
Planning with Intermittent State Observability:
Knowing When to Act Blind

Connor Basich1, John Peterson1, and Shlomo Zilberstein1

Abstract— Contemporary planning models and methods of-
ten rely on constant availability of free state information at
each step of execution. However, autonomous systems are
increasingly deployed in the open world where state information
may be costly or simply unavailable in certain situations. Failing
to account for sensor limitations may lead to costly behavior
or even catastrophic failure. While the partially observable
Markov decision process (POMDP) can be used to model this
problem, solving POMDPs is often intractable. We introduce
a planning model called a semi-observable Markov decision
process (SOMDP) specifically designed for MDPs where state
observability may be intermittent. We propose an approach for
solving SOMDPs that uses memory states to proactively plan
for the potential loss of sensor information while exploiting
the unique structure of SOMDPs. Our theoretical analysis and
empirical evaluation demonstrate the advantages of SOMDPs
relative to existing planning models.

I. INTRODUCTION

As AI and robotics have advanced in recent years, atten-
tion has shifted to the deployment of autonomous systems
in the open world. The increased complexity and uncertainty
exhibited in open-world domains challenges some of the
typical assumptions made in planning, such as domain sta-
tionarity, unexpected scenarios, and sensor and perception
reliability. Markov decision processes (MDPs) have been
shown to be effective in a wide array of domains [1], but
they rely on exact state information at each step of execution,
often acquired from sensor data and processed by perception
algorithms [2]. The acquisition of state information, whether
full or partial, is often assumed to be free and consistently
available. However, practical limitations may constrain the
agent’s ability to observe the state of the environment.

Constraints on the availability of state information could
arise in a variety of ways. Sensing may have a non-negligible
cost that makes it prohibitive. For example, an extraterrestrial
science robot may have a finite and non-repletable battery
supply that sensing actions consume [3]. Sensor information
may simply be unavailable at various times during a system’s
deployment due to technical limitations or by design. For
example, location obtained using a GPS may be unavailable
when the system is underground. Finally, sensor information
may be available, and even free, but it may be periodically
completely unreliable due to interference, resulting in po-
tentially misleading information. For example, an object in
front of a robot may not be recognizable due to glare [4].
Failing to proactively account for such situations can lead

Supported by the National Science Foundation grant IIS-1954782 and the
Alliance Innovation Lab Silicon Valley.

1University of Massachusetts Amherst, Amherst, Massachusetts,
{cbasich, jrpeterson, shlomo}@cs.umass.edu

to costly erratic behavior or critical failures [4]. Recent
work in introspective perception examines ways to learn to
detect various forms of sensor failures [4], [5]. Hence, it
is important to develop complementary planning algorithms
that can take into account the aforementioned limitations.

The partially observable Markov decision process
(POMDP) [6] can be used to model this problem, including
various forms of sensor noise or the entire loss of sensor
information, which could be indicated by a special observa-
tion. However, POMDP solvers are notoriously complex [7]
and are not designed for the unique properties of planning
with intermittent state observability (i.e., the state is always
either fully observable or unobservable). Hence, we propose
a more cost-effective approach for this class of problems.

Specifically, we propose the semi-observable Markov de-
cision process (SOMDP), which models domains where
the system’s current state is only intermittently observable.
We demonstrate that there are distinct computational ad-
vantages for using our model in domains with intermittent
observability, compared to POMDPs that are computationally
harder to solve [8]. In particular, we show how to approxi-
mate the SOMDP with a depth-limited memory-state MDP
(MSMDP) [9], which can be efficiently solved using standard
heuristic search techniques developed for fully-observable
settings. In the settings we study with intermittent state
observability, our approach quickly produces high-quality
policies on problems that are not solvable by exact POMDP
algorithms with a generous time allocation. Furthermore,
even well-known approximate POMDP solvers are not com-
petitive with our approach as they often produce worse
solutions and require significantly more runtime. Finally,
we prove that increasing the depth limit can never decrease
performance, and provide a simple test to determine if a
given depth yields the optimal SOMDP policy.

Our paper is structured as follows: in Section III we
introduce the SOMDP; in Section IV we introduce our
methodology for solving SOMDPs based on memory states;
in Section V we introduce our domain-independent heuristic
for efficiently solving MSMDPs; and in Sections VI and VII
we present and discuss our experimental results.

II. PRELIMINARIES

A Markov decision process (MDP) is represented by the
tuple ⟨S,A, T,R⟩ where S is a finite set of states, A is a
finite set of actions, T : S × A × S → [0, 1] is a transition
function representing the probability of arriving in state s′

having taken the action a in state s, and R : S×A → R is a
reward function representing the immediate expected reward

2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022)
October 23-27, 2022, Kyoto, Japan

 978-1-6654-7927-1/22/$31.00 ©2022 IEEE 11657

of taking action a in state s. A solution to an MDP is a policy,
denoted π : S → A, which maps states to actions. A policy
π induces the state-value function V π : S → R, defined as
V π(s) = R(s, π(s)) +

∑
s′∈S T (s, π(s), s′)V π(s′), which

represents the expected cumulative reward when starting in
the state s and following the policy π. Similarly, a policy π
induces the action-value function qπ : S×A → R, defined as
qπ(s, a) = R(s, a) +

∑
s′∈S T (s, a, s′)V π(s′), representing

the expected cumulative reward when starting in state s,
taking action a, and then following policy π.

A policy which maximizes these functions is called an
optimal policy. Without loss of generality, we assume that
there is a unique optimal policy, denoted π∗, unless stated
otherwise. Given π∗, the optimal state-value function follow-
ing π∗ is defined as V ∗(s) = maxa∈A q∗(s, a) where q∗ is
the action-value function under the policy π∗.

