
Learning Constraints on Autonomous Behavior
from Proactive Feedback

Connor Basich∗, Sadduddin Mahmud∗, and Shlomo Zilberstein

Abstract— Learning from feedback is a common paradigm
to acquire information that is hard to specify a priori. In this
work, we consider a planning agent with a known nominal
reward model that captures their high-level task objective, but
is subject to constraints that are unknown a priori and must be
inferred from human interventions. Unlike existing methods,
our approach does not rely on full or partial demonstration
trajectories or assume a fully reactive human. Instead, we
assume access only to sparse interventions, which may in fact
be generated proactively by the human, and make only minimal
assumptions about the human. We provide both theoretical
bounds on performance, and empirical validations of our
method. We show that our method enables an agent to learn
a constraint set with high accuracy that generalizes well to
new environments within a domain, whereas methods that only
consider reactive feedback learn an incorrect constraint set that
does not generalize well, making constraint violations more
likely in new environments.

I. INTRODUCTION

Although great efforts are being made towards deploying
autonomous robotic systems in the open world, it is widely
recognized that designing systems a priori with perfect
models of the world is generally infeasible due to practical
and theoretical limitations [1], [2]. These limitations can
arise from a lack of sufficient training data [3], limited prior
domain information [4], or divergence between the training
environment and deployment setting [5]. To handle this
challenge, many techniques have been developed to enable
an agent to expand or refine their models online [6], [7].

Consider a planning agent with a known nominal model
of the domain and a reward function that captures their
nominal task description. Unknown to the agent a priori
is a set of constraints that captures more nuanced aspects
of the domain such as user preferences or safety concerns.
We propose a constraint learning method for the agent that
infers such constraints from sparse human intervention in a
supervised setting. We consider this supervise-and-intervene
setting as it is a natural teaching framework for the human
since interventions are easy to provide and, assuming a
reasonable level of understanding by the human, also provide
useful information to the agent as an intervention is often an
indicator of a potential constraint being violated [8].

We choose an intervention-based approach because learn-
ing from demonstrations limits the setting to those where
the human can manually operate the system to generate the
demonstrations, which even when possible can be costly and

*Authors contributed equally.
University of Massachusetts Amherst, College of Information and

Computer Science, Amherst, MA, USA. {cbasich, smahmud,
shlomo}@cs.umass.edu

Fig. 1: Proactive feedback provided at time t = 1 is conditioned
on the likelihood of a constraint violation (red) occurring during
t = 1 : H . Proj(π) indicates the H-step projection of policy π.

may require greater expertise than simply intervening. Like-
wise, a query-for-information framework may be inefficient
and onerous to the human if the agent frequently queries for
the existence of a non-existent constraint, or unsafe if the
agent fails to query in the presence of possible constraint
violations. Prior work in learning from interventions [8], [9],
[10], [11], [12] has assumed that feedback is provided either
reactively or retroactively, but has ignored the possibility of
proactive feedback.

However, growing evidence suggests that humans’ cog-
nitive control processes are generally either reactive in
response to rapid or unexpected changes in their external
contexts, or proactive as a means of strategically optimizing
behavior resulting from anticipated goal-relevant interference
that they aim to ameliorate before occurring [13], [14].
Consequently, we assume that human interventions can either
be reactive — intended for the current state and action of
the agent — or proactive — conditioned on the possibility
of inferred future constraint violations by the agent given the
human’s understanding of the agent’s behavior (see Fig. 1).

Our approach makes minimal assumptions about the hu-
man, but enables the agent to iteratively learn a constraint
model and intervention model from intervention data us-
ing a data aggregation approach [3]. Additionally, we use
uncertainty-based incentives to balance exploration and ex-
ploitation during training time to improve convergence. We
show that our method enables an agent in a domain with
an accurate nominal task model to efficiently learn a set
of unspecified constraints from sparse, proactive feedback
that generalizes to novel environments in the domain. Fur-
thermore, we show that failing to account for proactivity
in human feedback can lead an agent to infer an incorrect
constraint set and perform poorly in new environments.

II. RELATED WORK

The general area of learning from human feedback is broad
and extensive, including action selection guidance [15], [16],
demonstrations [17], [5], labels [3], [18], [19], [20], [21], and
implicit feedback [22], [23], [24]. Consequently, we focus
our discussion of related work on the problem of learning
constraints from feedback (our objective) and learning from
intervention (our problem setting).

A. Constraint Learning

Learning or inferring constraints from feedback is often
motivated by the belief that, for many problems, it is easier
to infer a set of constraints on allowable behavior from
feedback that dictates what the agent can’t do, rather than
attempting to learn an explicit reward function that best
explains the observed human feedback or even an entire
policy. Additionally, constraints are often shared across many
tasks and environments within a domain, which is useful for
generalization [25]. This problem has been studied rather
extensively in the context of learning from demonstrations.

Scobee and Sastry [26] presented a method for maximum
likelihood constraint inference in an inverse reinforcement
learning setting that iteratively infers the constraints that best
explain behavior observed in human demonstrations. Their
work focused on purely deterministic systems, but was later
extended to non-deterministic systems [27] and continuous,
model-free settings [28]. Papadimitriou et al. [29] introduced
a Bayesian constraint inference method based on human
demonstrations that, unlike maximum likelihood methods,
is able to work with both partial trajectories and sets of dis-
joint state-action pairs, in addition to the full demonstration
trajectories used in maximum likelihood inference.

To the best of our knowledge, our work is the first to
explicitly study both the problem of learning constraints from
interventions specifically, as well as learning from proactive
feedback. Spencer et al. [8] considered a similar problem in
their expert intervention learning framework, which lever-
aged demonstrations, generated during interventions gated by
a human supervisor’s decision, to learn a portion of the state-
action space that is deemed “good enough” to operate within.
The agent’s objective is consequently to minimize the time
spent outside of the “good enough” region while simultane-
ously minimizing misclassification of intervention actions.
However, their approach still relies on partial trajectories of
human behavior and assumes non-proactive interventions.

