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ABSTRACT
Fair clustering is the process of grouping similar entities together,
while satisfying a mathematically well-de�ned fairness metric as a
constraint. Due to the practical challenges in precise model speci�-
cation, the prescribed fairness constraints are often incomplete and
act as proxies to the intended fairness requirement. Clustering with
proxies may lead to biased outcomes when the system is deployed.
We examine how to identify the intended fairness constraint for
a problem based on limited demonstrations from an expert. Each
demonstration is a clustering over a subset of the data. We present
an algorithm to identify the fairness metric from demonstrations
and generate clusters using existing o�-the-shelf clustering tech-
niques, and analyze its theoretical properties. To extend our ap-
proach to novel fairness metrics for which clustering algorithms
do not currently exist, we present a greedy method for clustering.
Additionally, we investigate how to generate interpretable solu-
tions using our approach. Empirical evaluation on three real-world
datasets demonstrates the e�ectiveness of our approach in quickly
identifying the underlying fairness and interpretability constraints,
which are then used to generate fair and interpretable clusters.

CCS CONCEPTS
•Computingmethodologies!Cluster analysis; •Mathemat-
ics of computing!Maximum likelihood estimation.
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1 INTRODUCTION
Graph clustering is increasingly used for decision making in high-
impact applications such as infrastructure development [27], health
care [25], and criminal justice [4]. These domains involve highly
consequential decisions and it is important to ensure that the gener-
ated solutions are unbiased. Fair clustering is the process by which
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similar nodes are grouped together, while satisfying a given fairness
constraint [14]. Prior works on fair clustering focus on designing ef-
�cient algorithms to satisfy a given fairness metric [3, 5, 14, 20, 30].
These approaches assume that the speci�ed fairness metric is com-
plete and accurate. With the increased growth in the number of
ways to de�ne and measure fairness, a key challenge for system
designers is to accurately specify the fairness metric for a problem.

Due to the practical challenges in the precise speci�cation of
fairness metrics and the complexity of machine learning models,
the system’s objective function and constraints are often tweaked
in the development phase until it produces the desired behavior on
a small subset of the data. This approach may result in inadvertent,
incomplete speci�cation of fairness metric that acts as a proxy to
the intended metric. Clustering with incompletely speci�ed fairness
metrics may lead to undesirable consequences when deployed. It is
challenging to identify the proxies during system design due to the
nuances in the fairness de�nitions and unstated assumptions. Two
similar fairness metrics that produce similar solutions during the
design and initial testing may generate di�erent solutions that are
unfair in di�erent ways to di�erent groups, when deployed.

For example in Figure 1, the designer inadvertently speci�es an
incomplete fairness metric and assumes the system will behave as
intended when deployed. This unintentional incomplete speci�ca-
tion is not discovered during the initial testing since the generated
results align with that of the intended metric on the training data,
such as sample data from one city. Consequently, the system may
generate biased solution when deployed in a di�erent region, due
to demographic shift. Thus, design decisions that seem innocuous
during initial testing may have harmful impacts when the system is
widely deployed. While the di�culty in selecting a fairness metric
for a given problem is acknowledged [31], there exists no principled
approach to address this meta-problem. How to correctly identify the
fairness metric that the designer intends to optimize for a problem?

Wepresent an approach that generates fair clusters by learning to
identify the intended fairness metric using limited demonstrations
from an oracle. It is assumed that there exists a true clustering
with the intended fairness metrics, which are initially unknown.
Each demonstration is a sample from the true clusters, providing
information about a subset of the nodes in the dataset. Given a
�nite number of expert demonstrations, our solution approach
�rst clusters the demonstrations to infer the likelihood of each
candidate constraint and then generates clusters using the most
likely constraint. By maintaining a distribution over the candidate
metrics and updating it based on the demonstrations, the intended
clusters can be recovered since demonstrations are i.i.d. The nodes
in a demonstration are selected by the expert, abstracted as an oracle.
This is in contrast to querying an oracle where the algorithm selects
the nodes to query and the oracle responds if they belong to the
same cluster or not. When the oracle is a human, demonstrations



(a) Ideal setting

(b) Biased outcome due to incomplete speci�cation

Figure 1: An illustration of incomplete speci�cation of fairness metric leading to biased output—unequal distribution of green
and blue nodes in each cluster—when deployed.

are easier to collect rather than querying for pairs of nodes, which
require constant oversight.

While inferring the intended fairness metric is critical to mini-
mize the undesirable behavior of the system, the ability of an end
user to evaluate a deployed system for fairness and identify when to
trust the system hinges on the interpretability of the results. Though
clustering results are expected to be inherently interpretable, the
end user may not be able to identify clear patterns when clustering
with a large number of features [38]. While the existing literature
has studied fair clustering and interpretable clustering indepen-
dently [14, 38], to the best of our knowledge, there exists no ap-
proach to generate clusters that are both fair and interpretable. We
show that our solution approach can generate fair and interpretable
clusters by inferring both fairness and interpretability constraints,
based on limited demonstrations.

Our primary contributions are as follows: (1) formalizing the
problem of learning to generate fair clusters from demonstrations
(Section 3); (2) presenting two algorithms to identify the fairness
constraints for clustering, generate fair clusters, and analyzing
their theoretical guarantees (Sections 4 and 5); and (3) empirically
demonstrating the e�ectiveness of our approach in identifying the
clustering constraints on three data sets, and using our approach
to generate fair and interpretable clusters (Section 6).

2 BACKGROUND AND RELATEDWORK
We present a brief overview of centroid-based clustering, fairness
in machine learning, and learning from human demonstrations.

K-center Clustering. It is one of the most widely studied ob-
jectives in the clustering literature [42]. Let H =G(V ,d) be a graph

with V = {�1,�2, . . . ,�n } denoting a set of n nodes, along with a
pairwise distance metric d :V ⇥ V !R. The nodes are described
by features values, F . Given a graph instance H and an integer k ,
the goal is to identify k nodes as cluster centers (say S , |S | = k) and
assign each node to the cluster center such that the maximum dis-
tance of any node from its cluster center is minimized. The output
is a set of clusters C= {C1,C2, . . . ,Ck }. The clustering assignment
function is de�ned by � : V ! [k] and the nodes assigned to a
cluster Ci are {� 2 V |� (�) = i}. The objective value is calculated
as:

okC (H ,C) = max
� 2V

min
s 2S

d(�, s).