III. SEMI-OBSERVABLE PLANNING

In a traditional MDP, a system computes a policy π and
acts according to the policy in the following way: it senses
to observe its current state, queries its policy to determine
the action to take in its current state, and then executes that
action. However, an autonomous system may not be able to
always observe its current state, for any of several reasons
discussed above. In some cases, such as in a traditional
partially observable Markov decision process or mixed-
observability Markov decision process, the system may have
some degree of state observability in the form of partial
states, noisy state feature information, or both. However, in
this paper we consider the special case in which the system
has either full observability of its state, or it may completely
lose observability of its state. In practice, various forms of
sensor failures that produce uninterpretable information may
effectively lead to the loss of observability [10].

Definition 1. A semi-observable Markov decision process
(SOMDP) is represented by the tuple ⟨S,A, T, η,R⟩ where

• S is a finite set of states,
• A is a finite set of actions,
• T : S ×A× S → [0, 1] is a state transition function,
• η : A × S → [0, 1] is an observability profile that

represents the likelihood of state observability after
performing action a and transitioning to state s′, and

• R : S ×A → R is a reward function.

As with an MDP, the solution of a SOMDP is a mapping
π : S → A called a policy, which similarly induces both
a state- and action-value function. The objective remains to
find a policy maximizing these functions, called an optimal
policy. However, unlike an MDP, in a SOMDP the system
does not necessarily observe its state at each time step. We
first observe that this problem could naively be modeled as a
POMDP where the observation set is simply S ∪{∅}, where
∅ is the null observation.

Proposition 1. Every SOMDP is a POMDP.

Unfortunately, it is known that solving POMDPs ex-
actly, and often even approximately, is intractable [8]. This

computational burden is driven by the need to maintain
a belief, or distribution over state likelihood, conditioned
on the last belief state, the previous action, and the most
recent observation. On the other hand, MDPs can be solved
efficiently, and often optimally, even for fairly large domains,
which makes them an attractive model to use in sequential
decision making with full observability.

IV. SOLVING SOMDPS

We propose an approach to solving SOMDPs that exploits
their unique problem structure to remove the need to main-
tain a belief state at each step, allowing us to employ efficient
fully-observable solution methods that return high-quality
approximate results which converge to the true optimal
policy. To do this, the question we must address is, how
should the system behave in an unobserved state, given
that we will not track observations to maintain a belief
over the whole statespace? The naive solution would be to
simply query an oracular supervisory sensor [11] or a human
supervisor [12] immediately upon losing state observability
to reveal the state to the system; we can indeed improve upon
such an approach. To do so, we turn to memory states.

A. Memory States

Our definition of a memory state is based on Hansen
et al.’s work on mixed open-loop/closed-loop control [9]
where, at each step, the agent either performs a sensing
action that reveals perfect state information or performs
a control action which provides no state information. In
this context, a memory state represents uncertain knowledge
about the environment given a sequence of open-loop control
actions by the agent. Specifically, memory states capture
the last fully observed state that the agent was in and the
control action(s) it took since then, which is all the relevant
information needed to infer the state of the world in a
Markovian environment. Translating a memory state to a
belief state (i.e., distribution of possible world states) can
be done using Bayesian updating as in POMDPs [13]. In
fact, the translation can be viewed as a special case of belief
computation in a POMDP starting in a collapsed belief state,
with only a null observation after each action.

Definition 2. Let S be a set of states, A be a set of actions,
and let F be the forest created as follows: set each unique
state s ∈ S to be the root of a unique tree and let each
branch corresponds to an action a ∈ A. A memory state is
any positive-length connected path in F rooted at the root
node of a tree, of the form sa1...ak.

If we bound the maximal depth of each tree in F by some
finite constant value δ ∈ Z+, we will ensure that the number
of memory states is finite. We denote by Fδ(S,A) the set
of memory states for the state and action sets S and A with
finite depth δ, and F(S,A) = F∞(S,A).

B. Memory-State MDP

In this section we discuss how we can use memory states
to allow us to solve a SOMDP without the need to maintain

11658

a belief state and observation set. First, we provide intuition.
Recall that when the agent performs action a in state s and
transitions to state s′, s′ is either observed by the agent or it
is fully unobserved. If it is fully observed, nothing needs to
be done; if it is fully unobserved, we can simply transition
the agent to the equivalent memory state, sa. Hence, similar
to how a POMDP can be viewed as a belief-state MDP, a
SOMDP can be represented by a memory-state MDP.

Definition 3. Let M = ⟨S,A, T, η,R⟩ be a SOMDP. We
represent the corresponding memory-state MDP (MSMDP),
M, by the tuple ⟨S,A, T ,R⟩ where:

• S = S ∪ F(S,A) is a set of states,
• A = A ∪ {Reveal} is a set of actions,
• T : S ×A× S → [0, 1] is a state transition function,
• and R : S ×A → R is a reward function.

Similar to a belief MDP, we can compute the belief state
exactly given a memory state, i.e. the agent’s last observed
state, s ∈ S, and its action history since then, a1...ak where
each ai ∈ A. Let s = sa1...ak ∈ S be a memory state with
k ≥ 1, then the belief of state s′ ∈ S given s, denoted b(s′|s),
is defined as b(s′|s) =

∑
s′′∈S b(s′′|sa1...ak−1)T (s

′′, ak, s
′).