B. Learning from Interventions

The problem of learning from interventions has been
notably less studied in the inverse reinforcement learning
literature. Bajcsy et al. [9] introduced a methodology in
which a robot can learn an objective parameterized by a set
of features via physical corrections made by a human super-
visor, focusing on learning one feature at a time in order to
reduce unintended learning from the human’s interventions.
Li et al. [12] and Liu et al. [11] both consider human-in-
the-loop IRL settings in which an agent learns via reward
signals generated by the environment to act in its domain

while being constantly supervised by human operators who
are ready and capable of intervening and taking control when
the agent attempts something risky, providing a subsequent
demonstration trajectory. As with the work done by Spencer
et al. [8], these approaches differ from what is considered in
this paper primarily in that they rely on human demonstration
trajectories, only consider reactive human interventions, and
also assume that the agent does not have an a priori well-
specified nominal reward function.

In the model-based planning literature, Basich et al. [30]
proposed a learning from intervention framework for an
agent with a specified nominal model to learn their compe-
tence in the form of the optimal level of autonomy (LoA) to
utilize. As in this paper, they do not consider demonstration
availability (although they do allow for human control of
the system) for their learning problem, but, unlike in this
work, they restrict their interventions to be purely reactive.
Additionally, the model they learn is purely a predictive
model of the human’s feedback, and not a constraint set
as is considered here. Saisubramanian et al. [2] proposed
a lexicographic planning problem [31] for an agent that is
aware of its primary objective function, but lacks knowledge
of a secondary cost function that it seeks to learn online.
They consider several forms of human feedback, including
interventions from an oracle who upon intervention specified
a new action for the agent to take instead. As above, their
work does not consider proactive feedback, and makes strong
assumptions about the information that the supervisor has
with respect to the agent’s model.

III. PRELIMINARIES

A Markov decision process (MDP) is represented by the
tuple ⟨S,A, T,R⟩ where S is a finite set of states, A is a
finite set of actions, T : S × A × S → [0, 1] is a transition
function representing the probability of arriving in state s′

having taken the action a in state s, and R : S×A → R is a
reward function representing the immediate expected reward
of taking action a in state s.

A solution to an MDP is a policy, denoted π : S →
A, which maps states to actions. A policy π induces the
state-value function V π : S → R, defined as V π(s) =
R(s, π(s)) +

∑
s′∈S T (s, π(s), s′)V π(s′), which represents

the expected cumulative reward when starting in the state
s and following the policy π. The objective is to find an
optimal policy, i.e. π∗ ∈ argmaxπ∈Π V π(s).

In multi-objective sequential decision making, there are
multiple competing objectives that must be considered when
producing an optimal policy. There are two primary ways
of modeling multi-objective problems that we utilize in this
paper, and we define them below.

A multi-objective MDP (MOMDP) [32] is an MDP with
multiple objectives that are optimized up to a weighted sum
over the objective reward functions. Formally, a MOMDP
is represented by the tuple ⟨S,A, T,R, fw⟩ where S, A,
and T are the same as in an MDP, R = [R1, ..., Rk]

T

is a vector of reward functions Ri : S × A → R, and
fw : Rk → R is a weighting function parameterized by

a vector w. In a MOMDP, the weighting function produces
a single value function of the form, V π

w(s) = fw(Vπ(s))
where Vπ(s) = [V π

1 (s), ..., V π
k (s)] is a vector of value

functions computed as above under the policy π for each of
the k objectives. We consider a linear scalarization method
in which fw(Vπ(s)) = wTVπ(s) where each element
wi ∈ w is a positive real number, and w sums to 1.

A lexicographic MDP [31] is an MDP with competing
objectives defined in a lexicographic order where each ob-
jective is optimized in order of the lexicographic ordering
up to some slack value. Formally, an LMDP is represented
by the tuple ⟨S,A, T,R,∆, o⟩ where S, A, T , and R are
the same as above, ∆ = ⟨δ1, ..., δk−1⟩ is a tuple of slack
variables with δi ∈ R+ for every i ∈ [k], and o is a
strict ordering over the k objectives. Here, δi denotes the
maximum allowable deviation from the optimal expected
value for objective oi when optimizing for objective oi+1.
Solving the LMDP involves sequentially optimizing for
each objective in the lexicographic order given the slack
by constraining the available actions as Ai+1(s) = {a ∈
A|maxa′∈Ai

Qi(s, a
′)−Qi(s, a) ≤ γi}.

IV. PROBLEM FORMULATION

Let M = ⟨S,A, T,R⟩ be an MDP that represents the
nominal domain of the agent, which, for reward R, induces
what we refer to as the nominal objective (oR) that the agent
aims to maximize. In other words, the nominal objective aims
to find the policy, π that maximizes the cumulative reward
under R,

argmax
π∈Π

E
[∑
s∼dπ

R(s, π(s))
]
. (1)

However, there exists a set, C ⊂ S × A, of constraints
that is unknown to the agent a priori that describes the state-
action pairs that the agent is disallowed from performing (or,
more generally, are undesirable). The constraint set induces
an additional objective (oC), which aims to find the policy
that minimizes the expected number of constraint violations,

argmin
π∈Π

E
[∑
s∼dπ

C(s, π(s))
]
, (2)

where, for clarity, we let C : (s, a) → I[(s, a) ∈ C].
Because the constraint set is unknown a priori, the agent

must learn the constraint set from proactive feedback pro-
vided by a human expert. The human is modeled by the
tuple, H = ⟨ϵ, h, τ⟩ where ϵ ∈ (0, 1] models the degree of
the human’s understanding of the agent’s behavior, h ∈ Z+

is a temporal horizon, and β is an intervention temperature
parameter.

