
RL3: Boosting Meta Reinforcement Learning
via RL inside RL2

Abhinav Bhatia Samer B. Nashed Shlomo Zilberstein

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

{abhinavbhati,snashed,shlomo}@cs.umass.edu

Abstract

Meta reinforcement learning (meta-RL) methods such as RL2 have emerged as
promising approaches for learning data-efficient RL algorithms tailored to a given
task distribution. However, these RL algorithms struggle with long-horizon tasks
and out-of-distribution tasks since they rely on recurrent neural networks to pro-
cess the sequence of experiences instead of summarizing them into general RL
components such as value functions. Moreover, even transformers have a practi-
cal limit to the length of histories they can efficiently reason about before training
and inference costs become prohibitive. In contrast, traditional RL algorithms
are data-inefficient since they do not leverage domain knowledge, but they do
converge to an optimal policy as more data becomes available. In this paper, we
propose RL3, a principled hybrid approach that combines traditional RL and meta-
RL by incorporating task-specific action-values learned through traditional RL as
an input to the meta-RL neural network. We show that RL3 earns greater cu-
mulative reward on long-horizon and out-of-distribution tasks compared to RL2,
while maintaining the efficiency of the latter in the short term. Experiments are
conducted on both custom and benchmark discrete domains from the meta-RL lit-
erature that exhibit a range of short-term, long-term, and complex dependencies.

1 Introduction

Reinforcement learning (RL) has been shown to produce effective policies in a variety of applica-
tions including both virtual [1] and embodied [2, 3] systems. However, traditional RL algorithms
have three major drawbacks: they often have difficulty generalizing beyond the exact task they were
trained on, can be slow to converge, and require a large amount of data. These shortcomings are
especially glaring in settings where the goal is to learn policies for a collection or distribution of
problems that share some similarities, and for which traditional RL must start from scratch for each
problem. For example, many robotic manipulation tasks require interacting with an array of objects
with similar but not identical shapes, sizes, weights, materials, and appearances, such as mugs and
cups. It is likely that effective manipulation strategies for this entire set of tasks will be similar,
but they may also differ in ways that make it challenging to learn a single policy that is highly suc-
cessful on all instances. Recently, meta reinforcement learning (meta-RL) has been proposed as an
approach to mitigate these shortcomings by essentially trading efficiency at training time and system
complexity for adaptation speed and generalizability during testing time.

While meta-RL systems represent a significant improvement over traditional RL in such settings,
there are still several obstacles preventing widespread adoption of meta-RL techniques, especially
in embodied systems. They still require large amounts of data during training time, can have poor
performance on long-horizon tasks, and although they “learn to learn” they often generalize poorly
to tasks not represented in the training distribution. Ideally, we would like meta-RL systems to

Preprint. Under review.

achieve high short-term data-efficiency, good asymptotic performance, and generalization to both
in-distribution and out-of-distribution (OOD) tasks. Moreover, we would like to achieve these im-
provements without relying on privileged information, such as known task descriptions.

To that end, we propose RL3, a principled approach that embeds the strengths of traditional RL
within meta-RL. Our approach leverages the universality of traditional action-value estimates, their
ability to compress trajectories into useful summaries, their direct actionability, their asymptotic
optimality and their ability to inform task-identification, in order to enhance out-of-distribution
(OOD) generalization and performance over extended horizons. The key idea in RL3 is an additional
‘object-level’ RL procedure executed within the meta-RL architecture that computes task-specific
Q-value estimates as supplementary inputs to the meta-learner, in conjunction with standard trajec-
tory histories. Moreover, this technique can also work with an abstract, or coarse, representation of
the object-level MDP. In principle, our approach allows the meta-learner to learn how to optimally
fuse raw trajectory data with the summarizations provided by the Q-value estimates. In this work,
RL3 is implemented by injecting Q-value estimates into RL2 [4] as the base meta-RL algorithm,
which is modified to use transformers instead of recurrent neural networks.

The primary contribution of this paper is a confirmation of the hypothesis that injecting Q-estimates
obtained via traditional object-level RL alongside the typical trajectory histories within a meta-RL
agent leads to higher returns on long-horizon tasks and better OOD generalization, while maintain-
ing short-term efficiency. Our conclusion is based on the results of experiments on the Bandit and
MDPs domain used in previous work [4, 5] as well as on a more challenging custom Gridworld
domain that requires long-term reasoning. We also elaborate extensively on the key insights that
inform our approach and show theoretically that object-level Q-values are directly related to the
optimal meta-value function.

2 Related Work

Although meta-RL is a fairly new topic of research, the general concept of meta-learning is decades
old [6], which, coupled with a significant number of design decisions for meta-RL systems, has
created a large number of different proposals for how systems ought to best exploit the resources
available within their deployment contexts [7]. At a high level, most meta-RL algorithms can be
categorized as either parameterized policy gradient (PPG) models [8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20] or black box models [4, 21, 22, 23, 5, 24, 25, 26, 27, 28, 29, 30]. PPG approaches
assume that the underlying learning process is best represented as a policy gradient, where the set
of parameters that define the underlying algorithm ultimately form a differentiable set of meta-
parameters that the meta-RL system may learn to adjust. The additional structure provided by this
assumption, combined with the generality of policy gradient methods, means that typically PPG
methods retain greater generalization capabilities on out-of-distribution tasks. However, due to their
inherent data requirements, PPG methods are often slower to adapt and initially train.

In this paper we focus on black box models, which represent the meta-learning function as a neural
network, often a recurrent neural network (RNN) [4, 21, 22, 24, 25, 26, 27, 28] or a transformer [5,
31, 32]. There are also several hybrid approaches that combine PPG and black box methods, either
during meta-training [33] or fine-tuning [34, 35]. Using black box models simplifies the process
of augmenting meta states with Q-estimates and allows us to retain relatively better data efficiency
while relying on the Q-value injections for better long-horizon performance and generalization.

Meta-RL systems may also leverage extra information available during training, such as task iden-
tification [24, 28]. Such ‘privileged information’ can of course lead to more performant systems,
but is not universally available. As our hypothesis does not rely on the availability of such infor-
mation, we expect our approach to be orthogonal to, and compatible with, such methods. Black
box meta-RL systems that do not use privileged information still vary in several ways, including
the choice between on-policy and off-policy learning and, in systems that use neural networks, the
choice between transformers [36] and RNNs [37, 38, 39].

The most relevant methods to our work are end-to-end methods, which use a single function ap-
proximator to subsume both learner and meta-learner, such as RL2 [4], L2L [22], SNAIL [5], and E-
RL2 [14], and methods that exploit the the formal description of the meta-RL problem as a POMDP
or a Bayes-adaptive MDP (BAMDP) [40]. These methods attempt to learn policies conditioned on
the BAMDP belief state while also approximating this belief state by, for example, variational in-

2

ference (VariBAD) [27, 41], or random network distillation on belief states (HyperX) [42]. Or, they
simply encode enough trajectory history to approximate POMDP beliefs (RL2) [4, 22].

Our proposed method is an end-to-end system that exploits the BAMDP structure of the meta-RL
problem by spending a small amount of extra computation to provide inputs to the end-to-end learner
that more closely resemble important constituents of BAMDP value functions. Thus, the primary
difference between this work and previous work is the injection of Q-value estimates into the meta-
RL agent state at each meta-step, in addition to the state-action-reward trajectories. In this work, our
approach, RL3, is implemented by simply injecting Q-value estimates into RL2 alongside trajectory
history, although any other meta-RL algorithm can be used.

3 Background and Notation

In this section, we briefly cover some notation and concepts upon which this paper is built.

3.1 Partially Observable Markov Decision Processes

Markov decision processes (MDPs) underpin reinforcement learning, and in this paper we use the
standard notation defining an MDP as a tuple M = ⟨S,A, T,R⟩, where S is a set of states; A is
a set of actions; T is the transition and R is the reward function. A partially observable Markov
decision process (POMDP) extends MDPs to settings with partially observable states. A POMDP is
described as a tuple ⟨S,A, T,R,Ω, O⟩, where S,A, T,R are as in an MDP. Ω is the set of possible
observations, and O : S × A × Ω → [0, 1] is an observation function representing the probability
of receiving observation ω after performing action a and transitioning to state s′. POMDPs can
alternatively be represented as continuous-state belief-MDPs where a belief state b ∈ ∆|S| is a
probability distribution over all states. In this representation, a policy π is a mapping from belief
states to actions, π : ∆|S| → A. The belief state can be updated using the equation b′(s′|b, a, ω) =
αO(a, s′, ω)

∑
s∈S T (s, a, s′)b(s), where α is a normalization constant.

