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Building autonomous systems for deployment in the open world has been a longstanding 
objective in both artificial intelligence and robotics. The open world, however, presents 
challenges that question some of the assumptions often made in contemporary AI 
models. Autonomous systems that operate in the open world face complex, non-stationary 
environments wherein enumerating all situations the system may face over the course of 
its deployment is intractable. Nevertheless, these systems are expected to operate safely 
and reliably for extended durations. Consequently, AI systems often rely on some degree 
of human assistance to mitigate risks while completing their tasks, and are hence better 
treated as semi-autonomous systems. In order to reduce unnecessary reliance on humans 
and optimize autonomy, we propose a novel introspective planning model—competence-
aware systems (CAS)—that enables a semi-autonomous system to reason about its own 
competence and allowed level of autonomy by leveraging human feedback or assistance. 
A CAS learns to adjust its level of autonomy based on experience and interactions with 
a human authority so as to reduce improper reliance on the human and optimize the 
degree of autonomy it employs in any given circumstance. To handle situations in which 
the initial CAS model has insufficient state information to properly discriminate feedback 
received from humans, we introduce a methodology called iterative state space refinement
that gradually increases the granularity of the state space online. The approach exploits 
information that exists in the standard CAS model and requires no additional input from 
the human. The result is an agent that can more confidently predict the correct feedback 
from the human authority in each level of autonomy, enabling it learn its competence in a 
larger portion of the state space.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Autonomous systems are increasingly deployed in the open world, involving highly complex and unstructured domains. 
Examples of these systems include space exploration rovers [36,63], autonomous underwater vehicles [20,54,85], service 
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robots [10,43,59], and autonomous vehicles [15,16,28]. Because it is infeasible to completely model the open world, these 
systems must rely on approximate models of their domains that may not be sufficient for handling every situation [78,89], 
introducing potentially risky behavior when the system attempts to act autonomously where it is not competent to do so. 
Nevertheless, these systems are expected to maintain safe and reliable operation over the course of potentially long-term 
deployments. To accomplish that, they often rely on various forms of human supervision, assistance, and intervention. In 
that sense, many of the sophisticated AI systems under development today are at best semi-autonomous in that they operate 
autonomously only under certain conditions, and otherwise require human intervention in order to complete their assigned 
tasks [25,104].

Reliance on human assistance has been explored extensively to address the limited competence of autonomous sys-
tems [33,37,46,62,66,77,93]. Often, this has been explored in the context of varying levels of autonomy, a paradigm for 
modeling gradations in autonomous behavior within a human-agent team [64,83], where each level of autonomy corre-
sponds to some set of constraints, limitations, or requirements on autonomous operation. For example, on the two extremes 
would be full autonomous operation, and full human control (no autonomy). This paradigm has already taken hold in 
several industrial applications where safety and reliability are critical, including driving automation [76], robotic medical 
devices [6,34,101], and autonomous legal reasoning [31,32].

Human assistance may be available in different forms or modalities, corresponding to different degrees of competence 
of a semi-autonomous system. Different forms of human assistance compensate for the limitations imposed in each level of 
autonomy and consequently mitigate the potential for risky behavior, while still ensuring that the system’s task is completed. 
For example, Veloso et al. [92,93] designed the CoBot system that can aid humans in an office environment as an assistive 
robot in a variety of pick-up and delivery tasks. However, as the CoBot has no arms to grasp objects, it cannot perform its 
tasks entirely autonomously, and must instead seek assistance from humans to compensate for its limitation, for example 
by placing or removing objects in its basket. Ficuciello et al. [34] proposed a level of autonomy framework for a surgical 
assistive medical robot with four levels of autonomy, where the lowest two involve purely assistive actions to aid the human 
who is the primary executor, and the highest two involve fully autonomous execution by the robot with assistance from the 
human in the form of surgical strategy selection.

In this work, we are primarily concerned with the risk associated with a system that operates at a level of autonomy 
that is inappropriate for a task given its capabilities; for instance, an office robot that autonomously handles fragile items it 
is not competent to handle safely (i.e., without a high risk of breaking). Hence, we aim to develop systems that are aware 
of their own competence, which we define to be the optimal level of autonomy to employ in any given situation conditioned 
on the availability of suitable human assistance. A system that is aware of its own competence when generating plans can 
therefore mitigate the potential for risky behavior by optimizing the degree of human assistance that it requests, leveraging 
the human where the system’s competence is low, and acting autonomously where it is high.

To further mitigate risks, humans may impose constraints on autonomous operation based on the perceived competence 
of the system, for instance, by allowing them to intervene in time to prevent risky behavior or by disallowing autonomous 
behavior entirely. In fact, the perceived risks may be outside the scope of what the autonomous system can detect or reason 
about, hence enabling us to mitigate a broader range of risks. For example, a robot’s sensors may be unable to perceive black 
ice on a sidewalk, or a nearby obstacle in dense fog, leading to risky behavior if left to operate without supervision in these 
conditions.

Determining the exact competence of an autonomous system at design time can be very difficult, particularly when the 
environment is not fully specified or is simply too complex to fully anticipate. For example, a self-driving car may initially be 
authorized to drive autonomously without supervision only on highways and during the daytime with clear weather. Hence, 
an initial level of autonomy may be determined a priori through testing and evaluation, but adjustments must be made 
when the system is deployed. Even when developers aim to err on the side of caution, initializing the level of autonomy to 
be below the system’s true competence, it is possible to unintentionally infer from initial testing that the system is more 
competent than it really is [69,89]. Therefore, developing mechanisms to explicitly represent, reason about, and adjust the 
level of autonomy is critical for the success of autonomous systems deployed in the open world.

We propose a planning model called competence-aware system (CAS) for operating at multiple levels of autonomy where 
each level is associated with different forms of human assistance that compensate for the constrained abilities of the system. 
Motivated by ideas from collaborative control [35], the structure of a CAS is illustrated in Fig. 1. The model associates with 
each type of human assistance a set of feedback signals that the system can receive from the human, the likelihood of 
which can be learned over time. This model enables the system to operate more reliably in the open world, reduce improper 
reliance on the human and ultimately optimize the autonomous behavior of the system [5]. To address situations where the 
initial domain model has insufficient information to correctly model human feedback, we introduce an iterative approach 
to refine the system’s state space in order to better discriminate human feedback, producing a more nuanced partitioning 
of the state-action space with different levels of competence, and allowing the system to better learn and act at its true 
competence [4].

One of the main characteristics of CAS is that the system must recognize the limits on its autonomy, but it is not 
required to know the reasons for these restrictions. This could be seen as a limitation, but we argue that it is an advantage 
because it allows us to build autonomous systems that respect constraints on autonomy derived from human knowledge 
that is beyond the scope of the system’s reasoning abilities. While we allow situations in which the system does not have 
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Fig. 1. An overview of how competence modeling impacts planning and execution. Here, the system’s current state is provided as input to the system’s 
policy which traditionally would only output an action, but in our case also outputs a level of autonomy determined by the competence model in which 
to perform the action. The level of autonomy dictates the type and degree of human assistance used in the execution of the intended action. The human 
assistance can also provide additional feedback to the system, which can be used to update and refine the competence model online.

complete knowledge of the risks that justify the limitations on autonomy, the system may acquire that knowledge over 
time.

Our contributions are three fold: (1) a mathematically rigorous formalization of competence for automated decision mak-
ing; (2) a planning framework for a competence-aware system that integrates a model of competence with a planning model 
to enable the system to reduce unnecessary reliance on humans and optimize its autonomous behavior; and (3) a method 
called iterative state space refinement that enables a competence-aware system to refine the granularity of its state represen-
tation online. We provide a theoretical analysis of our model and algorithm, a concrete example of a CAS and considerations 
in its design and implementation, empirical evaluations of our contributions in simulation, and the lessons learned from a 
preliminary testing of the approach on an autonomous vehicle prototype.

2. Related work

Researchers in automated planning [38] and reinforcement learning [87] have produced a vast literature devoted to 
models, languages and algorithms that enable agents to reason about their environment and choose actions intelligently. In 
this work, we specifically focus on advancing proactive reasoning under uncertainty about when and how to obtain human 
assistance in order to improve goal achievement or safety. We discuss below three areas of research that are particularly 
relevant to competence aware systems.

2.1. Systems with variable levels of autonomy

Recognizing the value of human knowledge in planning has led to several research efforts on human-agent collaboration 
in automated planning and control. Mixed-initiative planning/control [14,18,33,37] is a paradigm based on mixed-initiative 
interaction [1,48] wherein multiple different agents, generally a human and an autonomous system, can take the initiative to 
act at different stages to best utilize their respective abilities. Recent work has investigated applying mixed-initiative control 
in the context of variable autonomy [23] in which the level of autonomy (LoA) can change dynamically online. Chiou 
et al. [22] introduced the expert-guided mixed-initiative control switcher, which dynamically adjusts the level of autonomy 
based on a comparison of the expected performance of a task expert and the observed performance of the current system. 
Petousakis et al. [66] extended this approach by explicitly modeling the cognitive availability of the human based on real-
time vision of the human to better inform the LoA switching decision between the autonomous agent and the human. Our 
work differs from this prior work in several key aspects. First, we assume that an automated planner determines the level 
of autonomy for the human-agent team, thereby designating the workload to both the human and the autonomous agent 
rather than allowing for each to initiate control on their own. Second, we are focused on the problem of learning the true 
competence of the human-agent system online through the acquisition of feedback from the human in response to actions 
taken by the agent at different levels of autonomy. Finally, much of the previous work is either tied to, or focused on, 
systems with only two levels of autonomy—no autonomy and full autonomy—whereas we emphasize a general model for 
arbitrary levels of autonomy.

Rigter et al. [72] considered a similar setting in which control of a system is selected from a set of autonomous con-
trollers and a human operator. To reduce the reliance on the human over time, they propose to learn one of the controllers 
online from demonstrations gained from the human operator. While similarly motivated, we consider a slightly different 
problem setting. First, we consider one agent operating in different levels of autonomy, each of which may involve some 
degree of human assistance, rather than all-or-nothing involvement of the human, and allow for the level to change at every 
time step, rather than being fixed throughout an episode. The idea of learning a controller from human demonstrations is 
similar to how we propose to learn a model of the human’s transition function when they are in control, but in our case 
we use it only to predict their behavior, not to learn or alter autonomous control.

Symbiotic autonomy is similar in that the aim is to enable the completion of complex tasks by distributing tasks and 
information across multiple agents. However, the term has been used both to represent human-agent systems where the 
3
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two agents act asynchronously to perform tasks for each other, that is both the human and agent may seek assistance 
from the other to complete their task [75,92,93], as well as systems in which there is a smart environment in addition to 
the autonomous agent and human that provides auxiliary information to the autonomous agent to facilitate it [19,25,77]. 
Generally, our work differs in that we do not consider the environment and we emphasize the use of human assistance to 
better facilitate the completion of the autonomous agent’s task, rather than asynchronously acting in order to help the other 
agent with their task.

Adjustable autonomy [13,29,62,80,81,91,103] is a closely related paradigm for human-agent teams that is characterized by 
the ability to dynamically change between different levels, or modes, of autonomy, each of which corresponds to some set 
of constraints or allowances that affect the actions the human-agent team can successfully perform. It is worth noting that 
these approaches are largely complementary, and there has been work specifically designed to combine multiple of these 
approaches [13,60]. Our work falls generally in the category of adjustable autonomy, but adds two important capabilities to 
such systems, on top of the fundamental notion of competence. First, we explicitly model multiple forms of human feedback 
and use this feedback to enable a semi-autonomous system to learn its competence over time. Second, in the CAS model the 
system learns a predictive model of the human’s feedback allowing the system to converge to the optimal level of autonomy 
over time.