If s ∈ S, the belief is either 1.0 or 0.0. Observe that the
probability of entering a memory state is exactly determined
by the observability profile, η in M.

Additionally, similar to the action Sense in [9], we
require the inclusion of an action Reveal in A that de-
terministically grants the agent observability of its current
state (at possibly high cost). While it may not be the case
that, in certain memory states, the value of information
is greater than the expected value of acting in open-loop,
this addition is also practically useful in that it allows us
to limit the total number of memory states in our state
space to some finite value. Specifically, given a MSMDP
M and a positive integer δ ∈ Z+, we denote the depth-
limited MSMDP by Mδ , where we require that the agent
performs action Reveal whenever it is in a depth-δ memory
state, restricting the maximal length of any open-loop control
sequence to at most δ steps.

In general, the depth-limited MSMDP will be an approx-
imate model for the true SOMDP. However, we can show
that given two MSMDPs for the same SOMDP but with
different maximal tree depths δ and δ′, an optimal policy
for the MSMDP with greater depth will be at least as
good as the other when evaluated as a (possibly suboptimal)
policy for the SOMDP. In other words, expected performance
monotonically increases with the maximum allowed length
of open-loop control.

Proposition 2. Let V ∗
δ : S ∪ Fδ(S,A) → R be the optimal

value function for Mδ . For any δ′ > δ, and any s ∈ S ∪
(Fδ(S,A) ∩ Fδ′(S,A)), V ∗

δ′(s) ≥ V ∗
δ (s).

Proof. First, let π∗
δ be an optimal policy for Mδ . Observe

that Fδ(S,A) ⊂ Fδ′(S,A), and as such, it is clearly the case
that we can construct a policy πδ′ for Mδ′ where for every
s ∈ S∪Fδ(S,A), πδ′(s) = π∗

δ (s). Furthermore, observe that
under this policy, no memory state s ∈ Fδ′(S,A)\Fδ(S,A)

is reachable, as by definition, for any memory state s ∈
Fδ(S,A) of depth δ, π∗

δ (s) = Reveal, and by construction
πδ′(s) = Reveal. Hence, the only reachable states in Mδ′

under πδ′ (memory or otherwise) are fully contained in the
state space of Mδ , so V π

δ′ (s) = V ∗
δ (s) for every state s ∈ S.

Hence V ∗
δ′(s) ≥ V π

δ′ (s) = V ∗
δ (s) for every state s ∈ S ∪

(Fδ(S,A) ∩ Fδ′(S,A)).

C. Optimality of MSMDP Mapping

Proposition 2 suggests that increasing the maximal depth,
δ, will cause the optimal value function of the depth-limited
MSMDP to tend towards the optimal value of the infinite-
depth MSMDP in the limit, which is equivalent to the
optimal value of the unconstrained SOMDP itself. However,
due to practical concerns, we are particularly interested in
knowing when a SOMDP admits an optimal finite depth-
limited MSMDP; i.e., when there exists a depth-limited
MSMDP for some finite depth that returns that true optimal
solution to the original SOMDP. In the case of a finite-
horizon problem, the answer will always be yes.

Theorem 1. Any finite-horizon SOMDP, for horizon H ∈ N,
admits an optimal finite depth-limited memory state MDP.

Proof. This is trivial to observe by setting δ = H .

However, it is straightforward to observe that the above
claim does not hold for an arbitrary infinite-horizon SOMDP.
Consider the counterexample where there is a single state
s and a single action a in addition to Reveal that de-
terministically self-loops and never has observability; if
R(s, a) > R(s,Reveal), any finite depth limit will result
in a suboptimal policy for the SOMDP. However, in practice
it is likely the case that there is a finite depth, δ∗, for which
the MSMDP does admit an optimal policy due to the risk
and uncertainty associated with open-loop behavior in the
real world. Therefore, when this is the case, we would like
to know if we can identify if we have reached such a depth,
as it is unknown a priori.

Definition 4. Let M be a SOMDP that admits an optimal
depth-limited MSMDP for (unknown) finite depth δ∗ ∈ N.
Assume that when optimal policies for each depth-limited
MSMDP are not unique, selected policies always break
action ties in favor of Reveal, break all other action ties
in favor of the lower indexed action, and that the action
Reveal has fixed reward ρ ∈ R. The Optimal-Depth Test
for depth δ is the following:

1) Solve Mδ and Mδ+1 for opt. policies π∗
δ and π∗

δ+1,
2) if π∗

δ (s) = π∗
δ+1(s) for every s ∈ Sδ return TRUE,

3) if π∗
δ (s) ̸= π∗

δ+1(s) for any s ∈ Sδ return FALSE.

Here, Sδ denotes the statespace for Mδ . To show correct-
ness, we first need the following lemma, which intuitively
states that if we reach a depth δ, where increasing δ by
one does not change the optimal policy, then increasing the
depth further will continue to not change the optimal policy.
Note that in the following, optimal MSMDP policies are

11659

selected from the associated set of optimal policies via the
tie-breaking strategy in Definition 4.

Lemma 1. If π∗
δ (s) = π∗

δ+1(s) for all states s ∈ Sδ , then
for every δ′ > δ, π∗

δ (s) = π∗
δ′(s) for all states s ∈ Sδ .

