
Minimizing Negative Side Effects in Cooperative Multi-Agent Systems
Using Distributed Coordination

Moumita Choudhury1, Sandhya Saisubramanian2, Hao Zhang1, Shlomo Zilberstein1

1 College of Information and Computer Sciences, University of Massachusetts Amherst
2 School of Electrical Engineering and Computer Science, Oregon State University

amchoudhury@umass.edu, sandhya.sai@oregonstate.edu, hao.zhang@umass.edu, shlomo@umass.edu

Abstract

Autonomous agents operating in real-world environ-
ments frequently encounter undesirable outcomes or
negative side effects (NSEs) when working collabora-
tively alongside other agents. Even when agents can ex-
ecute their primary task optimally when operating in
isolation, their training may not account for potential
negative interactions that arise in the presence of other
agents. We frame the challenge of minimizing NSEs as
a lexicographic decentralized Markov decision process
in which we assume independence of rewards and tran-
sitions with respect to the primary assigned tasks, but
recognize that addressing negative side effects creates
a form of dependence among the agents. We present
a lexicographic Q-learning approach to mitigate the
NSEs using human feedback models while maintaining
near-optimality with respect to the assigned tasks—up
to some given slack. Our empirical evaluation across
two domains demonstrates that our collaborative ap-
proach effectively mitigates NSEs, outperforming non-
collaborative methods.

Introduction
Autonomous agents operating in the real world frequently
generate undesired outcomes (Hadfield-Menell et al. 2017;
Zhang, Durfee, and Singh 2018; Krakovna et al. 2019)
that are challenging to rectify during their training phase.
Prior works have identified several categories of side ef-
fects, such as misspecification of rewards in reinforcement
learning (RL) or goals in symbolic planning (Amodei et
al. 2016; Saisubramanian, Kamar, and Zilberstein 2020;
Ramakrishnan et al. 2019), distributional shift in the de-
ployed environment (Quinonero-Candela et al. 2008), and
reward gaming (Clark and Amodei 2016). Lately, there has
been a growing focus on scenarios in which an agent’s
actions directly influence the performance of other enti-
ties within the environment (Krakovna et al. 2019; Alam-
dari et al. 2021). Given the numerous settings where co-
operative agents coexist and collaborate (D’Andrea 2012;
Hoque et al. 2023), it becomes essential to investigate the
occurrence of side effects in such multi-agent environments.

This work focuses on cooperative multi-agent settings,
such as robot teams in warehouses or fleets of autonomous

Copyright © 2024 by the authors.
This open access article is published under the Creative Commons
Attribution-NonCommercial 4.0 International License.

Figure 1: Illustration of multi-agent negative side effects (NSEs)
in a boxpushing domain. Four robots collaborate by pushing boxes
in a large space. Accomplishing the primary objective of each robot
does not require coordination, but the surfaces in each room pro-
duce loud noise when adjacent agents push boxes simultaneously.

vehicles. While individual agents may excel in their primary
tasks, their joint actions generate unforeseen side effects by
leaving impacts on the agency of other agents or the environ-
ment itself, illustrated in Fig. 1. We address scenarios where
isolated execution of agents’ policies is side-effect-free, but
their combined actions induce negative side effects (NSEs),
initially unknown to the agents.

Most prior works have focused on mitigating NSEs in
a single agent setting by (1) recomputing the agent’s pri-
mary reward function (Hadfield-Menell et al. 2017), (2) in-
corporating user feedback (Zhang, Durfee, and Singh 2018),
and (3) incorporating a lexicographic multi-objective ap-
proach (Saisubramanian, Kamar, and Zilberstein 2020). Re-
cently, approaches have been developed to model the well-
being of other agents by considering the future welfare of
the same agents (Krakovna et al. 2019) or to facilitate the re-
turn of other agents (Turner, Hadfield-Menell, and Tadepalli
2020; Alamdari et al. 2021). However, these approaches do
not fully scale to multi-agent settings, as only one agent is
responsible for taking care of the considerations of other
agents. In contrast, we focus on settings where all the agents
are responsible for and expected to cooperate in minimizing
the undesired side effects.