2.2. Learning from human feedback

Our approach is highly related to the general area of learning from human feedback. In reinforcement learning, some 
work has investigated the effect of additional information provided by a guiding human. Specifically, Chernova and 
Veloso [21] consider the inclusion of a guidance period after a robot’s action which can restrict the set of actions that 
the robot can take in the next step to improve the efficiency of the learning process. Moreira et al. [61] apply this method 
in the context of deep reinforcement learning to expedite the learning process of a deployed system in a new environment. 
Similarly, Rosenstein and Barto [74] propose a generalization to the actor-critic reinforcement learning framework [3] that 
includes a supervisor who can provide additional feedback to the system in the form of auxiliary guiding rewards, action 
selection guidance, or even direct control of the system. These differ from our work in that we assume that the agent has 
access to a well-defined and fully-specified model of its domain, including the reward (or cost) function from which to 
compute an optimal policy, and hence we are not concerned with learning a better world model online (rather, we are only 
concerned with learning the system’s competence model online).

On the other hand, Knox et al. [50,51] proposed a framework for training a robot solely from human feedback (sometimes 
called interactive shaping or interactive reinforcement learning) in which the human supervising the robot provides real-
valued rewards for the actions that were just taken by the robot in a way that is assumed to account for the long-term 
impacts of the action. However, in our work we are not training the agent to act by learning a reward function, but rather 
providing the agent labeled data from which it can compute a distribution that is integrated into an explicit transition 
function. Additionally, we do not consider the use of real-valued feedback from the human, but rather discrete information 
tokens. More similar to our learning setting, Griffith et al. [41] proposed an approach in which the agent learns two policies 
in parallel, one derived from reward signals from the environment, and one derived from “right/wrong” labels from the 
human in order to infer what the human believes is the optimal policy, and then combines the two policies into one that 
is used for action exploitation. The key difference from Griffith et al. [41] is that we seek to learn a predictive model of 
the human’s feedback rather than what the human believes the correct policy to be, and then use this predictive model to 
analytically determine the optimal policy given the domain model.

Finally, Ramakrishnan et al. [70] examined a problem similar to what we consider in Section 5, wherein an autonomous 
agent trained in simulation may have “blind spots” when deployed in real-world environments driven by missing or ignoring 
features that are important in the real-world. Similar to how our method exploits human feedback to identify new features 
that the human is using in generating their feedback, their method applies imitation learning to demonstrations collected 
from the human to identify features used by the human but not by the agent. Our work differs primarily in the type of 
information that the human provides to the system as well as how the missing features are used. We integrate them into the 
existing model to improve the accuracy of the predicted human feedback which consequently improves the quality of the 
overall policies generated by the system. On the other hand, [70] use the learned information to learn blind spot models in 
the real world to perform safe transfer-of-control to a human when encountering a blind spot to avoid potentially dangerous 
situations.

2.3. Competence modeling

The term competence has been used widely in the context of intelligent systems. The classification literature, in par-
ticular, has often defined the term as some measure of performance based on standard metrics for classification systems 
on their input space [53], including accuracy estimation [98], potential function estimates [71], Bayes-based confidence 
measures [47], relative performance to random guessing or otherwise randomized classifiers [95], and probabilistic mod-
els [56,96,97]. More recently, Platanios et al. [67] defined the competence of a curriculum learner to be the proportion of 
training data that the learner is allowed to use at any given time based on the difficulty of training samples, and Rabiee 
et al. [68] proposed competence as a distribution over failure classes that is learned via introspective perception in the 
4
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Fig. 2. Illustration of Example 1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

context of robotic path-planning. Common across these examples is an evaluative approach to defining competence; that 
is, competence is a measure of the performance of a system or algorithm. Most closely related to the formalization of com-
petence presented in this paper was suggested by Smyth and McKenna [84] who defined the competence of a case-based 
reasoning (CBR) system as the set of problems that the system can solve successfully. The authors provide a rigorous model 
and analysis of competence for CBR systems, but the work is highly specific to CBR systems on non-probabilistic domains, 
and consequently does not apply to stochastic decision-making processes considered in this work. Rather, our aim is to 
enable a system to handle all problems by utilizing the appropriate degree of human assistance to ensure safe operation.

Instead, we borrow insights from the definitions of competence posed in the context of human workers. While many 
definitions have been proposed over the last several decades [30,79,86,90], they are largely atomistic and lacking a well-
defined mathematical representation. Gilbert [39] defined it as a function of the ratio of valuable accomplishments to costly 
behavior, which while mathematically precise, leaves unaddressed both the relative performative capabilities of different 
agents with respect to a given task’s satisfactory completion, an essential component of competence [42], as well as com-
petence as an indication of authoritative permissibility. However, this definition together with the definition of competency 
as a performance capability implying performance at a stated level [90] inspires our definition formalized in Section 3.4. In-
tuitively, we propose that the competence of a system, much like that of a human, is the optimal level of autonomy to use 
conditioned on available resources. For example, we might say that a competent worker is one that knows when to perform 
tasks autonomously, when to ask for help and what type of help to ask for, or when to reach for additional sources of aid 
and information (e.g., via Internet search) to determine how to solve their task safely and reliably. Note that even human 
workers, when starting a new job for example, may not initially know their exact competence and instead must learn “on 
the fly” where and when they should solicit different forms of aid or assistance.

3. Competence-aware systems

We start with a description of a general competence-aware system that can operate in and plan for multiple levels of 
autonomy. Each level of autonomy is defined by a unique set of constraints on autonomous operation and consists of 
different forms of human feedback that can be provided to the autonomous agent. To enable the agent to reason about its 
own competence, it must have access to three different models: a domain model, an autonomy model, and a feedback model. 
Throughout this section, we use the problem setting in Example 1 as a running example to better illustrate the concepts 
and terminology that we introduce throughout the paper.

Example 1. An autonomous vehicle (AV) with a human driver (shown in blue in Fig. 2) encounters an obstruction (e.g., a 
parked truck) blocking its lane on a one-lane road (red). In order to overtake the obstruction, the AV would need to drive 
around the obstruction necessarily driving through the oncoming traffic’s lane. In the oncoming lane, there may or may not 
be a vehicle (yellow), but while stopped behind the obstruction, the AV cannot detect it. The AV may Stop to let oncoming 
traffic go past or see if the obstruction resolves itself (e.g., starts moving again), Edge into the oncoming lane to gain better 
visibility without risking crashing, or Go and begin passing the obstruction through the oncoming lane.

3.1. Domain model

The domain model describes the environment in which the agent operates and the dynamics of the agent’s actions within 
that environment. We model this as a stochastic shortest path (SSP) problem, a commonly used form of Markov decision process
(MDP) for reasoning in fully-observable, stochastic environments where the objective is to find the least-cost path from a 
start state to a goal state [9]. For the purposes of this paper, we consider goal-oriented cost-minimizing problems as they 
5
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align more naturally with the problem domains that are considered in our experiments. On the other hand, extending the 
theory to mixed-observable and partially-observable MDPs introduces additional sources of uncertainty, particularly with 
respect to human interaction, that are non-trivial to handle in our model. A discussion of these challenges can be found 
later in Section 7.3.

Definition 1. A domain model, D, is an SSP represented by the tuple 〈S, A, T , C, s0, G〉 where:

• S is a finite set of states,
• A is a finite set of actions,
• T : S × A → �|S| is a transition function where T (s, a) describes the probability distribution over successor states when 

taking an action a ∈ A in state s ∈ S ,
• C : S × A →R+ is a cost function where C(s, a) describes the cost of taking action a ∈ A in state s ∈ S ,
• s0 ∈ S is the initial state, and
• G ⊂ S is the finite set of goal states.

A solution to an SSP is a mapping π : S → A, called a policy, that indicates that action π(s) is taken by the agent in state 
s. A policy π induces the state–value function V π : S →R

V π (s) = C(s,π(s)) +
∑
s′∈S

T (s,π(s), s′)V π (s′) (1)

which represents the expected cumulative cost of reaching any sg ∈ G from state s ∈ S following the policy π . Any policy 
that minimizes this function is referred to as an optimal policy and denoted π∗; formally:

π∗ := argmin
π∈�

V π (2)

However, the existence of an optimal solution to the SSP is guaranteed only under the condition that there exists a proper 
policy, i.e. a policy under which a goal state is reachable from all states with probability 1, and that all improper policies
generate infinite cost when starting from at least one state; under this assumption, the optimal value function is also 
unique.

3.2. Autonomy model

The autonomy model describes the levels of autonomy that the agent can operate in, restrictions on the situations under 
which each level is allowed, the utilities of each level, and a set of system sub-competencies.

Definition 2. An autonomy model, A, is represented by the tuple 〈L, κ, μ〉 where:

• L is the finite, partially ordered set of levels of autonomy where each level l ∈L corresponds to some set of constraints 
on the system’s autonomy,

• κ : S ×L × A → P(L) is the autonomy profile where κ(s, l, a) returns the subset of levels of autonomy L ⊆ L allowed 
when performing action a ∈ A in state s ∈ S given that the agent just acted in level l ∈L, and

• μ : S ×L × A ×L → R+ is the cost of autonomy where μ(s, l, a, l′) describes the cost of taking action a ∈ A in level 
l′ ∈L in state s ∈ S given that the agent just acted in level l ∈L.

While most interpretations of levels of autonomy, as discussed in Section 1, are presented as ordered sets of increasing 
autonomy, in general this need not be the case. In fact, in some cases different levels of autonomy may be directly compared. 
Hence, we choose to model ours more generally as a partially ordered set1 where li ≤ l j if and only if, given any task (s0, G), 
V li (s0) ≤ V l j (s0) where V li is the value function induced by the optimal policy when the level of autonomy is fixed at li . 
Note that we consider two levels, li and l j , to be adjacent if li < l j ∧ �lk ∈ L | li < lk < l j . The constraints corresponding to 
each level of autonomy can be technical in nature, i.e., internally imposed constraints such as requiring human supervision 
in poor weather conditions that may be known a priori to cause errors, as well as externally imposed constraints such as 
ethical or legal requirements. Each constraint is associated with a corresponding form of human assistance or involvement. 
Intuitively, the higher the level of autonomy, the lower the cost of human involvement, although this is not a requirement 
of the model. An example of a set of levels of autonomy can be seen in Table 1.

Additionally, κ can be defined to not only reflect hard constraints such as ethical, legal, or technical constraints [40,55,
57,88] that are fixed throughout the system’s deployment, but also tentative constraints that can be updated over time. 

1 L could be structured as a polytree or an arbitrary directed acyclic graph, however, for the sake of clarity we do not consider such levels of autonomy 
in this paper.
6
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Table 1
Levels of autonomy with L = {l0, l1, l2, l3} where l0 → l1 → l2 → l3.

Levels of Autonomy Human Involvement

l0 No Autonomy Human driver fully in control of vehicle.

l1 Verified Autonomy Autonomous agent in control of vehicle conditioned on explicit approval from human for 
maneuver prior to execution.

l2 Supervised Autonomy Autonomous agent in control of vehicle conditioned on a human driver supervising the 
system ready and capable of taking control.

l3 Unsupervised Autonomy Autonomous agent in unconditional control of vehicle, possibly with (but not requiring) a 
human who can take over control.

Table 2
Examples of different types of constraints on autonomy.

Constraints on Autonomy

Ethical The AV may not be allowed to initiate a transfer of control to a human that is drowsy or otherwise deemed 
unfit to operate the vehicle safely.

Legal The AV may not be allowed to operate autonomously inside of a school zone.

Technical The AV may be disallowed from operating autonomously in snowy weather due to the interference of per-
ception and object detection systems.

Tentative The AV may be initialized to drive in l1 when it has no visibility, but may learn to perform the action Edge in 
l3 as it introduces an allowable level of risk by the human in the car.

Tentative constraints allow for a period of learning or adjustment early in the deployment of the system as the human fa-
miliarizes themselves with the system, or the system learns to act appropriately in its environment. An example of different 
constraints on autonomy can be seen in Table 2.