Under ϵ, we can compute a policy-like function that we
call the corrupted observer policy, π̂, which models the
human’s lookahead belief over the agent’s behavior i ≥ 1
steps into the future from state st, as

π̂(st+i) =

{
π(st+i) w.p. 1− ϵ

∼ U(A \ {π(st+1)}) w.p. ϵ
(3)

For the current time step, where i = 0, we assume that the
human knows exactly the action that the agent is performing,

ensuring that they can intervene in any constraint violation
while supervising the agent. Intuitively, this represents the
human’s error in their model of the agent’s behavior.

Given H and π̂, we define the human intervention func-
tion I(st|h, β, π̂, C) → {0, 1}, which represents the binary
decision of the human to override the system, or not, in
state st given horizon h, temperature parameter β, corrupted
observer policy π̂ and the true constraint set C. In general,
it is expected that it will be proportional to the expected
number of constraint violations in the h-term future horizon
starting at state st given policy π̂:

I(st|h, β, π̂, C) ∝ Es∼τ(st,π̂,h)

[
C(s, π̂(s))

]
(4)

where τ(st, π̂, h) represents the full set of h-step trajectories
under π̂ starting from state st.

More generally, we may only have access to some distri-
bution over β, Dβ , and distribution over h, Dh; in which
case, we get that

I(st|Dh, Dβ , π̂, C) =

∫
β∼Dβ

∫
h∼Dh

I(st|h, β, π̂, C). (5)

While the agent is still learning C, it maintains an esti-
mate, Ĉ : S × A → [0, 1], from which we can compute an
approximate intervention function by replacing C with Ĉ in
Eqn. 4.

A. Constraint Learning

In this paper, we consider a train-then-deploy setting
where the agent has a fixed amount of training time available
during which it must learn the constraint set to the best
of its ability. Once the training time is over, the agent is
deployed into an unsupervised setting where it must optimize
its nominal task while adhering to its learned constraint set.
Extending the proactive feedback model to the learning-on-
the-go setting introduces challenging complexities that are
beyond the scope of this paper, but a discussion of them can
be found in Section VII.

1) Training: During training, we add a secondary,
information-theoretic reward for interventions, E, to provide
an exploration utility to the agent for learning more of its
constraint set. Consequently, during training we model the
problem as a MOMDP where the primary objective is the
agent’s nominal task objective, and the secondary objective
is to learn its constraint set. In general, one can also include
a penalty, I , for interventions as well; however, we associate
no cost to an intervention during training as it is the job of
the human to supervise and train the agent. Formally, we
define MT = ⟨S,A, T,

[
R I E

]T
,
[
wR wI wE

]
⟩.

2) Deployment: During deployment, the agent does not
have a human that it can rely on to provide it safety.
Hence, we model the problem as an LMDP where the
primary objective is to minimize the probability of violat-
ing a constraint, and the secondary objective is to max-
imize the nominal task reward. Formally, define MD =

⟨S,A, T,
[
−C R

]T
, ⟨δ⟩, [oC , oR]⟩ where δ ∈ R+ is the

maximum slack allowed from the minimal probability of
constraint violation.

Algorithm 1: MB-CLPF
Input: Domain Model D, Horizon h, Sample K,

Exploration Bonus Function E, Reward Weight w
Result: Constraint Model Cθ1

1 Initialize Constraint Model Cθ1

2 Initialize Intervention Model Iθ2
3 π0 ← ComputePolicy(D/R,R)
4 D ← ∅
5 for i = 0 :∞ do
6 Fi ← CollectInterventionFeedback(πi,K)
7 D ← D ∪ (Fi, πi)
8 Train(Cθ1 , Iθ2 ;D, h)
9 RT ← GetTrainingReward(D,R, Î, E,w)

10 πi+1 ← CalculatePolicy(D/R,RT)
11 if Termination Condition is Met
12 BREAK

13 return Cθ1

V. METHODOLOGY

In this section, we describe our proposed method for
learning constraints from spare binary feedback signals in
the form of proactive interventions. We start by describing
the agent’s training loop using a fixed known horizon h for
ease of understanding. Later, we relax this requirement and
provide a more general solution.

A. Training Loop

The algorithm starts by initializing the constraint model,
Cθ1 , and the intervention model, Iθ2 , randomly (line 1-2).
Here, models are represented by two feedforward RELU neu-
ral networks parameterized by θ1 and θ2 respectively. Next,
the agent’s policy, π0, is initialized using the policy under
the nominal reward model R (line 3). Lastly, the dataset D
that is used for training Cθ1 and Iθ2 is initialized to ∅. After
initialization, Cθ1 and Iθ2 are iteratively updated through an
interactive learning process (line 5-11), as detailed next.

The i-th iteration of the training loop starts by collecting a
set of feedback, Fi, using human supervision and the agent’s
current policy π (line 6). Feedback is provided as sparse,
binary signals, which come in the form ⟨s, f⟩, where the state
s is labeled by f ∈ {not intervened(0), intervened(1)}.
The set of feedback signals, Fi, along with current policy,
πi, are added to the existing dataset D (line 7). D is
then used to jointly train Cθ1 and Iθ2 using gradient-based
optimization (line 8). Based on the updated Cθ1 and Iθ2 , a
new training reward RT is calculated using the nominal re-
ward R, inferred intervention set Î , the information-theoretic
exploration bonus E, and the linearization weight w (line
9). Finally, the policy is updated using the new training
reward RT (line 10). The training loop is continued until
terminating conditions are met. There are many possible
choices for terminating conditions including using a fixed
number of iterations, the total number of interventions during
feedback collection, or the amount of change in constraint
set prediction. Finally, the learned constraint model, Cθ1 , is
returned.