Decentralized Markov Decision Processes (DEC-MDPs)
provide an important framework for modeling cooperative
multi-agent coordination problems. However, scalability be-
comes a major concern when it comes to solving general
DEC-MDPs. Therefore, researchers have focused on solving
restricted versions of DEC-MDPs that are scalable yet rich



enough to solve a wide array of practical problems (Becker
et al. 2003; Nair et al. 2005). In our work, we focus on
DEC-MDPs with transition independence and locality of
interaction, where a network of agents is formed based
on each agent’s limited interactions with a small number
of neighbors. Distributed constraint optimization problems
(DCOPs) have been developed over the past two decades to
exploit these local interactions (Farinelli, Rogers, and Jen-
nings 2014; Fioretto, Pontelli, and Yeoh 2018). To benefit
from both the local interaction structure from DCOP and
planning under uncertainty, Network distributed partially
observable MDPs (ND-POMDPs) have been developed to
solve practical problems such as coordination of sensor net-
works or UAVs (Nair et al. 2005; Zhang and Lesser 2011).
Several variations of the coordinated Q-learning (CQL) ap-
proach have been proposed to solve ND-POMDPs, which
can solve the problem in a model-free scalable way with
only local observability and interactions among neighbor-
ing agents (Zhang and Lesser 2011; 2013). Our particular
focus lies in the collective reward structure associated with
NSEs, wherein only a subset of agents jointly contribute
to the creation of side effects with full local observability
among neighboring agents.

We adopt a lexicographic multi-objective approach by
formulating the problem with a Lexicographic Markov De-
cision Process (LMDP) (Wray, Zilberstein, and Mouad-
dib 2015). We present a combined approach integrating
lexicographic multi-objective learning and coordinated Q-
Learning to minimize the impacts of NSEs in a multi-agent
environment. To the best of our knowledge, there is no ex-
isting solver for multi-agent lexicographic multi-objective
problems. The occurrences of side effects are learned from
human feedback, as the agents were initially unaware of the
penalties associated with the NSEs. Agents can compute and
reuse their primary policy independently. Whenever there is
a negative penalty, agents coordinate with their neighbors to
form an interaction graph to facilitate coordinated learning.
The model-free framework in the coordination process al-
lows the agents to function autonomously without sharing
model information, thereby safeguarding privacy. Our pri-
mary contributions are fourfold: (1) formalizing the problem
of multi-agent NSEs as a lexicographic DEC-MDP with lo-
cal interaction, (2) defining a way to collect and generalize
the joint penalty function from human feedback, (3) pre-
senting a solution approach for minimizing NSEs with a
coordinated lexicographic Q-learning (C-LQL) solver, and
(4) evaluating the performance of our approach and com-
paring it to non-coordinated and single-agent lexicographic
Q-learning approaches.

Problem Formulation
Consider a cooperative multi-agent setting with n agents
operating independently to complete their respective as-
signed tasks, which are their primary objectives, O1 =
{o1, . . . , on}. The agents operate based on a transition and
reward independent DEC-MDP, M ′ that contains all the nec-
essary information to complete their assigned tasks. How-
ever, the agents’ models do not fully capture all the objec-
tives in the complex real-world environment in which the

agents operate. In this case, there is an additional secondary
objective, O2, that the agents need to minimize NSEs. The
two objectives in M ′ are: primary assigned tasks (O1) and
mitigating side effects (O2), where O1 ≻ O2. Although the
agents are transition and reward independent w.r.t. O1, NSEs
occur primarily because of their joint interaction. Such unde-
sirable outcomes arise because the agents compute policies
independent of other agents. Furthermore, the agents’ model
may not account for superfluous details, such as the cumu-
lative effects of joint operation on the environment, that are
unrelated to the agents’ primary task.

We make the following assumptions: (1) executing the
primary policy of each agent in isolation produces no nega-
tive side effects, but their joint policy π′ = {π1, . . . πn} pro-
duces NSEs, unknown to the agents apriori, (2) the subset of
agents interacting with each other to produce NSEs is much
smaller than the total number of agents, (3) side effects are
undesirable but not catastrophic, and (4) side effects result
immediately from the joint execution in a state. Building on
this, we define multi-agent negative side effects (MANSE),
in which the occurrence and penalty for NSEs, denoted by
RN , depends on what actions agents perform jointly in a
state. We assume a given interaction graph to facilitate the
coordination between the agents.