A simple greedy algorithm provides a 2-approximation for the k-
center problem and it is NP-hard to �nd a better approximation
factor [42]. The greedy algorithm selects the �rst center randomly
and iteratively chooses the farthest point as the subsequent center.

Fairness in Machine Learning. The existing literature on fair-
ness in machine learning can be broadly categorized into two lines
of work: de�ning notions of fairness and designing fair algorithms.
Various notions of fairness have been studied by researchers in
di�erent �elds such as AI, Economics, Law, Philosophy, and Public
Policy [7–9, 14, 20, 36, 41, 43]. The two commonly studied fairness
criteria are as follows.

• Group fairness ensures the outcome distribution is the same
for all groups of interest [14, 20, 43]. This is measured using
metrics such as disparate impact [18] and statistical par-
ity [29, 43] including conditional statistical parity, predictive
parity, false positive error rates, and false negative error
rates.



• Individual fairness ensures that any two individuals with the
same attributes are not discriminated [5, 17, 28].

There has been an increased focus on studying causal notions of
interventional fairness [13, 23, 37, 40] that prohibit the sensitive
attributes from a�ecting the outcome. Given a mathematically well-
de�ned fairness criteria, a fair algorithm produces outputs that
are aligned with the given fairness de�nition. Examples include
fair clustering [3, 5, 14, 30], fair ranking [11], and fair voting [10].
Although these works have laid vital ground work to assure fairness
in some settings, much of the e�orts in designing fair algorithms
have focused on the algorithm’s performance—e�ciency, scalability,
and providing theoretical guarantees. There is very little e�ort,
if any, at the meta-level: designing algorithms that can identify
a suitable fairness metric for a clustering problem, given a set
of candidate metrics. There has been recent focus on learning a
metric [28] or a representation that ensures fairness with respect
to classi�cation tasks [24, 26]. It is not straightforward to extend
these fair classi�cation techniques to fair clustering because the
setting and objectives are di�erent. This is further complicated by
the lack of ground truth and NP-hardness of clustering. Therefore,
it is critical to develop techniques to infer metrics for fair clustering.

Fair Clustering. Fair clustering approaches generate clusters
that maximize the clustering objective value, while satisfying the
given fairness requirement [2, 3, 5, 7, 14, 30]. The commonly consid-
ered fairness metrics in clustering are group fairness [14], individual
fairness [28, 33], and distributional fairness [5]. These approaches
require exact speci�cation of fairness metrics a priori and generate
fair clusters either by modifying the input graph or use the fairness
metrics as constraints and solve it as a linear optimization.

Interpretable Clustering. Interpretable clustering is the pro-
cess of generating clusters such that it is easy to identify patterns
in the data for the end user. A recent approach to generate in-
terpretable clusters maximizes the homogeneity of the nodes in
each cluster, with respect to prede�ned features of interest to the
user [38]. The problem is solved as a multi-objective clustering
problem where both interpretability and the k-center objective
value are optimized. Other notions of interpretable clustering have
been studied in [12, 15, 32]. While both fairness and interpretability
are typically investigated independently, the ability to evaluate the
system for fairness violations often relies on its interpretability.

Clustering with an Oracle. A common existing approach to
use additional knowledge from an oracle for clustering involves
queries of the form ‘do nodesu and� belong to the same cluster?’ [6,
19, 21, 34, 35, 44]. Our approach is di�erent from the oracle-based
clustering in the followingmanner. First, in our approach, the oracle
selects the nodes and determines what information is revealed.
Second, the oracle provides information potentially about a subset
of nodes, instead of pairwise relationships.

Learning from Demonstration. Learning from demonstration
is a type of apprenticeship learning, where the learner learns by
observing an expert (often a human) performing the task [1]. The
learner tries to mimic the expert’s behavior by observing the demon-
strations and generalizing it to unseen situations. Learning from

demonstration is a popular approach used to teach robots to com-
plete a task [1] or avoid the negative side e�ects of their actions [39].

Likelihood Estimation. Maximum likelihood estimation (MLE)
is a statistical method to estimate the parameters of a probability
distribution by maximizing the likelihood function, such that the
observed data are most probable under the assumed model [45].
Intuitively, it is a search problem in the parameter space to identify
a set of parameters, for the model, that best �t the observed data.
The maximum likelihood estimate is the point in the parameter
space that maximizes the likelihood function.

3 PROBLEM FORMULATION
Problem Statement: Let G = hV ,di be the input graph with
nodes/vertices V and distance metric d , and let o denote the clus-
tering objective. Given a �nite set of candidate fairness metrics,
denoted by �, and a �nite set of clustering demonstrations, denoted
by �, the goal is to identify a fairness metric �F 2 � required to
be satis�ed by the clusters when optimizing objective o.

We present learning to cluster from demonstrations (LCD), an
approach to infer �F using �. LCD is introduced and discussed in
the context of fair clustering but it is a generic approach that can be
used to infer any clustering constraint. LCD can also handle the case
of clustering with multiple fairness metrics by simply considering
� to be the power set over possible candidate metrics.

Clustering demonstrations: LCD relies on the availability of
clustering demonstrations by an expert. It is relatively easier to
gather demonstrations from a human expert than querying for
pairs of nodes, which requires constant oversight or availability to
answer the queries.

D��������� 1. A clustering demonstration � provides the inter-
cluster and intra-cluster links for a subset of nodes from the dataset
T ✓V , |T | � 2, by grouping them according to the underlying objective
function and constraints, �= {C1, . . . ,Ct } with each Ci denoting a
cluster such that [iCi = T and t  k .

To generate a demonstration, the oracle selects a subset of nodes
and then clusters it, in accordance with the true clusters. The fol-
lowing assumption ensures that demonstrations are i.i.d and the
expert is not acting as an adversary.

