
On the Benefits of Randomly Adjusting Anytime Weighted A*

Abhinav Bhatia Justin Svegliato Shlomo Zilberstein
College of Information and Computer Sciences

University of Massachusetts Amherst
{abhinavbhati, jsvegliato, shlomo}@cs.umass.edu

Abstract

Anytime Weighted A*—an anytime heuristic search algo-
rithm that uses a weight to scale the heuristic value of each
node in the open list—has proven to be an effective way to
manage the trade-off between solution quality and computa-
tion time in heuristic search. Finding the best weight, how-
ever, is challenging because it depends on not only the char-
acteristics of the domain and the details of the instance at
hand, but also the available computation time. We propose
a randomized version of this algorithm, called Randomized
Weighted A*, that randomly adjusts its weight at runtime and
show a counterintuitive phenomenon: RWA* generally per-
forms as well or better than AWA* with the best static weight
on a range of benchmark problems. The result is a simple al-
gorithm that is easy to implement and performs consistently
well without any offline experimentation or parameter tuning.

Introduction
Anytime Weighted A* (AWA*), which is an anytime vari-
ant of the heuristic search algorithm A*, uses a numeric
weight to scale the heuristic value of each node in the open
list to alter the order of node expansion. Intuitively, higher
weights make the algorithm more “greedy” with respect to
low-hanging solutions while potentially compromising to-
tal solution quality (Pohl 1970). The ability to control the
trade-off between runtime and solution quality has made
AWA* useful for a wide range of complex problems, such
as multiple sequence alignment (Kobayashi and Imai 1998;
Zhou and Hansen 2002), path planning (Likhachev, Gordon,
and Thrun 2003), and robotic arm motion planning (Cohen,
Chitta, and Likhachev 2014). Finding the best weight, how-
ever, is challenging since it depends not only on the charac-
teristics of the domain and the details of the instance at hand
but also on the available computation time.

Early work on AWA* has focused on selecting the best
static weight for a problem (Hansen and Zhou 2007), chang-
ing the weight for an instance of a problem (Sun, Druzdzel,
and Yuan 2007), or adjusting the weight at runtime heuris-
tically (Thayer and Ruml 2009). It has also been observed
that AWA* can be improved via restarting when a solution
is found (Richter, Thayer, and Ruml 2010). Wilt and Ruml
(2012) analyzed the failure conditions of AWA* with respect
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to its weight. These methods have shown that finding the
best static weight for a problem is laborious as it involves ex-
haustive evaluation of a range of weights on sample problem
instances. Efforts to dynamically modify the weight based
on the progress made by the algorithm and the available
computation time have shown promising but limited suc-
cess (Thayer and Ruml 2008), leaving the question of how
to optimize the weight in a principled way an open problem.

We propose a randomized variant of AWA*, Randomized
Weighted A* (RWA*), that adjusts its weight randomly at
runtime. We show a counterintuitive phenomenon: RWA*
performs as well or better than AWA* on a range of bench-
mark problems given a deadline. First, RWA* computes so-
lutions with a higher quality on average compared to AWA*
with any static weight. Second, RWA* computes solutions
at least as good as AWA* with any static weight on more
than 60% of the instances of a problem. This shows the ben-
efits of using different weights at runtime instead of a single
static weight for an instance of a problem. Third, RWA* has
a higher probability of computing at least one solution com-
pared to AWA* with any static weight. Fourth, RWA* is easy
to implement as it does not require any extensive offline ex-
perimentation or parameter tuning to find the best weight.

The paper proceeds as follows. Section 2 reviews AWA*
and proposes RWA* that adjusts its weight randomly at run-
time. Section 3 evaluates RWA* by showing that it is more
robust than AWA* with any static weight on a range of
benchmark problems. Section 4 concludes the paper.