Proof. First, we denote by Sδ the set of all states in Mδ .
Now, suppose for contradiction that the claim does not hold,
i.e. π∗

δ = π∗
δ+1 ̸= π∗

δ+2 for all s ∈ Sδ where π∗ here
denotes the optimal policy selected according to our tie-
braking strategy. Then, there exists some state s ∈ Sδ such
that π∗

δ (s) ̸= π∗
δ+2(s). First, observe that by construction of

MSMDPs, no memory state of depth δ + 1 is reachable in
Mδ+1 under π∗

δ+1, since in π∗
δ all depth δ states must have

the action Reveal assigned.
Hence there exists a depth δ memory state, s, such that

π∗
δ+1(s) ̸= π∗

δ+2(s), since, if that were not the case, all
reachable states would be identical under each policy, and
hence it cannot be the case that the policy differs for another
state in Sδ given the tie-braking of optimal policy strategy
assumption. Let a1 = π∗

δ (s) = π∗
δ+1(s) and a2 = π∗

δ+2(s).
For similar logic as above, it must be the case that a1 =
Reveal, and hence that a2 ̸= Reveal.

By assumption of contradiction, we know that

q∗δ (s,Reveal) > q∗δ (s, a2) and

q∗δ+2(s,Reveal) < q∗δ+2(s, a2).

Observe that the lack of equality condition here is due to the
tie-braking strategy assumption; i.e. if the values were in fact
equal, the other action would have been taken. This means
that q∗δ (s,Reveal) =

∑
s∈S b(s|s)V ∗

δ (s) and although the
math is omitted due to space, we get that∑

s∈S

b(s|s)
[
V ∗
δ (s)− V ∗

δ+2(s)
]

>
∑
s∈S

b(s|s)
∑
s′∈S

T (s, a2, s
′)
[
V ∗
δ (s′)− V ∗

δ+2(s
′)
]
.

Additionally, by Proposition 2 we know:

(1)
∑
s∈S

b(s|s)
[
V ∗
δ (s)− V ∗

δ+2(s)
]

≤
∑
s∈S

b(s|s)
[
V ∗
δ+2(s)− V ∗

δ+2(s)
]
= 0

(2)
∑
s∈S

b(s|s)
∑
s′∈S

T (s, a2, s
′)
[
V ∗
δ (s′)− V ∗

δ+2(s
′)
]

≥
∑
s∈S

b(s|s)
∑
s′∈S

T (s, a2, s
′)
[
V ∗
δ (s′)− V ∗

δ (s′)
]
= 0

Hence, 0 < 0, which is a contradiction.

Theorem 2. The Optimal-Depth Test returns TRUE if and
only if δ ≥ δ∗.

Proof. Let δ∗ be the smallest optimal finite depth; it follows
immediately from Proposition 2, the definition of optimality,
and our optimal policy tie-breaking strategy, that for every
δ > δ∗, π∗

δ = π∗
δ∗ , and hence if δ > δ∗, the algorithm will

return TRUE.

By Lemma 1, given δ, if π∗
δ = π∗

δ+1, then π∗
δ = π∗

δ+2.
Hence, if our algorithm returns TRUE, it must be the case
that for every δ′ > δ, by simple induction, π∗

δ = π∗
δ′ ; hence δ

must be at least as big as δ∗ or we will have contradicted the
assumption that δ∗ is the smallest optimal finite depth.

V. EFFICIENT PLANNING

While memory states allow us to model problems with
state unobservability without requiring complex belief-
updates, the size of the forest that defines the set of memory
states, Fδ(S,A), is |S||A|δ , and hence the complexity of
solving the model grows as we increase the depth limit.
Hansen et al. [9] handle this in the context of Q-learning
by pruning branches in Fδ(S,A) during exploration where
the value of information in that memory state is greater than
or equal to its cost. In our case, we are performing optimal
model based planning, and can apply standard algorithms for
MDPs to depth-limited MSMDPs. For many problems, as
with MDPs, heuristic search algorithms such as LAO∗ [14]
can, with an admissible heuristic,efficiently compute optimal
policies without evaluating the entire state space.

We introduce a domain-independent heuristic, hV ∗ , which
we prove is admissible for all MSMDPs with non-positive
rewards, allowing us to efficiently solve a depth-limited
MSMDP using LAO∗ for its optimal policy. The heuris-
tic is based on the optimal value function of the “ideal”
version of the SOMDP where the agent has observability
everywhere with probability 1.0 (or, equivalently, where the
action Reveal has no cost). As this is an always-optimistic
version of the problem, solving it provides a (fairly tight)
lower bound on the value of any state in the MSMDP, giving
us our admissible heuristic (proved below); evidence of the
empirical benefit is provided in Section VII. We formally
define the heuristic below.

Definition 5. Let M = ⟨S,A, T, η,R⟩ be a SOMDP where
all rewards are non-positive, M∗ be M where η[A× S] =
{1.0}, and M = ⟨S,A, T ,R⟩ be the MSMDP on M. Given
the optimal value function for M∗, V ∗ : S → R, we define
the heuristic function hV ∗ : S → R, as follows:

hV ∗(s) =

{
V ∗(s) if s ∈ S∑

s b(s|s)V ∗(s) otherwise

Ultimately, We would like to prove that hV ∗ is an admis-
sible heuristic for the MSMDP with finite δ. Throughout the
rest of the section, we will be assuming that all rewards are
negative, and may interchangeably utilize the terminology
“cost” in the context of cost-minimization, understanding
that every non-positive reward maximizing MDP can be
converted into an equivalent non-negative cost minimizing
MDP. This would enable us to guarantee, for a certain class
of heuristic search planning algorithms, that the algorithm
will converge to the optimal solution when using hV ∗ as its
heuristic. To prove this, we need a few preliminary results.