A��������� 1. The nodes in each demonstration are randomly se-
lected and clustered according to the ground-truth fairness constraints.

Therefore, a demonstration � is a sample of the underlying clus-
tering, revealing the relationship between a subset of the nodes.
However the relationship between distinct nodes in successive
demonstrations is unknown. We illustrate this with an example. Con-
sider seven nodes {u1, . . . ,u7} whose true but initially unknown
clustering is C⇤1 = {u1,u2,u3}, C⇤2 = {u4,u5}, and C⇤3 = {u6,u7}.
Let �1 = {(u1,u2), (u4)} and �2 = {(u3), (u5), (u6)} denote two suc-
cessive demonstrations. Demonstration �1 shows that u1,u2 are
in the same cluster, and u4 is in a separate cluster. Demonstration
�2 shows that u3, u5 and u6 are in di�erent clusters. At the end of
�1 and �2, it is not clear whether u1,u2 and u3 belong to the same
cluster.

D��������� 2. Globally informative demonstration provides
the true cluster a�liation of a subset of nodes, T ✓ V , and is denoted



by �� = {hu1,� (u1)i, . . . , hut ,� (ut )i}, 8ui 2 T with � (u) indicating
the cluster a�liation of node u.

Globally informative demonstration provides information about
the true cluster a�liation (cluster ID) of the nodes, which is used
to retrieve the inter-cluster and intra-cluster links between the
nodes and form clusters {C1, . . . ,Ct } with t  k . The informa-
tion provided by a single globally informative demonstration is
the same as a regular clustering demonstration. However, glob-
ally informative demonstrations facilitate cross-referencing the
cluster a�liations across demonstrations, overcoming the draw-
back of general clustering demonstration. Consider the example
with global demonstrations �1 = {hu1, 1i, hu2, 1i, hu4, 2i} and �2 =
{hu3, 1i, hu5, 2i, hu6, 3i}. Then we know thatC⇤1 = {u1,u2,u3}. This
subtle but important distinction accelerates the identi�cation of
fairness constraints.

3.1 Fairness and Interpretability Constraints
In the rest of the paper, we focus on inferring the following con-
straints, with constraint thresholds de�ned below.

Disparate impact or group fairness (�GF ). This commonly
studied fairness metric requires the fraction of nodes belonging
to all groups, characterized by a sensitive feature, to have a fair
representation in each cluster. Let the sensitive feature takes two
values—Red or Blue, with each node assigned one of the two colors.
This constraint requires the fraction of red and blue nodes in a
cluster to be within [� , �] where � , � 2 [0, 1] are called constraint
thresholds [7, 14].

Equal representation (�EQ ). This fairness constraint enforces
equal distribution of nodes with a speci�c feature value, across
clusters. An example is requiring all clusters to have equal number
of nodes with the feature value ‘Red’. This clustering constraint
has been particularly useful in team formation settings, where the
resources are �xed and certain colored nodes need to be distributed
equally among teams (clusters). More formally, let �i denote the
number of nodes with feature value � in cluster Ci . Constraint
�EQ requires �i = � j . Restricting all nodes of feature value � to
be distributed equally may be very strict for some applications. A
generalization of this constraint requires the distribution ratio to
be greater than a pre-de�ned threshold � , �i� j > � , for every pair
of clusters [16, 22]. This ratio captures the relative distribution of
�-valued nodes across the clusters.

Interpretability (�I C ). This constraint considers a speci�c fea-
ture of interest (say ‘Color’) and requires that all clusters are homog-
enized according to the considered feature. The homogeneity of a

Symbol Formula Parameter Reference

�GF Ratio of each feature value 2 [� , �] � , � [7, 14]

�EQ Relative distribution of a speci�c feature value � [16, 22]

�IC Homogeneity of clusters � [38]

Table 1: Candidate fairness and interpretable constraints (�).

cluster with respect to a feature f is characterized by the fraction
of nodes of a cluster that have same feature value for the input
feature. For example, consider a cluster with 7 blue nodes, 2 red
nodes and 1 green colored node. Then the homogeneity of the clus-
ter with respect to the feature ‘color’ and feature value ‘blue’ is 0.7.
Generating interpretable clusters requires satisfying a homogeneity
threshold �— each cluster is required to have at least � fraction of
nodes with respect to f [38].

These constraints, described by a feature f and a threshold � , are
summarized in Table 1. Given the set of candidate constraints � and
demonstrations �, LCD aims to identify the constraint, along with
its feature and corresponding threshold, that has the maximum
likelihood.

4 SOLUTION APPROACH
We begin by describing a naive approach to infer the constraint
thresholds and discussing its limitations. We then propose an al-
gorithm that infers the constraint threshold and generates clusters
using existing clustering algorithms. To extend our approach to
handle fairness metrics that are not currently supported by the
existing algorithms, we present a greedy clustering approach.

4.1 Naive algorithm
A naive approach to infer the clustering constraint from a given
set of demonstrations � is to exhaustively generate all possible
clusterings for each type of constraint, its corresponding feature,
and threshold. Among these clusterings, the most likely set of clus-
ters correspond to the one having maximum conformance with the
demonstrations �. This approach is highly e�ective in identifying
the desired set of clusters but does not scale, given that the fairness
constraint threshold can take in�nite values. For example, the dis-
parate impact constraint �GF take two parameters � , � as input,
which can take any value in the range [0, 1]. To e�ciently infer the
constraint, we build on the following observations.

• k-center clustering (and centroid-based clustering in gen-
eral) aims to minimize the maximum distance of any node
from the cluster center. Therefore, it is very unlikely that a
particular node is assigned to the farthest center.

• Our problem can be modeled as a likelihood estimation prob-
lem, where the most likely constraint is expected to corre-
spond to the ground truth constraint.

