other policy and its cost-to-go function, f*, sat-
isfies the following Bellman optimality equation:

f7(0) = min (@) + Y pi(a)f*(j)

a€A(4) =

Policy iteration is a well-known method for solving
infinite-horizon MDPs. After evaluating a policy using
equation (1), it improves it by performing the following
operation for each state i:

0(7) := arg max_ |c¢;(a) + Zpij(a)f‘s(j)

a€A(i) jes

Policy evaluation and policy improvement are repeated
until the policy cannot be improved, which signifies
that it is optimal. Another algorithm for solving MDPs
is value iteration. Each iteration, it improves the esti-
mated cost-to-go function f by performing the follow-
ing operation for each state i,

£i) := max |ei(a) + > pij(a)f(j)

aEA(7) jes

However policy iteration and value iteration must eval-
uate all states to find an optimal policy. Therefore they
can be computationally prohibitive for MDPs with
large state sets. We try to overcome this limitation
by using heuristic search to limit the number of states
that must be evaluated.

LAO*

LAO* is a simple generalization of AO* that can find
solutions with loops. Like AO¥*, it has two principal
steps: a forward search step and a dynamic program-
ming step. The forward search step is the same as in
AO* except that it allows a solution graph to contain
loops. Forward search of a partial solution graph now
terminates at a goal node, a nonterminal tip node, or a
loop back to an already expanded node of the current
partial solution graph.

The problem with allowing a solution graph to con-
tain loops is that the backwards induction algorithm of
the dynamic programming step of AO* can no longer

1. The explicit graph G’ initially consists of the start
node s.

2. Forward search: Expand the best partial solution
graph as follow:.

(a) Identify the best partial solution graph and
its nonterminal tip nodes by searching forward
from the start state and following the marked
action for each state.

(b) If the best partial solution graph has no non-
terminal tip nodes, goto 4.

(¢) Else expand some nonterminal tip node n and
add any new successor nodes to G'. For each
new tip node ¢ added to G' by expanding n, if
i is a goal node then f(i) = 0; else f(i) = h(7).

3. Dynamic programming: Update state costs as fol-
lows:

(a) Identify the ancestors in the explicit graph of
expanded node n and create a set Z that con-
tains the expanded node and all its ancestors.

(b) Perform policy iteration on the nodes in set Z
until convergence or else perform value itera-
tion on the nodes in set Z for one or more it-
erations. Mark the best action for each state.
(When determining the best action resolve ties
arbitrarily, but give preference to the currently
marked action.)

(¢) Goto 2.

4. Return the solution graph.

Figure 2: LAO*

be applied. However dynamic programming can still
be performed by using policy iteration or value itera-
tion algorithms for infinite-horizon MDPs. This simple
generalization of AQ* creates the algorithm LAO* that
is summarized in Figure 2. In the rest of this section
we discuss some of the issues that must be considered
to implement it efficiently.

Policy iteration

We begin by considering the use of policy iteration to
perform the dynamic programming step of LAO*. The
advantage of using policy iteration is that it computes
an exact cost for each node of the explicit graph, based
on the heuristic estimates at the tip nodes.

Policy iteration is performed on the set of nodes that
includes the expanded node and all of its ancestors in
the explicit graph. Some of these nodes may have suc-
cessor nodes that are not in this set of nodes but are



still part of the explicit graph; in other words, policy
iteration is not necessarily (or usually) performed on
the entire explicit graph. The costs of these successor
nodes can be treated as constants in the dynamic pro-
gramming step because they cannot be affected by any
change in the cost of the expanded node or its ances-
tors. The dynamic programming step of AO* exploits
this reasoning as well.

Performing policy iteration on this set of nodes may
change the best action for some states and, by doing
so, change the best partial solution graph; the back-
wards induction algorithm of AO* can have the same
effect. Because multiple iterations of policy iteration
may be necessary to converge, it is important to stress
that policy iteration must be performed on all of the
nodes in this set until convergence. This is necessary
to ensure that all nodes in the explicit graph have ex-
act, admissible costs, including those that are no longer
part of the best partial solution graph.