B. Constraint Learning

Our core assumption is that the probability of a human
intervention in a state sj is a function of the expected number
of constraint violations in the future from the current state
sj . We define this value as

CV h
πi
(sj) = Eτ∼πi(sj)

[
t=h∑

t=0,(st,at)∈τ

C(st, at)

]
. (6)

To estimate this value, we learn a constraint model, Cθ1 ,
parameterized by θ1, under which we estimate the probability
of a state-action pair (sj , aj) being constrained as

Caj
sj = P ((sj , aj) ∈ C) ≈ σ(Cθ1(sj , aj)) (7)

where σ(·) is n sigmoid function. Hence, CV h
πi
(·) can be

estimated as follows:

CV h
πi
(sj) ≈ Eτ∼πi(s)

[
t=h∑

t=0,(st,at)∈τ

Cat
st

]
. (8)

Next, we use this value to estimate the probability of
intervention at state sj using a learned function, Iθ2 , pa-
rameterized by θ2; specifically:

f̂j = P (fj = 1|sj) ≈ σ(Iθ2(CV h
πi
(sj))). (9)

To optimize both θ1 and θ2 we use two different loss
functions. First, we use a binary cross-entropy loss to train
both Cθ1 and Iθ2 using the intervention feedback:

Lf (θ1, θ2) = − 1

|D|
∑

⟨sj ,fj⟩∈D

fj log(f̂j)+(1−fj) log(1−f̂j).

(10)
However, as we do not have a ground truth label for
constraint classification, in order to ensure that Cθ learns
the correct representation, we want to enforce the following
constraint:

E
⟨sj ,fj⟩∈D1

[CV h
πi
(sj)] > E

⟨sj ,fj⟩∈D0

[CV h
πi
(sj)]. (11)

Here, D1 = {⟨sj , fj⟩ ∈ D|fj = 1} and D0 = {⟨sj , fj⟩ ∈
D|fj = 0}. Generally, we expect to see more constraint
violations after an intervention state. This constraint can
naturally be enforced by a negative log softmax loss. Specif-
ically,

Lc(θ1) = − log
(exp(J1)

exp(J1) + exp(J0)

)
(12)

where
J1 = E

⟨sj ,fj⟩∈D1

[CV h
πi
(sj)] (13)

and
J0 = E

⟨sj ,fj⟩∈D0

[CV h
πi
(sj)]. (14)

Intuitively, this loss goes down as J1 gets larger than J0.

C. Ensemble Learning

As it has been shown that sigmoid-based classification
often under or overestimates uncertainty [33], in order to
get a better estimate of the uncertainty of our model, we
use the ensemble method [34]. To train each model in the
ensemble, in addition to sampling different subsets of the
dataset, we also use a different horizon, h, sampled from
[1, hmax] according to distribution Dh. We use a weighted
voting scheme to estimate the ensemble. Specifically, we
calculate the probability of a constraint violation, Caj

sj , as

Caj
sj =

∑
k wkσ(Cθk

1
(sj , aj))∑

k wk
, (15)

where wk ∝ Accuracy(Iθk
2
). Intuitively this puts more

weight on models in the ensembles that better explain the
observed data, and also reduces the reliance on knowing the
exact horizon h.

Finally, we use an uncertainty measurement to improve
constraint learning during the training phase. Specifically,
we define an information-theoretic exploration bonus, E :
S ×A → R, as

E(sj , aj) = H(P (constraint|(sj , aj))). (16)

where H is the Shannon entropy. The purpose of this
exploration bonus is to encourage the agent to explore parts
of the state-action space where the agent is uncertain about
its constraint prediction. Based on this, we construct a multi-
objective reward, RT =

[
R Î E

]T
, where Î(s, a) =

−I[Iθ2(s, a) > µ] for some classification threshold µ ∈ [0, 1]
(usually set to 0.5), and solve the problem as a MOMDP
with linear weights, w =

[
wR wI wE

]
. Using the weight

parameters wR and wE we can balance between exploitation
of the nominal task reward and exploration (of constraints)
during training, particularly in settings where constraint
learning is not the only reason for training. The weight wI ,
which is assumed to be 0 in our work, can also be tuned to
balance the agent’s risk-aversion during training.

D. Deployment Phase

After the training phase is completed, we utilize our
learned models in a deployment phase wherein we assume
that there is no human that can intervene and protect
the robot. We construct a multi-objective reward, RD =[
−Ĉ R

]
, where Ĉ and R are as defined above (as the

true constraint set is not known); note that we remove
the entropy-based exploration bonus during the deployment
phase as there is no longer a human who can provide
intervention signals. We consider the lexicographic ordering,
o = [oC , oR], aiming to optimize first the constraint-based
objective, and the nominal task objective second given some
slack δ ∈ R+ on objective oC .

Additionally, we can modify the classification threshold µ
to control how conservative the agent should be during de-
ployment about predicting possible constraints. For example,
setting µ to be very small will cause the agent to avoid a
state-action pair if there is even a small probability that the
state-action pair is constrained.

Finally, we would like to bound the worst-case perfor-
mance of our model in deployment given what is learned by
the learning algorithm. Below, we show that if our learned
constraint set is at most α inaccurate, then the expected
performance of the optimal policy computed for the learned
constraint set will be at most a constant factor worse than the
optimal policy computed for the true constraint set, assuming
a finite horizon, T , for the problem.