Given a clusterC , we can estimate the most likely threshold ofC
with respect to a constraint, by following the procedure discussed
in the previous section. For example, if a cluster has 3 red nodes
and 5 blue nodes, we can infer that the fraction of nodes of each
color is at least min(3/8, 5/8). Using this constraint threshold esti-
mation, a simple approach is to estimate the likelihood of di�erent
clustering constraints by considering each demonstration as an
independent set of clusters and calculate threshold with respect
to each constraint over these clusters. A major drawback of this
approach is that a single clustering demonstration generally does
not contain representation from all k clusters and feature values for
the considered feature. This may mislead the likelihood estimation
when a demonstration considered in isolation.



Figure 2: Overview of solution approach.

Algorithm 1Maximum Likelihood Constraint
Input: Demos �, Nodes V , Features of interest F
Output: Clusters C
1: for � 2 � do
2: C  C [ {�}
3: C  ConstructClusters(�)
4: while |C| > k do
5: C  MergeClosest(C)
6: T (�, f ) 0,8� 2 �, f 2 F
7: for � 2 �, f 2 F do
8: T (�, f ) CalculateThreshold(C,�, f )
9: for (�, f ) 2 T do
10: C�,f  C������(�, f ,V )
11: L�,f  Likelihood(C�,f ,�)
12: (�, f ) argmax(L�,f )
13: Return the clustering corresponding (�, f )

E������ 1. Consider an optimal clustering for �GF , denoted
by C1 = {r1, r2,b1,b2} and C2 = {r3,b3}, where r1, r2, r3 are the
red nodes and b1,b2,b3 are blue colored nodes. Suppose one of the
demonstration is � = {(r1, r2), (r3)}. Based on this demonstration, the
inferred constraint is �I C with � = 1, which incorrectly indicates
that all the nodes in a cluster have the same color.

4.2 Our Algorithm
We present Algorithm 1 that clusters the given demonstrations and
processes these clusters to infer the most likely constraint and its
parameter values (feature and threshold). Figure 2 presents the high
level architecture of our proposed technique. Given a collection
of demonstrations generated by an expert, our algorithm greedily
merges them to generate k clusters. These clusters are then used to
calculate the likelihood of each fairness constraint and infers the
clustering with maximum likelihood.

Algorithm 1 proceeds in two phases. In the �rst phase (Lines 1-5),
the algorithm forms k clusters of the demonstrations �. This phase
initializes a clustering C over the set of nodes in demonstrations �
(ConstructClusters(�)) which correspond to the di�erent clus-
ters identi�ed by the expert. Note that the set C may contain more
than k clusters. In that case, we greedily merge the closest pair
of clusters until k clusters have been identi�ed. The distance be-
tween any pair of clusters Ci ,Cj 2 C is measured as the maximum
distance between any pair of nodes in Ci and Cj :

d(C1,C2) = max
u 2C1,� 2C2

d(u,�).

In the second phase (Lines 6-12), the identi�ed clusters C are
processed to calculate the most likely threshold with respect to
each feature and constraint (denoted byT ). The identi�ed threshold
is used to generate a set of k clusters on the original dataset V
for each hconstraint, featurei pair. At the end of this step, there
are |F | ⇥ |� | clusterings, with one of them corresponding to the
intended set of clusters.

To identify the set of clusters with maximum likelihood (L),
we calculate the accuracy of each clustering with respect to the
input demonstrations and return the set of clusters that have the
highest accuracy. The accuracy of a set of clusters C is calculated by
labeling each pair of nodes as intra-cluster or inter-cluster, and then
measuring the fraction of pairs that have same labels according
to C and �. The accuracy estimate of the clusters C captures the
likelihood of a particular constraint.

Complexity. The �rst phase of Algorithm 1 is initialized with
O(|�|) demonstrations and iteratively reduced to k clusters. In each
iteration, it calculates the distance between pairs of clusters, re-
sulting in O(|�2 |) run time. The second phase considers all combi-
nations of constraint and features, thereby performing clustering
|F | ⇥ |� | times where F denotes the set of features for each node.
Therefore, the run time complexity of Algorithm 1 to calculate clus-
ters over the demonstrations isO(log3 n) and it takesO(n |F | |� |) to
construct clusters and calculate likelihood.

Algorithm 1 identi�es the optimal set of clusters and the maxi-
mum likelihood constraints for a given set of demonstrations, as-
suming that a clustering technique exists for an input constraint. We
now present a greedy algorithm that does not rely on the clustering
technique and greedily generates the set of clusters with maximum
likelihood.

4.3 Greedy Algorithm for Novel Metrics
To handle the fairness objectives for which fair clustering algo-
rithms do not currently exist, we present a greedy algorithm that
generates k clusters without assuming any knowledge about the
clustering algorithm for the input constraints.

Our approach is outlined in Algorithm 2. Given a collection of
demonstrations � and vertices V , the algorithm proceeds in two
phases. The �rst phase of Algorithm 2 (Lines 1-5) is similar to that
of Algorithm 1, where all nodes are initialized as singleton clusters
and all nodes that are grouped together in� are merged. The closest
pair of clusters in C are sequentially merged until k clusters have
been identi�ed. Let C denote the �nal set of k clusters.

The second phase (Lines 6-10) begins with estimating the con-
straint threshold (T ) over the demonstrations, as in Algorithm 1.



Algorithm 2 Greedy Algorithm for Novel Metrics
Input: Demos �, Nodes V , Features of interest F
Output: Clusters C
1: for � 2 V do
2: C  C [ {�}
3: C  ConstructClusters(�)
4: while |C| > k do
5: C  MergeClosest(C)
6: T  Calculate constraint threshold of each constraint over the

demonstrations �
7: for (�, f ) 2 T do
8: Modify C greedily to satisfy the constraint � with respect

to feature f
9: L�,f  Likelihood(C�,f ,�)
10: Return the clustering corresponding argmax(L�,f )

The estimated threshold is used to greedily post-process the clusters
C according to each constraint. This greedy processing transfers
the nodes from one cluster to another, following the constraint
requirements and is similar to local search techniques that move
nodes between clusters to satisfy a constraint. At the end of this
phase, there are |F | ⇥ |� | di�erent sets of clusters, with each opti-
mizing a di�erent fairness constraint. The clustering that has the
highest likelihood with the input demonstrations is returned as
the �nal set of clusters. The likelihood is estimated in terms of the
accuracy of pairwise intra-cluster and inter-cluster labels.