Randomly Adjusting Anytime Weighted A*
AWA* is an anytime heuristic search algorithm based on
four design principles: it (1) uses an inadmissible heuris-
tic function to find suboptimal solutions, (2) continues the
heuristic search after each suboptimal solution is found, (3)
provides an error bound on a suboptimal solution when it
is interrupted, and (4) guarantees an optimal solution once
the open list is empty (Hansen, Zilberstein, and Danilchenko
1997; Hansen and Zhou 2007). This algorithm has led to
many related heuristic search algorithms (Thayer and Ruml
2010): anytime repairing A* that tunes its suboptimal bound
based on the available computation time (Likhachev, Gor-
don, and Thrun 2003; Likhachev et al. 2008), anytime win-
dow A* that expands nodes within a sliding window of the
search tree (Aine, Chakrabarti, and Kumar 2007), and any-



Figure 1: An example of two executions of anytime A*.

time nonparametric A* that avoids adjustable parameters al-
together (Van Den Berg et al. 2011).

Most importantly, AWA* replaces the standard evaluation
function f(n) = g(n) + h(n) used to select the next node
for expansion from the open list with a weighted evaluation
function fw(n) = g(n) + w · h(n), where the path cost
function g(n) represents the cost of the path from the start
node to a given node n and h(n) represents an admissible
heuristic function that estimates the cost from a given node
n to the goal node. Given a weight w > 1, the weighted
heuristic becomes potentially inadmissible and AWA* pri-
oritizes expanding a node that appears closer to a goal node
by weighting the heuristic component h(n) more heavily
than the path cost component g(n). This causes AWA* to
decrease the computation time of solutions potentially at the
expense of quality, which is inversely proportional to cost.

Fig. 1 shows typical performance curves for two execu-
tions of AWA* that solve an instance of a problem with
different weights: a higher weight of 2.0 leads to better ex-
pected quality in the short term as it finds solutions more
quickly at the expense of long term quality while a lower
weight of 1.5 leads to better expected quality in the long
term as it finds solutions more slowly but emphasizes qual-
ity. This raises the question of how to select the weight
of AWA* to control the trade-off between solution quality
and computation time during execution in a contract setting
where an anytime algorithm is interrupted at a known dead-
line and the current solution is returned (Zilberstein 1996).

We propose a randomized version of AWA*, called
Randomized Weighted A* (RWA*), that is based on
AWA* (Zhou and Hansen 2002) with several simple mod-
ifications. Before each node expansion, RWA* adjusts the
weight w by sampling it uniformly from a set of weights
W = {w1, w2, . . . , w`} to modify expansion priorities of
the open nodes that are on the frontier. The algorithm main-
tains ` open lists, one for each weight, in order to avoid hav-
ing to reorder the nodes if it were to maintain just one open
list. The ` open lists offer different orderings of the same
set of nodes. RWA* inserts every new node into or deletes
a given node from the ` open lists, each represented as a
min heap ordered according to the fw-value of a specific
weight w ∈ W . While the worst-case time complexity for
inserting or deleting a node across all ` open lists of size
n sequentially is O(` log n), these operations can be per-
formed in parallel to retain a worst-case time complexity of
O(log n). Similarly, for the worst-case space complexity, all
heaps only store references to the same set of nodes to retain

Algorithm 1 RWA* — Randomized Weighted A*
Require: A start node n0, a set of weightsW
1: procedure RWA*(n0,W)
2: for all w ∈ {1} ∪W do
3: Qw ← MINHEAP() . An open list for each weight
4: Q← Q1 . The standard open list
5: C ← {} . The closed set
6: σ ← ∅ . The current solution node
7: ε←∞ . The current error bound
8: ADDTOFRONTIER(n0)
9: while ε > 0 and not ISEMPTY(Q) do

10: w ← RANDOM(W)
11: n← PEEK(Qw)
12: DELETEFROMFRONTIER(n)
13: if σ = ∅ or f(n) < f(σ) then
14: C ← C ∪ {n}
15: for all c ∈ CHILDNODES(n) do
16: if g(n) + COST(n, c) + h(c) < f(σ) then
17: if ISGOAL(c) then
18: f(c)← g(c)← g(n) + COST(n, c)
19: σ ← c
20: else if c ∈ Q ∪ C then
21: if g(n) + COST(n, c) < g(c) then
22: if c ∈ Q then
23: DELETEFROMFRONTIER(c)
24: else
25: C ← C \ {c}
26: g(c)← g(n) + COST(n, c)
27: ADDTOFRONTIER(c)