First, we must show that when the action Reveal has zero
cost in memory states (i.e. it is a “free” action) the q-value
of Reveal will be at least as large as the q-value of any

11660

other available action. Intuitively, this means that Reveal
can be assumed to be taken immediately upon entering a
memory-state or, equivalently, immediately upon entering an
unobservable state. Formally:

Lemma 2. Let M be a non-positive reward MSMDP where

R(s,Reveal) =

{
0 if s ∈ Fδ(S,A)

−∞ otherwise

Then, given a policy π, qπ(s, a) ≤ qπ(s,Reveal) for any
a ̸= Reveal when s ∈ Fδ(S,A), where qπ(s, a) denotes
the q-value for taking action a in state s and following the
policy π in all future states.

Proof. Let s ∈ S be a memory state. Then qπ(s, a) −
qπ(s,Reveal)

= R(s, a) +
∑
s∈S

b(s|s)
∑
s′∈S

T (s, a, s′)V π(s′)−
∑
s∈S

b(s|S)V π(s)

=
∑
s∈S

b(s|s)
[
R(s, a) + qπ(s, a)−R(s, a)− V π(s)]

=
∑
s∈S

b(s|s)
[
qπ(s, a)−maxa∗∈Aq

π(s, a∗)
]
≤ 0

Next, we observe that when there is no probability of state
unobservability, given that the agent starts in a reliable state,
the agent will achieve its best performance in expectation.

Proposition 3. Let M = ⟨S,A, T, η,R⟩ be a non-
positive reward SOMDP with corresponding MSMDP M =
⟨S,A, T ,R⟩. The optimal value function for M defined as

V
∗
(s) = R(s, π∗(s)) +

∑
s′∈S

T (s, π∗(s), s′)V
∗
(s′)

is maximized when η[A× S] = {1.0}.

Proof. It is straightforward to see that the behavior of the
agent (e.g. its action trace) when η[A× S] = {1.0} will be
the same as when η[A× S] ⊂ [0, 1] and

R(s,Reveal) =

{
0 if s ∈ Fδ(S,A)

−∞ otherwise

up to the execution of the action Reveal. Upon entering a
memory state, s, by Lemma 2, Reveal will have the highest
q-value (up to ties which we may assume by construction are
broken in favor of Reveal), and hence the agent will always
immediately execute the action Reveal to observe its state
before acting in any optimal policy, which can be viewed as
an addition to the original action. This is the same as never
needing to execute Reveal as the reward of the action is 0
in a memory state and there is no discounting. Hence, any
negative adjustment to the reward of Reveal will decrease
the expected cumulative reward of a memory state, leading
to the same or lower value for every state in the domain
under the optimal policy (as all rewards are non-positive).
Hence, if η[A × S] ⊂ [0, 1] and R(s,Reveal) < 0, V

∗
(s)

will be the same or less as when η[A× S] = {1.0}.

Theorem 3. hV ∗ : S → R is an admissible heuristic for
Mδ where δ ≥ 1 and M is a non-positive reward MSMDP.

Proof. Let s ∈ S and suppose π∗(s) = a. First, assume
s ∈ S (note that a ̸= Reveal in such a case). Then:

V
∗
(s) = R(s, a) +

∑
s′∈S

T (s, a, s′)V
∗
(s′)

≤ R(s, a) +
∑
s′∈S

T (s, a, s′)V
∗
(s′)

≤ R(s, a) +
∑
s′∈S

T (s, a, s′)V ∗(s′) by Prop. 3

= V ∗(s) = hV ∗(s).

Second, assume s /∈ S, and a = Reveal. Then:

V
∗
(s) = R(s, a) +

∑
s′∈S

T (s, a, s′)V
∗
(s′)

≤
∑
s′∈S

T (s, a, s′)V
∗
(s′)

=
∑
s∈S

b(s|s)V ∗
(s)

≤
∑
s∈S

b(s|s)V ∗(s) by Prop. 3

= hV ∗(s).

Finally, assume s /∈ S and that a ̸= Reveal. Then:

V
∗
(s) = R(s, a) +

∑
s′∈S

T (s, a, s′)V
∗
(s′)

=
∑
s∈S

b(s|s)
[
R(s, a) +

∑
s′∈S

T (s, a, s′)V
∗
(s′)

]
≤

∑
s∈S

b(s|s)
[
R(s, a) +

∑
s′∈S

T (s, a, s′)V ∗(s′)
]

by Prop. 3

=
∑
s∈S

b(s|s)V ∗(s) = hV ∗(s).

Hence hV ∗ is admissible.

VI. EXPERIMENTAL DOMAINS

A. Campus Robot

In this domain, a robot equipped only with a camera
operates in a known map and needs to deliver a package
from one office to another in a campus environment. The
robot must safely navigate the environment, which includes
closed doors and crosswalks across a main road. States s ∈ S
are represented by the tuple ⟨x, y, θ, o⟩ where: x, y, and θ
is the robot’s pose and o is the type of obstacle (or none)
at the robot’s current position. The robot can perform the
following actions: Move (in direction), which has a 20%
probability of failing (i.e. the robot stays in the same location,
Open, which does nothing if the robot is not at a door,
but otherwise deterministically opens it, Wait, which does
nothing unless the robot is at a crosswalk, in which case there
is a chance of the traffic condition changing, and Cross,
which does nothing unless the robot is at a crosswalk,
where the robot deterministically crosses if there is no traffic,
crosses successfully with 50% probability with light traffic,
and if there is heavy traffic crosses with 10% probability
and crashes with 10% probability leading to a dead end (and
otherwise does not move).