Definition 1 Let G = (X,E) be an interaction graph
where each node xi ∈ X represents an agent i and each
hyperlink l ∈ E connects a subset of agents to form the re-
ward component Rl. F = {f1, . . . , fl} denotes set the cost
functions where fl represents the cost function associated
with each hyperlink l. Moreover, we define Fi to be the set
of functions denoting which function nodes are connected to
variable xi, representing agent i. This hypergraph is formed
to facilitate the interaction between agents to optimize the
joint penalty where each hyperlink represents a subgroup of
agents creating NSEs.

Definition 2 The joint penalty function, RN : S × A → R
for MANSE is a divisible penalty function among subgroups
of agents and can be expressed as RN (s, a) =

∑
l Rl(sl, al)

where l = {i1, . . . , ik} denotes a subgroup of size k. More-
over, sl = ⟨sl1 , . . . , slk⟩ denotes the state of group l and
al = ⟨al1 , . . . , alk⟩ denotes the action of group l.

Solving MANSE presents the following challenges. First,
since the NSE penalty is defined over the joint actions, it
does not follow reward independence. Hence, the problem
can no longer be solved as n-single agent MDPs. Second, the
agents do not have prior knowledge of other agent’s mod-
els or NSEs. Hence, RN is unknown initially. Learning to
optimize for RN may require agents to deviate from their
optimal policies for the primary objective. The maximum
allowed deviation for each agent from the optimal primary
objective value is bounded by its slack value denoted by δi
for each agent i. To determine if the updated policy that min-
imizes NSEs violates the slack constraint, we calculate the
interference with the corresponding primary objective.

Definition 3 The augmented MDP for a given MANSE
problem is a lexicographic DEC-MDP (LDEC-MDP), which
is a multi-agent extension of LMDP (Wray, Zilberstein, and



Mouaddib 2015), denoted as M̃ = ⟨S̃, Ã, P̃ , R̃, o, ∆̃⟩. M̃
is a DEC-MDP with two reward functions R̃ = {R1, RN}
where R1 is the independent reward associated with the pri-
mary objective and RN is the joint reward associated with
NSE of joint actions. RN follows the decomposition de-
scribed in Definition 2. Moreover, O = {O1, O2} the or-
dering of the objectives where O1 = {o1, . . . , on} is the
primary objectives associated with the agents’ independent
assigned tasks described by reward R1. Here, oi represents
the primary objective for agent i. O2 denotes the objective
to minimize NSEs and O1 ≻ O2. ∆̃ refers to the collection
of ∆ for each agent.

In order to reduce negative side effects in a multi-agent
setting we have to to solve the corresponding LDEC-MDP.
In the following section, we propose a method to esti-
mate RN using various feedback mechanisms and solve the
LDEC-MDP using lexicographic Q-learning with DCOPs.

Framework for Minimizing NSEs
In the coordinated learning approach, we assume the ex-
istence of a simulator to facilitate the learning. The NSE
penalty signals ideally come from a human providing feed-
back on agents’ actions. In this framework, we assume the
simulator learns a predictive model of NSEs by gathering in-
formation from humans to mimic human feedback. Based on
the learned model, the agents form a combined LDEC-MDP
to solve. We follow a model-free lexicographic Q-learning
approach (Skalse et al. 2022) using DCOPs to find a lexico-
graphically optimized policy for our problem. Our solution
method involves the following two steps: (1) gathering infor-
mation about NSEs using human feedback and generalizing
them to unseen situations, and (2) using a coordinated learn-
ing approach to solve the augmented LDEC-MDP.

Learning a Joint NSE Model
During the coordinated learning phase, the oracle, represent-
ing human feedback, provides signals about undesirable ac-
tions. Alternatively, the simulator can simulate the reward
signals for the occurrences of NSEs by learning the human
feedback model even when perfect human feedback is un-
available. We consider human feedback in the form of ap-
proval using two methods: random queries and trajectories.
Approval based on random queries In this approach, the
simulator randomly selects joint state-action pairs, without
replacement, to query the human, given a budget. The hu-
man, in turn, either approves or disapproves the joint ac-
tion in those states, indicating the NSE occurrence. The ap-
proved actions are mapped to zero penalty, RN ((s⃗, a⃗) = 0).
All disapproved actions are mapped to a positive penalty
RN ((s⃗, a⃗) = k) where k is problem-specific. As the samples
generated for querying by this approach are i.i.d., it does not
introduce any sampling bias in the learning process.
Approval based on trajectories In this approach, the sim-
ulator presents agent trajectories to the human for feedback,
T⃗ = (T1, . . . , Tn), where Ti is the trajectory for ith agent.
The trajectories are generated using an ϵ-greedy policy of
its optimal primary policy. The human provides feedback by