It is straightforward to show that LAO* shares the
properties of AO* and other heuristic search algo-
rithms. Given an admissible heuristic evaluation func-
tion, all state costs in the explicit graph are admissi-
ble after each step and LAO* converges to an optimal
policy without (necessarily) evaluating the entire state
space.

Theorem 1 If the heuristic evaluation function h is
admissible and policy iteration is used to perform the
dynamic programming step of LAO¥, then:

1. f(i) < f*(i) for every state i, after each step of
LAO*

2. f(i) = f*(i) for every state i of the best solution
graph, when LAO* terminates

3. LAO* terminates after o finite number of iterations

Proof: (1) The proof is by induction. Every node i € G
is assigned an initial heuristic cost estimate and h(i) <
f*(%) by the admissibility of the heuristic evaluation
function. The forward search step expands the best
partial solution graph and does not change the cost of
any nodes and so it is sufficient to consider the dynamic
programming step. We make the inductive assumption
that at the beginning of this step, f(¢) < f*(¢) for every
node ¢ € G. If all the tip nodes of G' have optimal
costs, then all the nontip nodes in G’ must converge to
their optimal costs when policy iteration is performed
on them by the convergence proof for policy iteration.
But by the induction hypothesis, all the tip nodes of
G' have admissible costs. It follows that the nontip
nodes in G' must converge to costs that are as good or
better than optimal when policy iteration is performed
on them only.

(2) The search algorithm terminates when the best
solution graph for s is complete, that is, has no unex-
panded nodes. For every state ¢ in this solution graph,
it is contradictory to suppose f(i) < f*(i) since that
implies a complete solution that is better than opti-
mal. By (1) we know that f(i) < f*(4) for every node
in G'. Therefore f(i) = f*(4).

(3) It is obvious that LAO* terminates after a finite
number of iterations if the implicit graph G is finite, or
equivalently, the number of states in the MDP is finite.
(When the state set is not finite, it may still converge
in some cases.) O

Because policy iteration is initialized with the cur-
rent state costs, it may converge quickly. Neverthe-
less it is a much more time-consuming algorithm than
the backward induction algorithm used by AO*. The
backwards induction algorithm of AO* has only lin-
ear complexity in the size of the set of nodes on which
dynamic programming is performed. Each iteration
of policy iteration has cubic complexity in the size of
this set of nodes and more than one iteration may be
needed for policy iteration to converge.

Value iteration

An alternative is to use value iteration in the dy-
namic programming step of AO*. A single iteration
of value iteration is computationally equivalent to the
backwards induction algorithm of AO* and states can
be evaluated in a backwards order from the expanded
node to the root of the graph to maximize improve-
ment. However the presence of loops means that state
costs are not exact after value iteration. Therefore
LAO* is no longer guaranteed to identify the best par-
tial solution graph or to expand nodes in a best-first
order. This disadvantage may be offset by the im-
proved efficiency of the dynamic programming step,
however, and it is straightforward to show that state
costs remain admissible and converge in the limit to
optimality.

Theorem 2 If the heuristic evaluation function h is
admissible and value iteration is used to perform the
dynamic programming step of LAO*, then:

1. f(@) < f*(@) for every mode i at every point in the
algorithm

2. f(i) converges to f*(i) in the limit, for every node i
of the best solution graph

Proof: (1) The proof is by induction. Every node
1 € (G is assigned an initial heuristic cost estimate and
f(@) = h(i) < f*(7) by the admissibility of the heuristic
evaluation function. We make the inductive hypothe-
sis that at some point in the algorithm, f(i) < f*(3)



for every node ¢ € G. If a value iteration update is
performed for any node 4,

f@) = min |ci(a)+ Y pij(a)f(5)
a€A(1) jes

min | ei(a) + Y _pis(a)f*(5)| = £*(0),

IA

a€A(1) jes

where the last equality restates the Bellman optimality
equation.

(2) Because the graph is finite, LAO* must eventu-
ally find a complete solution graph. In the limit, the
nodes is this solution graph must converge to their ex-
act costs by the convergence proof for value iteration.
The solution graph must be optimal by the admissibil-
ity of the costs of all the nodes in the explicit graph.
O

When value iteration is used, convergence to optimal
state costs is asymptotic. If bounds on optimal state
costs are available, however, it may be possible to de-
tect convergence to an optimal solution after a finite
number of steps by using the bounds to prune actions
that can be proved suboptimal.