Unit negative reward is incurred on each time step when
the robot is moving and does not have a collision. If the

11661

(a) An illustration of the Campus Robot domain. The agent, represented
by the Jackal image, must navigate from its location to the goal state,
represented by the green ‘G’ while managing obstacles, perception failures,
and its supervisory sensor. Red denotes areas with low likelihood of
observability due to environmental factors.

(b) An illustration of the Disaster Relief domain. Black represents walls or
debris; white represents no smoke; each gradation of grey represents a level
of smoke increasing with the darkness of the gradation. Small red squares
represent the location of people who are trapped; the green represents the
entryway into the area.

Fig. 1: Empirical Domains

robot collides with a wall or a closed door, or attempts to
cross the road outside of a crosswalk, a negative reward of
-5 is incurred. The primary impact on the cumulative reward
across a trajectory is the number of time steps taken for the
robot to successfully deliver its package.

In the semi-observable setting, both for the SOMDP and
relevant POMDP baseline, the probability of observability,
η, is dependent on the location of the state the robot enters;
red areas in the map (Fig. 1a) have likelihood of 0.1, and
0.9 elsewhere. For instance, in certain areas the likelihood
of observability is very low due to glare or darkness. At any
time, the robot can perform the action Reveal to request aid
from a remote supervising human at a fixed negative reward
(-3) to deterministically reveal its state.

B. Disaster Relief

In this domain, a robotic drone must deliver relief pack-
ages containing respirators to people in known locations
in a burning building. The objective of the agent is to
bring gas masks to each person who is trapped so they
do not inhale deadly gas, smoke, and debris while waiting
for rescue. States s ∈ S are represented by the tuple
⟨x, y, θ, l,P⟩ where: x, y, and θ is the robot’s pose, l ∈ N
is the smoke level in the agent’s current location, and P
is a vector of integers, where each element is the smoke
level at the location of one of the humans. The robot can
perform the following actions: Move (in direction) which
has a 20% probability of failing (i.e. the robot stays in the
same location), Aid which deterministically gives a relief
package to a human when the robot observes a human in
its location, and is prohibited otherwise. When the person
receives the package, the effective smoke level for that person
is 0. Additionally, if the agent collides with a wall, with
probability 0.2 it drops its aid packages and must return to
the start location outside the building to get a new set of
relief packages. Note that this is not a dead end, simply
a high-cost negative outcome. At each time step, a negative
reward is incurred equal to the sum of the smoke level across
un-aided human locations divided by 10. If the agent drops
its aid packages, they incur a large negative reward equal to
10 times a single step reward.

In the semi-observable setting, the probability of observ-
ability, η, is dependent solely on the smoke level of the
entered state, and is equal to 1 − (0.3 · l), where l is the
smoke level. As an example, if the agent moves into a
location with a smoke level of 3, the maximum, it observes
its new state with probability 0.1 and fails to observe the state
with probability 0.9. In the SOMDP, losing observability
results in transitioning to the corresponding memory state.
In the POMDP baseline, losing observability is equivalent to
receiving the null observation on that time step. The robot
can naturally regain observability simply by moving around
into new locations. However, the robot also has the option to
perform the action Reveal during which it stops moving
and takes extra time to localize its position in the world.
This action deterministically reveals the agent’s state and
incurs negative reward equivalent to two time steps of smoke
exposure for the un-aided humans.

VII. EMPIRICAL EVALUATIONS

In this section, we discuss evaluations of our two primary
contributions: (1) the SOMDP model, and (2) the hV ∗

heuristic. To evaluate the first contribution, we implemented
our SOMDP model, with an approximate MSMDP model
on both domains, with four different depth limits, δ =
1, 2, 3 and 4. To solve the MSMDPs, we implemented the
algorithm LAO∗ [14], which is a well known heuristic
search algorithm which converges to an optimal solution
under an admissible heuristic. The LAO∗ results reported
in Table I are computed using our heuristic, hV ∗ , and
hence are optimal for the respective depths. We compared
our approach against POMDP implementations of the same
domains. For the POMDPs, we considered three offline
POMDP solvers and two online POMDP solvers from the
open-source JULIA library POMDP.jl [15]: (1) QMDP [6],
an approximate solution technique which assumes that belief
collapses after each step; (2) SARSOP [16], (3) Point Based
Value Iteration (PBVI), (4) Partially Observable Monte-Carlo
Planning (POMCP) [17], and (5) ARDESPOT [18].

Results comparing the performance between the approx-
imate depth-limited MSMDP model for each depth and the
POMDP methods are reported in Table I for both domains.

11662

Campus Robot Disaster Relief
Model Algorithm Time (s) Reward Time (s) Reward

UB — -32.64 — -18.50

SOMDP LAO∗
1 0.45 -69.26 ± 9.23 0.37 -30.36 ± 2.67

LAO∗
2 0.44 -50.40 ± 8.25 0.46 -26.42 ± 4.76

LAO∗
3 2.44 -46.30 ± 7.36 1.77 -24.35 ± 3.66

LAO∗
4 18.32 -43.30 ± 7.43 10.79 -23.77 ± 2.67

POMDP QMDP1 3.41 -50.53 ± 15.05 22.63 -35.13 ± 14.92
SARSOP1 — — 264.28 -23.41 ± 4.50
PBVI1 — — — —

POMCP2 — — — —
ARDESPOT2 — — — —

TABLE I: Performance comparison of solution methods on both
domains. Time depicts runtime in seconds. Reward depicts the mean
and standard deviation over 100 trials. 1 denotes an offline algorithm
and 2 denotes an online algorithm. Bars denote algorithms that did
not finish within the time limit (3 hours) or for the online algorithms
failed to find the goal within 1000 steps.