approving or disapproving the actions observed in the tra-
jectories, similar to the random querying approach. This ap-
proach provides a sample efficient way to gather information
about side effects since the feedback is collected for states
that are visited by the agents. This approach, however, suf-
fers from bias induced by correlated samples since the states
visited are not i.i.d..
Model learning After collecting information about RN , the
simulator generalizes the observations to unseen situations
by training a random forest classifier (RC). The RC model
is used to estimate a penalty by predicting the severity of the
NSE. Finally, the simulator obtains an NSE penalty function
RN that maps the joint state-action pairs to the NSE penalty
value according to their severity. In practice, any classifier
may be used to predict NSE occurrence. We assume the col-
lected human feedback is perfect and noise-free, and the
generalized feedback data that the simulator uses captures
the human feedback model correctly.

Coordinated Lexicographic Q-learning
We now demonstrate how the agents learn to minimize NSEs
jointly with the penalty they receive from the simulator us-
ing coordinated lexicographic Q-learning (C-LQL). We use
a combination of approaches: (1) a lexicographic Q-learn-
ing solver for LMDP (Skalse et al. 2022), and (2) a coordi-
nated Q-learning (CQL) approach that uses a DCOP solver
to acquire joint Q-values for NSE minimization (Zhang and
Lesser 2011). We use a model-free LMDP solver as the
backbone of our approach. Such lexicographic solvers work
by restricting actions available for each objective according
to their priority. Let Aj

s,i be the set of available actions that
the ith agent has for optimizing oj in state s and Q1

i be the
set of Q values for optimizing the primary objective of agent
i. ηji is the state level slack computed from the global slack
∆j

i for oj of agent i. We can use the following equations:

A1
s,i = A1

i (1)

A2
s,i = {a ∈ A1

i |Q1
i (s, a) ≥ max

a′∈A1
s,i

Q1
i (s, a

′)− ηji } (2)

In our case, the primary objective is the agents’ assigned
tasks, O1, which can be solved by single-agent Q-learning,
and therefore, the agents do not coordinate for updating Q1.
Furthermore, at each step of the Q-learning, each agent i
shares its pruned action set, A1

i as the domain, Di for the
DCOP. Let QN be the set of Q values for optimizing ob-
jective O2 and derived from the NSE reward function, RN .
Definition 2 allows to decompose the joint Q values, QN and
enables the agents to calculate it in a distributed manner. QN

can be decomposed among the agents in the following way
where l denotes a subgroup of agents defined in Definition 2:

QN =
∑
l∈E

Ql(sl, al) (3)

In each subgroup, the agents select a delegate agent to
store and update the Q tables for each Ql. Note that the del-
egates can be chosen randomly for each group. The update
rule for each group l can be written as:
Ql(sl, al) = (1− α)Ql(s

t
l , a

t
l) + α[rtl + γ ∗Ql(s

t+1
l , a∗

l )] (4)



Algorithm 1: C-LQL for agent i

Input : M̃ = ⟨S̃, Ã, R̃, O, ∆̃, γ⟩
1 Initialize Q1

i

2 if i is a delegate agent then
3 initialize Ql for all l ∈ Fi

4 s← s0, t← 0

5 while Q1
i , Ql∀l ∈ Fi have not converged do

6 A2
i ← Prune actions using Equation 2

7 Send A1
i to each agent aj ∈ l, ∀l ∈ Fi

8 a∗
i ← Select optimal action using DCOP by
optimizing Equation 5

9 s′ ← T (s, a∗
i )

10 Update Q1
i

11 if i is a delegate agent then
12 Update Ql, ∀l ∈ Fi using Equation 4
13 else
14 Share (s, a) with delegate

15 if s′ is terminal then
16 s← s0
17 else
18 s← s′

19 t← t+ 1

Here, a∗l defines the optimal action for group l. Let a∗i be the
optimal action for agent i at each time step. Equation 4 has
all the local components that the agents can calculate locally
from their subgroups except the optimal action a∗l which
requires the agents to coordinate. The agents then form a
DCOP with the following objective to find joint optimal ac-
tion a∗ so that:

a∗=argmax
a

∑
fl∈F

fl(s, ⟨al1 , . . . , alk ⟩)= argmax
a

∑
l

Ql(sl, al)