The cost of autonomy, μ, is the cost associated with the act of operating in a given level of autonomy and is distinct 
from the base domain cost of the action’s execution. For example, in a level of autonomy that requires tele-operation from 
an off-site human to provide verification to a waiting autonomous vehicle, there may be an additional cost of operating in 
that level corresponding to the amount of time waiting to reach an available tele-operator and receive feedback. In a system 
with a finite energy supply that can perform sensing and perception at different levels of fidelity (corresponding to different 
levels of autonomy), each level may utilize a different amount of energy.

3.3. Feedback model

The feedback model describes the agent’s knowledge about and predictions of its interactions with the human, including 
the types of feedback it can receive from the human, how likely each possible type of feedback is at any given time, and 
the expected cost to the human for assisting the agent.

Definition 3. A feedback model, F , is represented by the tuple 〈�, λ, ρ, τH 〉, where:

• � is the finite set of feedback signals that the agent can receive from the human,
• λ : S ×L × A ×L → �|�| is the feedback profile where λ(s, l, a, l′) represents the probability distribution over feedback 

signals that the agent will receive when performing action a ∈ A in level l′ ∈L in state s ∈ S given that the agent just 
operated in level l ∈L,

• ρ : S × L × A × L → R+ is the human cost function where ρ(s, l, a, l′) represents the cost to the human when the 
agent performs action a ∈ A in level l′ ∈L in state s ∈ S given that the agent just operated in level l ∈L, and

• τH : S × A → �|S| is the human state transition function where τH (s, a) represents the probability distribution over 
successors states s′ ∈ S when the human takes control of the system when the agent attempts to perform action a ∈ A
in state s ∈ S .

Although there are many forms of human feedback that have been studied, we limit our focus specifically to feedback 
signals which are represented as discrete tokens of feedback that the human can provide to the autonomous agent, ei-
ther implicitly (e.g. facial gestures or body posture), or explicitly (e.g., verbal responses or physical control), as opposed to 
real-valued reward signals [50,51] or full demonstrations [24,70,72]. The primary reason is to keep the feedback signals 
semantically simple in the sense that they are represented compactly by the system while still being easily and unam-
biguously associated with the human’s intentions. This reduces the overhead associated with the human-agent interactions. 
Each feedback signal may be associated with a distinct level, or subset of levels, of autonomy and a corresponding form 
of human involvement. An example of this can be seen in Table 3. Future directions of research may investigate extending 
7
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Table 3
Each feedback signal is provided via a fixed and known interaction; for instance, the feed-
back signal approval may be provided either by a verbal “Yes” from the human, or via a 
tactile response such as pressing a button on a touchscreen, similarly for disapproval. Over-
ride may be recognized by any form of arrested control by the human during autonomous 
operation, for instance braking, accelerating, or steering while the AV is in control. Each 
signal is only recognized when the AV is operating at the corresponding level of autonomy.

Feedback Signal Interaction Levels of Autonomy

∅ No feedback N/A {l0, l2, l3}
⊕ Approval Verbal or Tactile Response {l1}
� Disapproval Verbal or Tactile Response {l1}
� Override Arrested Control {l2, l3}

these feedback signals to address such questions as how to learn from feedback when there is a degree of severity associated 
with it, how to handle proactive feedback which is intended by the human to be for inferred future states or trajectories, or 
feedback in the form of direct action commands.

The human cost function, ρ , is the cost to the human when operating in a given level and hence is separate from the 
costs incurred directly by the autonomous agent. This cost may often be related to the human’s opportunity cost for being 
unable to engage in other activities while assisting the autonomous agent. However, it may additionally capture other costs 
to the human, such as additional stress or work added to them in addition to the time they spend assisting (assisting two 
different actions which take the same time may require different levels of exertion from the human, for example supervising 
an autonomous action making a left turn, or manually making the left turn). In practice, the human’s cost function may 
be non-Markovian; for instance becoming fatigued after repeatedly performing manual control, or becoming frustrated after 
extended periods of oscillating between different levels of autonomy, constantly shifting the demand on the human. While 
this can be coarsely approximated by conditioning the cost on the previous level of autonomy (as done here), one can 
improve this by maintaining a model of the human’s state, similar to what is done by Costen et al. [26].

If λ and τH are known exactly a priori then the system’s true competence (Definition 10) can be immediately computed 
exactly under any κ , and the problem reduces to a straightforward planning problem. Furthermore, in some problem in-
stances where the feedback model is known exactly there may be no need to even constrain the policy space at all (i.e. 
κ(s, a) =L for every (s, a) ∈ S × A). This is the case when the feedback mechanisms are sufficient to prevent the agent from 
taking actions that would violate hard constraint; for example, if the human authority always overrides an action at a level 
that would violate an ethical, legal, or technical constraint. This introduces a trade-off in distributing the burden of effort 
between the designers of the system and the operator of the system to ensure safe and reliable operation in all cases.

However, in this work we are primarily concerned with systems where λ and τH , and by consequence the system’s true 
competence, are unknown a priori. In this case, they must be estimated by functions λ̂ and τ̂H , which are based on observed 
data collected online through interactions with the human at various levels of autonomy that can generate feedback signals. 
These feedback signals can be analogously treated as labels in a labeled data set where the data is the state, action, and 
level that generated the feedback signal. In Section 5, we address situations where the human’s model of the world does 
not align with that of the autonomous agent, leading to feedback that is poorly discriminated by the agent, which reduces 
its ability to learn from the signals it receives from the human.

Note that, in many real-world problems, the process of acquiring feedback signals may not be instantaneous, and in 
some cases could require a complex process of fully or partially transferring control to and from a human over an indefinite 
amount of time, where each element of the transfer process, such as the communication interface, is important. The problem 
of transfer of control in semi-autonomous systems has been separately studied [81,99]; however, for the sake of clarity, we 
do not model this process explicitly in this work as we focus on the orthogonal problem of modeling levels of autonomy 
and competence.

3.4. Competence-aware systems

A competence-aware system (CAS) represents a planning problem that accounts for the different levels of autonomy 
available to the agent and factors in the agent’s expectations regarding the likelihood and cost of human feedback (e.g., 
assistance, queries, intervention, etc.). The objective of a solution to a CAS planning problem is to create a plan that best 
balances the cost of reaching the goal with the cost of human assistance to achieve the most cost-effective strategy given 
the constraints of the problem. Hence, the CAS uses the autonomy model to proactively generate plans that operate across 
multiple levels of autonomy by leveraging the feedback model to predict the likelihood of different feedback signals in order 
to optimize the level of autonomy and minimize the reliance on humans. To this end, we represent a CAS as a multi-objective
planning problem.

Example 2. A competence-aware system with four levels of autonomy—verified, supervised, unsupervised, and no 
autonomy—and four type of feedback signals—approval, disapproval, override, and no feedback. The policy, π , constrained 
8
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Fig. 3. Illustration of Example 2.

by the autonomy profile κ , produces an action a at a level l to be performed in state s. The level l determines the execution 
process of the action a, as depicted in the lower section of the figure. Certain levels may prompt the human for feedback, 
with a possibility of complete transfer of control from the autonomous agent to the human. After the action is executed 
and data is collected, internal model parameters, λ and τH , are updated. Finally, the agent may perform gated exploration 
(Definition 8) to update the autonomy profile κ , although in practice this would be performed on a less frequent basis. See 
Fig. 3.

Definition 4. A competence-aware system S is represented by the tuple 〈S, A, T , C, s0, G〉, where:

• S = S ×L is a set of factored states, each comprised of a domain state s ∈ S and a level of autonomy l ∈L.
• A = A ×L is a set of factored actions, each comprised of a domain action a ∈A and a level of autonomy l ∈L.
• T : S × A → �|S| is a transition function where T (s, a) represents the distribution over successor states when taking 

action a ∈ A in state s ∈ S .
• C = [

C μ ρ
]T

is a vector of cost functions.
• s0 ∈ S is the initial state where s0 = 〈s0, l〉 for some l ∈L.
• G ⊂ S is the set of goal states.

A CAS state s ∈ S represents the CAS’s current domain state s and the level of autonomy, l, that the CAS performed its 
last action in. The purpose of including the previous level of autonomy in the state representation is to capture the fact that 
human feedback can vary depending on the level of autonomy that the agent was just operating in (for instance, a human 
may be less likely to override the system if they were previously engaged in supervising the system); additionally, we may 
want to discourage the system from oscillating between levels of autonomy by imposing a small cost every time the system 
changes levels. Note that, one can set G = Ŝ ×L for some Ŝ ⊆ S to indicate that the level of autonomy does not impact the 
goal condition or state, for instance setting G = G ×L.

A CAS action a ∈ A represents a domain action a to be performed at a given level of autonomy l which may alter both 
the mechanics of how the action is executed, the form and degree of involvement by the human authority in the execution 
of the action, and the types of feedback that the agent can receive from the human authority.

T is a transition function that represents the probability distribution over both how the state will change and which 
feedback signal, if any, the agent will receive from the human when performing an action conditioned on the level the 
action is being performed in, the current state, and the previous level that the agent had operated in (i.e. the timestep prior 
to the current one). For example, the likelihood of a human override may decrease if the system had already been acting 
under supervision than if they had been acting without supervision, as the human may have a better understanding of what 
the system is doing.

Example 3. Given L and �, we can specify the state transition function of this CAS. Given s = (s, l), s′ = (s′, l′), and 
a = (a, l′), we define T as follows:

T (s,a, s′) =

⎧⎪⎨
⎪⎩

τH (s,a, s′), if l = l0,

λ(⊕|s,a)T (s, (a, l2), s′) + λ(�|s,a)[s = s′], if l = l1,

λ(∅|s,a)T (s,a, s′) + λ(�|s,a)τ (s,a, s′), if l ∈ {l , l },
(3)
H 2 3

9
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Fig. 4. Illustration of a policy space, �, constrained by three different autonomy profiles, κ1, κ2, and κ3.

where [·] denotes Iverson brackets. Intuitively, Equation (3) states that when the agent operates in l0, it follows the transition 
dynamics of the human who takes control. When operating in l1, the probability it arrives in state s′ is the probability it is 
approved to take the action times the probability of the state change following T under level l2, plus the probability that it 
is disapproved and the state is the same. In levels l2 and l3, the probability it arrives in state s′ is the probability it succeeds 
following T without any human intervention plus the probability that the human overrides it and takes it to that state. In 
general, we expect the probability of an override to be lower (or even 0) in l3 as supervision is not required.

A solution to a given CAS is a policy π that maps states and levels s ∈ S to actions and levels a ∈ A. Multi-objective 
decision making has been well-studied [73], and for our purposes we assume a scalarized approach [73] with a scalarization 
function f parameterized by a weight vector w. A common approach is simply based on a linear combination of the 
cost functions in C , e.g., C = w 

[
C μ ρ

]T
. With some modifications, the problem could be extended to handle both 

lexicographic models [100] and constrained models [2]. However, the properties that we derive for the scalarized model may 
not necessarily hold for arbitrary multi-objective models, and would need to be re-examined in those contexts. Additionally, 
we restrict the CAS to only consider policies that are allowed under the autonomy profile κ in the following way.

Definition 5. Let a = 〈a, l〉. Given s = 〈s, l′〉 ∈ S , we say that (s, a) is allowed if l ∈ κ(s, a), and a policy π is allowed if for 
every s ∈ S , (s, π(s)) is allowed.

We denote the set of allowable policies given κ as �κ and require that the policy returned by solving the CAS, π∗ , 
is always taken from argminπ∈�κ

V π (s0). An illustration of how different autonomy profiles can constrain the full policy 
space, �, can be seen in Fig. 4.

In general, a competence-aware system planning model is not guaranteed to be a valid stochastic shortest path problem 
(see Proposition 1) due to the possible effects that κ and λ can have on the existence of a proper policy, although in some 
cases they may only induce dead-ends away from the initial state for which there is existing work on how to handle [52]. 
However, one can ensure that there is a proper policy with the inclusion of a level of autonomy with a property similar to 
level l0 in Table 1 which allows for (at potentially high cost) the deterministic completion of any action or task, guaranteeing 
the existence of a proper policy. Note that we do not need to worry about the possibility of ρ or μ inducing zero-cost cycles 
as they are non-negative cost functions, and the domain model is, by assumption, a valid SSP.