Campus Robot Disaster Relief
δ Likelihood Residual Impact Likelihood Residual Impact

1 0.27 -36.09 52.11% 0.21 -16.33 53.79%
2 0.11 -12.40 24.6% 0.05 -2.84 10.75%
3 0.05 -5.12 11.1% 0.01 -0.77 3.16%
4 0.03 -3.09 7.13% 0.003 -0.15 0.64%

TABLE II: Effect of maximal depth limit on performance showing
that by depth 4, less than 8% and 1% of (negative) reward is
attributable to the finite depth limit in each domain respectively.

UB refers to the upper bound; this is computed by solving the
problem for the best-case SOMDP where η[A×S] = {1.0};
this is a loose upper bound that is generally unobtainable.

Policies computed under our approach outperformed those
computed by QDMP for all values of δ on both domains, with
the sole exception of δ = 1 on the Campus Robot Domain,
taking an order of magnitude less time for δ < 4. Addition-
ally, SARSOP required 1-2 orders of magnitude more time
to compute a solution in Disaster Relief compared to our
approach to achieve comparable performance to LAO∗

4 with
twice the standard deviation. SARSOP failed to compute a
solution in Campus Robot within 3 hours, and PBVI fails to
converge within 3 hours in both domains. Finally, both online
POMDP solvers, POMCP and ARDESPOT, performed sig-
nificantly below all other methods considered, including ours
with δ = 1, failing to ever reach the goal. After considering
sampled trajectories, we observed that the solvers prioritize
myopic cost-minimizing behavior that fails to advance the
agent towards its goal. For example, never leaving initial 0-
level smoke states in Disaster Relief to avoid the possibility
of crashing. We hypothesize that these solutions undervalue
or ignore subtasks required for goal satisfaction (e.g. “aid“
actions for people in Disaster Relief) because of the risk of
additional incurred cost and total number of required steps
before subtasks can be completed and incurred cost can
be reduced. Overall, this shows that our approach quickly
converges to high quality solutions in the intermittently-
observable domain, while requiring significantly less time
to do so than the comparable POMDP approaches.

Campus Robot Disaster Relief
δ Heuristic |S| Time (s) N.E. |S| Time (s) N.E.

1 h0 8200 1.01 4676 24048 1.17 5676
hV ∗ 0.45 3791 0.37 3417

2 h0 58425 0.96 24955 124248 1.37 23614
hV ∗ 0.44 11154 0.46 10849

3 h0 410000 5.89 77641 625248 7.48 64459
hV ∗ 2.44 35539 1.77 22781

4 h0 2871025 32.06 277658 3130248 13.9 147949
hV ∗ 18.32 162874 10.79 43653

TABLE III: Efficiency comparison of LAO∗ with the null heuristic
and the hV ∗ heuristic for four maximum memory state depths
on both experimental domains. N.E. denotes the number of nodes
expanded by LAO∗ to converge to the optimal policy.

Table II shows the convergent behavior of our model with
respect to δ, and that we quickly approach near-optimality.
We simulated each domain 1000 times for each depth and
examined the sample likelihood of a state being max-depth.
In both domains the likelihood diminishes by an order of
magnitude or more from δ = 1 to δ = 4, approaching
0 in the Disaster Relief domain. Residual is the maximum
possible residual reward lost by limiting open-loop control
to δ steps, based on the average trace length over the 1000
trials. This also shrinks by an order of magnitude or more,
and approaches zero in Disaster Relief, by δ = 4. Impact is
simply the ratio of Residual to the mean cost in Table I and
shows the relative performance impact of the forced action
Reveal. Overall this demonstrates that even though we do
not pass the Optimal-Depth Test, guaranteeing a globally
(with respect to δ) optimal solution, our approach results in
excellent performance empirically without the optimal depth.

Table III compares the efficacy of the hV ∗ heuristic
(Definition 5) relative to the null heuristic (h0), a standard
domain-independent admissible heuristic baseline. To do so,
we ran LAO∗ with each admissible heuristic, guaranteeing
an optimal solution in both cases, for the MSMDP with
δ = 1, 2, 3 and 4. We recorded both the runtime and the
number of nodes expanded by LAO∗; LAO∗ was about
two to three times as efficient when using hV ∗ , expanding
roughly between half to one third of the nodes and taking
about half or less the time to find the optimal solution as
when it used h0 in most cases. We emphasize that hV ∗ is
completely domain-independent, and had similarly effective
performance in both domains.

VIII. RELATED WORK

The notion of what we refer to as a memory state is related
to the general problem of representing states in systems
with imperfect state observability or where knowledge of
the current state can be determined entirely from prior
information. These representations are generally based on
histories of some combination of actions, observations, and
known states, depending on individual availability. Exact
belief states in POMDPs are updated based on histories
of sequences of actions and observations, and are sufficient
statistics for planning in POMDPs [8]. Finite state controllers

11663

for POMDPs [19] compress belief states into a finite set of
nodes in an automaton representing an approximate policy.

Active perception [20] is concerned with the problem
of designing and managing perception systems that are
themselves active dynamic systems that can be altered or
can change their behavior online as a means of influencing
the information received by the acting agent, and ultimately
said agent’s behavior [21]. In fact, it is readily observed that
the question faced by [9] of “to sense or not to sense” is
itself a form of active perception. Although this work is
primarily focused on the question of handling failure cases
of perception through decision making, rather than modu-
lating perception itself, approaches in active perception are
symbiotic with what we present here and present interesting
directions for future research.