5 THEORETICAL ANALYSIS
In this section, we analyze the e�ectiveness of Algorithm 1 to
identify the constraints even when the oracle presents �(logn)
demonstrations, where n = |V |. We �rst show that the estimated
constraint is accurate with a high probability under the assumption
that the oracle chooses nodes uniformly at random. We then extend
the analysis to settings where the presented demonstrations are
biased towards speci�c clusters. This analysis assumes that each
demonstration � 2 � has constant size1.

Let Ṽ denote the set of nodes that have been clustered in atleast
one of the demonstrations. Lemma 3 shows that the sample Ṽ
contains �(logn) nodes from a cluster C⇤ whenever |C⇤ | � n

k .

L���� 3. Consider a random sample Ṽ ✓ V such that |Ṽ | �
16 k logn and each node in Ṽ is chosen uniformly at random, then
|Ṽ \C⇤ | > 8 logn, 8|C⇤ | � n

k with a probability of 1 � 1/n.

P����. LetX� be an indicator variable such thatX� = 1 if� 2 Ṽ
and 0 otherwise. Since, each node � is chosen uniformly at random,
Pr [� is chosen] = |Ṽ |

n . LetC⇤ denote a cluster such that |C⇤ | � n/k .
Therefore,

E
⇥
|Ṽ \C⇤ |

⇤
=

|Ṽ |
n

|C⇤ | � 16 logn.

Using Cherno� bound,
Pr [|Ṽ \C⇤ |  1

2 µ] < e�µ/8 = 1
n2 where µ = E[|Ṽ \C⇤ |]

Therefore,
|Ṽ \C⇤ | > 8 logn with a probability of 1 � 1

n2 . Performing a union

1 Our proofs extend to the setting where demonstration size is �(1) too.

bound over all clusters, we get that |Ṽ \C⇤ | > 8 logn holds for all
C⇤ such that |C⇤ | � n/k with probability of atleast 1 � 1

n . ⇤

Consider a set of ground truth clusters, C⇤ = {C⇤1 , . . . ,C⇤k }, such
that 8|C⇤i | satisfy one of the clustering constraint � 2 �. This
means that 9i such that |C⇤i | �

n
k . For the next part of the proof, we

will consider this C⇤i to analyze the quality of estimated constraint
threshold.

L���� 4. Suppose the optimal cluster C⇤i satis�es the constraint,
�GF with parameters [� , �] and |Ṽ \C⇤i | = �(logn), then the esti-
mated threshold on processing |Ṽ \C⇤i | is [�(1 � �), �(1 + �)] with a
high probability.

P����. Suppose the optimal fairness constraint �GF considers
a feature f with parameters [� , �]. Let A = {a1, . . . ,at } denote
the domain of values for the feature f . According to the fairness
constraint, the subset of C⇤i that has feature value aj ,8j is within a
fraction [� , �]. Suppose the fraction of nodes with feature value ai
be �i .

We claim that the fraction of nodes with feature �i in the sample
Ṽ \C⇤ is within [�i (1��),�i (1+�)] with a high probability, where
� is a small constant. Let X� denote a binary random variable such
that X� is one if � is present in the sample Ṽ and 0 otherwise. The
expected number of nodes that have feature �i and belong to the set

Ṽ \C⇤i is
�i |C⇤i | |Ṽ |

n = �(logn). Following the proof of Lemma 3 and
using Cherno� bound, we get that the number of nodes with value
aj is within a factor of [(1 � �/2), (1 + �/2)] of the expected value
with a high probability. Additionally, the expected number of nodes

that belong to the sample |C⇤i \ Ṽ | = |C⇤i | |Ṽ |
n and the number of

nodes is within a factor of [(1� �
2 ), (1+ �

2 )] with a high probability.
Therefore, the ratio of node that have feature value ai and belong

to the sample Ṽ \C⇤i is always within a factor of
h
1��/2
1+�/2 ,

1+�/2
1��/2

i
⇠

[1 � �, 1 + �] for small values of � . Taking a union bound over all
feature values, we guarantee that the estimated parameter is within
a factor of [1 � �, 1 + �] with a high probability. ⇤

L���� 5. Suppose the optimal cluster C⇤i satis�es the constraint,
�IC with parameter � (some constant) and |Ṽ \C⇤i | = �(logn), then
the estimated threshold on processing |Ṽ \C⇤i | is [�(1 � �), �(1 + �)]
with a high probability.

P����. Suppose the optimal cluster C⇤i satis�es �IC with pa-
rameter � with respect to a feature value � . Therefore, � fraction
of the nodes inC⇤i have the feature value � . To analyze the fraction
of nodes of feature value � , we de�ne binary random variable X�
for each � such that X� = 1 if � 2 Ṽ and 0 otherwise. The ex-
pected number of nodes with feature value � in the sample Ṽ \C⇤i
is � |C⇤i | |Ṽ |

n . Following the analysis of Lemma 4, we get that the
fraction of nodes of color � is within a factor of [�(1 � �), �(1 + �)]
with a high probability. ⇤

L���� 6. Suppose the optimal cluster C⇤i satis�es the constraint,
�EQ with parameter � and |Ṽ \C⇤i | = �(logn), then the estimated
threshold on processing |Ṽ \C⇤i | is [�(1 � �), �(1 + �)] with a high
probability.



P����. This analysis is similar to that of Lemma 5. ⇤

Lemmas 4, 5 and 6 show that the estimated parameter from a
cluster C⇤i with respect to the considered fairness constraints is
within a factor of [(1 � �), (1 + �)] of the true constraint threshold
with a high probability. Using these results, we prove the following
theorem.

T������ 7. Given a collection of nodes V and randomly chosen
globally informative demonstrations � = �(logn) such that each
demonstration reveals the true cluster a�liation of a constant number
of records, then the optimal cluster constraint is identi�ed within a
multiplicative factor of [(1 � �), (1 + �)] with a high probability.