(5)
Algorithm 1 summarizes the C-LQL approach. The

agents obtain ⟨Q1
1, . . . , Q

1
n⟩ and QN after the end of the

learning phase. In the execution phase, the agents first ob-
serve the current state of other agents, prune the available
action set using Equation 2 and choose the lexicographically
optimal action by solving DCOPs. The agents, however, do
not require information about other agents’ transition or re-
ward models to conduct the optimization. Here we use the
Max-Sum algorithm (Stranders et al. 2009) for solving the
above DCOP because it has less communication overhead
compared to other exact solvers.

Experimental Setup
Boxpushing We consider a modified multi-agent boxpush-
ing domain (Saisubramanian, Kamar, and Zilberstein 2022;
Seuken and Zilberstein 2007) in which the actor is required
to minimize the expected time taken to push a box to the
goal location. The actions succeed with probability 0.9 and
may slide clockwise with probability 0.1. Each state is rep-
resented as ⟨x, y, b⟩ where x, y denote the agent’s location
and b is a boolean variable indicating if the agent is pushing
the box. Another unmodeled variable, c, indicates the sur-
face type. We assume each agent is working on a designated

(a) Effect of slack on NSEs w/ 6 agents

(b) Effect of slack on primary objective V1 w/ 6 agents

Figure 2: Effect of slack on the primary objective and remaining
% of NSEs using different approaches for boxpushing problems.

separate area and so, not violating any of the coordination
constraints (i.e., colliding with other agents). Pushing the
box together on a surface type c = N produces noise and
results in NSEs with a penalty of 10, and no NSE otherwise.

Painting Cobots We introduce a painting environment with
several narrow corridors where multiple painter robots are
deployed in parallel with humans to cover large surface ar-
eas more efficiently. We assume each robot has its desig-
nated area of the environment to paint. However, there are
some narrow corridors that can be inconvenient for humans
if blocked or occupied by a certain numbers of agents. The
agents are expected to maximize the reward obtained by
painting their assigned areas. The robot can move in all four
directions and choose to paint. The primary objective is to
finish the painting as quickly as possible. Each state is rep-
resented by ⟨x, y, p, c, h⟩ where x, y, p denotes the agent’s
location and the painting areas, c denotes a corridor, and h
denotes the existence of a human nearby. When more than
one robot enters a corridor at a time, it creates congestion
which produces a penalty of 5 if the human is not present in
the corridor and a penalty of 10 if the human is nearby.

Baselines We compare two baselines with the coordi-
nated lexicographic Q-learning (C-LQL) approach. The first
is the Independent Lexicographic Q-learning (I-LQL) ap-
proach (Saisubramanian, Kamar, and Zilberstein 2020),
which is a model-free variation of the model-based LMDP
solver. This approach requires an independent reward
model, R1

i , R
2
i for each agent i. However, because RN is a



(a) Effect of slack on NSE w/ 5 agents

(b) Effect of slack on primary objective V1 w/ 5 agents

Figure 3: Effect of slack on the primary objective and remaining
% of NSEs using different approaches for painter robot problems.

joint reward model, it is non-trivial to compute the rewards
for individual agents. Therefore, we modified the I-LQL
approach by assuming an oracle individual penalty model.
However, such oracle model is hard to derive in practice be-
cause the joint penalty primarily occurs due to the interac-
tion between agents. Our second baseline is the No Commu-
nication Lexicographic Q-learning (NoCom-LQL) approach
where the agents learn individual Q functions by dividing
the joint penalty, Rl equally among each member of group
l. For clarity, we make the distinction between I-LQL and
(NoCom-LQL) in the way the individual rewards are ob-
tained. I-LQL assumes an individual reward model whereas
NoCom-LQL receives the actual joint reward by interacting
with the environment in a model-free way. Prior denotes the
amount of side effects before minimizing NSEs.