3.2 Reinforcement Learning

The goal of reinforcement learning (RL) is to learn an optimal policy given an MDP with unknown
dynamics using transition and reward feedback. This is often done by incrementally estimating
the optimal action-value function Q∗(s, a) [43], which satisfies the Bellman optimality equation
Q∗(s, a) = Es′ [R(s, a) + γmaxa′∈A Q∗(s′, a′)]. In large or continuous state settings, it is popu-
lar to use deep neural networks to represent the action-value functions [1]. We denote the vector
representing the Q-estimates of all actions at state s as Q(s), and after t feedback steps, as Qt(s).
Q-learning is known to converge asymptotically [44] provided each state-action pair is explored suf-
ficiently. As a rough general statement, ||Qt(s) − Q∗(s)||∞ is proportional to ≈ 1√

t
, with strong

results on the convergence error available [45, 46, 47]. The theoretical objective in RL is to opti-
mize the value of the final policy, i.e. the cumulative reward per episode, disregarding the data cost
incurred and the cumulative reward missed (or regret) during learning due to suboptimal exploration.

3.3 Meta Reinforcement Learning

Meta reinforcement learning seeks action selection strategies that minimize regret in MDPs drawn
from a distribution of MDPs that share the same state and action spaces. Therefore, the objective
in meta-RL is to maximize the cumulative reward over the entire interaction period with an MDP,
which may span multiple episodes, thereby achieving an optimal exploration-exploitation tradeoff.

J (θ) = EMi∼M

[H∑
t=0

γtE(st,at)∼ρ
πθ
i
[Ri(st, at)]

]
(1)

Here, meta-RL policy πθ is interpreted as a “fast” or “inner” RL algorithm, which maps a trajectory,
Υ = (s0, a0, r0, ..., st), within an MDP Mi to an action at using either a recurrent neural network
or a transformer network. ρπθ

i is the state-action occupancy induced by the meta-RL policy in MDP
Mi, and H is the length of the deployment, or interaction budget. The objective J (θ) is maximized
using a more conventional “slow” or “outer” deep RL algorithm due to the reformulation of the entire

3

Meta-level
Agent

(RNN / Transformer)

Action

Experience
Q-Learning, etc.

Environment

Meta-level
Critic

(RNN / Transformer)

Slow RL

Meta-training

Object-level
RL

Fast RL

s s

Figure 1: Overview diagram of RL3. Black entities represent standard components from RL2, and
purple entities represent additions for RL3. Mi is the current MDP; s is a state; r is a reward; ti and
tτ are the amount of time spent experiencing the current MDP and current episode, respectively; Qt

i
is the Q-value estimate for MDP i after t actions;∇J is the policy gradient.

deployment period t = 0...H with an MDP as a single (meta-)episode in the objective function,
aimed at maximizing cumulative reward throughout this period. We will use the term “trajectory”
(or “history”), denoted by Υ, to refer to a sequence of states, actions and rewards within a meta-
episode of interaction with an MDP, Mi, which may include multiple episodes with trajectories
{τ0, τ1, ...τn} within Υ. Figure 1 illustrates how these components interconnect.

One particularly clean way to conceptualize this problem is to recognize that the meta-RL problem
may be written as a meta-level POMDP, where the hidden variable is the particular MDP (or task) at
hand, Mi, which varies across meta-episodes. This framing, known as Bayesian RL [48], leverages
the fact that augmenting the task-specific state s with belief over tasks b(i) results in a Marko-
vian meta-state [s, b] for optimal action selection, a model known as the Bayes Adaptive MDP (or
BAMDP) [40]. That is, this belief state captures all requisite information that is normally supplied
by a trajectory for the purpose of acting. We will revisit this concept to develop intuition on the role
of object-level Q-value estimates in the meta-RL value function.

4 RL3

To address the limitations of black box meta-RL methods, we propose RL3, a principled approach
that leverages (1) the inherent generality of action-value estimates, (2) their ability to compress
trajectories into useful summaries, (3) their direct actionability & asymptotic optimality, (4) their
ability to inform task-identification, and (5) their relation to the optimal meta-value function, in
order to enhance out-of-distribution (OOD) generalization and performance over extended horizons.
The central, novel mechanism in RL3 is an additional ‘object-level’ RL procedure executed within
the meta-RL architecture, shown in Fig. 1, that computes task-specific Q-value estimates Qt

i(st) and
state-action counts as supplementary inputs to the meta-RL policy in conjunction with the standard
state-action-reward trajectories (s0, a0, r0, ..., st). The estimates and the counts are reset at the
beginning of each meta-episode as a new task Mi is sampled from the MDP distribution M. In
all subsequent text, Q-value estimates used as input entail the inclusion of state-action counts as
well. We now present a series of key insights informing our approach.

First, estimating the action-values is a key component in many universal RL algorithms, and asymp-
totically, they fully inform optimal behavior, irrespective of the domain. The strategies for optimal
exploration-exploitation trade-off are domain-dependent and rely on historical data, yet many ex-
ploration approaches use estimated Q-values and counts alone, such as epsilon-greedy, Boltzmann
exploration, upper confidence bounds (UCB/UCT) [49, 50], count-based exploration [51], curiosity
based exploration [52] and maximum-entropy RL [3]. This creates a strong empirical case that rely-
ing on Q-value estimates and state-action counts for efficient exploration has an inherent generality.

Second, Q-estimates summarize trajectories of arbitrary length and order in one constant-size vec-
tor. The mapping from trajectories to Q-estimates is many-to-one, and any permutation of transitions
(⟨s, a, r, s′⟩ tuples) or episodes in a trajectory yield the same Q-estimates. Although this compres-
sion is lossy, it still “remembers” important aspects of the trajectory, such as high-return actions and
goal positions (see Figure 2) since Q-estimates persist across object-level episodes. This simplifies

4

the mapping the meta agent needs to learn as Q-estimates represent a smaller and more salient set of
inputs in the long run compared to all possible histories that have the same implication.

Third, Q-estimates are actionable. Estimated using an in-built off-policy RL module, they explicitly
represent the optimal exploitation policy for the current task given the data, insofar as the RL module
is data-efficient, relieving the meta-RL agent from having to perform such computations inside the
transformer/RNN. Over time, Q-estimates become increasingly reliable and directly indicate the
optimal policy whereas processing raw data becomes more challenging. Fortunately, incorporating
Q-estimates mean that the meta-RL agent can eventually ignore the history in the long run (or as the
interaction budget H approaches) and simply exploit the Q-estimates by selecting actions greedily.

Fourth, Q-estimates are excellent task discriminators and serve as another line of evidence vis-
à-vis maintaining belief over tasks. In a simple domain like Bernoulli multi-armed bandits [4],
Q-estimates and action-counts combined are sufficient for Bayes-optimal behavior even without
providing raw trajectory data – a result surprisingly unstated in literature to best of our knowledge
(see Appendix A.1). However, Q-estimates and action-counts are not always sufficient for Bayes-
optimal beliefs. For example, in Gaussian multi-armed bandits, the sufficient statistics include the
variance in rewards for each action (see Appendix A.2). In more complex domains, it is hard to
prove the sufficiency of Q-estimates regarding task discrimination. However, via empirical analysis
in Appendix D, we argue that i) it is highly improbable for two tasks to have similar Q∗ functions and
ii) Q-estimates tend to become accurate task predictors in just a few steps. This implies that the meta-
agent may use this finite summary for task inference rather than relying completely on arbitrarily
long histories, potentially contributing to enhanced performance on long-horizon problems.