28: else
29: g(c)← g(n) + COST(n, c)
30: ADDTOFRONTIER(c)

31: ε← f(σ)− PEEK(Q)

32: return PATHTOGOAL(σ), ε

33: procedure ADDTOFRONTIER(n)
34: for all w ∈ {1} ∪W do . Adds n to each open list
35: fw(n)← g(n) + w · h(n)
36: INSERT(Qw, n, fw(n)) . Inserts with priority fw(n)
37: procedure DELETEFROMFRONTIER(n)
38: for all w ∈ {1} ∪W do . Deletes n from each open list
39: DELETE(Qw, n)

a worst-case space complexity of O(n).
Algorithm 1 describes RWA*. An open list Qw for each

weight w ∈ W , a standard open list Q (which is the same
as Q1), and the closed set C are initialized (Lines 2-5). The
current solution node σ and the error bound ε are initial-
ized (Line 6-7). The start node is inserted into the open list
for each weight with its appropriate f -value using the pro-
cedure ADDTOFRONTIER (Line 8). A loop iterates while
the error bound is positive and the standard open list is not
empty (Line 9). The weight w is adjusted randomly (Line
10). The open node that has the least fw-value is selected
for expansion (Line 11) and removed from all open lists us-
ing the procedure DELETEFROMFRONTIER (Line 12) but
it is expanded only if it may lead to a better solution than
the current solution i.e., on the condition that its standard
f -value is less than that of the current solution or if no solu-



tion has been found yet (Line 13). If the node is expanded,
then it is added to the closed set (Line 14) and a loop iter-
ates through its child nodes (Line 15). If a child node has
a standard f -value lower than that of the current solution
i.e., if it may lead to a better solution than the current solu-
tion, it proceeds to one of three steps (Line 16). If the child
node is a goal node, the standard f -value of the child node
is updated and the current solution node is set to the child
node (Lines 17-19). If the child node is a duplicate of a node
already in the open list or in the closed set but if the new g-
value of the child node is less than its old g-value, then it is
deleted from either the open lists or the closed set and rein-
serted into the open list for each weight with the appropriate
f -value (Lines 20-27). If the child node is not a duplicate,
then it is inserted into the open list for each weight with the
appropriate f -value (Lines 28-30). The error bound is set to
the difference between the cost of the current solution, as it
is an upper bound, and the least f -value in the standard open
list, as it is a lower bound (Line 31). The final solution is ex-
tracted as the path from the root node to the solution node
and it is returned along with the error bound (Line 32). Note
that Algorithm 1 is also a description of AWA* with weight
w as it is same as RWA* givenW = {w}.

Experiments
We compare the performance of RWA* to AWA* on a range
of benchmark problems in a contract setting using a range
of static weights that are often used in weighted heuris-
tic search. Both RWA* and AWA* use a set of weights
W = {1, 1.5, 2, 3, 4, 5}. The benchmark problems below
were carefully selected to reflect domains that require differ-
ent static weights and domains for which higher weights do
not necessarily speed up the search (Wilt and Ruml 2012).
The parameters of each benchmark problem were selected
to avoid trivializing the problem by either not having enough
time for any algorithm to generate a solution or having too
much time so that every algorithm finds the optimal solution.

Sliding Puzzle (SP) An SP instance has a set of J = j2−1
tiles with each tile j labeled from 1 to J in a j × j grid. The
tiles must be moved from an initial configuration to a desired
configuration given a unit cost c(j) = 1 for moving a tile j.
The sum of the Manhattan distance from the initial position
of each tile to a desired position is used as an admissible and
consistent heuristic function. We use the parameter j = 4, a
setting commonly known as the 15 puzzle. The difficulty of
an instance, as measured by the h-value of the initial config-
uration, has been selected between 35 and 45 randomly.

Inverse Sliding Puzzle (ISP) An ISP instance is the same
as an SP instance except that there is an inverse cost c(j) =
1/j for moving a tile j. This means that the sum of the Man-
hattan distance from the initial position of each tile to the
desired position, weighted by the cost for moving each tile,
is used as an admissible and consistent heuristic function.