Problem setup We empirically evaluate our approach with
the baselines in two forms of interaction graphs: sparse and
dense. The sparse interaction graph is a tree with the max-
imum degree of 2 and the dense interaction graph is a tree
with the maximum degree of 3. We define small problems
with the grid size of 5×5 for each agent, totaling the area to
5×n∗5 for n agents in the boxpushing domain. Similarly, a
large problem is defined as a larger grid size of 7×7, totaling
the area of 7× n ∗ 7. We use random forest regression from
sklearn Python package for our model learning. We follow
(Wray, Zilberstein, and Mouaddib 2015) to determine state-
level slack, ηi from a global slack. In all our experiments,
we maximize the rewards with γ=0.95. Results are averaged
over 5 randomly generated instances, each with 5 indepen-

Figure 4: Minimizing negative side effects across different prob-
lem sizes in the boxpushing domain.

dent planning processes. The values are obtained by 2000
episodes of planning and averaged over 200 runs.

Results and Discussions
Effect of slack Determining appropriate slack for MANSE
is not trivial. Saisubramanian, Kamar, and Zilberstein, 2020
propose an optimal slack determination algorithm for min-
imizing single-agent NSEs. However, the slack is optimal
only for avoidable NSEs, a special case of NSEs that can
be avoided completely while maintaining a path to the goal.
In our problem, we do not distinguish between avoidable
and unavoidable classes of NSEs because it is nontrivial to
determine such classes for multi-agent settings. What is un-
avoidable for a single-agent setting can be an avoidable set-
ting when multiple agents coordinate. Moreover, it is non-
trivial to assign slacks to a group of agents in this case. The
lexicographic action restriction proposed in (Wray, Zilber-
stein, and Mouaddib 2015) can be conservative for state-
level slack allocation (Pineda, Wray, and Zilberstein 2015).
Therefore, we experiment with different variations of slacks
with respect to the primary objectives of each agent.

Fig. 2 shows the effect of varying slack in 6 agents box-
pushing problem. We use a sparse setting with small grids.
As the slack increases, both the NSEs (Fig. 2a) and the av-
erage value of the primary objective, V1 (Fig. 2b) tends to
decrease. Fig. 2b shows the actual slack used by the various
Lexicographic Q-learning approaches. Due to the conserva-
tive estimation of the local state slacks, the minimum value
of the primary objective is still within 90% of the original
value. C-LQL is able to minimize 60% of the NSEs occur-
ring in the joint state-action space without deviating exten-
sively from the primary objective. NoCom-LQL is also able
to minimize around 50% of the NSEs. However, it uses more
slack than I-LQL and C-LQL approaches. The coordination
among the agents helps to achieve less NSEs without devi-
ating much from the primary objective.

Similarly, Fig. 3 shows the effect of varying slack in 5
agents robot painting problems. Notably, C-LQL tends to
have better performance than NoCom-LQL when the given
slack is more than 40% of the primary objective (Fig. 3a).
However, the actual slack used is less than 5% of the pri-
mary objective and C-LQL requires less slack to produce
less NSEs than other approaches (Fig. 3b).



Table 1: Comparison of % of slack used among different agents
using different approaches in the box-pushing domain.

Agents Approach Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6 Agent 7 Average

4

Prior 0.0 0.0 0.0 0.0 n/a n/a n/a 0.0
C-LQL 4.60 0.46 7.08 4.09 n/a n/a n/a 4.06
NoCom-LQL 3.50 0.54 0.82 21.64 n/a n/a n/a 6.63
I-LQL 1.32 1.92 0.46 0.21 n/a n/a n/a 0.98

5

Prior 0.0 0.0 0.0 0.0 0.0 n/a n/a 0.0
C-LQL 8.71 7.71 8.22 5.46 6.17 n/a n/a 7.25
NoCom-LQL 0.96 16.98 0.46 9.19 9.67 n/a n/a 7.45
I-LQL 3.88 12.88 5.02 2.27 2.12 n/a n/a 5.23

6

Prior 0.0 0.0 0.0 0.0 0.0 0.0 n/a 0.0
C-LQL 5.00 3.08 0.67 1.86 3.87 0.91 n/a 2.57
NoCom-LQL 15.20 7.73 9.09 11.02 5.16 8.62 n/a 9.47
I-LQL 4.43 2.00 4.51 2.07 1.45 7.46 n/a 3.65

7

Prior 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-LQL 27.54 40.97 34.55 45.34 41.87 33.35 27.72 35.91
NoCom-LQL 37.49 41.81 48.98 51.23 42.43 42.89 54.72 45.65
I-LQL 28.92 29.58 26.31 12.47 30.75 18.76 37.73 26.36