Theorem 1. Let π̂∗ be the optimal policy given the learned
constraint set Ĉ and π∗ be the optimal policy given the true
constraint set C, and let T ∈ N be a maximum horizon
for the problem. Denote by V π

c and V π
ĉ the value functions

induced by the policy π under constraint sets C and Ĉ
respectively for the primary objective (see Eq. 2) within the
horizon T . If Ĉ is at least (1− α)-accurate, i.e.,∑

(s,a)∈S×A[Ĉ(s, a) == C(s, a)]

|S||A|
≥ 1− α,

then maxs∈S V π̂∗

c (s) ≤ 1+αT
1−αT V

π∗

c (s).

Proof. For notational clarity, we write, e.g., V π
c in stead of

V π
c (s), understanding that our proof is with respect to the

maximal difference in value functions over all states. First,
observe that if we fix a policy π, then given that Ĉ is at most
α incorrect, it follows that |V π

c − V π
ĉ | ≤ αTV π

c simply by
the definition under Eqn. 2. Consequently, we have that

V π
c − V π

ĉ ≤ αTV π
c (17)

and
V π
ĉ − V π

c ≤ αTV π
c (18)

for any fixed policy π. We can apply Eqn. 18 to π∗, which
gives us that V π∗

ĉ ≤ (1 + αT)V π∗

c . Additionally, by the
definition of optimality (as this is a minimization problem),
we know that V π̂∗

ĉ ≤ V π∗

ĉ . Consequently, we get that
V π̂∗

ĉ ≤ (1 + αT)V π∗

c . By applying π̂∗ to Eqn. 17, we also
have that V π̂∗

ĉ ≥ V π̂∗

c − αTV π̂∗

c . Finally, by connecting the
inequalities, we get that V π̂∗

c −αTV π̂∗

c ≤ (1+αT)V π∗

c =⇒
V π̂∗

c ≤ 1+αT
1−αT V

π∗

c which gives us the claim.

VI. EMPIRICAL EVALUATIONS

We test our approach in two different simulated domains
as described below. In both domains, we begin by training
the agent in one environment using human intervention,
before testing them in three different environments within
the domain where there is no human to intervene.

A. Domain Descriptions

1) Box-pushing: This domain is inspired by the Box-
pushing domain presented in [2] where a robot is asked with
pushing a box from a starting position to a goal position. The
nominal reward is 0 in a goal state and negative elsewhere,
encouraging the agent to reach the goal as efficiently as
possible. However, there are rugs on the floor that the human
does not want the robot to move over while pushing boxes.
Consequently, when the human believes the robot is about
to move onto a rug, they intervene and relocate the robot

Robot Box-Pushing

E1 E2 E5 E8 E10 Test 1 Test 2 Test 3

H = 1 I Acc. 55.3 75.2 77.4 78.1 78.99 — — —
C Acc. 78.4 88.1 83.7 82.2 83.5 85.6 86.5 82.7

H ∼ U(1,4) I Acc. 63.0 79.8 87.8 88.7 90.06 — — —
C Acc. 92.01 95.7 96.4 96.7 97.2 97.8 97.6 97.1

H ∼ U(1,5) I Acc. 55.1 73.2 82.8 86.1 86.2 — — —
C Acc. 94.2 96.1 95.4 95.4 97.07 97.9 98.0 97.4

H ∼ U(1,6) I Acc. 55.4 70.5 81.7 83.8 84.83 — — —
C Acc. 89.2 97.1 95.1 96.5 98.0 98.5 98.0 98.3

H ∼ tN(3,1.0) I Acc. 51.3 73.5 81.3 84.1 84.35 — — —
C Acc. 99.6 98.6 98.7 98.6 99.7 99.8 99.7 99.7

H ∼ tN(3,0.25) I Acc. 53.4 72.6 82.4 84.7 85.3 — — —
C Acc. 99.5 99.1 100.0 99.5 99.2 100.0 99.6 99.5

Autonomous Vehicle Navigation

E1 E5 E10 E15 E20 Test 1 Test 2 Test 3

H = 1 I Acc. 95.0 93.4 94.2 95.0 95.5 — — —
C Acc. 55.0 63.0 63.0 62.0 63.0 65.0 64.0 63.0

H ∼ U(1,4) I Acc. 52.5 80.9 80.8 84.0 80.6 — — —
C Acc. 61.0 75.0 77.0 76.0 76.0 75.0 76.0 76.0

H ∼ U(1,5) I Acc. 50.5 83.8 85.3 90.7 83.4 — — —
C Acc. 60.0 78.0 77.0 81.0 78.0 79.0 79.0 79.0

H ∼ U(1,6) I Acc. 63.0 83.5 83.3 83.9 85.9 — — —
C Acc. 61.0 77.0 77.0 80.0 81.0 81.0 81.0 81.0

H ∼ tN(3.5,2.5) I Acc. 60.0 82.6 84.8 85.5 81.5 — — —
C Acc. 65.0 80.0 80.0 83.0 80.0 80.0 80.0 80.0

H ∼ tN(4,0.5) I Acc. 52.0 87.6 90.2 90.0 91.2 — — —
C Acc. 66.0 79.0 81.0 82.0 82.0 83.0 82.0 82.0

TABLE I: I Acc. and C Acc. denote the accuracies of the intervention and constraint models respectively after each of 5 epochs of
training, Ei, in a fixed training environment, and in each of 3 test environments. U denotes a uniform distribution, and tN denotes a
truncated normal distribution, truncated from 1 to 6.

to a location from which there is no chance of a constraint
violation within their horizon. States s ∈ S are represented
by the tuple ⟨xi, yi, xg, yg, ϕ⟩, where xi and yi denotes the
current location of the robot, xg and yg denotes the robot’s
goal location, and ϕ denotes if there is a rug in the robot’s
current location. Actions a ∈ A represent 8 directional
movements. Each of the train and test environments differs
in the number of rugs and their positions.