4. Properties of a competence-aware system

In this section, we will discuss the central properties of a CAS that will allow us to prove several key results of 
competence-aware systems. Henceforth, we will assume that there exists a singular human authority that the semi-
autonomous system in a CAS interacts with, and we will use the notation H to refer to them.

Definition 6. The human authority, H is represented by the tuple 〈FH , λH , κH 〉 where:

• FH is the set of features used by H when providing feedback,
• λH : S × A → �|�| is a stationary distribution of feedback signals that H follows, and
• κH : S × A → P(L) is the fixed mapping from state-action pairs to sets of autonomy levels that H will allow the 

autonomous agent to operate in with nonzero probability.

Intuitively, κH represents the human authority’s belief of the agent’s competence; by definition any level not contained 
in the image of κH will never be allowed by H .
10
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First, we begin with a simple proof that a CAS model is, in general, not guaranteed to be a valid stochastic shortest path 
problem due to the lack of a proper policy.

Proposition 1. There exists a competence-aware system S that does not admit a proper policy.

Proof. Let S be a CAS with exactly one level of autonomy, l, where the level of autonomy works as follows: when the agent 
attempts to execute action a, they must first query the human to obtain a binary yes or no feedback signal. If the signal 
is yes then the agent may attempt to execute the action according to its model. If the signal is no then the agent may not 
attempt to execute the action in its current state. Let (s0, l) ∈ S denote the initial state and assume (s0, l) /∈ G , where S is 
the state space of S and G is the set of goals. Let λH (yes|(s0, l), (a, l)) = 0.0 for every action a ∈ A (where A is the action 
set). As the agent will never be able to transition out of its state which is not a goal state by assumption, it is clear that 
there exists no proper policy. �

Second, a fundamental component of the CAS model is the ability to adjust its autonomy profile over time using what 
it has learned in order to optimize its autonomy by reducing unnecessary reliance on human assistance. However, before 
operating in a new level of autonomy, the system may have no knowledge of how the human will interact with it in that 
level, i.e., the feedback profile in that new level may be initialized by default to some baseline distribution. As a result it is 
necessary that the system explore levels of autonomy that it predicts are more cost effective than its current allowed levels, 
so that it may learn whether or not it is competent to act in those levels.

Allowing the system to alter its own autonomy profile, however, can lead to severe consequences in the real world if not 
done carefully, mitigating the risk-awareness we aim to endow via the competence modeling. Therefore, we propose two 
notions to ensure a measure of safety and risk-sensitivity in a competence-aware system. The first is level-safety which is a 
notion of the safety of the level of autonomy that the system is using and is conditioned on both the agent and the human; 
intuitively, a CAS is level-safe if it cannot act in levels that the human authority would not allow. Second is gated exploration
which is a simply extension to standard exploration methods used in reinforcement learning in which the system must 
obtain permission from a human before exploring a new (disallowed) level of autonomy, ensuring that level-safety is never 
violated.

Example 4. An autonomous vehicle is initialized to only use levels {l0, l1, l2} when executing the overtaking maneuver, but 
learns that there is a very low likelihood of an override by the human authority during the day with clear visibility and 
sparse traffic. Hence, it expects based on estimated costs that its competence is in fact l3 which is initially disallowed to 
ensure safety at initial deployment. It therefore queries the human to approve it to update its autonomy profile κ by adding 
level l3 under the stated conditions.

Definition 7. A CAS S is level-safe under κ if κ(s, a) ⊆ κH (s, a) for every (s, a) ∈ S × A.

Definition 8. We define the gated-exploration strategy for (s, a) ∈ S × A as follows: let adj(l, l′) = 1 if l = l′ or l and l′ are 
adjacent in L and 0 otherwise, and let adj(κ(s, a), l′) = 1 if l′ ∈ κ(s, a) or adj(l, l′) == 1 for some l ∈ κ(s, a). Let Pl(L) be a 
distribution over L such that Pl(l′) = 0 if adj(l, l′) == 0, and let l∗ ∼ Pl(L). If l∗ ∈ κ(s, a) do nothing, otherwise, query the 
human authority H to allow for the level exploration. If the query returns a positive response, set κ(s, a) ← κ(s, a) ∪ {l∗}, 
and otherwise do nothing.

Proposition 2. Let S be a CAS with initial autonomy profile κ0. If S is level-safe under κ0 and follows the gated-exploration strategy, 
then S will be level-safe under κt for any t ≥ 0.

Proof. This is straightforward to observe by applications of the definitions. If S is level-safe under κ0, then for all (s, a) ∈
S × A, κ0(s, a) ⊆ κH (s, a) by definition. If there exists t > 0 for which κt(s, a) �= κ0(s, a) for some (s, a) ∈ S × A, then there 
is some l∗ ∈ κt(s, a) \ κ0(s, a). By the definition of gated exploration and κH , it must be that l∗ ∈ κH (s, a), and hence 
κt(s, a) ⊆ κH (s, a). As (s, a) is arbitrary, this holds for all (s, a) ∈ S × A, and hence S is level-safe. �

Next, we introduce a notion of feedback consistency which is a property of how consistent the human authority is in 
providing the same feedback given the same query by the acting agent.

Definition 9. Let FH = {FH1 , ..., FHn } be the set of features used by the human authority, H , and let SH = FH1 × · · · ×
FHn × L. The ground truth feedback function is a deterministic mapping f : SH × A → �. H is perfectly consistent if 
λH ( f (s, a)|s, a) = 1 ∀s ∈ S, a ∈ A. If λH ( f (s, a)|s, a) ≥ ε for ε ∈ (0, 1) ∀s ∈ S, a ∈ A, then H is ε-consistent.

Unless otherwise stated, we assume that the human authority is ε–consistent henceforth. We now define three central 
properties of a CAS.
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Definition 10. Let λH be the stationary distribution of feedback signals that the human authority follows. The competence
of CAS S, denoted χS , is a mapping from S × A to the optimal (least-cost) level of autonomy given perfect knowledge of 
λH . Formally:

χS(s,a) = argmin
l∈L

q∗(s, (a, l);λH ) (4)

where q∗(s, (a, l); λH ) is the cumulative expected cost under the optimal policy π∗ when taking action a = (a, l) in state s
conditioned on the human authority’s feedback distribution, λH .

Fundamentally, the system’s competence for executing action a in state s, χS(s, a), is the most beneficial (e.g. cost 
effective) level of autonomy were it to know the true human feedback distribution. When L is an ordered set, we expect 
this to generally be the highest level of autonomy allowed by the human; however, this need not be the case. In principle, 
the highest allowed level of autonomy could require more frequent human interventions, e.g. due to lower levels of trust by 
the human in the system [44], that may render it less efficient overall relative to a lower level of autonomy.

It is important to note that this definition of competence relies on λH , and hence is a definition of competence on the 
overall human-agent system, and is explicitly not just a measure of the underlying agent’s technical capabilities (i.e. D). A 
corollary of this fact is that the CAS is only as competent as the human authority believes it to be; a human authority 
that has a poor understanding of the system’s abilities could lead to the system having a lower competence than a human 
authority that knows perfectly the limitations and capabilities of the system. One reason for modeling competence in this 
manner is to avoid relying on arbitrary thresholding based on evaluative metrics to determine when a system is competent 
or not.

We say that a CAS S is λ-stationary if, in expectation, any new feedback drawn from the true distribution λH will not 
affect λ enough to change the optimal level of autonomy for any s ∈ S and a ∈ A. We show below that, under standard 
assumptions, S will converge to λ-stationarity.

Definition 11. Let S be a CAS and let U (λ) be the q-value of (s, a) under the optimal policy given λ where S executed the 
action a in level l in state s. We define the expected value of sample information (EVSI) on σ ∈ � for (s, a) to be:

∑
σ∈�

max
l∈L

∫


U (l, λ)λ(σ |s,a, l)p(λ)dλ − max
l∈L

∫


U (l, λ)p(λ)dλ. (5)

Definition 12. Let S be a CAS. S is λ-stationary if for every state s = (s, l) ∈ S , and every action a ∈ A, the expected value 
of sample information on σ ∈ � for (s, a) (Eq. (5)) is less than ε for any ε greater than 0.

Proposition 3. Let λs,a
t be the random variable representing λ(s, a) after having received t feedback signals for (s, a) where each signal 

is sampled from the true distribution λH(s, a). Then, as t → ∞, the sequence {λs,a
t } converges in distribution to λs,a

H =E[λH (s, a)].

Proof. As each signal is drawn from λH (s, a) i.i.d, then by a straightforward application of the law of large numbers the 
sequence will converge in probability to λs,a

H , which directly implies the claim. �
Theorem 1. Let S be a CAS, and let λs,a

t be the random variable representing λ(s, a) after having received t feedback signals for (s, a)

where each signal is sampled from the true distribution λH(s, a). As t → ∞, if no (s, a) is starved, S will converge to λ-stationarity.

Proof. Let s ∈ S and a ∈ A. As s and a are arbitrary and we assume that no (s, a) is starved, it is sufficient to show 
convergence to stationarity for (s, a) as t → ∞. By Proposition 3, {λs,a

t } will converge to λs,a
H in distribution given our 

assumptions. Because {λs,a
t } converges in distribution, limt→∞ Pr(|λs,a

t − λ
s,a
H | > ε) = 0 ∀ε > 0. Therefore, in the limit the 

probability that λ = λ
s,a
H after t steps, pt(λ), defines a Dirac delta function with point mass centered at λH . Hence we get 

that, limt→∞ EVSI (Eq. (5))

=
(

lim
t→∞

∑
σ∈�

max
l∈L

∫


U (λ, l)λ(σ |s,∅,a, l)pt(λ)dλ
)
−

(
lim

t→∞ max
l∈L

∫


U (λ, l)pt(λ)dλ
)

=
( ∑

σ∈σ

max
l∈L

U (λH , l)λH (σ |s,∅,a, l)
)

−
(

max
l∈L

U (λH , l)
)

=
∑

max
l∈L

U (λH , l)(1 − λH (σ |s,∅,a, l))

σ∈�

12
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= max
l∈L

U (λH , l)
(

1 −
∑
σ∈�

λH (σ |s,∅,a, l)
)

= max
l∈L

U (λH , l)(1 − 1)

= 0. �
Second, we say that a CAS S is level-optimal in some state if, under its current optimal policy, the action it takes in that 

state is performed at its competence for that state-action pair.

Definition 13. Let S be a CAS. S is level-optimal in state s if

π∗(s) = (a,χS(s,a)) (6)

If this holds for all states we say that S is level-optimal. Similarly, S is γ -level-optimal if this holds in γ |S| states for 
γ ∈ (0, 1).

The primary goal of a competence-aware system is to reach level-optimality while maintaining level-safety. As we have 
already shown that a CAS will maintain level-safety under the gated-exploration strategy (given an initial, level-safe auton-
omy profile), we therefore want to show that under certain conditions, a competence-aware system S will be guaranteed to 
reach level-optimality. In other words, that the system is guaranteed to reach a point where it operates at its competence 
in all situations.

To prove that a competence-aware system will reach level-optimality, we rely on the notion of gated exploration as de-
tailed in Definition 8. However, we also require the following exploitation approach: if S has reached λ-stationarity then it 
no longer explores under the exploration strategy and instead exploits its knowledge by deterministically selecting the opti-
mal level of autonomy at that point, i.e. for any given (s, a) ∈ S × A, the system will use a level l ∈ argminl∈κ(s,a) q(s, (a, l); ̂λ). 
However, as the theory only proves convergence to λ-stationarity (that is, an expected value of sample information of 0 over 
all σ ∈ � for every (s, a) ∈ S × A) in the limit, we instead simply require that for any fixed z ∈ R+ , sufficiently small, the 
system will switch to exploitation once the expected value of sample information falls below z everywhere which will 
happen in finite time. We will refer to this below as exploitation under stationarity.