It can be theoretically argued that since the meta agent is a BAMDP policy, it is meta-trained to se-
lect greedy actions w.r.t. the BAMDP meta-value function and thus should not require constructing
a task-specific plan internally. However, the optimality of the meta action-value function depends on
implicitly (or explicitly in some approaches, such as [24, 27, 41, 42]) maintaining a Bayes-optimal
belief over tasks in the transformer/RNN architecture. This may be challenging if the task distribu-
tion is too broad and the function approximator is not powerful enough to integrate the trajectories
into Bayes-optimal beliefs, or altogether impossible if there is a distribution shift at meta-test time.
This latter condition is common in practice and is a frequent target use case for meta-RL systems. In-
corporating task-specific Q-estimates gives the agent a simple alternative (even if not Bayes-optimal)
line of reasoning to translate trajectories into actions. Incorporating Q-estimates is thus less suscep-
tible to distribution shifts since the arguments presented above are domain independent.

Finally, Q-estimates often converge far more quickly than the theoretical rate of 1√
t
, allowing them

to be useful in the short and medium term, since i) most real-world domains contain significant
determinism, and ii) optimal meta-RL policies may represent active exploration strategies in which
Q-estimates converge faster, or evolve in a manner leading to quicker task identification. This is
intuitively apparent in shortest-path problems, as illustrated in Figure 2(a). In a deep neural net-
work it is difficult to know exactly how Q-estimates will combine with state-action-reward histories
when approximating the meta-value function. However, as we show below, we can rather straight-
forwardly write an equation for the meta-value of a given belief state in terms of these constituent
streams of information, which may explain why this function is seemingly relatively easy to learn
compared to predicting meta-values from histories alone.

4.1 Theoretical Justification

Here, we consider the interpretation of meta-RL as performing RL on a partially observable Markov
decision process (POMDP) in which the partially observable state factor is the identity of the object-
level MDP. All analysis assumes the infinite horizon setting. We will denote meta-level entities,
belonging in this case to a POMDP, with an overbar. For example, we have a meta-level value
function V̄ and a meta-level belief b̄. Thus, we can write an equation for the POMDP meta-level
value function in its belief-MDP representation:

V̄ ∗(b̄) = argmax
a∈A

[∑
s̄∈S̄

b̄(s̄)R̄(s̄, a) + γ
∑
ω̄∈Ω̄

Ō(ω̄|b̄, a)V̄ ∗(b̄′)
]
. (2)

However, given that the only partially observable variable is the task, we can re-write this as

V̄ ∗(b̄) = argmax
a∈A

[∑
Mi∈M

b̄(i)Ri(s, a) + γ
∑
ω̄∈Ω̄

Ō(ω̄|b̄, a)V̄ ∗(b̄′)
]
, (3)

5

a)

c)

b)

Figure 2: Sub-figure (a) shows a meta-episode in a shortest-path environment where the goal posi-
tion (green circles) and the obstacles (black regions) may vary across tasks. In this meta-episode,
after the meta-RL agent narrows its belief about the goal position of this task (dark-green circle)
having followed a principled exploration strategy (τ0), it explores potential shorter paths in subse-
quent episodes (τ1, τ2, τ3, τ4). Throughout this process, the estimated value-function Q̂∗ implicitly
“remembers” the goal position and previous paths traversed in a finite-size representation, and up-
dates the shortest path calculation (highlighted in bold) using Bellman backups when paths intersect.
Sub-figures (b) and (c) illustrate the many-to-one mapping of object- and meta-level data streams to
Q-estimates, and thus their utility as compression and summarization mechanisms for meta-learning.

where b̄(i) denotes the meta-level belief that the agent is operating in MDP Mi, and Ri(s, a) is the
immediate reward experienced by the agent if it executes action a in state s in MDP Mi. Here, b̄′
may be calculated via the belief update as in §3.1. If the meta-level observation ω̄ includes Q-value
estimates, the meta-level observation function Ō(ω̄|b̄, a) thus gives the probability that a particular
Q-estimate will be observed given an initial belief about the task identity b̄ and an action a. Given
this setup, we can rewrite the original BAMDP value function (Equation (3)) at time t in a manner
that motivates our meta-RL system architecture.

V̄ t(b̄) = argmax
a∈A

[∑
Mi∈M

b̄(i)Ri(s, a) + γ
∑
ω̄∈Ω̄

Ō(ω̄|b̄, a)
∑

Mi∈M
b̄′(i)

∑
s′∈S

Ti(s, a, s
′)(Qt

i(s
′) + εi(τ))

]
.

(4)
Equation (4) has two important features. First, ω̄ includes both trajectory τ and Q-estimate Qt(s, a).
Second, the error in Q-estimate for the object-level MDPs is captured by εi(τ). This error is a
function of the data (both amount and quality) seen by the agent so far, which can be summarized
by the trajectory τ . We can see this error will diminish as t → ∞, but in the short run, a function
f(τ) could be learned to either estimate the error or replace the (Qt

i(s
′) + εi(τ)) term entirely. The

increase in performance of RL3 could be explained by either f(τ) being simpler to learn, or, given
that Q-estimates are supplied directly as inputs, the resultant meta-agent behavior may be more
robust to errors in estimates of ε(τ) than to errors in a more complicated approximation of V̄ ∗(b̄).
Moreover, this composition benefits from the fact that observations become increasingly accurate Q-
estimates in the limit, and the convergence rate for Q-estimates further suggests a natural, predictable
rate of shifting reliance from f(τ) to Qt

i(s
′) as t→∞. However, we do not bake this structure into

the network and instead let it implicitly learn how and how much to use the Q-estimates. It is
important to note that as we are learning Ō as part of a black box model, mapping Q-estimates to
tasks is a relatively straightforward function to learn compared to mapping trajectories to tasks, and
as t → ∞ and Q-estimates become more accurate, it is possible to reliably discriminate using ever
smaller differences in Q-values. Moreover, knowing the exact task is not required to act optimally.

4.2 Implementation

Implementing RL3 involves simply replacing each MDP in the task distribution with a corresponding
value-agumented MDP (or VAMDP) and solving the resulting VAMDP distribution using RL2 .
Each VAMDP has the same action space and reward function as the corresponding MDP. The value

6

Algorithm 1 Value-Augmented MDP Wrapper Over a Discrete MDP
procedure RESETMDP(vamdp)

vamdp.t← 0; vamdp.τ ← 0
vamdp.N [s, a]← 0; vamdp.Q[s, a]← 0 ∀s ∈ S, a ∈ A
vamdp.rl← INITRL()
s = RESETMDP(vamdp.mdp)
return ONEHOT(s) ·Q[s] ·N [s]

procedure STEPMDP(vamdp, a)
s← mdp.s
r, s′ ← STEPMDP(vamdp.mdp, a)
d← TERMINATED(vamdp.mdp)
vamdp.t, vamdp.N [s, a], vamdp.τ ← += 1
vamdp.Q← UPDATERL(vamdp.rl, s, a, r, s′, d)
if d or vamdp.τ ≥ task horizon then

vamdp.τ ← 0
s′ ← RESETMDP(vamdp.mdp)

return r, ONEHOT(s′) ·Q[s′] ·N [s′]

procedure TERMINATED(vamdp)
return vamdp.t ≥ interaction budget

augmented state ŝt ∈ S×Rk×Ik includes the object level state st, k real values and k integer values
for the Q-estimates (Qt(st, a)) and action counts (N t(st, a)) respectively for each of the k actions.
When the object-level state space S is discrete, st needs to be represented as an |S|-dimensional
one-hot vector. Note that the value augmented state space is continuous. In the VAMDP transition
function, the object-level state s has the same transition dynamics as the original MDP, while the
dynamics of Q-estimates are a function of T , R, and the specific object-level RL algorithm used for
Q-learning. An episode of the VAMDP spans the entire interaction period with the corresponding
MDP, which may include multiple episodes of the MDP, as Q-estimates continue to evolve beyond
episode boundaries. In code, a VAMDP RL environment is implemented as a wrapper over a given
MDP environment. The pseudocode is provided in Algorithm 1 and additional implementation
details, engineering tricks, and hyperparameters for RL2 and RL3 can be found in Appendix B.