Traveling Salesman Problem (TSP) A TSP instance has
a set of J cities that must be visited along an optimal route
given a cost between each pair of cities. We use a sparse
problem where a percentage of the edges have infinite cost.

The total cost of a minimum spanning tree across the unvis-
ited cities (with an infinite cost when no tour is feasible) is
used as an admissible and consistent heuristic function. The
number of cities J is chosen at random between 15 and 25.
The sparsity is chosen between 0% and 30% randomly. The
distance between each pair of cities is chosen randomly.

City Navigation Problem (CNP) A CNP instance simu-
lates navigating between two locations that might be in dif-
ferent cities (Wilt and Ruml 2012). There is a set of J cities
scattered randomly on a j × j square such that each city is
connected by a random tour and to a set of its nearest nJ
cities. Each city also contains a set of K locations scattered
randomly throughout the city that is a k×k square such that
each location in the city is connected by a random tour and
to its nearest nK locations. The link between a pair of cities
costs the Euclidean distance plus an offset α, and the link
between a pair of locations within a city costs the Euclidean
distance scaled by a random number sampled from U(1, β).
The goal is to determine the optimal path from a randomly
selected starting location in one city to another randomly se-
lected location, which may be in another city. The Euclidean
distance from the current location to the target location is
used as an admissible and consistent heuristic. The values
of the parameters are chosen such that J = 150, j = 100,
nJ = 3, K = 150, k = 1, nK = 3, α = 2, and β = 1.1
following recent work (Wilt and Ruml 2012).

Experimental Setup Each approach is evaluated using the
mean solution quality across a set of 500 random instances
for every benchmark problem. For each instance, we per-
form 1 run of AWA* (as it is deterministic) and take the me-
dian of 5 runs of RWA* (as it is stochastic). A solution qual-
ity q = 0 means no solution while a solution quality q = 1
means an optimal solution. Formally, for any instance of a
problem, solution quality is ideally defined as the approxi-
mation ratio, q = ζ∗/ζ, where ζ∗ is the cost of the optimal
solution and ζ is the cost of the final solution. However, it is
often not feasible to calculate the cost of the optimal solution
for complex problems. Like earlier work (Hansen and Zil-
berstein 2001; Svegliato, Wray, and Zilberstein 2018; Sveg-
liato, Sharma, and Zilberstein 2020), we estimate solution
quality as the ratio, q = h(s0)/ζ, with h(s0) as the h-value
of the initial state s0 and ζ as the cost of the final solution.

In every trial, each approach must solve an instance of the
benchmark problem within the duration of the contract. The
duration of the contract for each trial is set to 1.0 sec for SP
and ISP, 0.5 sec for TSP, and 0.4 sec for CNP corresponding
to roughly 6000, 3000 and 2400 node expansions on our sys-
tem. However, we let each approach solve an instance of the
benchmark problem until a node expansion limit is reached
rather than for the duration of a contract as measured by wall
time. We prefer a node expansion limit as it is often used to
evaluate search algorithms for consistency/reproducibility.

Experimental Results The results of each benchmark
problem demonstrate a counterintuitive behavior: RWA*
performs as well or better than AWA*. In particular, RWA*
(1) computes solutions with a higher quality on average than
any static weight, (2) has the highest probability of comput-



Figure 2: The solution quality box and whisker plots for the SP, ISP, TSP, and CNP benchmark problems (left to right). The
crosses denote the mean and the bullets denote the outliers. The median and upper quartiles are even zero for some experiments.

Figure 3: The performance bar graphs for the SP, ISP, TSP, and CNP benchmark problems (left to right).

ing a solution that is at least as good as any static weight,
and (3) has the highest probability of computing at least one
solution compared to any static weight.

Fig. 2 shows the qualities for the solutions generated by
each approach on random instances of the benchmark prob-
lems. For SP, RWA* exhibits a much higher mean solution
quality than that of AWA* for all weights. Moreover, as the
weight of AWA* decreases fromw = 5 tow = 1, the spread
of solution qualities increases because AWA* does not gen-
erate any solution to a higher number of instances, but what-
ever solutions are found tend to be of higher quality. For ISP,
RWA* continues to exhibit solution qualities with a substan-
tially higher mean than that of AWA* for all weights. In fact,
the mean solution quality for RWA* is almost twice that of
AWA*, even when AWA* is at its best weight w = 1.5. For
TSP and CNP, RWA* exhibits solution qualities with a sim-
ilar or slightly better mean than AWA* for all weights.