P����. Let � denote a collection of globally informative demon-
strations such that |�| = �(logn) and let Ṽ = [�� 2��� . Using
Lemma 3, we know that Ṽ \ C⇤i =�(logn) for all C⇤i containing
�(n) nodes and therefore, using Lemmas 4, 5 and 6 we are guar-
anteed to estimate the correct threshold for the cluster C⇤i . Hence,
Algorithm 1 correctly estimates the constraint with maximum like-
lihood with �(logn) globally informative demonstrations. ⇤

R����� 8. In this section, the constants in � notation would de-
pend on the number of features |F| and number of fairness constraints
|� |. We do not optimize for these constants because Algorithm 1
empirically converges in less than 2 logn demonstrations.

We extend the proof of Theorem 7 to the setting where the
demonstrations are not globally informative but the ground truth
clusters satisfy an interesting property, similar to the � -margin
property studied in prior work [6]. We �rst de�ne the margin
property. Let Ṽ denote a subset of nodes and C⇤ denote the set of
clusters corresponding optimal constraint. The set Ṽ is considered
to satisfy margin property if d(u,x) > d(u,�) where u,� 2 C⇤i \ Ṽ
and x 2 Ṽ \C⇤i .

T������ 9. Given a collection of nodes V and randomly chosen
demonstrations � = �(logn) such that each demonstration reveals
the clustering over a subset of nodes, then the optimal cluster constraint
is identi�ed within a multiplicative factor of [(1 � �), (1 + �)] with
a high probability if the sampled nodes [�2�� satisfy the margin
property.

P����. Let � denote a collection of demonstrations such that
|�| = �(logn) and let Ṽ = [�2��. Using Lemma 3, we know
that Ṽ \ C⇤i = �(logn) for all C⇤i containing �(n) nodes. This
guarantees that we have �(logn) nodes sampled from C⇤i but we
may not have merged all these nodes to form a single cluster. In
order to show that the nodes present in merged cluster (after Line
5 of Algorithm 1) belong to the same cluster, we use the margin
property. The margin property assumes that all nodes that belong to
same cluster are closer to each other as compared to nodes of other
clusters. Therefore, MergeClosest always merges a pair of clusters
that belong to same optimal cluster C⇤i , thereby guaranteeing its
correctness. SinceC⇤i has been constructed correctly, the rest of the
proof is same as that of Theorem 7. ⇤

T������ 10. Given a collection of nodes V and randomly chosen
demonstrations � = �(logn) such that each demonstration reveals
the clustering over a subset of nodes, then Algorithm 2 recovers ground

truth clusters with a high probability if the nodesV satisfy the margin
property.

P����. This analysis is similar to that of Theorem 9. ⇤

Discussion. The analysis of Theorem 9 assumed margin property
over the sampled nodes. In many real world datasets, clusters are
often well separated, thereby automatically implying the margin
property. Additionally, even if the margin property does not hold on
overall clusters, expert can choose samples for the demonstration
such that the samples of di�erent clusters are present su�ciently
away. The proof of Theorem 9 can be extended to settings where a
constant fraction of sampled nodes do not obey the margin property.

Another important assumption that is crucial in the analysis
presented above is the randomness of sampled nodes. Theorem 7
and 9 assume that every node is chosen uniformly at random. Note
that these assumptions can be relaxed and our proofs extend to
settings when the samples are biased towards a speci�c cluster. For
example, the number of samples a speci�c cluster (say C⇤i ) is much
higher than �(logn) but the samples from other clusters are much
fewer. In this case, Algorithm 1 will correctly estimate the threshold
fromC⇤i with fewer demonstrations but it may require more number
of demonstrations to achieve accurate estimate from other clusters.

6 EXPERIMENT SETUP
In this section, we evaluate the e�ectiveness of LCD on three real
world datasets.We show that our techniques e�ciently calculate the
true likelihood of each constraint and the generated set of clusters
are closer to the desired output, compared to other baselines.

Datasets. We evaluate our approach on three datasets, which
are borrowed from the prior work that experiment with the metrics
of interest.

• Bank dataset [7] containing 4521 data nodes corresponding
to phone calls from a marketing campaign by a Portuguese
banking institution. The marital status of the records is con-
sidered as the sensitive feature for �GF constraint, with
parameters [0.49, 0.51].

• Adult dataset [38] containing 1000 records with the income
information of individuals along with their demographic
attributes. ‘Age’, ‘occupation’, and ‘income’ features are con-
sidered as the features of interest. Fairness constraint�EQ is
optimized with respect to ‘occupation’ and �IC with respect
to ‘age’ and ’income’.

• Crime dataset [38] contains crime information about di�er-
ent 1994 communities in the United States, where ‘number
of crimes per 100K population’ is used for �IC fairness con-
straint.

The features in these datasets are considered to calculate distance be-
tween every pair of nodes. Euclidean distance is calculated between
numerical attributes and Jaccard distance between the categorical
attributes. Please refer to [7, 38] for more details.

Baselines. We compare the results of our techniques with the
following baselines:

• B1 calculates the likelihood by considering each demonstra-
tion as a separate set of clusters;
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Figure 3: Comparison of estimated constraints for di�erent datasets. GT denotes the ground truth constraint threshold. Algo-
rithm 1 and B3 identify the most accurate estimate of the constraint threshold.

• B2merges the di�erent clusters in the demonstration to iden-
tify k clusters and infers the likelihood over the identi�ed
clusters; and

• B3 performs a grid search over all possible fairness con-
straints and identi�es the clustering that conforms with the
generated demonstrations.

Algorithm 1 is referred as Alg1 and Algorithm 2 is labeled Alg2
in all the plots in this section. Unconstrained k-center clustering
technique is labeled as kC. The clusters generated using ground
truth fairness constraint is denoted by GT.

Setup. We use the original implementations of �GF , �IC , and
�EQ . Their code base were used to generate ground truth clusters
for an input constraint requirement. All algorithms were imple-
mented in Python and tested on an Intel Core i5 computer with
16GB of RAM.