Finally, introspective perception is a recent, rich line of
work that allows a robot to “know when it doesn’t know”
by modeling the uncertainty and quality of the outputs of its
perception systems [4], [5]. Introspective perception there-
fore offers a means of learning the likelihood of losing state
observability for situations of perception failure driven state
unobservability. This work offers complementary planning
capabilities that can work with introspective perception to
improve the overall reliability of a robotic system deployed
in the open world.

IX. CONCLUSION

In this paper, we propose a novel planning model for
stochastic sequential decision making problems, called a
semi-observable Markov decision process (SOMDP), to bet-
ter handle problems where state observability is available
only in an intermittent capacity. This phenomenon could be
due to prohibitively expensive sensing, unavailable sensory
information, or unreliable state updates from perception.
We present a solution approach for SOMDPs based on the
use of memory states, which enables us to use efficient
solution methods for fully observable problems to solve for
high-quality SOMDP policies. We provide several theoretical
properties of the SOMDP and corresponding depth-limited
MSMDPs, showing that expected performance increases
monotonically with memory state depth and providing a test
to determine if a given depth admits the true optimal policy.

To address the added model complexity due to the in-
clusion of memory states, we introduce the novel hV ∗

heuristic based on a SOMDP in which the probability of
observability is always 1. We prove admissibility of our
heuristic, guaranteeing that optimal heuristic search algo-
rithms such as LAO∗ converge to optimal policies under
hV ∗ . We further show empirically that heuristic estimates
from hV ∗ provide valuable information to improve search
efficiency, with LAO∗ expanding roughly half the nodes with
the hV ∗ heuristic compared to with the null heuristic.

More importantly, we show that policies computed us-
ing our approach are at least competitive with, and often
significantly outperform, the solutions to the corresponding
POMDP formulation in one or both of runtime and solution
quality. Our approach quickly converges to solutions which

are comparable to the high-quality approximate solutions
computed by SARSOP while requiring significantly less time
to converge. Additionally, our approach with only a shallow
depth of 2 outperformed approximate solutions from QMDP,
a common fast approximate POMDP algorithm, and in all
cases significantly outperformed two recent online POMDP
solvers, POMCP and ARDESPOT.

Hence, our approach is able to effectively exploit the
structure of the problems considered to efficiently compute
high quality solutions where the exact POMDP solver failed
to return a solution within a three-hour timeout window,
and outperformed both approximate POMDP solvers in both
runtime and solution quality.

REFERENCES

[1] E. A. Feinberg and A. Shwartz, Handbook of Markov decision
processes: Methods and applications. Springer, 2012, vol. 40.

[2] T. D. Barfoot, State Estimation for Robotics. Cambridge University
Press, 2020.

[3] J. Dooley, “Mission concept for a Europa Lander,” in IEEE Aerospace
Conference, 2018.

[4] S. Rabiee and J. Biswas, “IVOA: Introspective vision for obsta-
cle avoidance,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019.

[5] S. Daftry, S. Zeng, J. A. Bagnell, and M. Hebert, “Introspective per-
ception: Learning to predict failures in vision systems,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2016.

[6] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning
policies for partially observable environments: Scaling up,” in Inter-
national Conference on Machine Learning (ICML), 1995.

[7] H. Kurniawati, “Partially observable Markov decision processes
(POMDPs) and robotics,” arXiv preprint arXiv:2107.07599, 2021.

[8] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, 1998.

[9] E. A. Hansen, A. G. Barto, and S. Zilberstein, “Reinforcement learning
for mixed open-loop and closed-loop control,” in Neural Information
Processing Systems Conference (NIPS), 1996.

[10] A. Gaddam, T. Wilkin, M. Angelova, and J. Gaddam, “Detecting
sensor faults, anomalies and outliers in the internet of things: A survey
on the challenges and solutions,” Electronics, 2020.

[11] S. Rabiee, C. Basich, K. Wray, S. Zilberstein, and J. Biswas,
“Competence-aware path planning via introspective perception,” IEEE
Robotics and Automation Letters, 2022.

[12] C. Basich, J. Svegliato, K. H. Wray, S. Witwicki, J. Biswas, and
S. Zilberstein, “Learning to optimize autonomy in competence-aware
systems,” in International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), 2020.

[13] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based POMDP
solvers,” Autonomous Agents and Multi-Agent Systems, vol. 27, 2013.

[14] E. A. Hansen and S. Zilberstein, “LAO*: A heuristic search algorithm
that finds solutions with loops,” Artificial Intelligence, vol. 129, 2001.

[15] M. Egorov, Z. N. Sunberg, E. Balaban, T. A. Wheeler, J. K. Gupta, and
M. J. Kochenderfer, “POMDPs.jl: A framework for sequential decision
making under uncertainty,” Journal of Machine Learning Research,
2017.

[16] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient point-
based POMDP planning by approximating optimally reachable belief
spaces,” in Robotics: Science and systems (RSS), 2008.

[17] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,”
Advances in neural information processing systems, vol. 23, 2010.

[18] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP
planning with regularization,” Advances in neural information process-
ing systems, vol. 26, 2013.

[19] N. Meuleau, L. Peshkin, K.-E. Kim, and L. P. Kaelbling, “Learning
finite-state controllers for partially observable environments,” in Con-
ference on Uncertainty in Artificial Intelligence (UAI), 1999.

[20] R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos, “Revisiting active per-
ception,” Autonomous Robots, vol. 42, 2018.

[21] R. Bajcsy, “Active perception,” Proceedings of the IEEE, vol. 76, 1988.

11664