5 Experiments

We compare RL3 to a modified version of RL2. First, we replace LSTMs with transformers in both
the meta-actor and meta-critic for the purpose of mapping trajectories to actions and meta-values,
respectively. This is done to maximize RL2’s ability to handle long-term dependencies instead
of suffering from vanishing gradients. Moreover, RL2-transformer trains significantly faster than
RL2-LSTM. Second, we include in the state space the total number of interaction steps and the
total number of steps within each episode during a meta-episode (see Fig. 1). Third, we use PPO
[2] for training the meta actor-critic, instead of TRPO [53]. These modifications and other minor-
implementation details incorporate the recommendations made by [54], who show that model-free
recurrent RL is competitive with other state-of-the-art meta RL approaches such as VeriBAD [27],
if implemented properly. RL3 simply applies the modified version of RL2 to the distribution of
value-augmented MDPs explained in section 4.2. Within each VAMDP, our choice of object-level
RL is a model-based algorithm in the interest of sample efficiency – we estimate a tabular model of
the environment and run finite horizon value iteration on the model to get Q-estimates.

In our test domains, each meta-episode involves procedurally generating an MDP according to a
parameterized distribution, which the meta-actor then interacts with for a fixed budget H . This in-
teraction might consist of multiple object-level episodes of variable length, each of which are no
longer than a separate maximum task horizon. For a given experiment, each approach is trained on
the same series of MDPs. For testing, each approach is evaluated on an identical set of 1000 MDPs
distinct from the training MDPs. For testing OOD generalization, MDPs are generated from distri-
butions with different parameters than in training. We select three task domains for our experiments,
which cover a range of short-term, long-term, and complex dependencies.

7

Figure 3: An RL3 policy on a selected meta-episode visualized using a sequence of snapshots. ‘S’ is
the starting tile, ‘G’ is the goal tile and the black circle shows the current position of the agent. Blue
tiles marked ‘W’ are wet tiles. Wet tiles always lead to the agent slipping to one of the directions
orthogonal to the intended direction of movement. Entering wet tiles yield an immediate reward of
-2. Yellow tiles marked ‘!’ are warning tiles and entering them causes -10 reward. Red tiles marked
‘X’ are fatally dangerous. Entering them ends the episode and leads to a reward of -100. Black tiles
are obstacles. White tiles yield a reward of -1 to incentive the agent to reach the goal quickly. On
all tiles other than wet tiles, there is a chance of slipping sideways with a probability of 0.2. The
object-level state-values vt(s) = maxaQt(s, a), as approximated by object-level RL, is represented
using shades of green (and the accompanying text), where darker shades represent higher values.

Bernoulli Bandits: We use the same setup described in [4] with k = 5 arms. We experiment with
H = 100 and H = 500 interaction budgets. To test OOD generalization, we generate bandit tasks
by sampling success probabilities from N (0.5, 0.5).

Random MDPs: We use the same setup described in [4]. The MDPs have 10 states and 5 actions.
The mean rewards and transition probabilities are drawn from a normal and a flat Dirichlet distri-
bution, respectively. The task horizon is 10. To test OOD generalization, the rewards are generated
deterministically and initialized from U(0, 2).
GridWorld Navigation: A set of navigation tasks in a 2D grid environment. We experiment with
11x11 (121 states) and 13x13 (169 states) grids. The agent always starts in the center of the grid
and needs to navigate through obstacles to a single goal location. The grid also contains slippery
tiles, fatally dangerous tiles and warning tiles surrounding the latter. See Fig. 3(a) for an example
of a 13x13 grid. Instead of one-hot vectors, we use the 2D (x, y) grid location to represent agent
state. To test OOD generalization, we vary parameters including the stochasticity of actions, density
of obstacles and the number of dangerous tiles. For this domain, we consider an additional variation
of RL3, called RL3-coarse where a given grid is partitioned into clusters of tiles (or abstract states),
each of size 2. Abstract states are comprised only of adjacent, traversable cells, and are used solely
for the purpose of estimating the object-level Q-values. Our goal is to test whether coarse-level Q-
value estimates are still useful to the meta-RL policy. The domains and the abstraction strategy used
for the RL3-coarse approach are described in greater detail in Appendices E and B.3, respectively.

6 Results

In this section we present several experiments that demonstrate the (sometimes surprising) effec-
tiveness of RL3. Beyond matching or exceeding the performance of RL2 in all test domains, RL3

also shows better OOD generalization, which we attribute to the increased generality of the Q-value
representation. More striking, the advantages of RL3 increase significantly as horizons increase or
domains become less stochastic. We hypothesize this is due to the increased accuracy of the object-
level Q-value estimates in these cases. Last, we find that RL3 performs well even with coarse-
grained object-level RL over abstract states, showing minimal drop in performance in most cases
and occasionally even increases, while the computational savings from abstraction are substantial.

We emphasize that the core of our approach, which is augmenting MDP states with action-value
estimates, is not inherently tied to RL2 and is orthogonal to most other meta-RL research. VAMDPs
can be plugged into any base meta-RL algorithm with a reasonable expectation of improving it.

Bandits: Table 1 shows the results for the Bandits domains. For H = 100 and H = 500, both
approaches perform comparably. However, the OOD generalization for RL3 is slightly better. We

8

Budget H Random RL2 RL3 RL3 (Markov)
100 50.0 76.9± 0.6 77.5± 0.5 75.2± 0.5
500 250.2 392.1± 2.5 393.2± 2.7 391.75± 2.6

500 (OOD) 249.0 430.2± 2.8 434.9± 2.8 433.7± 2.8
Table 1: Test scores (mean ± standard error) for Bandits domain.

Budget H Random RL2 RL3

100 99.9 159.5± 0.8 158.9± 0.8
500 502.1 927.8± 3.7 926.9± 3.7

500 (OOD) 501.7 772.8± 1.7 775.9± 1.7
1000 (extrapolated) 1000.6 1871.8± 7.4 1916.8± 7.4
Table 2: Test scores (mean ± standard error) for MDPs domain.

also experiment with a Markovian version of RL3, where we use a feed-forward neural network that
observes only the Q-estimates and action-counts, since Q-estimates are sufficient for Bayes-optimal
behavior in this domain. As expected, the results are similar to those with regular RL3.

MDPs: Table 2 shows the results for the MDPs domains. Once again, for H = 100 and H = 500,
both approaches perform comparably, and once again, OOD generalization is slightly better for
RL3. We suspect that for such short budgets on this highly stochastic domain, Q-estimates do not
converge enough to be very useful. To test this hypothesis, we test both approaches by applying
the models trained for H = 500 to H = 1000 (row 4 in table 3) using a moving window context
for the transformer models (see Appendix B for details). Here, RL3 generalizes significantly better,
demonstrating the utility of Q-esimates when they are allowed to converge for more iterations. In
fact, the score achieved by RL3 when trained for H = 500 and tested on H = 1000 is similar to
that of the original RL2 implementation [4] when trained specifically for H = 1000.

Gridworlds: Table 3 shows the results for the Gridworld Navigation domain. On 11x11 grids, RL3

significantly outperforms RL2 . On 13x13 grids, the performance margin is even greater, show-
ing that while RL2 struggles with a greater number of states and a longer horizon, RL3 can take
advantage of the Q-estimates to overcome the challenge. We also test the OOD generalization of
both approaches in different ways by increasing the obstacle density (DENSE), making actions on
non-water tiles deterministic (DETERMINISTIC), increasing the number of wet ‘W’ tiles (WATERY),
increasing the number of danger ‘X’ tiles (DANGEROUS) and having the goal only in the corners
(CORNER). For the dense variation, RL3 continues to outperform RL2 . On the DETERMINISTIC
variation, RL2 gains 380 points, while RL3 gains 654 points, which is likely because Q-estimates
converge faster on this less stochastic MDP and therefore provide greater help to RL3 . Conversely,
in the WATERY variation, which is more stochastic, both RL2 and RL3 lose roughly equal number
of points. It is worth noting that RL3 still outperforms RL2 on this variation. On the DANGEROUS
variation, RL3 loses relatively fewer points compared to RL2 , and continues to outperform it. In
each case, RL3-coarse significantly outperforms RL2 . In fact, it performs on par with RL3, even
outperforming it on CORNER variation, except on the canonical 13x13 case and its DETERMINISTIC
version, where it scores about 90% of the scores for RL3.