Minimizing NSEs We explore the scalability of our ap-
proach varying the problem size in number of agents and
density. We use sparse and dense problem setups for this
experiment. The 4 agent problem is a dense problem with
an interaction graph of max degree of 3 where each agent
operates on a small grid. The 5, 6, 7 agents problems are
sparse problems with a small grid size for 5 and 6 agents
problems and a large grid size for the 7 agents problems.
As seen from the experiments with slacks, the actual slack
used by the agents is much lower than the maximum allowed
slack. Therefore, each agent is given a 100% of assigned
slack for this experiment. Fig. 4 shows the performance of
different approaches in different problem sizes. In all the
problem setups, C-LQL performs better than the other two
approaches with the best result of 90% reduction in NSEs
in the 7 agent setup. The breakdown of actual slack used by
different agents is shown in Table 1. I-LQL uses less slack
than C-LQL and NoCom-LQL in most of the cases. How-
ever, it performs worse in minimizing NSEs than the other
two approaches.
Learning human feedback models Fig. 5 shows the per-
centage of remaining NSEs after using C-LQL with learned
human feedback models with queries. In the boxpushing do-
main, the random query approach C-LQL RQ performs sig-
nificantly better as the training budget increases (Fig. 5a).
Trajectory sampling, C-LQL T, however, tends to fluctuate
with increasing training budgets. This is because it only col-
lects feedback based on trajectories following the ϵ−greedy
policy of its optimal primary policy, and therefore, it fails
to generalize well to unseen joint state actions. Interestingly,
the performance of C-LQL RQ is comparable to C-LQL Or-
acle, which simulates the problem with a perfect, noise-free
human feedback model. In the painter robots domain, ini-
tially, the C-LQL RQ performs better than C-LQL T. With
increasing query budget, however, both methods perform
equally well with a 50% reduction in NSEs (Fig. 5b).

Conclusion and Future Work
We formulate the problem of minimizing NSEs in multi-
agent systems as a Lexicographic DEC-MDP, which en-
codes NSEs via a local interaction structure. We propose a

(a) Boxpushing

(b) Painter Robots

Figure 5: Effects of learning from human feedback in 5 agents (a)
boxpushing and (b) painter robots domains.

framework for minimizing such NSEs using a synergy of
approaches from lexicographic multi-objective learning and
DCOPs. The proposed model-free lexicographic Q-learning
approach facilitates coordination without sharing model in-
formation. A key advantage of our approach is that it al-
lows agents to independently optimize their primary objec-
tives while concurrently providing opportunities to learn and
adapt to feedback about NSEs during agent deployment.
Discovery and handling of NSEs during deployment with-
out compromising the agents’ performance with their pri-
mary assigned tasks is crucial in many domains. Hence, the
proposed approach allows the agents to coordinate without
the need to suspend operations and redesign their primary
reward function, which may necessitate extensive testing.

Our proposed framework is shown empirically to be ef-
fective in minimizing undesirable side effects. Our analy-
sis shows that C-LQL minimizes NSEs in different problem
settings better than the uncoordinated version, without us-
ing much slack. In future work, we aim to extend our ap-
proach to handle a more general class of multi-agent prob-
lems where the side effects are generated by dynamic inter-
actions among subsets of agents.

Acknowledgments

This work was supported in part by NSF grants 1954782 and
2326054, and by ONR grant N00014-23-1-2171.