2) Autonomous Vehicle Navigation: In this domain, an
autonomous vehicle (AV) is supervised by a human and must
traverse a graph from a start node (intersection) to a goal
node (intersection), modulating its speed as necessary. States
s ∈ S are represented by the tuple ⟨id, o, pr, s, x, θ⟩ where
id is the intersection ID, o denotes whether the intersection
appears obstructed, pr denotes whether the intersection is
protected for the AV, s denotes the AV’s speed, x denotes the
AV’s position relative to the intersection, and θ denotes their
current heading. Actions a ∈ A are represented by a direction
of travel and a speed modulation (acceleration, soft brake,
hard brake, and nothing). The AV is initially only aware of
hard legal constraints, such as stopping at an unprotected
intersection with a stop sign, but not that it needs to slow
down sufficiently early as it approaches an intersection (even
if it is protected) if there is a potential obstruction, and cannot
hard-brake right as it reaches an intersection for the comfort
of the human. The human intervenes by braking when they
expect the AV to not slow down, or slow down too late.

B. Results

Tables I and II show the results from our experiment
where we compare the performance against a reactive agent
that assumes that the human always intervenes due to the
current state-action pair, and five different proactive agents,
to illustrate how the agent’s prior knowledge of the human’s
temporal model affects its learning ability. We present both
the classification accuracy on interventions (i.e., predicting
whether the human will intervene for a given (s, a)) and
constraints (i.e., predicting whether a given (s, a) belongs
to C) after five epochs of training in table I. In table II we
present the average objective value for each objective – con-
straint minimization and domain reward maximization – over
10,000 trials for 4 environments: the environment where the
agent was trained, and three different test environments. We
tested a proactive agent with three uniform distributions and

two truncated normal distributions, wherein all experiments
the human had a fixed horizon of 3 and 4 for the box-pushing
and autonomous vehicle domains respectively.

In table I, we see that the reactive agent in the autonomous
vehicle domain achieves high intervention accuracy (al-
though, notably not in the box-pushing domain), but is never
able to break 90% and 70% in the two domains respectively
in terms of accuracy on the constraint set in either the
train or test environments. This illustrates that the agent is
learning the wrong measure to apply to future environments
where predicting an intervention does not directly predict a
constraint. On the other hand, each proactive agent is able to
achieve high (≈ 85− 90%) accuracy on the intervention set,
and nearly 100% accuracy in the box-pushing domain, and
at least 80% accuracy in the autonomous vehicle domain, for
the constraint set.

In table II, we included the performance of an agent,
referred to as Ignorant, which did not model the constraint
set at all, as a baseline for the nominal objective. Notably,
the reactive agent did not perform the best in either objective
across all environments tested. In the box-pushing domain,
there was not a significant difference in performance between
the proactive agents, but all five outperformed the reactive
agent in both objectives, indicating that simply accounting
for proactivity is enough to properly learn the constraint set.
In the autonomous vehicle domain, the proactive agent with
distribution U(1,6) performed the best over all uniform-
distribution agents, and better than the normally distributed
agent, tN(3.5,2.5). This indicates that appropriate coverage
over the horizon h, so that sufficient weight is placed on or
around the human’s true horizon, can be more important than
the distribution itself when lacking a well-informed prior.

However, an agent with almost perfect knowledge of
the human’s horizon, using distributions tN(3,0.25) and
tN(4,0.5) for each domain respectively, led to the best
results overall. This is particularly notable in the autonomous
vehicle domain where the agent incurred a 0.0, or nearly 0.0,
sample likelihood of a constraint violation in the three test
environments, outperforming the other proactive agents by at
least an order of magnitude. These results strongly indicate
that a well-informed prior on the human’s temporal model
can significantly improve the quality of the learned constraint
set by the agent in domains where the constraints are sparse,
which is particularly important in safety-critical domains.

Robot Box-Pushing

Train Eval Test Eval 1 Test Eval 2 Test Eval 3

Ignorant [2.67,−2.09] [4.42,−2.07] [5.96,−2.05] [3.92,−2.05]

H = 1 [0.33,−2.90] [0.62,−3.04] [0.34,−3.15] [0.17,−3.00]

H ∼ U(1,4) [0.13,−2.88] [0.26,−2.92] [0.05,−3.08] [0.02,−2.93]

H ∼ U(1,5) [0.13,−2.84] [0.26,−2.94] [0.04,−3.08] [0.02,−2.94]

H ∼ U(1,6) [0.12,−2.82] [0.26,−2.93] [0.03,−3.07] [0.02,−2.93]

H ∼ tN(3,1.0) [0.10,−2.84] [0.25,−2.92] [0.02,−3.06] [0.01,−2.91]

H ∼ tN(3,0.25) [0.09,−2.84] [0.24,−2.92] [0.01,−3.05] [0.01,−2.91]

Autonomous Vehicle Navigation

Train Eval Test Eval 1 Test Eval 2 Test Eval 3

Ignorant [1.04,−14.07] [0.66,−9.43] [0.87,−10.37] [0.89,−17.13]

H = 1 [0.75,−15.19] [0.68,−9.52] [0.33,−12.83] [0.76,−17.57]

H ∼ U(1,4) [0.39,−16.03] [0.34,−10.31] [0.17,−13.20] [0.36,−18.71]

H ∼ U(1,5) [0.39,−15.77] [0.34,−10.32] [0.27,−12.56] [0.38,−18.63]

H ∼ U(1,6) [0.07,−16.59] [0.10,−10.83] [0.07,−13.04] [0.05,−19.21]

H ∼ tN(3.5,2.5) [0.35,−16.07] [0.33,−10.29] [0.17,−13.19] [0.36,−18.58]

H ∼ tN(4,0.5) [0.02,−16.62] [0.00,−10.96] [0.00,−12.92] [.003,−19.27]

TABLE II: Each [x, y] denotes the sample average constraint
violations per randomized episode (x) and sample average nominal
reward value per randomized episode (y), over 10, 000 simulations.