Fig. 3 shows a sequence of snapshots, from left to right, of a meta-episode where the trained RL3

agent is interacting with an instance of a 13x13 grid. The first snapshot shows the agent just before
reaching the goal for the first time. Prior to the first snapshot, the agent had explored many locations
in the grid. The second snapshot shows the next episode just after the agent finds the goal, resulting
in value estimates being updated using object-level RL for all visited states. Snapshot 3 shows the

Size, Budget, Variation Random RL2 RL3 RL3-coarse
11x11, 250, None −568.2 524.3± 21.7 630.8± 21.6 612.6± 21.3
13x13, 350, None −621.6 583.6± 28.1 901.9± 27.2 831.3± 27.7

13x13, 350, DENSE (OOD) −663.8 383.8± 25.8 690.7± 27.9 673.6± 27.5
13x13, 350, DETERMINISTIC (OOD) −637.8 959.9± 37.8 1574.3± 34.8 1463.6± 36.0

13x13, 350, WATERY (OOD) −632.4 513.2± 25.6 826.0± 27.0 822.1± 27.5
13x13, 350, DANGEROUS (OOD) −1016.7 282.7± 28.4 646.7± 29.5 657.2± 29.7

13x13, 350, CORNER (OOD) −638.8 318.7± 22.6 507.8± 23.1 645.4± 23.2

Table 3: Test scores (mean ± standard error) for Gridworld Navigation domain.

9

agent consequently using the Q-estimates to navigate to the goal presumably by choosing high-value
actions. The agent also explores several new nearby states for which it does not have Q-estimates.
Snapshot 4 shows the final Q-value estimates.

Computation Overhead Considerations: As mentioned earlier, for implementing object-level RL,
we use model estimation followed by finite-horizon value-iteration to obtain Q-estimates. The com-
putation overhead is negligible for Bandits (5 actions, task horizon = 1) and very little for the MDPs
domain (10 states, 5 actions, task horizon 10). For 13x13 Gridworlds (up to 169 states, 5 actions,
task horizon = 350), RL3 takes approximately twice the time of RL2 per meta-episode. However,
RL3-coarse requires only 10% overhead while still outperforming RL2 and retaining more than 90%
of the performance of RL3. This demonstrates the utility of state abstractions in RL3 for scaling.

7 Conclusion

In this paper, we introduced RL3, a principled hybrid approach that combines the strengths of normal
RL and meta-RL. We demonstrated that RL3 is capable of enhancing performance of meta-RL in
long-horizon tasks and OOD tasks while maintaining the efficiency in the short term. Our results
show that RL3 outperforms RL2 across a wide range of tasks, highlighting its potential as a powerful
and versatile reinforcement learning framework. By providing a unified approach to tackle short-
term and long-term dependencies, RL3 paves the way for more robust and adaptable reinforcement
learning agents in complex and diverse environments. In future work, we plan to explore extending
RL3 to handle continuous state spaces, possibly using state abstractions for discretization.

8 Acknowledgements

This work was supported in part by the National Science Foundation grant numbers 1954782,
2205153, and 2321786.

References
[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[2] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[3] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
Conference on Machine Learning, pages 1861–1870, 2018.

[4] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2:
Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

[5] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive
meta-learner. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=B1DmUzWAW.

[6] Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
Intelligence Review, 18:77–95, 2002.

[7] Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea
Finn, and Shimon Whiteson. A survey of meta-reinforcement learning. arXiv preprint
arXiv:2301.08028, 2023.

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. International Conference on Machine Learning, pages 1126–1135,
2017.

10

https://openreview.net/forum?id=B1DmUzWAW
https://openreview.net/forum?id=B1DmUzWAW

[9] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-SGD: Learning to learn quickly for
few-shot learning. arXiv preprint arXiv:1707.09835, 2017.

[10] Flood Sung, Li Zhang, Tao Xiang, Timothy Hospedales, and Yongxin Yang. Learning to learn:
Meta-critic networks for sample efficient learning. arXiv preprint arXiv:1706.09529, 2017.

[11] Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch, and Pieter
Abbeel. Continuous adaptation via meta-learning in nonstationary and competitive envi-
ronments. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=Sk2u1g-0-.

[12] Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. Advances in Neural Information
Processing Systems, 31, 2018.

[13] Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. Advances in Neural Information Processing Systems,
31, 2018.

[14] Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and
Ilya Sutskever. Some considerations on learning to explore via meta-reinforcement learning.
arXiv preprint arXiv:1803.01118, 2018.

[15] Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. Multimodal model-agnostic
meta-learning via task-aware modulation. Advances in Neural Information Processing Sys-
tems, 32, 2019.

[16] Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast
context adaptation via meta-learning. In International Conference on Machine Learning, pages
7693–7702, 2019.

[17] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature
reuse? Towards understanding the effectiveness of MAML. arXiv preprint arXiv:1909.09157,
2019.

[18] Rituraj Kaushik, Timothée Anne, and Jean-Baptiste Mouret. Fast online adaptation in robotics
through meta-learning embeddings of simulated priors. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 5269–5276, 2020.

[19] Ali Ghadirzadeh, Xi Chen, Petra Poklukar, Chelsea Finn, Mårten Björkman, and Danica
Kragic. Bayesian meta-learning for few-shot policy adaptation across robotic platforms. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1274–1280,
2021.

[20] Zhao Mandi, Pieter Abbeel, and Stephen James. On the effectiveness of fine-tuning versus
meta-RL for robot manipulation. In CoRL Workshop on Pre-training Robot Learning, 2022.
URL https://openreview.net/forum?id=21TVvjhOkV.

[21] Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. Memory-based control
with recurrent neural networks. arXiv preprint arXiv:1512.04455, 2015.

[22] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

[23] Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and
Igor Mordatch. Learning with opponent-learning awareness. In International Conference on
Autonomous Agents and MultiAgent Systems, page 122–130, 2018.

[24] Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega, Yee Whye
Teh, and Nicolas Heess. Meta reinforcement learning as task inference. arXiv preprint
arXiv:1905.06424, 2019.

11

https://openreview.net/forum?id=Sk2u1g-0-
https://openreview.net/forum?id=Sk2u1g-0-
https://openreview.net/forum?id=21TVvjhOkV

[25] Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, and Alexander J Smola. Meta-Q-learning. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=SJeD3CEFPH.

[26] Liqi Yan, Dongfang Liu, Yaoxian Song, and Changbin Yu. Multimodal aggregation approach
for memory vision-voice indoor navigation with meta-learning. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5847–5854, 2020.

[27] Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hof-
mann, and Shimon Whiteson. VariBAD: A very good method for Bayes-adaptive deep RL via
meta-learning. In International Conference on Learning Representations, 2020.

[28] Evan Z Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. Decoupling exploration and
exploitation for meta-reinforcement learning without sacrifices. In International Conference
on Machine Learning, pages 6925–6935, 2021.

[29] David Emukpere, Xavier Alameda-Pineda, and Chris Reinke. Successor feature neural
episodic control. In Fifth Workshop on Meta-Learning at the Conference on Neural Informa-
tion Processing Systems, 2021. URL https://openreview.net/forum?id=e1Q2_jaE08J.

[30] Jacob Beck, Matthew Thomas Jackson, Risto Vuorio, and Shimon Whiteson. Hypernetworks
in meta-reinforcement learning. In Conference on Robot Learning, pages 1478–1487, 2022.

[31] Jane X Wang, Michael King, Nicolas Pierre Mickael Porcel, Zeb Kurth-Nelson, Tina Zhu,
Charlie Deck, Peter Choy, Mary Cassin, Malcolm Reynolds, H. Francis Song, Gavin Butti-
more, David P Reichert, Neil Charles Rabinowitz, Loic Matthey, Demis Hassabis, Alexander
Lerchner, and Matthew Botvinick. Alchemy: A benchmark and analysis toolkit for meta-
reinforcement learning agents. In Neural Information Processing Systems Track on Datasets
and Benchmarks, 2021. URL https://openreview.net/forum?id=eZu4BZxlRnX.

[32] Luckeciano C Melo. Transformers are meta-reinforcement learners. In International Confer-
ence on Machine Learning, pages 15340–15359, 2022.

[33] Allen Z Ren, Bharat Govil, Tsung-Yen Yang, Karthik R Narasimhan, and Anirudha Majumdar.
Leveraging language for accelerated learning of tool manipulation. In Conference on Robot
Learning, pages 1531–1541, 2023.

[34] Lin Lan, Zhenguo Li, Xiaohong Guan, and Pinghui Wang. Meta reinforcement learning with
task embedding and shared policy. In International Joint Conference on Artificial Intelligence,
pages 2794–2800, 2019.