Our experiments compare the identi�ed fairness parameter by
our algorithm and each baseline. To compare the quality of identi-
�ed clusters, we compute the F-score of the identi�ed intra-cluster
pairs of nodes. F-score denotes the harmonic mean of the preci-
sion and recall, where precision refers to the fraction of correctly
identi�ed intra-cluster pairs and recall refers to the fraction of
intra-cluster pairs that are identi�ed by our algorithm. In all exper-
iments, we report results with k = 5. We execute the code of prior
constrained clustering techniques with speci�ed parameters to gen-
erate ground truth clustering. Each demonstration is generated
by sampling a subset of �ve nodes randomly from these clusters.
Unless otherwise speci�ed, we consider 2 logn demonstrations as
input and these demonstrations do not reveal the true cluster a�li-
ation of the considered nodes. In case there are multiple constraints
that generate the same set of demonstrations, the algorithm out-
put is considered correct if it correctly identi�es any one of those
constraints2.

7 RESULTS AND DISCUSSION
We now present results of our approach on three datasets. Our
results show that the proposed approach can e�ectively identify
the intended metrics using demonstrations, and can generate fair
and interpretable clusters.

2Among the considered constraints, this situation does not arise whenever |� | > 5

7.1 E�ectiveness of Algorithm 1
The e�ectiveness of Algorithm 1 is measured based on the con-
straint threshold and the quality of the generated clusters. Figure 3
compares the estimated threshold of the most-likely constraint, cal-
culated by Algorithm 1 with the ground truth and other baselines.
Across all datasets, Algorithm 1 estimates the optimal threshold for
every considered constraint, matching the performance of ground
truth. This validates the e�ectiveness of Algorithm 1 to correctly
estimate the most likely constraint and its corresponding threshold.

Among the baselines, B3 achieves a similar performance. This
is an expected behavior since B3 performs naive grid search to
explore all threshold values. Although it is e�ective in inferring the
threshold, this technique is orders of magnitude ine�cient due to
the exhaustive enumeration of clusters using the di�erent sets of
constraints, features and their respective thresholds. It is therefore
practically infeasible to implement this for problems with large
input graphs and large �.

The other baselines B1 and B2 consistently show poor perfor-
mance. Baseline B1 does not identify any fairness constraint in
settings where the demonstrations obey �GF and �EQ (Figure 3(a)
and 3(b) respectively). However, it identi�es the optimal clustering
constraint only in case of �IC . Given that each demonstration has
fewer than 5 nodes, the information available in a single demon-
stration is not su�cient for B1 to infer the true fairness constraint.
On the other hand, B2 overcomes the limitations of B1 by merg-
ing the demonstrations randomly in order to capture constraint
information over all demonstrations collectively. This approach has
better performance than B1 but does not identify the true clustering
constraint in majority of the cases. It does not identify the fairness
constraint �EQ (Figure 3(b)) and the identi�ed constraint threshold
in all other cases are sub-optimal.

Figure 4 compares the quality of the returned clusters, by com-
paring the F-score of the clustering output of each technique with
the ground truth clusters. In this experiment, Algorithm 1 and B3
achieve optimal performance as they identify the true ground truth
clusters across all parameter settings. All other baselines did not
identify the clusters correctly and achieved low F-score. Particularly,
in case of �EQ and �GF , the baselines B1 and B2 did not identify
the optimal constraint threshold and generated biased clusters.

Table 2 compares the running time of Alg1 and other baselines
for di�erent datasets and clustering constraints. Among all datasets,
Alg1 is orders of magnitude faster than B3. In the worst case, Alg1
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Figure 4: F-score comparison of the generated clusters for
di�erent techniques along with GT denoting the ground
truth set of clusters.

Dataset Alg1 B1 B2 B3

Bank 0.57 0.49 0.52 100
Adult 1.14 1.01 1.1 117
Crime 1.02 0.9 0.97 104

Table 2: Running time results (in minutes).
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Figure 5: E�ect of number of demonstrations on our algo-
rithms’ performance.

generatesO(|� |⇥ |F |) sets of clusters whereas B3 generates clusters
exhaustively for every value of constraint threshold. The running
time of Alg1 is comparable with B1 and B2.

7.2 E�ectiveness of Algorithm 2
Alg2 identi�es k clusters such that the returned output obeys the
fairness constraint re�ected from the demonstrations �. Figure 5
plots the F-score of Alg2 for two data sets and the results are com-
pared with that of Alg1. This allows us to compare the performance
of our greedy Alg2 with that of an existing e�cient solver. In Fig-
ure 5(a), we employed Bera et al. [7] to generate the ground truth
clusters according to�GF and tested the e�ectiveness of Alg2 to re-
cover ground truth clusters for varying number of demonstrations.
Similarly in Figure 5(b), ground truth is generated using �IC .

When the number of demonstrations is less than 5, the F-score
of the generated clusters is 0.55 for both domains. As we increase
the number of demonstrations, we observe that the performance of
Alg2 improves and is closer to that of Alg1. Alg2 achieves more
than 0.9 F-score in less than 20 demonstrations. The continuous
improvement in accuracy demonstrates the e�ectiveness of Alg2
in recovering clusters without relying on a clustering algorithm.
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Figure 6: E�ect of # demonstrations on Alg1 performance.

7.3 E�ect of Demonstrations
We now investigate the e�ect of number of demonstrations on the
performance of our techniques in identifying the optimal constraint
threshold. We varied the number of demonstrations in multiples
of logn: 0.5 logn, logn, 2 logn. Figure 6 compares the constraint
threshold and the F-score of the identi�ed clusters using Alg1, with
varying number of demonstrations on the Bank and Adult dataset.
In case of�GF , the ground truth constraint requires equal represen-
tation of the di�erent groups in each cluster. Algorithm 1 correctly
identi�es the fairness constraint and achieves perfect F-score even
when � contains as low as four demonstrations. Increasing the
number of demonstrations does not improve its performance as the
constraint likelihood has already converged. In �IC , the ground
truth clusters are generated according to threshold � = 0.85. When
the number of input demonstrations |�| is low (|�| = 4), the esti-
mated interpretability constraint threshold is inaccurate and the
constraint estimation improves as the number of demonstrations
are increased. Algorithm 1 is able to achieve an F-score more than
0.8 with just ten demonstrations and the quality of �nal clusters
improves monotonically with increasing demonstrations. It con-
verges to the accurate constraint threshold whenever |�| � 20 and
therefore achieves perfect F-score.