Forward search

We briefly mention some ways in which the efficiency
of LAO* can be affected by the forward search step.

As with AO*, the fringe of the best partial solu-
tion graph may contain many unexpanded nodes and
the choice of which to expand next is nondeterminis-
tic. That is, LAO* works correctly no matter what
heuristic is used to select which nonterminal tip node
of the best partial solution graph to expand next. A
well-chosen node selection heuristic can improve per-
formance, however. Possibilities include expanding the
node with the highest probability of being reached from
the start state or expanding the node with the least
cost.

It is also possible to expand several nodes at a
time in the forward search step. This risks expand-
ing some nodes unnecessarily but can improve perfor-
mance when the dynamic programming step is more
expensive than the forward search step.

Like all heuristic search algorithms, the efficiency
of LAO* depends crucially on the heuristic evaluation
function that guides the search. The more accurate
the heuristic, the fewer states need to be evaluated to
find an optimal solution, that is, the smaller the ex-
plicit graph generated by the search algorithm. Dear-
den and Boutilier (1997) describe a form of abstraction
for MDPs that can create admissible heuristics of vary-
ing degrees of accuracy.

An e-admissible version of AO* has been described
that increases the speed of AO* in exchange for a
bounded decrease in solution quality (Chakrabarti et
al. 1988). An analogous e-admissible version of LAO*
may find an e-optimal solution by evaluating a fraction
of the states that LAO* would have to evaluate to find
an optimal solution.

For some problems it may be possible to store all
nodes visited by the best solution graph in memory,
but impossible to store the entire explicit graph in
memory. For such problems, it may be useful to cre-
ate a memory-bounded version of LAO* modeled after
memory-bounded versions of AQ* (Chakrabarti et al.
1989).

Related Work

LAO* closely resembles some recently developed algo-
rithms for solving stochastic planning problems formal-
ized as MDPs.

Barto, Bradtke, and Singh (1995) describe an algo-
rithm called real-time dynamic programming (RTDP)
that generalizes Korf’s learning real-time heuristic
search algorithm (LRTA*) to MDPs (Korf 1990). They
show that under certain conditions, RTDP converges
(asymptotically) to an optimal solution without evalu-
ating the entire state space. This parallels the princi-
pal result of this paper and LAO* and RTDP solve
the same class of problems. The difference is that
RTDP relies on trial-based exploration — a concept
adopted from reinforcement learning — to explore the
state space and determine the order in which to update
state costs. By contrast, LAO* finds a solution by sys-
tematically expanding a search graph in the manner of
heuristic search algorithms such as A* and AO*.

Dean et al. (1995) describe a related algorithm
that performs policy iteration on a subset of the
states of an MDP, using various methods to iden-
tify the most relevant states and gradually increas-
ing the subset until eventual convergence (or until
the algorithm is stopped). The subset of states is
called an enwvelope and a policy defined on this sub-
set of states is called a partial policy. Adding states
to an envelope is very similar to expanding a par-
tial solution in a search graph and the idea of using
a heuristic to evaluate the fringe states of an enve-
lope has also been explored (Tash and Russell 1994;
Dearden and Boutilier 1997). However this algorithm
is presented as a modification of policy iteration (and
value iteration), rather than a generalization of heuris-
tic search. In particular, the assumption is explicitly
made that convergence to an optimal policy requires
evaluating the entire state space.

Both of these algorithms are motivated by the prob-



lem of search (or planning) in real-time and both al-
low it to be interleaved with execution; the time con-
straint on search is often the time before the next ac-
tion needs to be executed. Both Dean et al. (1995) and
Tash and Russell (1994) describe decision-theoretic ap-
proaches to optimizing the value of search in the inter-
val between actions. These algorithms can be viewed
as real-time counterparts of LAO*. In fact, the rela-
tionship between LAO*, the envelope approach to pol-
icy and value iteration, and RTDP mirrors (closely, if
not exactly) the relationship between A*, RTA*, and
LRTA* (Korf 1990). Thus LAO* fills a gap in the tax-
onomy of search algorithms.