In figure 2, we plot the heat-map of constraints occurring
in each of the four environments used in the box-pushing
domain; note that the white squares indicate areas where
the agent is constrained from moving on top of. Each heat-
map is created by averaging the results given 24 different
goal locations. The maps labeled True illustrate the ground
truth constraint maps; we can see that the proactive agent,
tN(3,0.25), achieves nearly identical results; this is due to
near-perfect constraint prediction as seen in the table I. On
the other hand, we can see that the reactive agent hallucinated
constraints in many unconstrained states. These are states
where the human intervened in the agent’s behavior, and
the agent incorrectly inferred that these states were in the
constraint set. This over-constraining leads to the goals being
unreachable, wherein the agent breaks many actual con-
straints to reach the goal at all, resulting in poor performance.

Finally, we conducted an ablation study on the exploration
bonus E (see Table III). Here we can see that including E
led to a significant decrease in constraint violation sample
likelihood in many of the scenarios, up to 100%.

VII. DISCUSSION

A. Learning Setting

In this paper, we consider a train-then-deploy learning
setting in which an agent has a fixed amount of time or
resources to learn its objective, an unknown constraint set.
During training, the agent has a human teacher who can
provide a safety net for the agent before it is deployed
in its operational environment without such a safety net,
but where the constraints will continue to hold. We focus
on learning only from sparse interventions, however the
addition of other types of feedback such as demonstrations,
agent-driven queries, or action guidance, only benefits our
approach if available, and is a primary direction of future
work. Another natural extension is the online learning setting
where the agent’s training occurs throughout its operation.

Fig. 2: Constraint inference in the Box-Pushing domain.

Robot Box-Pushing Autonomous Vehicle

Tr Te 1 Te 2 Te 3 Tr Te 1 Te 2 Te 3

H = 1 42.1 39.1 50.1 57.5 −0.04 −0.01 0.00 0.01

H ∼ U(1,4) 40.2 48.4 66.6 71.1 17.2 0.00 0.00 −0.06

H ∼ U(1,5) 55.9 50.7 84.2 0.11 18.8 0.00 −0.04 0.00

H ∼ U(1,6) 42.3 22.2 72.5 50.0 78.8 37.5 77.0 58.3

H ∼ tN(i) 28.9 13.7 71.1 66.6 16.7 0.00 32.6 −6.00

H ∼ tN(j) 55.0 29.5 91.5 66.6 93.2 100.0 100.0 94.2

TABLE III: Impact of adding exploration bonus E as percent
decrease in sample likelihood of constraint violation, where i
denotes (3, 1) and (3.5, 2.5), and j denotes (3, 0.25) and (4, 0.5),
for the two domains respectively.

The challenge of such a setting is that, generally, human
interventions are not free, as we have considered in this work;
as a consequence, a non-fully cooperative game is induced as
the agent’s objective is now impacted by the likelihood of an
intervention, impacting its own policy, which is known by the
human and determines the human’s likelihood of intervening.

B. Constraint Optimization

There are several ways of modeling constraint optimiza-
tion problems; in this paper, we consider one that is naturally
applicable to the types of open-world, safety-critical domains
that motivate this work. That is, domains where we aim to
minimize the expected number of constraint violations as
the primary objective in a lexicographic optimization setting.
However, our approach naturally extends to other settings.
First, one may consider a soft-constraint setting, where
constraints model non-critical elements like preferences or
negative side effects [2]; this approach can be naturally
formulated as an LMDP where the constraint violations rep-
resent the secondary objective. Second, one may consider a
budgeted violation setting in which the number of constraint
violations must simply be kept below a budget, B. Such an
approach can be naturally formulated as a linear program,
which is a known approach to compute an optimal policy
for a Markov decision process [35].

VIII. CONCLUSION

In this paper, we consider the challenge of learning from
proactive feedback, i.e., feedback generated by the human
operator that is conditioned on their inferred near-term future
behavior of the agent under an ϵ-noisy model of the agent’s

policy. Our approach relies on minimal assumptions about
the human’s temporal model, yet still enables an agent
to learn a high-quality model of the constraint set from
proactively generated feedback. We prove that if the learned
constraint model is at least (1−α) accurate, then the expected
number of constraint violations under the optimal policy for
the learned constraint model will be at most a factor of 1+αT

1−αT
of the optimal expected number of constraint violations,
when operating in a finite horizon setting with horizon
T ∈ N. We empirically validate our approach against a
reactive learning model that assumes that all interventions are
conditioned on the current state-action pair. We show that our
approach achieves higher accuracy on constraint prediction
and lower sample likelihood of a constraint violation across
multiple environments in two simulated domains, without
sacrificing quality in the nominal objective, and sometimes
improving it. As a result, we suggest that in real world
settings where the human’s feedback may be proactive, it
is critical for models that learn from such feedback to
consider this proactivity to ensure that they learn the correct
model. Furthermore, our results indicate that a high quality
prior over the human’s temporal model can significantly im-
prove performance, leading to almost no constraint violations
across all environments tested. Future work will examine
how calibration tasks, such as those performed by Schrum
et al. [23], may be used to produce high quality priors on
the human’s temporal model.

REFERENCES

[1] T. G. Dietterich, “Steps toward robust artificial intelligence,” AI
Magazine, vol. 38, no. 3, 2017.

[2] S. Saisubramanian, E. Kamar, and S. Zilberstein, “Avoiding negative
side effects of autonomous systems in the open world,” Journal of
Artificial Intelligence Research, vol. 74, 2022.

[3] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,”
in International Conference on Artificial Intelligence and Statistics
(AIStat), 2010.