In Figure 3, the input demonstrations do not reveal the true
cluster a�liation of any of the nodes. We ran an additional experi-
ment with the globally informative demonstrations (De�nition 2),
which reveals the ground truth cluster a�liation of each node in
the demonstration. With this additional information, we observe
that Algorithm 1 converges to the optimal constraint threshold
in less than ten demonstrations. This experiment validates that
Algorithm 1 is able to leverage the extra information provided by
globally informative demonstration to converge faster.

Next, we evaluate the e�ect of number of demonstrations on the
performance of Algorithm 2. Figure 5 shows that as we increase
the number of demonstrations, Alg2 matches the F-score of Alg1.

7.4 Ablation Study
To test the e�ectiveness of our constraint estimation techniques,
we varied the size of demonstration from 4 to 10 for the di�erent
constraints. As expected, the number of required demonstrations
reduces linearly with increase in demo size3. Therefore, an increase
in demonstration size helps Alg1 converge faster.

3We do not consider smaller demonstrations because clustering fewer than 4 nodes do
not reveal enough information about the underlying clusters.
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Figure 7: E�ect of sampling bias on Alg1 performance.

We tested the robustness of our constraint threshold estimation
techniques by generating demonstrations according to a biased
distribution. In the �rst experiment (Figure 7), we employed a biased
sampling procedure, where each demonstration is biased in favor
of some speci�c clusters but all nodes within those chosen clusters
are equally likely to be chosen for the demonstration. Speci�cally,
we follow a two step procedure where we �rst sample the cluster
Ci with probability pi and the nodes from the sampled cluster
are chosen randomly. This introduction of bias did not a�ect the
quality of our techniques and Alg1 was able to recover ground
truth clusters in �(logn) demonstrations. The second experiment
considered a biased sampling procedure where the expert samples
fewer nodes from the marginalized groups. For example, a node
having ‘red’ color is chosen with probability 1

n but a blue colored
node is chosen with probability 4

n . In such setting, the returned
demonstrations are biased against the marginalized groups and the
inferred clustering threshold is not accurate. We observe that this
bias translates into the constraint threshold estimation procedure
of Alg1. This experiment justi�es the requirement of an unbiased
expert annotator that chooses nodes randomly, without considering
their sensitive attributes.

To further study the e�ect of k , we vary the number of clusters as
k = {5, 10, 15, 20, 50} for adult dataset and calculated the number
of demonstrations required to identify the true clustering constraint.
For all values of k , Alg1 identi�ed the optimal set of clusters in less
20 ( which is around 2 logn) demonstrations and the number of
required demonstrations increases sub-linearly with k . For exam-
ple, it required 20 demonstrations for k = 5 and 60 demonstrations
were enough for k = 50. This increase in number of demonstrations
is justi�ed because Alg1 tries to merge presented demonstrations
into k clusters. If the number of clusters in presented demonstra-
tions is smaller than k , then it might end up partitioning some
clusters which may introduce some noise in the likelihood esti-
mation procedure. However, when the input demonstrations are
globally informative, the number of required demonstrations do
not increase with k and therefore we do not include the plots. Alg1
converges to the optimal clustering constraint as soon as there are
�(logn) nodes from any of the clusters.

7.5 Fair and Interpretable Clusters
To evaluate the e�ectiveness of generating fair and interpretable
clusters, we ran interpretable clustering algorithm [38] with � =1
for Adult dataset. The generated clusters were then post-processed
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Figure 8: F-score of fair and interpretable clusters generated
by di�erent techniques.

to satisfy �EQ . Since none of the existing clustering algorithms
optimize for fairness and interpretability, we implemented a greedy
technique to process the output of interpretable clusters and satisfy
fairness constraint. We considered this output as the ground truth
to generate globally informative demonstration � and ran Alg2
to calculate the set of clusters with maximum likelihood. Alg2
achieved F-score of more than 0.9 (Figure 8) with less than 25
demonstrations, eachwith 5 nodes. Any baseline that optimizes�IC
or �EQ alone achieved sub-optimal performance. This experiment
demonstrated the ability of Alg2 to generate clusters even when
the constraint optimization algorithm is not known. Additionally,
Alg2 requires the expert to label less than 25% dataset to generate
fair and interpretable clusters.

8 SUMMARY AND FUTUREWORK
With the availability of many nuanced fairness de�nitions, it is non-
trivial to specify a fairness metric that captures what we intend. As
a result, systems may be deployed with an incomplete speci�cation
of the fairness metric, which leads to biased outcomes. We formal-
ize the problem of inferring the fairness metric that the designer
intends to optimize for a given problem. Our solution approach
combines graph clustering and learning from demonstrations to
generate fair and interpretable clusters. We present an algorithm
to generate fair clusters by inferring the fairness constraint using
expert demonstration and analyze its theoretical guarantees. We
also present a greedy approach to generate fair clusters for objec-
tives which are not currently supported by the existing suite of fair
clustering algorithms.We empirically demonstrate the e�ectiveness
of our approach in inferring fairness and interpretability metrics,
and then generate clusters that are fair and interpretable. Although
we discuss the framework in the context of fair clustering, our pro-
posed framework can be used to infer any clustering constraints,
as shown in the experiments.

In the future, we plan to conduct a human subjects study to evalu-
ate our approach and design robust algorithms to infer the intended
metrics in the presence of noise. Developing robust techniques to
handle bias in demonstrations is another interesting question for
future work. Extending our algorithm to handle other fairness met-
rics and interpretability metrics will broaden the scope of problems
that can be handled by our approach.
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