[35] Zheng Xiong, Luisa M Zintgraf, Jacob Austin Beck, Risto Vuorio, and Shimon Whiteson.
On the practical consistency of meta-reinforcement learning algorithms. In Fifth Workshop
on Meta-Learning at the Conference on Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=xwQgKphwhFA.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017.

[37] Jeffrey L Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

[38] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735–1780, 1997.

[39] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–
decoder for statistical machine translation. In Conference on Empirical Methods in Natu-
ral Language Processing, pages 1724–1734, 2014. URL https://aclanthology.org/
D14-1179.

[40] Michael O’Gordon Duff. Optimal Learning: Computational Procedures for Bayes-Adaptive
Markov Decision Processes. PhD thesis, University of Massachusetts Amherst, 2002.

12

https://openreview.net/forum?id=SJeD3CEFPH
https://openreview.net/forum?id=SJeD3CEFPH
https://openreview.net/forum?id=e1Q2_jaE08J
https://openreview.net/forum?id=eZu4BZxlRnX
https://openreview.net/forum?id=xwQgKphwhFA
https://aclanthology.org/D14-1179
https://aclanthology.org/D14-1179

[41] Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta learning of exploration. arXiv
preprint arXiv:2008.02598, 2020.

[42] Luisa M Zintgraf, Leo Feng, Cong Lu, Maximilian Igl, Kristian Hartikainen, Katja Hofmann,
and Shimon Whiteson. Exploration in approximate hyper-state space for meta reinforcement
learning. In International Conference on Machine Learning, pages 12991–13001, 2021.

[43] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine Learning, 8:279–292, 1992.

[44] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press,
2018.

[45] Csaba Szepesvári. The asymptotic convergence-rate of Q-learning. In Advances in Neural
Information Processing Systems, volume 10, 1997.

[46] Michael Kearns and Satinder Singh. Finite-sample convergence rates for Q-learning and indi-
rect algorithms. In Advances in Neural Information Processing Systems, volume 11, 1998.

[47] Eyal Even-Dar, Yishay Mansour, and Peter Bartlett. Learning rates for Q-learning. Journal of
Machine Learning Research, 5(1), 2003.

[48] Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian reinforce-
ment learning: A survey. Foundations and Trends in Machine Learning, 8(5-6):359–483, 2015.

[49] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Ma-
chine Learning Research, 3:397–422, 2002.

[50] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In European
Conference on Machine Learning, pages 282–293, 2006.

[51] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schul-
man, Filip De Turck, and Pieter Abbeel. #exploration: A study of count-based exploration
for deep reinforcement learning. In Advances in Neural Information Processing Systems, vol-
ume 30, pages 2753–2762, 2017.

[52] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. In International Conference on Learning Rep-
resentations, 2019.

[53] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International Conference on Machine Learning, pages 1889–
1897, 2015.

[54] Tianwei Ni, Benjamin Eysenbach, and Ruslan Salakhutdinov. Recurrent model-free RL can
be a strong baseline for many POMDPs. In International Conference on Machine Learning,
pages 16691–16723, 2022. URL https://proceedings.mlr.press/v162/ni22a.html.

[55] Kevin Esslinger, Robert Platt, and Christopher Amato. Deep transformer Q-networks for par-
tially observable reinforcement learning. In NeurIPS Workshop on Foundation Models for
Decision Making, 2022. URL https://openreview.net/forum?id=DrzwyQZNJz.

A Proofs

A.1 Bayes Optimality of Q-value Estimates in Bernoulli Multi-armed Bandits

Given an instance of a Bernoulli multi-armed bandit MDP, Mi ∼ M, and trajectory data Υ1:T up
to time T , we would like to show that the probability P (i|Υ1:T) can be determined entirely from
Q-estimates QT

i and action-counts NT
i , as long as the initial belief is uniform or known.

In the following proof, we represent an instance i of K-armed Bandits as a K-dimensional vector
of success probabilities [pi1, ..., piK], such that pulling arm k is associated with reward distribution
P (r = 1|i, k) = pik and P (r = 0|i, k) = (1− pik).

13

https://proceedings.mlr.press/v162/ni22a.html
https://openreview.net/forum?id=DrzwyQZNJz

Let the number of times arm k is pulled up to time T be NT
ik and the number of successes associated

with pulling arm k up to time T be qTik. Given that this is an MDP with just a single state and task
horizon of 1, the Q-estimate associated with arm k is just the average reward for that action, which
is the ratio of successes to counts associated with that action i.e., QT

ik =
qTik
NT

ik

. To reduce the clutter
in the notation, we will drop the superscript T for the rest of the subsection.

Now,

P (i|Υ1:T) = αP (i) · P (Υ1:T |i) (5)

where α is the normalization constant, P (i) is the prior probability of task i (which is assumed to be
known beforehand), and Υ1:T is the sequence of actions and the corresponding rewards up to time
T . Assuming, without loss of generality, that the sequence of actions used to disambiguate tasks is
a given, P (Υ1:T |i) becomes simply the product of probabilities of reward outcomes up to time T ,
noting that the events are independent. Therefore,

P (Υ1:T |i) =
∏

k=1:K

∏
t=1:T

([rtk = 1]pik + [rtk = 0](1− pik)) (6)

=
∏

k=1:K

pqikik · (1− pik)
Nik−qik (7)

=
∏

k=1:K

pQikNik

ik · (1− pik)
Nik−QikNik (8)

Putting everything together,

P (i|Υ1:T) = αP (i) ·
∏

k=1:K

pQikNik

ik · (1− pik)
Nik−QikNik (9)

Hence proven that NT
i and QT

i are sufficient statistics to determine P (i|Υ1:T) in this domain, as-
suming that the prior over task distribution is known.

A.2 Non-Bayes Optimality of Q-value Estimates in Gaussian Multi-armed Bandits

Given an instance of a Gaussian multi-armed bandit MDP, Mi ∼ M, and trajectory data Υ1:T up
to time t, here we derive the closed-form expression of the probability P (i|Υ1:T) and show that it
contains terms other than Q-estimates Qt

i and action-counts N t
i .

In the following proof, we represent an instance i of K-armed Bandits as a 2K-dimensional vector
of means and standard deviations [µi1, ..., µiK , σi1, ..., σiK], such that pulling arm k is associated
with reward distribution P (r|i, k) = 1√

2πσik
exp(r−µik

σik
)2.

Let the number of times arm k is pulled up to time T be NT
ik. Given that this is an MDP with just a

single state and task horizon of 1, the Q-estimate associated with arm k is just the average reward for
that action Avg[rk] up to time T . To reduce the clutter in the notation, we will drop the superscript
T for the rest of the subsection.

As in the previous subsection, we now compute the likelihood P (Υ1:T |i).

14

P (Υ1:T |i) =
∏

k=1:K

∏
t=1:T

1√
2πσik

exp(
rtk − µik

σik
)2 (10)

logP (Υ1:T |i) =
∑

k=1:K

∑
t=1:T

(rtk − µik)
2

σ2
ik

− log (2πσik)/2 (11)

=
∑

k=1:K

Nik
Avg[(rtk − µik)

2]

σ2
ik

−Nik log (2πσik)/2 (12)

=
∑

k=1:K

Nik
Avg[r2k]− 2µikAvg[rk] + µ2

ik

σ2
ik

−Nik log (2πσik)/2 (13)

=
∑

k=1:K

Nik
(Var[rk] + Avg[rk]2)− 2µikAvg[rk] + µ2

ik

σ2
ik

−Nik log (2πσik)/2

(14)

=
∑

k=1:K

Nik
Var[rk] + (Qik)

2 − 2µikQik + µ2
ik

σ2
ik

−Nik log (2πσik)/2 (15)

Therefore, computing this expressing requires computing the variance in rewards, Var[rk] associated
with each arm up to time T , apart from the the Q-estimates and action-counts.

Hence proven that Q-estimates and action-counts are insufficient to completely determine P (i|Υ1:T)
in Gaussian multi-armed bandits domain.

A.3 Object-level Q-estimates and Meta-level Values

We now show a basic result, that the optimal meta-level value function is upper bounded by the
object-level Q-value estimates in the limit.