Fig. 3 shows two probabilities for each approach: the
probability of computing at least one solution and the prob-
ability of computing a solution that is at least as good as
any other approach. For SP, TSP, and CNP, the probability
of a solution decreases as the weight decreases for AWA*.
However, for ISP, the probability of a solution increases as
the weight decreases from w = 5 to w = 1.5 but then the
probability of a solution decreases at w = 1. This shows
that increasing the weight may not always speed up the
search (Wilt and Ruml 2012). Intuitively, since RWA* ex-
hibits probabilities similar to or higher than AWA* with any
static weight, it is clear that RWA* benefits from using dif-
ferent weights to solve a given instance of a problem.

Fig. 4 shows the advantages of RWA* on a specific in-
stance of the SP benchmark problem. In this example,
RWA* finds the best overall solution, generates more solu-
tions, and reduces the upper bound q̄ defined by the h-value
of the initial state s0 divided by the min f -value of the open

Figure 4: RWA* (left) and AWA* with a weight of w = 3
and w = 5 (center and right) on a specific instance of the SP
benchmark problem. The weight curves are smoothed and
plotted on the secondary vertical axis.

list. However, in contrast, AWA* with weights of 1, 1.5, and
2 does not find any solution at all while AWA* with weights
of 3 of 5 find a similar solution that is worse than RWA*.

Fig. 5 shows the average solution quality profile of each
approach across a range of contracts for each benchmark
problem. RWA* performs as well or better than any other
approach on average for deadlines greater than a ∼500
node-budget (∼0.1s) for SP and ISP, a ∼300 node-budget
(∼0.05s) for TSP, and a ∼150 node-budget (∼0.025s) for
CNP. Thus, the advantages of RWA* over AWA* hold across
a range of contracts and not just the contracts used earlier.

We make two other important observations that highlight
the effectiveness of RWA*. First, even though RWA* is a
stochastic algorithm that does not always generate the same
solution for a given instance, we observe that the standard
deviation of solution quality across individual runs of RWA*
on a given instance, on average, is 0.106, 0.045, 0.0009,
0.0002 for SP, ISP, TSP and CNP respectively. This shows
that RWA* performs consistently well across different runs
on the same instance. Second, the overall results are similar
with a finer set of weightsW = {1.0, 1.25, 1.5, . . . , 4.75, 5}
for RWA* or with a wall time limit instead of a node expan-



Figure 5: The performance of each approach compared
across a range of contract durations on SP, ISP, TSP, and
CNP benchmark problems (top-left to bottom-right).

sion limit when the open lists are operated in parallel.
While we do not provide a definitive explanation for why

RWA* outperforms AWA*, our experiments offer some in-
sight. First, we observe that the best static weight can be
hard to find as it is specific to an instance, but solution qual-
ity tends to increase rapidly once the best static weight is
approached. Hence, for most instances, AWA* uses a static
weight that is not a good fit for the instance, while RWA*
outperforms since it switches between weights randomly
and spends at least some time at the ideal weight for the in-
stance. Second, we observe that there are many instances in
which RWA* strictly outperforms AWA* even with the best
static weight for that instance. This implies that RWA* can
compute better solutions by randomly adjusting the weight
at runtime for a given instance. In fact, RWA* strictly outper-
forms AWA* on 30%, 25%, 11%, and 3% of the instances
of the SP, ISP, TSP, and CNP benchmark problems.

Our Julia library for AWA*/RWA* is openly available.1

Conclusion
We propose RWA*, a randomized variant of AWA*, that
randomly adjusts its weight at runtime. On a set of bench-
mark domains, RWA* typically computes better solutions,
exhibits a higher probability of computing any solution at
all, and exhibits a higher probability of computing a solution
at least as good as any static weight of AWA* in a contract
setting across a range of contract durations. Overall, RWA*
is an appealing anytime heuristic search algorithm because
it is easy to implement and effective without any extensive
offline experimentation or parameter tuning.
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