RTDP and the related envelope approach to policy
and value iteration represent a solution as a mapping
from states to actions, albeit an incomplete mapping
called a partial policy; this reflects their derivation
from dynamic programming. LAQO¥* represents a so-
lution as a cyclic graph (or equivalently, a finite-state
controller), a representation that generalizes the graph-
ical representations of a solution used by search algo-
rithms like A* (a simple path) and AO* (an acyclic
graph); this reflects its derivation from heuristic search.
The advantage of representing a solution in the form
of a graph is that it exhibits reachability among states
explicitly and makes analysis of reachability easier.

Conclusion

We have presented a simple generalization of AO*,
called LAO*, that can find solutions with loops. It
can be used to solve state-space search problems that
are formalized as cyclic AND/OR graphs, a class of
problems that includes MDPs as an important case.
Like other heuristic search algorithms, LAO* can find
an optimal solution for a given start state without eval-
uating the entire state space.

LAO* has been implemented and tested on several
small MDPs. Future work will study the factors that
affect its efficiency by testing it on various large MDPs.
The principal contribution of this paper is conceptual.
It provides a foundation for recent work on how to
solve MDPs more efficiently by focusing computation
on a subset of states reachable from a start state. Our
derivation of LAO* from AO* clarifies the relationship
of this work to heuristic search. It also suggests that a
rich body of results about heuristic search may be gen-
eralized in an interesting way for use in solving MDPs
more efficiently.

Acknowledgments.

Support for this work was provided in part by the Na-
tional Science Foundation under grants IRI-9624992,
TRI-9634938 and INT-9612092.

References

Bagchi, A. and Mahanti, A. 1983. Admissible Heuris-
tic Search in AND/OR Graphs. Theoretical Computer
Science 24:207-219.

Barto, A.G.; Bradtke, S.J.; and Singh, S.P. 1995.
Learn to Act using Real-Time Dynamic Program-
ming. Artificial Intelligence 72:81-138.

Bertsekas, D. 1995. Dynamic Programming and Op-
timal Control. Athena Scientific, Belmont, MA.

Chakrabarti, P.P.; Ghosh, S.; & DeSarkar, S.C. 1988.
Admissibility of AO* When Heuristics Overestimate.
Artificial Intelligence 34:97-113.

Chakrabarti, P.P; Ghosh, S.; Acharya, A.; & De-
Sarkar, S.C. 1989. Heuristic Search in Restricted
Memory. Artificial Intelligence 47:197-221.

Dean, T.; Kaelbling, L.P.; Kirman, J.; and Nichol-
son, A. 1995. Planning Under Time Constraints in
Stochastic Domains. Artificial Intelligence 76:35-74.

Dearden, R and Boutilier, C. 1997. Abstraction and
Approximate Decision-Theoretic Planning. Artificial
Intelligence 89:219-283.

Dechter, R. and Pearl, J. 1985. Generalized Best-First
Search Strategies and the Optimality of A*. Journal
of the ACM 32:505-536.

Korf, R. 1990. Real-Time Heuristic Search. Artificial
Intelligence 42:189-211.

Martelli, A. and Montanari, U. 1973. Additive
AND/OR Graphs. In Proceedings of the Third Inter-
national Joint Conference on Artificial Intelligence,
1-11. Stanford, CA.

Martelli, A. and Montanari, U. 1978. Optimizing De-
cision Trees Through Heuristically Guided Search.
Communications of the ACM 21(12):1025-1039.

Nilsson, N.J. 1980. Principles of Artificial Intelli-
gence. Palo Alto, CA: Tioga Publishing Company.

Pattipati, K.R. and Alexandridis, M.G. 1990. Appli-
cation of Heuristic Search and Information Theory
to Sequential Fault Diagnosis. IEEE Transactions on
Systems, Man, and Cybernetics 20(4):872—887.

Tash, J. and Russell, S. 1994. Control Strategies for
a Stochastic Planner. In Proceedings of the Twelth
National Conference on Artificial Intelligence, 1079—
1085. Seattle, WA.