Definition 14. Let S be a CAS, and let κt represent the autonomy profile κ at time t . Given s ∈ S and a ∈ A, we say that 
l ∈ L is reachable from κt for (s, a) if there exists at least one path from κt(s, a) to l ∈ L, where all levels along the path 
are in κH (s, a).

In the following text, let κt refer to the autonomy profile, κ , after the tth feedback signal has been received.

Theorem 2. Let S be a CAS that follows the gated exploration strategy and performs exploitation under stationarity, where χS(s, a) is 
reachable from κ0 for all (s, a) ∈ S × A. Then if no (s, a) is starved, as t → ∞, S will converge to level-optimality.

Proof. Fix s ∈ S and threshold z � 1 ∈ R+ . We need to show that in the limit, π∗(s) = (a, χS(s, a)). By Proposition 1, S will 
converge to λ-stationarity for (s, a) for all a ∈ A. Hence there is a finite point t at which the expected value of information 
on � falls below z for (s, a) for every a ∈ A and S will exploit under stationarity for s. That is, at such time, π∗(s) =
(a, argminl∈κt (s,a)(q

∗(s, (a, l)). By Proposition 3, this value is exactly the definition of χS(s, a) provided that χS(s, a) ∈ κt(s, a). 
By assumption, χS(s, a) is reachable from κ0(s, a) ⊆ κH (s, a), so given that under the gated exploration strategy, there is a 
nonzero probability of reaching χS(s, a), and as s is arbitrary, we are done. �
5. Improving competence online

As discussed in Section 1, many problems in the open world are too complex to fully specify a priori all features that 
will be relevant over the course of the system’s deployment, even with expert knowledge of the domain. This is particularly 
prevalent with features that may not directly impact the technical functionality of the autonomous agent (e.g. its domain 
model) but rather are factors that influence the human’s feedback which may encompass additional features that affect other 
elements such as comfort or social behavior [8,58]. Preliminary analysis of override data collected on a real autonomous 
vehicle prototype from two different safety drivers corroborates this claim. Here, the AV could either be in supervised 
autonomy, or could defer full control to the human; overrides corresponded to braking or accelerating registered by the 
human driver while the AV was operating in supervised autonomy.

The results of this analysis can be seen in Table 4 where we provide the correlation matrix for each type of override 
with every feature used by the CAS model implemented on the AV for each human safety driver. These results demonstrate 
two important facts. First, the difference in correlation matrices between Human 1 and Human 2 illustrates that feedback, 
13
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Table 4
The correlation matrices of each override signal with each feature.

Human 1 Human 2

F̂ σ1 σ2 σ3 σ1 σ2 σ3

f1 0.171 −0.146 −0.055 0.222 0.255 −0.410
f2 0.293 −0.158 −0.209 −0.037 −0.109 0.111
f3 −0.399 0.267 0.220 −0.212 −0.197 0.361
f4 0.375 −0.335 −0.103 0.384 −0.170 −0.313
f5 −0.379 0.257 0.205 −0.372 0.311 0.208
f6 0.064 0.043 −0.141 0.045 −0.183 0.069
f7 −0.030 0.118 −0.104 0.044 −0.019 −0.036
f8 0.179 −0.110 −0.112 0.044 −0.019 −0.036
f9 0.085 −0.093 −0.002 −0.062 0.027 0.051
f10 0.108 −0.151 0.038 −0.237 0.104 0.193
f11 0.175 −0.059 −0.168 0.325 0.295 −0.549

and the features which determine that feedback, can vary significantly between humans, meaning there is no “one-size-
fits-all” feedback model. Second, the lack of any feature having a correlation coefficient greater that ±0.4 indicates that it 
is challenging, even with expert input, to capture all of the causal features used by all humans a priori. If the CAS model 
does not represent certain features in its model that are used by the human in deciding their feedback signals (either 
explicitly or implicitly), the human’s feedback may appear inconsistent or even random, leading to low competence and a 
potentially high degree of improper reliance on the human stemming from an underspecified model. Consequently, for these 
systems to be most effective in the real world it is important that they are equipped with a means of updating their model 
online to better align with the human’s model so that they can better predict the correct feedback likelihoods. To address 
this shortcoming, we propose a method for providing a CAS the ability to improve its competence over time by increasing 
the granularity of its state representation through online model updates. The approach works by identifying states that 
are deemed indiscriminate under the system’s current feedback profile, i.e. unable to predict human feedback with high 
confidence, and attempts to find the feature, or set of features, that is available to the system but currently unused that 
best discriminates human feedback, leading to a more nuanced drawing of the boundaries between regions of the state 
space with different levels of competence. An example of this process can be viewed in Fig. 6. By exploiting the existing 
information available in a standard CAS model (namely, the existing human feedback) to identify where features may be 
missing and should be added, our approach adds no additional work to the human at all. Additionally, when the missing 
features impact only the human’s feedback profile (and not the system’s technical capabilities), or when using a CAS with 
levels of autonomy that involve forms of human assistance that maintain safe operation (like that which is described in the 
running example) we only need to modify the state space directly, and not the transition or cost functions, enabling the 
entire process to be performed online and fully autonomously.

Example 5. Recall the scenario in our running example, where the AV (blue) must overtake an obstacle blocking its lane (red) 
by driving into the oncoming traffic’s lane (yellow). Now, consider the existence of a trailing vehicle (or vehicles) waiting 
behind the AV (green); the existence of trailing vehicles may not be included in the state representation of the domain 
model as they do not affect the decision making of the AV from a technical perspective (that is, they do not influence the 
success or failure probabilities of each action, do not influence the safety of the actions, and short of rear-ending the AV do 
not directly alter the AV’s state), and serve only to increase the state space of the planner. However, it may be the case that 
the human in the AV is actually more likely to override safe behavior, such as waiting if there is an oncoming vehicle, and 
take manual control of the vehicle due to the social pressure exerted by the trailing vehicle’s existence. See Fig. 5.

5.1. Indiscriminate states

Let S be a competence-aware system. In practice, when a robotic system is deployed into the open world, both the 
exact environment the system will operate in, and the human authority it will interact with, may not be known a priori. 
Naively including all possible features available to the system from perception or external sources in its planning model 
may make planning intractable without benefit in the case where many of the features do not add useful information for 
decision making and serve only to increase the number of states. Hence, we assume that S has available to it a complete 
feature space that can be partitioned into an active feature space that is used by S and an inactive feature space that is not 
yet used by S in its planning model. However, as S receives additional feedback over time, S will learn to exploit some of 
the inactive features, adding them to its state representation to more effectively align its features with those used by the 
human authority.

Definition 15. Given the complete feature space F = {F1, F2, ..., Fn} available to S, the active feature space is denoted as 
F̂ ⊆ F , and the inactive feature space as F̆ = F \ F̂ .
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Fig. 5. Illustration of Example 5.

Fig. 6. An illustration of iterative state space refinement. S( F̂ i ) represents the state space given the active feature set F̂ i . The middle row depicts a “zoomed 
in” view of a small part of the state space. We can see that originally, with active feature set F̂1, there are only two states in the subspace: s1 and s2. 
The top row depicts the key information found by our algorithm: first, it identifies that s2 is an indiscriminate state given λ, and finds the discriminator D1

(represented by the red line) which then partitions s2 into two states: s21 and s22. The process repeats once more, finding that s1 is also an indiscriminate 
state, and finding discriminator D2 which partitions s1 into four states: s11, s12, s13, and s14.

We say that a state s ∈ S is indiscriminate if, intuitively, the active feature space is missing features needed to properly 
discriminate the feedback received from the human for the state s. The condition states more precisely that for at least 
one action there must be no feedback signal that, under the system’s current feedback profile, can be predicted with high 
probability. The intuition is that, under the assumption of ε-consistency and a ground truth feedback, situations where the 
agent cannot predict feedback with high probability indicate that a feature may be missing from its state representation 
causing the probability mass to be normalized over the remaining features in its active feature space. We formalize this 
below.

Definition 16. Let the human authority H be ε-consistent for ε > 1
|�| . A state s ∈ S is indiscriminate if there exists at least 

one action, a ∈ A, where for every feedback signal σ ∈ �, we have the following:

λ(σ | s,a) ≤ 1 − δ δ ∈ (1 − ε,1 − 1

|�| ) (7)

Here, δ is referred to as the discrimination slack, and determines the predictive confidence needed for a state to be de-
clared indiscriminate; the lower the slack is set, the higher the confidence needed. The discrimination slack serves to provide 
a formal trade-off mechanism between increasing the complexity of the underlying planning model, and the completeness 
of the competence-aware model. The determination of how to set δ may be done via expert knowledge, offline evaluations, 
or could even be tuned online in a dynamic fashion. To avoid considering states that have a very small amount of data 
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(and hence may be deemed “indiscriminate” due to chance), we consider only states for which the system has collected a 
sufficient amount of data (which may be determined simply via a fixed threshold, or based on some statistical analysis).

Given the notion of an indiscriminate state, we can now define the central concept of this approach. A discriminator is, 
intuitively, any subset of the inactive feature space that could help the agent to better discriminate feedback from H for 
an indiscriminate state. For example, consider the autonomous vehicle agent in Running Example 5 that initially does not 
consider the existing of a trailing vehicle in its active feature set. Suppose that the human always overrides the vehicle and 
takes manual control when there is a trailing vehicle if the AV waits for too long before proceeding around the obstruction 
to maintain safe operation. Without this additional feature in its model, the agent may perceive having received “noisy”, or 
even seemingly random, feedback from the human authority, leading to a feedback profile with low predictive capabilities 
and a poor competence model, resulting in the AV conservatively transferring control to the human when performing an 
overtake in situations where it was actually competent to act autonomously. By providing the agent with the ability to add 
these features to its active feature space, the agent’s new feedback profile will be able to predict the correct feedback signal 
in more situations with higher probability.

5.2. Iterative state space refinement

Definition 17. A discriminator is any subset of F̆ which, if added to F̂ , will improve the performance of λ by at least α, for 
some α ∈ (0, 1).

The larger that α is set, the stricter the requirement is on including a new feature. Determining α can be as simple as 
setting it to be a fixed threshold, or can be via more sophisticated means such as based on the value of information or 
other information-theoretic metrics. The methodology for selecting discriminators is well explored in the feature selection 
literature and not the focus of this contribution; standard approaches include mRMR [65], JMI [17], and correlation-based 
methods [82]. We define a discriminator as a subset because there may be causal features which if added individually do 
not help to discriminate the human’s feedback, but when added together do (i.e. they are only meaningful in the context 
of each other). The size of feature subsets to consider when selecting potential discriminators is therefore an important 
parameter of the approach, but we note that, if desired, one could also take an iterative approach, running the algorithm 
with increasing size until a discriminator is found. Algorithm 1 presents the pseudocode of our approach for improving the 

Algorithm 1: Single–Step State Space Refinement.
Input: A CAS S, dataset D, slack δ, and threshold M
Result: An updated CAS S

1 S
∗ ← {}

2 for s ∈ S.GetStates() do
3 for a ∈ S.GetActions() do
4 if maxσ∈� λ(σ |s, a) ≤ 1 − δ and
5 maxσ∈� Pr[Obs(D(s, a))|σ is ground truth] < pε

6 S
∗ ← S

∗ ∪ {s}
7 end
8 end
9 end

10 if S
∗ = ∅

11 return S
12 end

13 s∗ ∼ S
∗

14 Dtrain, Dval ← Split(D)

15 D ← FindDiscriminators(Dtrain, ̆F , s)
16 for d ∈ D do
17 λd ← train( F̂1 × · · · × F̂ | F̂ | × d, Dtrain)

18 end

19 d∗ = argmaxd∈D Evaluate(λd , Dval)
20 if Validate(d∗, S) is True
21 F̂ ← F̂ ∪ d∗
22 S′ ← Update(S)
23 end

24 return S′

competence of a CAS via iterative partitioning of the state space by adding new features to the state representation over 
time. The algorithm first identifies the current set of indiscriminate states (Lines 1–9). To avoid labeling sparsely sampled 
state-action pairs as indiscriminate through chance, we limit the process to only consider certain state-action pairs. In 
particular, only those where the probability of having observed all labeled instances of that element in the existing dataset 
16



C. Basich, J. Svegliato, K.H. Wray et al. Artificial Intelligence 316 (2023) 103844
D, referred to in Algorithm 1 as Obs(D(s, a)), is at least some threshold pε conditioned on the assumption that there exists 
a true correct feedback signal returned with probability at least ε by the human for every state-action pair (Line 5). Next, 
the algorithm samples an indiscriminate state from the set (Line 13) and identifies the most likely discriminators for that 
state using any standard feature selection technique (in our case, we used mRMR [65] with the FCQ methodology [102]) 
(Line 15). For each potential discriminator, a new feedback profile is trained using a portion of the full dataset with the 
discriminator temporarily added to the active feature set (Lines 16–18). The discriminator that leads to the best performing 
feedback profile, in our case the highest Matthews correlation coefficient, is selected for validation (Line 19). If validation is 
successful, the discriminator is added to the active feature set and the system is updated (Lines 20–23).