Proof: Given a distribution of tasksM, then for a given state s there exists a maximum object-level
optimal value function V ∗

max(s), corresponding to some particular MDP Mmax ∈ M, such that for
all MDPs Mi ∈ M, V ∗

max(s) ≥ V ∗
i (s). Observe that the expected cumulative discounted reward

experienced by the agent cannot be greater than the most optimistic value function over all tasks,
since V̄ ∗(b̄) is a weighted average of individual value functions V πθ (s) which are themselves upper
bounded by V ∗

max(s). Thus,

argmax
Mi∈M

V ∗
i (s) ≥ V̄ ∗(b̄) ∀s ∈ S. (16)

Next, we see that combining the asymptotic accuracy of Q-estimates and Equation (6) gives us

lim
t→∞

argmax
a∈A,Mi∈M

Qt
i(s, a) ≥ V̄ ∗(b̄) ∀s ∈ S. (17)

Furthermore, if the meta-level observation ω̄ includes Q-value estimates, we have the following
result. Given that the current task is represented by MDP Mi, then for any ε > 0, there exists κ ∈ N
such that for t ≥ κ, ∣∣∣ argmax

a∈A

[
Qt

i(s, a)
]
− V̄ ∗(b̄)

∣∣∣ ≤ ε ∀s ∈ S. (18)

Proof: Let the set of observations Ω̄ be the set of possible object-level Q-value estimates. That is,
Ω̄ contains Qt

i(s, a) for all s, a, t, and, most importantly, i. Thus, ω̄ = Qt
i(s, a) for known s, a, and

t, and an unknown i. The meta-level observation function Ō(ω̄|b̄, a) thus gives the probability that a
particular Q-value will be observed given an initial belief about the task identity b̄ and an action a.
We know that Q-estimates converge at a known rate in the limit. Thus, after t timesteps, their error
is bounded (with high probability) by some ε.

Thus, observations become stable Q-value estimates in the limit. In practice, such Q-value estimates
are excellent discriminators (see Appendix D) for the underlying task. Generally, there are two
cases.

15

Case 1: ω̄ is unique to MDP Mi. In this case belief will collapse rapidly driving b(j) terms to zero
where j ̸= i and thus argmaxa∈A Qt

i(s, a) ≈ V̄ ∗(b̄).

Case 2: ω̄ is not unique. In this case, belief will not collapse to a single MDP. However, belief will
still go to zero for tasks not commensurate with the observed Q-value, and the remaining n tasks
will share belief equally since they cannot be disambiguated. Thus, the expression for the meta-
level value will resemble

∑n
i=1

1
nQi(s, a). Since all Qi(s, a) are identical, this will simplify to the

Qi(s, a), where i may represent any of the (identical Q-valued) tasks with non-zero belief.

Knowing the exact task is not required to act optimally and achieve the optimal meta-level value
function, so long as the Q-value estimates contain enough information to select actions.

B Architecture

B.1 RL2

Our modified implementation of RL2 uses transformer decoders [36] instead of RNNs to map trajec-
tories to action probabilities and meta-values, in the actor and the critic, respectively, and uses PPO
instead of TRPO for outer RL. The decoder architecture is taken from [36] as it is, with 2 layers of
masked multi-head attention. However, we use learned position embeddings instead of sinusoidal,
which are followed by layer normalization. Our overall setup is similar to [55].

The transformer always looks at the entire trajectory up to the timestep t and outputs the corre-
sponding meta-values V̄1...V̄t (critic) or action probabilities π1...πt (actor). An experience tuple in
the trajectory at timestep t consists of the previous action at−1, latest reward rt−1, state st, episode
timestep τ and meta-episode timestep t, all of which are normalized to be in the range [0, 1]. In order
to reduce inference complexity, say at timestep t, we append t new attention scores (corresponding
to experience t w.r.t. the previous t− 1 experience inputs) to a previously cached (t− 1)× (t− 1)
attention matrix, instead of recomputing the entire t × t attention matrix. This caching mechanism
is implemented for each attention head and reduces the inference complexity at time t from O(t2)
to O(t). Note that this caching mechanism is possible only when the input to the transformer is the
entire trajectory instead of a moving window.

[A note on using a moving context to apply a model trained H = 500 to H = 1000: A naive
implementation would use a moving window context of 500 timesteps. However, with this choice,
the model, which is likely biased towards mostly exploiting near the end of the window, would
only exploit from timesteps 501 through 1000 even though there is room for exploring more. To
ameliorate this problem, we use a context length of 250 timesteps until timestep 750, and increase it
gradually therafter to 500 timesteps towards the end. In our experiments, this heuristic rule led to a
significant improvement over the naive method.]

Note that our results are not significantly better than those in the original RL2 paper. However, these
changes drastically reduce real-world training time.

B.2 RL3

In RL3, the only difference from RL2 is the inclusion of a vector of Q-estimates (and a vector of
action counts) for the corresponding state in the input tuples. As mentioned in section 4.2 in the
main text, this was implemented in our code by simply transforming MDPs to VAMDPs using a
wrapper, and running RL2 thereafter. For RL3-Markov, we use a dense neural network, with two
hidden layers of 64 nodes each, with ReLU activation function.

For object-level RL, we use model estimation followed by value iteration (with discount factor γ =
1) to obtain Q-estimates. Transition probabilities and mean rewards are estimated using maximum
likelihood estimation (MLE). Rewards for unseen actions in a given state are assumed to be 0. States
are added to the model incrementally when they are visited, so that value iteration does not compute
values for unvisited states. Moreover, value iteration is carried out only for task horizon iterations
(task horizon = 1, 10, 250, 350 for Bandits, MDPs, 11x11 Gridworlds and 13x13 Gridworlds,
respectively), unless the maximum Bellman error drops below 0.01.

16

Hyperparameter H Value
Learning Rate (actor and critic) 0.0003 (Bandits, MDPs), 0.0002 (GW)

Adam β1, β2, ϵ 0.9, 0.999, 10−7

Adam Weight Decay (critic only) 10−2

Batch size 32000
Nsteps interaction budget (H)

Number of parallel envs batch size / nsteps
Minibatch size 3200
Entropy Bonus 0.001 (Bandits H = 100), 0.04 (GW), 0.01 otherwise
PPO Iterations See training curves

Epochs per Iteration 8
KL Target 0.01
PPO Clip ϵ 0.2

GAE λ 0.3
Discount factor γ 0.99
Decoder layers 2

Attention heads per decoder layer 4
Activation Function gelu

Decoder size (d model) 64
Table 4: RL2 Hyperparameters

B.3 RL3-coarse

During model estimation in RL3-coarse, concrete states in the underlying MDP are incrementally
clustered into abstract states as they are visited. When a new concrete state is encountered, its
abstract state ID is set to that of a previously visited state within a ‘clustering radius’, unless the
previous state is already part of a full cluster (determined by a maximum ‘cluster size’ parameter).
If multiple old states satisfy the criteria, the ID of the closet old state is chosen. If there are no old
states that satisfy the criteria, then the new state is assigned to a new abstract state ID, increasing the
number of abstract states in the model.

The mechanism for learning the transition function and the reward function in the abstract MDP is
the same as before. For estimating Q-values for a given concrete state, value iteration is carried out
on the abstract MDP and the Q-values of the corresponding abstract state are returned.

For our Gridworld domain, we chose a cluster size of 2 and a clustering radius such that only non-
diagonal adjacent states are clustered (Manhattan radius of 1).

It is worth noting that this method of deriving abstractions does not take advantage of any structure in
the underlying domain. However, this simplicity makes it general purpose, efficient, and impartial,
while still leading to excellent performance.

C Training Curves

Figs. 4, 5, and 6 show the training curves for Bandits, MDPs, and Gridworld environments, respec-
tively, across 4 random seeds. The results in the main text may differ slightly since the actor models
were evaluated greedily, whereas the training curves reflect the actors’ stochastic policies.

We ran each experiment on an NVIDIA GeForce RTX 2080 Ti GPU, which took approximately
12-24 hours for Bandits and MDPs (H=100); and took approximately 3-4 days for other domains.

D Additional Analysis

RL3 relies on the discriminatory power of data-sparse Q-estimates that, though imperfect, produce
reasonable signals for the meta-learner. Here, we test this claim more thoroughly with 3 analyses.

17

Figure 4: Average Meta-Episode Return vs Iterations For Bandits H = 100 and H = 500

Figure 5: Average Meta-Episode Return vs Iterations For MDPs H = 100 (left) and H = 500 (right)
.