References
Alamdari, P. A.; Klassen, T. Q.; Icarte, R. T.; and McIlraith,
S. A. 2021. Avoiding negative side effects by considering
others. In NeurIPS Workshop on Safe and Robust Control of
Uncertain Systems.
Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schul-
man, J.; and Mané, D. 2016. Concrete problems in AI safety.
arXiv preprint arXiv:1606.06565.
Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman, C. V.
2003. Transition-independent decentralized Markov deci-
sion processes. In Proceedings of the Second International
Joint Conference on Autonomous agents and Multiagent sys-
tems, 41–48.
Clark, J., and Amodei, D. 2016. Faulty reward functions
in the wild. Internet: https://blog.openai.com/faulty-reward-
functions.
D’Andrea, R. 2012. A revolution in the warehouse: A ret-
rospective on Kiva systems and the grand challenges ahead.
IEEE Transactions on Automation Science and Engineering
9(4):638–639.
Farinelli, A.; Rogers, A.; and Jennings, N. R. 2014. Agent-
based decentralised coordination for sensor networks using
the Max-Sum algorithm. Autonomous Agents and Multi-
agent Systems 28:337–380.
Fioretto, F.; Pontelli, E.; and Yeoh, W. 2018. Distributed
constraint optimization problems and applications: A sur-
vey. Journal of Artificial Intelligence Research 61:623–698.
Hadfield-Menell, D.; Milli, S.; Abbeel, P.; Russell, S. J.; and
Dragan, A. 2017. Inverse reward design. In Advances in
Neural Information Processing Systems, 6765–6774.
Hoque, R.; Chen, L. Y.; Sharma, S.; Dharmarajan, K.;
Thananjeyan, B.; Abbeel, P.; and Goldberg, K. 2023. Fleet-
dagger: Interactive robot fleet learning with scalable human
supervision. In Proceedings of the Conference on Robot
Learning, 368–380.
Krakovna, V.; Orseau, L.; Kumar, R.; Martic, M.; and Legg,
S. 2019. Penalizing side effects using stepwise relative
reachability. In IJCAI Workshop on AI Safety.
Nair, R.; Varakantham, P.; Tambe, M.; and Yokoo, M. 2005.
Networked distributed POMDPs: A synthesis of distributed
constraint optimization and POMDPs. In Proceedings of the
AAAI Conference on AI, 133–139.
Pineda, L. E.; Wray, K. H.; and Zilberstein, S. 2015. Revis-
iting multi-objective MDPs with relaxed lexicographic pref-
erences. In AAAI Fall Symposium on Sequential Decision
Making for Intelligent Agents.
Quinonero-Candela, J.; Sugiyama, M.; Schwaighofer, A.;
and Lawrence, N. D. 2008. Dataset shift in machine learn-
ing. MIT Press.
Ramakrishnan, R.; Kamar, E.; Nushi, B.; Dey, D.; Shah, J.;
and Horvitz, E. 2019. Overcoming blind spots in the real
world: Leveraging complementary abilities for joint execu-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, 6137–6145.
Saisubramanian, S.; Kamar, E.; and Zilberstein, S. 2020. A
multi-objective approach to mitigate negative side effects. In

Proceedings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, 354–361.
Saisubramanian, S.; Kamar, E.; and Zilberstein, S. 2022.
Avoiding negative side effects of autonomous systems in
the open world. Journal of Artificial Intelligence Research
74:143–177.
Seuken, S., and Zilberstein, S. 2007. Improved memory-
bounded dynamic programming for decentralized POMDPs.
In Proceedings of the 23rd Conference on Uncertainty in
Artificial Intelligence, 344–351.
Skalse, J.; Hammond, L.; Griffin, C.; and Abate, A. 2022.
Lexicographic multi-objective reinforcement learning. In
Proceedings of the Thirty-First International Joint Confer-
ence on Artificial Intelligence, 3430–3436.
Stranders, R.; Farinelli, A.; Rogers, A.; and Jennings, N.
2009. Decentralised coordination of mobile sensors using
the Max-Sum algorithm. In Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence, 299–304.
Turner, A. M.; Hadfield-Menell, D.; and Tadepalli, P. 2020.
Conservative agency via attainable utility preservation. In
Proceedings of the AAAI/ACM Conference on AI, Ethics,
and Society, 385–391.
Wray, K.; Zilberstein, S.; and Mouaddib, A.-I. 2015. Multi-
objective MDPs with conditional lexicographic reward pref-
erences. In Proceedings of the AAAI Conference on Artificial
Intelligence, 3418–3424.
Zhang, C., and Lesser, V. 2011. Coordinated multi-agent
reinforcement learning in networked distributed POMDPs.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 764–770.
Zhang, C., and Lesser, V. 2013. Coordinating multi-agent
reinforcement learning with limited communication. In
Proceedings of the 12th International Conference on Au-
tonomous Agents and Multi-agent Systems, 1101–1108.
Zhang, S.; Durfee, E. H.; and Singh, S. 2018. Minimax-
regret querying on side effects for safe optimality in factored
Markov decision processes. In Proceedings of the Twenty-
sixth International Joint Conferences on Artificial Intelli-
gence, 4867–4873.