In the design and usage of Algorithm 1, we make two key assumptions. First, we assume that the initial transition 
function provided in the domain model is sufficiently correct for any scenario where the agent is allowed, under κH , to 
act autonomously. We aim to improve the robustness of deployed systems where accounting for every scenario a priori is 
infeasible, but where the scenarios that are considered a priori are well-designed.

Second, we assume that the human authority has a sufficient understanding of the agent’s capabilities to both prevent 
the execution of an action that the agent cannot perform successfully and also provide consistent feedback. We make this 
assumption for two reasons. First, there are different ways to improve the human authority’s understanding of the system’s 
capabilities so that it has the appropriate trust [45], or reliance, on the system. These include pre-deployment training, 
standardized feedback criteria, and expert knowledge of the system. Second, recognizing potential failures and handling 
fault recovery are separate areas of active research [7,27,94] that are orthogonal to what we examine here.

Critically, under these assumptions, we do not need to update the domain model’s transition or reward functions directly at 
any point. It suffices for the agent to be able to discriminate between actions that it has the competence to perform au-
tonomously and actions that require human involvement because, under the first assumption, T is correct when the agent 
is allowed to execute an action autonomously. Consequently, the only elements of the CAS transition function, T , that are 
marginally dependent on features added to the state representation are λ and τH . As λ and τH are learned online from 
observed feedback, we can directly compute the respective new distributions over F̂ ′ from the current dataset which in 
turn updates the transition function as λ and τH are both parameters of T . We suggest that when one or both of these 
assumptions do not hold it is possible to use our approach as a means of identifying the missing features and subsequently 
improving the system’s competence by directly updating the transition and cost functions (e.g. via software updates).

A natural question is whether in the process of adding a discriminator to make some indiscriminate states discriminate, 
we will, as an unintended by-product, make some discriminate state indiscriminate.

Remark 1. Adding a discriminator will never cause a discriminate state to become indiscriminate.

While possibly not obvious a priori, this remark is trivially true. Observe that any given discriminate state will either be 
affected by the discriminator or it will not. If it is not affected, the feedback profile for the state will not change. If the state 
is affected, then the initial state in question by definition no longer exists. More importantly, we want to ensure that every 
state is eventually properly discriminated given a sufficient set of features.

The following proposition states that if every feature that the human uses to determine their feedback is available to the 
robot, then there must be a point in time at which the robot has fully discriminated all states, and no state will become 
indiscriminate past that point.

Proposition 4. Let It be the number of indiscriminate states at time t, and let λs,a
t be the random variable representing λ(s, a) after 

having received t feedback signals for (s, a) where each signal is sampled from the true distribution λH(s, a). If FH ⊆ F , H is ε-
consistent, δ > 0 and no (s, a) ∈ S × A is starved, then there exists some t∗ > 0 for which It′ = 0 for all t′ > t∗ .

Proof. First, observe that as FH ⊆ F , if there is a point at which FH ⊆ F̂ , then because the sequence {λs,a
t } converges in 

distribution by Proposition 3, limt→∞ Pr(|λs,a
t − λ

s,a
H | > γ ) = 0 ∀γ > 0, (s, a) ∈ A × A. Hence, there exists some t∗ > 0 for 

which Pr(|λs,a
t − λ

s,a
H | > δ) = 0 at which point it is clear that no state will be indiscriminate under δ. Consequently, for the 

claim to not hold, it must be the case that for every t > 0, FH \ (FH ∩ F̂ ) �= ∅. Pick such a t , sufficiently large, for which 
there is an indiscriminate state s ∈ S . There is some subset, G ⊆ FH \ (FH ∩ F̂ ), which is a discriminator of s. As this holds 
for all t > 0 and s ∈ S , we either reach a satisficing t∗ where FH \ (FH ∩ F̂ ) �= ∅, and hence are done, or where FH ⊆ F̂
which contradicts our assumption. �
6. Empirical evaluations

To test the competence-aware system, we implemented the CAS model in two simulated autonomous vehicle domains at 
different levels of decision-making abstraction. The first domain is a high-level navigation problem in which an autonomous 
vehicle must plan (and execute) the optimal route to take between two locations conditioned on its knowledge about 
different intersections and streets and its own competence in performing different maneuvers at the various locations. The 
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Fig. 7. A depiction of the map used for our simulated navigation domain with actual locations from OpenStreetMap (left) and the abstracted representation 
of the navigation graph (right).

second takes a more fine-grained look at one of the maneuvers that can be performed in the first domain, namely passing 
an obstacle that is blocking its lane, and is modeled after the domain depicted in Example 1.

We evaluated our iterative state space refinement approach (Algorithm 1) on both of these domains as well, where the 
key difference is that the CAS model is missing features in its initial active feature space that do not impact its transition 
model (that is, what it is technically capable of doing), but impact the human’s feedback signal likelihoods regardless. We 
test our approach for multiple different simulated humans, each of whom uses different auxiliary features in determining 
their feedback. We describe an overview of the domains below, and include additional experimental details in Appendix A.

6.1. Autonomous vehicle navigation

6.1.1. Domain description
In this domain, an autonomous vehicle operates in a known map represented by a directed graph G = (V , E) where each 

vertex v ∈ V represents an intersection and each edge e ∈ E represents a road; the graph used can be seen in Fig. 7 and is 
modeled after locations in the area of Amherst, Massachusetts. The autonomous vehicle is tasked with navigating the map 
safely from a start vertex to a goal vertex. Each vertex (intersection) state is represented by an ID for the vertex, a boolean 
indicator of the presence of pedestrians, a boolean indicator of the presence of an occlusion limiting or blocking visibility, 
the number of other vehicles at the intersection (0-4), and the vehicle’s heading. Each edge (road) state is represented by a 
start vertex ID, a destination vertex ID, the number of drivable lanes on the current road segment, the direction of travel, and 
a boolean indicator of the presence of an obstruction blocking the agent’s lane. Additionally, each edge is associated with a 
known length and speed of travel. Model parameters dictating the probabilities of each state variable (e.g. the probability 
of a pedestrian being at a given intersection upon reaching it) are assumed to be known offline and given as part of the 
model input.

In vertex states, the agent can either Go Straight, Turn Right, Turn Left, U-Turn, each of which has a cost of 
10.0, or Wait, which has a cost of 1.0. All maneuvers succeed deterministically. In edge states, the agent can either Con-
tinue or Overtake an obstruction, each with unit cost. Overtake is assumed to succeed with probabilities [0.2, 0.5, 0.8]
depending on the number of lanes. Continue fails deterministically in the presence of an obstruction, and if there is no 
obstruction transitions the agent to the end-vertex of the edge with probability p ∝ speed(e) / length(e) or otherwise to 
the same edge with some probability of an obstruction occurring. We model the expected duration as part of the transition 
function, rather than the cost function, to allow for the development of an obstruction in the AV’s lane while traversing an 
edge segment which may be very long in real life. We consider the following levels of autonomy, L = {l0, l1, l2, l3} where l3
does not require any involvement from the human at all (i.e. we assume the probability of an override is 0), l2 allows the 
agent to execute an action under supervision, during which the human may override the action if they deem it unsafe, l1
which requires explicit approval from the human for an action prior to its execution during which, if approval is received, 
the agent may attempt to execute the action under supervision, and if the action is disapproved by the human the agent 
must select a different action to perform, and l0 which requires full transfer of control to the human to complete the action. 
The autonomy profile, κ , is initialized to L in edge states without an obstruction and otherwise to {l0, l1, l2}. The feedback 
profile, λ, is initialized to be uniformly random over the possible feedback signals. There is an associated cost of 10.0 to the 
human for operating in l0, as the human is required to manually control the vehicle, a cost of 2.0 for operating in l1, a cost 
of 1.0 in level l2, and no additional cost to the human when operating in l3 . The system incurs a cost of 3.0 when receiving 
a negative response in l1 and a cost of 10.0 when receiving an override in l2 as we assume that the human completes the 
intended action.
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Fig. 8. Empirical results from simulations of a fixed route (12 →7) showing the expected cost (a) to goal of a CAS and the average cost (b) over 100 trials 
with a CAS (blue) and without a CAS (red) as a function of the number of signals received.

6.1.2. Results
To validate the CAS model in the AV navigation domain, we randomly selected a start node and goal node each episode 

to ensure that the system had the ability to visit the entirety of the graph. We repeated this for four different human 
authorities where we varied their consistency: 0.8, 0.9, 1.0 (i.e. perfectly consistent), and, in the final case, a human who 
starts with a very low consistency (0.6) to reflect their poor understanding of the capabilities of the system, but increases 
their consistency by a small amount (0.1) each episode to reflect their improved understanding of the capabilities of the 
system over time as they interact with it. Figs. 8, 9 and 10 report the results from the experiment conducted in the 
autonomous vehicle navigation domain. Fig. 8 depicts the results on a fixed route (node 12 to node 7 in Fig. 7). The 
top graph shows the expected cost of the route and the bottom graph shows the actual mean cost (averaged over 100 
simulations) of the CAS (blue) compared against an agent just using the domain model agnostic to its competence, with a 
human overriding as necessary (i.e. effectively always operating in level l2) (red). These results demonstrate that by learning 
an accurate competence model and incorporating that into the planning model, a CAS can efficiently (< 40 feedback signals) 
improve both its average performance and expected performance, significantly outperforming a system that is agnostic to 
its competence and the dynamics of human interaction. These experiments were taken from the human with consistency 
ε = 0.9 but we note that very similar results were obtained in all cases.

Fig. 9 depicts in the top two rows the convergence of the level-optimality of the competence-aware system as a function 
of the number of feedback signals received, and in the bottom row the number of signals received over the course of 
100 episodes (where each episode is a random route) for a system with a CAS (blue) and a system without a CAS (red). 
Each graph corresponds to a human authority with a different consistency, ε , as detailed above. In all cases, the level 
optimality reaches 100% over all reachable states in the domain. Interestingly, in Fig. 9d, the results are more comparable 
to a human with a fixed consistency of 0.9 or 1.0 in the level-optimality convergence rate than they are to a human 
with a fixed consistency of 0.8 which requires roughly twice as many feedback signals to converge to level-optimality. This 
demonstrates that even a CAS with a human who starts with an initially poor understanding of the system’s capabilities, and 
consequently low consistency, can efficiently reach level-optimality if the human’s understanding and consistency improves 
at a consistent rate. The figures in the bottom row illustrate that without a CAS the number of feedback signals provided by 
the human grows linearly, demonstrating the significant disparity in burden placed upon the human in a system without a 
CAS model compared to a system with a CAS model. We only depict the results for 0.8 and 1.0 for the sake of space, but the 
results look very similar for all ε-consistencies considered. Overall these results demonstrate the primary goal of the CAS 
model which is that it enables a system to efficiently reach level-optimality, optimizing the trade-off between autonomous 
performance and human assistance, thereby reducing the net burden placed on the human over the course of the system’s 
operation.