Figure 6: Average Meta-Episode Return vs Iterations For Gridworld 11x11 (left) and 13x13 (right).

18

D.1 Requirements for a Unique Q-value

Throughout, we assume states and actions are fixed. Below, we simply show that if the transi-
tion(reward) function is fixed, then 2 Q-tables will be identical if and only if both reward(transition)
functions are also equal. First we have same Q =⇒ same reward.

Q∗
1(s, a) = R1(s, a) + γ

∑
s′

T (s, a, s′)maxa′Q∗
1(s

′, a′) (19)

Q∗
2(s, a) = R2(s, a) + γ

∑
s′

T (s, a, s′)maxa′Q∗
2(s

′, a′) (20)

R1(s, a) + γ
∑
s′

T (s, a, s′)maxa′Q∗
1(s

′, a′) = R2(s, a) + γ
∑
s′

T (s, a, s′)maxa′Q∗
2(s

′, a′) (21)

R1(s, a) + γ
∑
s′

T (s, a, s′)maxa′Q∗
1(s

′, a′) = R2(s, a) + γ
∑
s′

T (s, a, s′)maxa′Q∗
1(s

′, a′) (22)

R1(s, a) = R2(s, a) (23)

Now, if two MDPs have the same reward function and same transition function, they are the same
MDP and will have the same optimal solution. So, same reward =⇒ same Q.

Since encountering similar Q-tables is thus dependent on both transitions and rewards “balancing”
each other, the question is then for practitioners: How likely are we to get many MDPs which all
appear to have very similar Q-tables?

D.2 Empirical Test using Max Norm

Given an MDP with 3 states and 2 actions, we want to find the probability that ||Q1 − Q2||∞ < δ,
where Q1 and Q2 are 6-entry (3 states × 2 actions) Q-tables. The transition and reward functions
are drawn from distributions parameterized by α and β, respectively. Transition probabilities are
drawn from a Dirichlet distribution, Dir(α), and rewards are sampled from a normal distribution,
N (1, β). In total, we ran 3 combinations of α and β, each with 50,000 MDPs, a task horizon of
10, and δ = 0.1. To get the final probability, we test all ((50, 000− 1)2)/2 non-duplicate pairs and
count the number of max norms less than δ.

Results: For α = 1.0, β = 1.0, we found the probability of a given pair of MDPs having duplicate
Q-table to be ϵ = 2.6 × 10−9. For α = 0.1, β = 1.0, which is a more deterministic setting, we
found ϵ = 4.6× 10−9. Further, with α = 0.1, β = 0.5, where rewards are more closely distributed,
we found ϵ = 1.1 × 10−7. Overall, we can see that even for a very small MDP, the probability of
numerically mistaking one Q-table for another is vanishingly small.

D.3 Predicting Task Families

The natural uniqueness of Q-values is encouraging, but max norm is not a very sophisticated metric.
Here, we test whether a very simple multi-class classifier (1 hidden layer of 64 nodes), can accurately
identify individual tasks based on their Q-table estimates. Moreover, we track how the accuracy
improves as a function of the number of steps taken within the MDP. In this experiment, the same
random policy is executed in each MDP for 50 time steps. As before, our MDPs have 3 states and 2
actions.

We instantiate 10,000 MDPs whose transition and reward functions are drawn from the same distri-
bution as before: transitions from a Dirichlet distribution with α = 0.1 and rewards sampled from
a normal distribution N(1, 0.5). Thus, the task is a classification problem with 10,000 classes. A
priori, this task seems relatively difficult given the number of tasks and the parameters chosen for
the distributions. Fig. 7 shows a compelling result given the simplicity of the model and the relative
difficulty of the task. Clearly, Q-tables, even those built from only 20 state-action pairs, provide a
high level of information w.r.t. task identification. And this is for a random policy. In principle,
the meta-learner could follow a much more deliberate policy that actively disambiguates trajectories
such that the Q-estimates evolve in a way that leads to faster or more reliable discrimination.

19

Figure 7: The discriminatory power of Q-estimates. Left: Fraction of δ-duplicates, with δ = 0.1,
as a function of time steps in a sample of 5,000 of random MDPs. Right: Accuracy of a simple
multi-class classifier in predicting task ID given Q-table estimates as function of time step. Both
figures are generated using the same policy

E Domain Descriptions

E.1 Bernoulli Multi-Armed Bandits

We use the same setup described in [4]. At the beginning of each meta-episode, the success prob-
ability corresponding to each arm is sampled from a uniform distribution U(0, 1). To test OOD
generalization, we sample success probabilities from N (0.5, 0.5)

E.2 Random MDPs

We use the same setup described in [4]. The MDPs have 10 states and 5 actions. For each meta-
episode, the mean rewards R(s, a) and transition probabilities T (s, a, s′) are initialized from a nor-
mal distribution (N (1, 1)) and a flat Dirichlet distribution (α = 1), respectively. Moreover, when an
action a is performed in state s, a reward is sampled from N (R(s, a), 1). To test OOD generaliza-
tion, the reward function is made deterministic and initialized from U(0, 2)
Each episode begins at state s = 1 and ends after task horizon = 10 time steps.

E.3 Gridworlds

A set of navigation tasks in a 2D grid environment. We experiment with 11x11 (121 states) and
13x13 (169 states) grids. The agent always starts in the center of the grid and needs to navigate
through obstacles to a single goal location. The goal location is always at a minimum of 8 Manhattan
distance from the starting tile. The grid also contains slippery wet tiles, fatally dangerous tiles and
warning tiles surrounding the latter. Each obstacle spans 3 tiles, in either 3x1 or 1x3 configuration.
Wet tiles always occur in adjacent pairs, in either a 2x1 or 1x2 configuration. Warning tiles always
occur as a set of 4 tiles non-diagonally surrounding a danger tile. Wet tiles always lead to the agent
slipping to one of the directions orthogonal to the intended direction of movement. Entering wet
tiles yields an immediate reward of -2. Entering warning tiles causes -10 reward. Entering danger
tiles ends the episode and leads to a reward of -100. Normal tiles yield a reward of -1 to incentivize
the agent to reach the goal quickly. On all tiles other than wet tiles, there is a chance of slipping
sideways with a probability of 0.2. A set of 4 short videos of the Gridworld environment, showing
both RL2 and RL3 agents solving the same set of instances, can be found at https://youtu.be/
eLA_S1BQUYM.

The parameters for our canoncial 11x11 and 13x13 gridworlds are:

• num obstacle sets = 11

• obstacle set len = 3

• num water sets = 5

• water set length = 2

• num dangers = 2

20

https://youtu.be/eLA_S1BQUYM
https://youtu.be/eLA_S1BQUYM

• min goal manhat = 8

The parameters for the OOD variations are largely the same. Below we note only the difference.

DETERMINISTIC: Same as canonical except slip probability on non-wet tiles is 0.

DENSE: obstacle set len=4

WATERY: num water sets=8

DANGEROUS: num dangers=4

CORNER: min goal manhat=12

There is no fixed task horizon for this domain. An episode ends when the agent reaches the goal or
encounters a danger tile. Therefore, an episode can last up to 250 steps in 11x11 gridworlds, and up
to 350 steps in 13x13 gridworlds.

When a new grid is initialized at the beginning of each meta-episode, it is ensured that the optimal
un-discounted return within 100 time steps of the meta-episode is between 50 and 100. This is to
ensure that the grid both has a solution and is not trivial.

21

	Introduction
	Related Work
	Background and Notation
	Partially Observable Markov Decision Processes
	Reinforcement Learning
	Meta Reinforcement Learning

	RL3
	Theoretical Justification
	Implementation
	Experiments
	Results
	Conclusion
	Acknowledgements

	Proofs
	Bayes Optimality of Q-value Estimates in Bernoulli Multi-armed Bandits
	Non-Bayes Optimality of Q-value Estimates in Gaussian Multi-armed Bandits
	Object-level Q-estimates and Meta-level Values

	Architecture
	RL2
	RL3
	RL3-coarse

	Training Curves
	Additional Analysis
	Requirements for a Unique Q-value
	Empirical Test using Max Norm
	Predicting Task Families
	Domain Descriptions
	Bernoulli Multi-Armed Bandits
	Random MDPs
	Gridworlds