Fig. 10 depicts the change in routes taken between the first episode and the 100th episode for the CAS model for four 
fixed routes. Here, purple denotes parts of the route taken that are the same, red denotes parts of the route that are taken in 
the first episode but not the 100th, and blue denotes parts of the route that are taken in the 100th episode but not the first. 
This figure illustrates the macro policy changes made as the CAS learns its competence—namely altering its route to avoid 
states or trajectories of low competence which would require excessive human assistance—in addition to the micro changes 
of selecting which level of autonomy to use in any given situation. In general, we find that the AV’s behavior changes to 
avoid areas densely populated with pedestrians, occlusions, and single lane roads, such as downtown Amherst (nodes 8-11) 
and University of Massachusetts Amherst (nodes 6-8).
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Fig. 9. Empirical results from the autonomous vehicle navigation domain with varying levels of human consistency showing the level-optimality as a 
function of the number of feedback signals received (9a - 9d) and the number of feedback signals received over the first 100 routes executed (9e - 9f). 
In Fig. 9d, the human consistency increases after each route is executed, mimicking a human whose consistency improves the more it interacts with the 
system.

6.2. Autonomous vehicle obstacle passing

6.2.1. Domain description
In this domain, modeled after the problem depicted in Example 1, an autonomous vehicle must overtake an obstacle that 

is blocking its lane on a one-lane road. Importantly, this maneuver required that the AV drive into the oncoming traffic’s 
lane in order to overtake the obstacle, a potentially dangerous maneuver. See Fig. 11.
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Fig. 10. Comparison of routes taken before and after the CAS learns its competence. Purple indicates shared route, red indicates route taken by starting 
model alone, blue indicates route taken by ending model alone. Green and yellow circles denote start and end nodes respectively.

Fig. 11. Illustration of the AV obstacle passing domain.

Each state is represented by the vehicle’s position (0-4), the position of an oncoming vehicle (0-3, or unknown), and 
whether the oncoming vehicle has given priority to the AV to attempt its overtake. Model parameters dictating the behavior 
of oncoming vehicles are assumed to be known offline and given as part of the model input.

The autonomous vehicle can perform the following actions: Wait, Edge, and Go. Edge provides visibility of oncoming 
traffic to the AV if unknown and otherwise advances the AV’s position with probability 0.5. Go deterministically advances 
the AV’s position, which results in a crash if the AV and an oncoming vehicle share the same position. Stop holds the AV’s 
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Fig. 12. Empirical results from the autonomous vehicle obstacle passing domain depicting the level-optimality (left) over all reachable states (red) and the 
full state space (blue), and the average cost (right) over 1000 simulations, as a function of the number of feedback signals received.

position, during which time the oncoming vehicles position may change (or become empty), or the oncoming vehicle may 
give priority to the AV. If the AV has priority it is assumed that the oncoming traffic will stay stopped until the AV has 
finished its overtake. All actions have unit cost, and crashing incurs a very high cost.

We consider the following levels of autonomy, L = {l0, l1, l2} where l2 does not involve the human at all, l1 allows the 
agent to execute an action under supervision, during which the human may override the action if they deem it unsafe, 
and l0 which requires full transfer of control to the human to complete the action. Note that we do not include the level 
l1 from the prior domain (referred to earlier as “verified autonomy” in Table 1) due to the second-to-second nature of 
decision making in this safety-critical domain, where prompting the human for explicit approval before every action may 
be impractical or even dangerous.

The autonomy profile, κ , is initialized to {l0, l1} in all cases; i.e., in such a safety critical domain it is expected that, 
initially, the human is always aware and ready to override the system. As above, the feedback profile λ is initialized to 
be uniformly random. The human incurs a cost of 10.0 when the CAS operates in l0 but is assumed to complete the 
maneuver successfully (i.e., the human does not give back control part way through passing the obstacle), a cost of 1.0 
when supervising in l2, and no cost in l3. The system receives a penalty of 10.0 when being overridden by the human.

6.2.2. Results
In the AV obstacle passing domain, the problem—i.e., the initial state and goal state—stayed fixed each episode. Figs. 12a 

and 12b report the results from the experiment conducted in the autonomous vehicle obstacle passing domain. Fig. 12a 
shows the level-optimality of the CAS over all states in the domain and all reachable states (each episode) plotted against 
the number of feedback signals received from the human, in this case consisting only of overrides. The figure illustrates that 
the CAS is able to converge to level-optimality on all reachable states in the domain with slightly more than 100 feedback 
signals. The slower convergence rate is due to a stricter requirement on gated exploration due to the more safety-critical 
nature of the domain (see Appendix A for details). 100% Level-optimality is not reached on the whole state space due to 
the absence of a portion of the state space ever being visited (or even reachable), preventing the human authority from 
providing any feedback for actions taken in those states. Fig. 12b reports the expected cost of overtaking the obstacle and 
illustrates that the expected cost decreases as the level-optimality increases, corroborating the results from the previous do-
main. This also demonstrates that, in certain domains, performance may be improved to near optimal performance without 
even needing to converge to full level-optimality across the entire state space due to variations in state reachability trends.

6.3. Iterative state space refinement

To validate the iterative state space refinement method, we implemented Algorithm 1 and compared the performance of 
a CAS with Algorithm 1 and a CAS without it on both of the domains defined above (autonomous vehicle navigation and 
autonomous vehicle obstacle passing). In both experiments we considered different human users of the autonomous vehicle 
system, each of whose feedback was conditioned not just on the features already used by the CAS model that directly 
impacted the CAS’s technical performance (i.e., the existence of a pedestrian, an occlusion, etc.) but additionally on auxiliary 
features which are tracked by the autonomous vehicle but not included in its a priori planning model, as the features in 
question are different for each person, and do not (directly) impact the transition and cost dynamics of the system.

In the AV navigation domain, the inactive feature set included the following features: whether the AV has a trailing 
vehicle, a vehicle to its left, or a vehicle to its right, whether the AV has been “waiting” to move, whether it is daytime 
or nighttime, and whether it is sunny, rainy, or snowy. In the AV obstacle passing domain, we consider the same inactive 
features except whether there is a vehicle to the AV’s left or right, as the problem is for single lane roads.

In the AV navigation domain, we consider two “people” implemented as software agents: the first person is cautious 
with low trust in letting the AV operate in challenging environmental conditions (even though they do not impact the AV 
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Fig. 13. Iterative state space refinement results for three human authorities in the autonomous vehicle obstacle passing domain, showing the level optimality 
after each episode as a function of the number of feedback signals with (left) and without (right) Algorithm 1 implemented. Colors indicate the level-
optimality over states visited during each episode (green), all reachable states each episode (red), and the full state space (blue).

in simulation), for instance taking over control when the system attempts an overtake on a road segment when it is either 
snowing or rainy and night time. The intuition here is that the weather conditions impact the human’s ability to fully assess 
the situation and hence the veracity of the AV’s actions, prompting them to take control of the vehicle themselves. We refer 
to them as “Cautious”. The second person is motivated by more social factors, and is more likely to take control of the 
vehicle when there is a trailing vehicle the AV is blocking, and or when the AV has been stopped for too long (either on a 
road segment behind an obstruction, or at an intersection). We refer to them as “Conscientious”.

In the AV obstacle passing domain, we consider three “people” implemented as software agents (see Appendix A for 
more details): the first is motivated by the same features as the first person above; we again refer to them as “Cautious”. 
The second person is motivated by whether there is a trailing vehicle that they are blocking, prompting them to take control 
if the AV waits to long to attempt its overtake; we also refer to them as “Conscientious”. The third person is in a rush and 
takes over control if the AV is waiting too long or doesn’t go when it has priority; we refer to them as “Rushed”. Each 
simulated person is perfectly consistent up to some fixed noise ε , within which they return uniformly random feedback.

We note that in both domains, some inactive features are never used by any of the humans simulated, and hence we 
aim to show that our approach does not simply “pick all features” in the inactive feature space. Additionally, one important 
distinction between the two domains is that the additional inactive features may change at each new state in the AV 
navigation domain, but are fixed in the AV obstacle passing domain at the beginning of each episode due to the short time 
horizon of the problem. Details of the simulated humans can be found in Appendix A.

6.3.1. Results
Fig. 13 shows the results of our experiment, comparing the performance of a CAS with and without the iterative state 

space refinement (ISSR) approach (Algorithm 1) implemented, on the AV navigation domain with random routes each 
episode. Fig. 14 shows the results for the AV obstacle passing domain. In Fig. 13, we can see that the CAS with the ISSR 
implemented converges to higher level-optimality on all state in the domain, and 100% level-optimality on all states visited 
each episode, leading to far fewer feedback signals from the human, for both human authorities. Additionally, in both cases, 
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Fig. 14. Iterative state space refinement results for three human authorities in the autonomous vehicle obstacle passing domain, showing the level optimality 
after each episode as a function of the number of feedback signals with (left) and without (right) Algorithm 1 implemented. Colors indicate the level-
optimality over states visited during each episode (green), all reachable states each episode (red), and the full state space (blue).

the only features added to the active feature space where the features in the inactive feature space that were actually used 
by the humans in determining their feedback.

Fig. 14 shows the results for the AV obstacle passing domain. Note that we include results on all reachable states here 
because the additional features stay fixed through each episode, whereas in the AV Navigation domain, they can change 
throughout an episode and the transition dynamics are (by design) not modeled by the agent.

There are several key takeaways from these graphs. First, if we consider the level-optimality over all states in the domain, 
it is higher for the ISSR-CAS in the cases of all three human authorities, than for the CAS without ISSR active, indicating 
24



C. Basich, J. Svegliato, K.H. Wray et al. Artificial Intelligence 316 (2023) 103844
that our approach is enabling the CAS to generalize its competence model to a larger portion of the (unvisited) state space. 
We remark that by adding features in order to refine the state space, the number of states increases multiplicatively with 
each feature added, meaning that not only is the ISSR-CAS level-optimal in a larger portion of the state space, that directly 
translates to being level-optimal in a larger number of unique situations. More important are the results depicting the 
level-optimality over all visited states each episode; here, we see that this reaches 100%, or near 100%, for all 3 human 
authorities with fewer than 50 feedback signals. However, we observe an interesting phenomenon for the CAS without 
ISSR active; namely, we see several clusters of green at the far right (at which point no additional feedback signals were 
received). This phenomenon is due to the fact that the CAS learns to operate in l0, that is, full human control, in a large 
portion of the statespace because it cannot properly discriminate the feedback received from the human conditioned on 
features in the inactive feature space, which is correct for certain settings of these features (which, to reiterate, are set and 
fixed at the start of each episode), but not for others. However, because the state space is not refined enough to consider 
these decision boundaries, the CAS learns to operate at the incorrect level of autonomy (relative to the full feature space) in 
certain conditions.

These results demonstrate that the ISSR method is effective at enabling a competence-aware system to improve its 
competence online when missing from its active feature space features used by its human authority.

7. Discussion and future work

7.1. Autonomy profile initialization

Because we restrict the system to choose policies from �κ , if the autonomy profile κ is altered, so too is the space of 
allowed policies. Hence, there is a trade-off when setting the initial constraints on the allowed autonomy of the system, i.e., 
κ . One can take a conservative approach and constrain the system significantly, for instance setting |κ(s, a)| = 1 so that a 
single level is deterministically selected for every (s, a) ∈ S × A, reducing the problem complexity to solving the underlying 
domain model. However, doing so risks a globally sub-optimal policy with respect to L and may, depending on the initial 
κ , make reaching the globally optimal policy impossible. On the other extreme, one can take a risky approach and not 
constrain the system at all a priori, leaving the decision of choosing the level of autonomy completely up to the system 
when solving its model. This approach, while necessarily containing the optimal policy (subject to the agent’s model) is 
naturally slower due to the larger policy space and inherently less safe as the agent can take actions in undesirable levels. 
Fig. 4 illustrates different partitionings of the policy space under different autonomy profiles.

We propose that in practice, the desired initialization is somewhere in the middle; κ should be less constraining in 
situations where the expected cost of failure is relatively low, and more constraining in situations where it is high. While 
the model makes no such requirements, in many practical settings such information may be at least partially known a 
priori for a specific domain. For instance, in an autonomous vehicle, κ should be more constraining initially in situations 
involving pedestrians, poor visibility, or chaotic environments such as large intersections with multiple vehicles; however, 
initial testing may indicate that driving along a highway is low-risk and may not require a highly constraining κ .

7.2. Model assumptions

We now discuss the practical considerations of the two main assumptions made in Section 3.4: (1) the human authority, 
H , provides consistent feedback and (2) the human authority’s feedback comes from a stationary, Markovian distribution.

Implicit in Assumption (1) is that humans respond appropriately to each situation, possibly with some noise representing 
the likelihood of human error. However, because of the limited scope of the system’s domain model, it could be that 
perfectly consistent feedback from H ’s perspective is perceived to be random by the system, particularly when it is not 
aware of the domain features that explain the human feedback. As an example, consider a robot that can open ‘push’ doors 
and cannot open ‘pull’ doors, but does not model this discriminating feature. If the robot cannot discriminate between 
these types of doors, consistent and correct human feedback (approving autonomously opening ‘push’ doors only) may be 
perceived by the robot to be arbitrary or random. Although in practice one may wish to avoid such situations, we emphasize 
that the system will still converge to its competence for the state features it uses—possibly a low competence—when the feedback 
distribution appears to be random.

Assumption (2)—the human feedback distribution λH is stationary and Markovian from the start—implies that the human 
has good knowledge of the system from the start. That may not be realistic in certain domains. It is more likely that 
the feedback signals may vary based upon the observed performance of the system over time. However, as the human 
authority observes the system’s performance, it is reasonable to assume that their feedback distribution will eventually 
reach a stationary point as long as the system’s underlying capabilities stay fixed. Therefore, even if there are erroneous 
feedback signals provided early in this process, in the limit the system will still converge to its competence. Two possible 
means of expediting this are to introduce a training phase at the beginning of the system’s deployment to allow the human 
to observe the system’s performance and develop accurate expectations regarding the system’s capabilities, and to introduce 
standardized feedback criteria that is made known to the human a priori.
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7.3. Partially observable models

As stated in Section 3, the CAS is designed to handle fully-observable sequential decision-making models like SSPs 
and, more generally, MDPs, but is not immediately compatible with partially observable models (or mixed-observability 
models) despite partial observability and other limitations on state observability being a natural contributor to limitations 
on system competence. The two main barriers in directly applying the CAS to models like a POMDP are (1) the challenge of 
appropriately associating feedback signals with domain states for learning purposes when the system only has access to a 
belief state at any given time, and (2) the challenge in defining the competence of a belief-state, where the system implicitly 
does not know its true state. Future work will consider ways in which we can extend both the representation of feedback 
signals and the definition of competence, and consequently the CAS model, to such domains in a well-defined manner, for 
instance by changing the definition of competence from a function on states to a function on observations.

8. Conclusion

We introduce a new framework for representing, learning, and reasoning with self-competence models in semi-
autonomous systems. Competence in our approach represents the level of autonomy that the system can handle reliably 
based on human feedback. More precisely, we define competence as the optimal level of autonomy in any given situation, 
consistent with perfect human feedback. We present a novel decision-making framework, competence-aware systems, that 
enables a semi-autonomous system to learn its own competence over time through interactions with a human authority. 
The result is a system that can handle risky scenarios by relying on the human authority to compensate for limitations or 
constraints on its autonomous abilities, while simultaneously optimizing its autonomous operation to reduce unnecessary
reliance on humans.

We illustrate the operation of a competence-aware system with a running example and prove several theoretical prop-
erties of the CAS model. In particular, we prove that under standard convergence assumptions the model will converge to 
level-optimality, guaranteeing that the system consistently operates at its competence. We test the efficacy of our model 
empirically on two simulated autonomous vehicle domains, at different levels of reasoning abstraction, and demonstrate 
that the competence-aware system can efficiently reach high level-optimality, optimizing the trade-off between its own 
autonomous operation and human assistance, and leading to less burden on the human and a more cost-effective overall 
plan.

Preliminary internal testing on an autonomous vehicle prototype suggests that designing a perfectly specified CAS model 
for real-world, highly-unstructured domains is a non-trivial task. Even with expert domain knowledge, an initial model may 
be missing features used by the human in determining their feedback for the CAS. To avoid solving this naively with the 
inclusion of all possible system features in the CAS’s domain model (many of which would serve no functional purpose 
but would cause the state space to explode and render planning intractable), we devise the iterative state space refinement
approach. Described in Algorithm 1, the approach provides a competence-aware system the means to gradually refine its 
state representation online, enabling it to better identify the boundaries between state-action pairs with difference com-
petences. This ability is particularly relevant in the context of systems deployed in the real world where human feedback 
may be conditioned on features that are unspecified or unknown a priori. Such features may not impact the original stated 
objectives of the system, but could influence unstated human preferences, trust, safety, and social conscientiousness. We 
prove that, when possible, this approach is guaranteed to reach a point where all states are discriminated, and demonstrate 
empirically that a CAS with this approach implemented far outperforms a CAS without it when the CAS cannot properly 
learn from human feedback due to missing state features. In particular, the modified CAS requires both fewer total feedback 
signals from the human, placing less burden on the human, and is more sample efficient with the feedback it receives in 
learning its competence, leading to a higher level-optimality for the CAS.

The primary direction of future work lies in extending competence-aware systems to models with limited state ob-
servability, such as MOMDPs and POMDPs. This includes devising a method of associating human feedback acquired in 
belief-states with underlying states in the domain, when the system does not know which state is responsible for the feed-
back, and generalizing competence to belief-states in a well-defined way that still captures the risk-sensitive semantics of 
the current approach. We are also interested in extending our model of human feedback to account for temporal uncertainty 
about the feedback signals, and to handle both proactive and retroactive feedback that is not necessarily associated with the 
action being currently executed.
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Appendix A

In this section we describe additional details of our experimentation. In all of our experiments, our models were solved 
using LRTDP [12], and the feedback profiles were implemented as random forests using the Julia package DecisionTree.jl in 
the Julia MLJ framework [11] with default parameters. In our implementation of Algorithm 1, our validation step simply 
required a Matthews correlation coefficient that was (1) positive (i.e. better than random) on the validation data set and (2) 
better than the Matthews correlation coefficient of the current feedback profile on the same validation data set (with the 
discriminator masked out) by at least 0.2.

Gated exploration

In all experiments, we used the gated exploration strategy as defined in Definition 8. While a variety of different distri-
butions could be used for the exploration strategy, we use an extension of the standard Boltzmann softmax distribution [49]
over q-values in the adjacency set of l ∈L:

P (l′) = adj(κ(s,a), l′) exp(−q(s, (a, l′); λ̂))∑
l′′∈L adj(κ(s,a), l′′)exp(−q(s, (a, l′′); λ̂))

(A.1)

where q(s, (a, l); ̂λ) = C(s, (a, l)) +∑
s′∈S T (s, (a, l), s′)V (s′; ̂λ) is the expected cumulative reward when taking action (a, l) ∈ A

in state s ∈ S conditioned on the current feedback profile λ̂.
To improve exploration efficiency, we introduce a potential-based mechanism in our experiments in which, for each s ∈ S

and a ∈ A, we maintain a potential for each level l ∈L, γs,a,l , which is updated at each level-exploration step, defined as

γ t+1
s,a,l ←

{
0 l′ is chosen

min
(
γ t

s,a,l + P (l),1
)

otherwise
(A.2)

where γ t
l is the potential at time t and P (l) is defined in Equation (A.1). For readability purposes, define γ t(s, a, l) := γ t

s,a,l; 
given this potential function we can slightly alter Equation (A.1) to be

P̂ (l′) = adj(l, l′) exp(γ t(s,a, l′))∑
l′′∈L adj(l, l′′)exp(γ t(s,a, l′′))

(A.3)

which defines a new distribution from which to sample new levels of autonomy to explore.
In our experiments, a potential matrix was initialized for the CAS model and updated each time the autonomy profile 

was updated via gated exploration. Gated exploration was implemented by sampling from the above distribution to update 
the autonomy profile for each (s, a) input by including the sampled level if not in κ(s, a) already, and otherwise doing 
nothing. The “gated” element was simulated in all experiments by observing the likelihood of an override, and adding the 
highest level (the only level disallowed initially) if sampled if the likelihood is below 0.15 for the AV navigation domain or 
below 0.05 for the AV obstacle passing domain.

Simulated feedback

All human feedback in our experiments is fully simulated; the feedback of each simulated agent is determined by set 
rules based on the state and action up to their consistency ε . In the other 1 − ε part of the time we return a random 
feedback signal drawn uniformly from the possible feedback signals for the given level of autonomy. Below, we describe 
the rules behind the simulated feedback in our experiments. The first two cases refer to feedback rules present across 
all simulated humans for the base domain. The rest of the cases refer to feedback rules present for specific simulated 
humans. Note that all feedback rules mentioned directly correspond to competences of no autonomy when the human 
would override or disapprove an action, and unsupervised autonomy otherwise; there is no situation in our domain where 
the optimal action to perform is in verified or supervised autonomy given a perfect model of the human’s feedback.

Autonomous Vehicle Navigation The human overrides or disapproves overtaking an obstruction in an edge state when 
there is only a single lane, preferring to it themselves. When making a right turn at an intersection, which is considered a 
generally safe maneuver, the human overrides the maneuver if there is on occlusion, a pedesrtrian, and at least one other 
vehicle, indicating the presence of numerous other actors in a potentially chaotic environment. When going straight, making 
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a left turn, or making a U-turn at an intersection, which are considered more challenging maneuvers as all potential cross-
traffic must be considered, the human will override if there is an occlusion limiting visibility and a pedestrian or more than 
one vehicle, or if there is a pedestrian and more than two vehicles even without an occlusion limiting visibility. In all other 
cases, the human approves or does not override the system’s behavior.

Autonomous Vehicle Obstacle Passing The human overrides the action Stop if the AV is fully in the oncoming lane or if 
they can see that there is no oncoming vehicle. The human overrides the action Edge if the AV has visibility of oncoming 
traffic as the AV should either commit to the overtake (if safe to do so) or stop and wait until the overtake is safe. Finally, 
the human overrides the action Go if there is no visibility of oncoming traffic, or if there is oncoming traffic and the AV 
does not have priority to go.

AV Navigation – Cautious The human overrides or disapproves the vehicle from acting at all if the weather is snowy and 
it is night time, preferring to drive the whole way in these conditions. The human overrides or disapproves the overtake 
of a vehicle if it is snowy, or if it is rainy, nighttime, and a two-lane road. At intersections, the human also prefers to take 
control if it is rainy and nighttime.

AV Navigation – Conscientious The human overrides or disapproves the vehicle’s maneuver if there is a trailing vehicle 
when overtaking an obstruction, or if there is a trailing vehicle when the AV is at an intersection and either takes the Wait
action or otherwise if there is at least one additional vehicle at the intersection, to hurry the AV through the intersection.

AV Obstacle Passing – Cautious The human overrides the vehicle if it is either snowy or rainy and nighttime, as the human 
does not trust the AV to handle the potentially dangerous maneuver in these conditions where the human feels less sure of 
what the AV can detect.

AV Obstacle Passing – Conscientious The human overrides the vehicle if there is a trailing vehicle and the vehicle takes the 
action Stop, or is stuck waiting with a trailing vehicle and takes the action Edge, as they feel socially pressured to execute 
the overtake expediently by the presence of the trailing vehicle.

AV Obstacle Passing – Rushed The human overrides the vehicle if it is stuck waiting, takes the action Stop, or if the vehicle 
has priority but does not take the action Go.
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