[4] D. Wang, J. A. Russino, C. Basich, and S. Chien, “Analyzing the
efficacy of flexible execution, replanning, and plan optimization for a
planetary lander,” in International Conference on Automated Planning
and Scheduling (ICAPS), 2020.

[5] R. Ramakrishnan, E. Kamar, B. Nushi, D. Dey, J. Shah, and E. Horvitz,
“Overcoming blind spots in the real world: Leveraging complemen-
tary abilities for joint execution,” in AAAI Conference on Artificial
Intelligence (AAAI), 2019.

[6] S. Arora and P. Doshi, “A survey of inverse reinforcement learning:
Challenges, methods and progress,” Artificial Intelligence, vol. 297,
2021.

[7] S. Adams, T. Cody, and P. A. Beling, “A survey of inverse reinforce-
ment learning,” Artificial Intelligence Review, 2022.

[8] J. Spencer, S. Choudhury, M. Barnes, M. Schmittle, M. Chiang, P. Ra-
madge, and S. Srinivasa, “Expert intervention learning,” Autonomous
Robots, vol. 46, no. 1, 2022.

[9] A. Bajcsy, D. P. Losey, M. K. O’Malley, and A. D. Dragan, “Learning
from physical human corrections, one feature at a time,” in ACM/IEEE
International Conference on Human-Robot Interaction (HRI), 2018.

[10] C. Basich, J. Svegliato, K. H. Wray, S. Witwicki, J. Biswas, and
S. Zilberstein, “Learning to optimize autonomy in competence-aware
systems,” in International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), 2020.

[11] H. Liu, S. Nasiriany, L. Zhang, Z. Bao, and Y. Zhu, “Robot learning
on the job: Human-in-the-loop autonomy and learning during deploy-
ment,” Computing Research Repository, vol. abs/2211.08416, 2022.

[12] Q. Li, Z. Peng, and B. Zhou, “Efficient learning of safe driving policy
via human-ai copilot optimization,” in International Conference on
Learning Representations, (ICLR), 2022.

[13] T. S. Braver, “The variable nature of cognitive control: a dual mecha-
nisms framework,” Trends in Cognitive Sciences, vol. 16, no. 2, 2012.

[14] L. G. Appelbaum, C. N. Boehler, L. A. Davis, R. J. Won, and M. G.
Woldorff, “The dynamics of proactive and reactive cognitive control
processes in the human brain,” Journal of Cognitive Neuroscience,
vol. 26, no. 5, 2014.

[15] S. Chernova and M. Veloso, “Interactive policy learning through
confidence-based autonomy,” Journal of Artificial Intelligence Re-
search, vol. 34, 2009.

[16] M. T. Rosenstein and A. G. Barto, “Supervised actor-critic reinforce-
ment learning,” in Handbook of Learning and Approximate Dynamic
Programming. IEEE Press, 2004.

[17] D. Brown, W. Goo, P. Nagarajan, and S. Niekum, “Extrapolating
beyond suboptimal demonstrations via inverse reinforcement learning
from observations,” in International Conference on Machine Learning
(ICML), 2019.

[18] W. B. Knox, P. Stone, and C. Breazeal, “Training a robot via
human feedback: A case study,” in International Conference on Social
Robotics (ICSR), 2013.

[19] S. Griffith, K. Subramanian, J. Scholz, C. L. Isbell, and A. L. Thomaz,
“Policy shaping: Integrating human feedback with reinforcement learn-
ing,” Advances in Neural Information Processing Systems, vol. 26,
2013.

[20] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer,
“HG-DAgger: Interactive imitation learning with human experts,”
in IEEE/RSJ International Conference on Robotics and Automation
(ICRA), 2019.

[21] C. Basich, J. Svegliato, A. Beach, K. H. Wray, S. Witwicki, and
S. Zilberstein, “Improving competence via iterative state space refine-
ment,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2021.

[22] Y. Cui and S. Niekum, “Active reward learning from critiques,” in
IEEE International Conference on Robotics and Automation (ICRA),
2018.

[23] M. L. Schrum, E. Hedlund-Botti, N. Moorman, and M. C. Gombolay,
“MIND MELD: Personalized meta-learning for robot-centric imitation
learning,” in Human Robot Interactions, 2022.

[24] M. L. Schrum, E. Hedlund-Botti, and M. Gombolay, “Reciprocal
MIND MELD: improving learning from demonstration via personal-
ized, reciprocal teaching,” in Conference on Robot Learning (CoRL),
2022.

[25] G. Chou, D. Berenson, and N. Ozay, “Learning constraints from
demonstrations with grid and parametric representations,” The Inter-
national Journal of Robotics Research, vol. 40, no. 10-11, 2021.

[26] D. R. R. Scobee and S. S. Sastry, “Maximum likelihood constraint
inference for inverse reinforcement learning,” in International Confer-
ence on Learning Representations (ICLR), 2020.

[27] D. L. McPherson, K. C. Stocking, and S. S. Sastry, “Maximum
likelihood constraint inference from stochastic demonstrations,” in
Conference on Control Technology and Applications (CCTA), 2021.

[28] S. Malik, U. Anwar, A. Aghasi, and A. Ahmed, “Inverse constrained
reinforcement learning,” in International Conference on Machine
Learning (ICML), 2021.

[29] D. Papadimitriou, U. Anwar, and D. S. Brown, “Bayesian methods
for constraint inference in reinforcement learning,” Transactions on
Machine Learning Research, 2022.

[30] C. Basich, J. Svegliato, K. H. Wray, S. Witwicki, J. Biswas, and
S. Zilberstein, “Competence-aware systems,” Artificial Intelligence,
vol. 316, 2023.

[31] K. H. Wray, S. Zilberstein, and A.-I. Mouaddib, “Multi-objective
MDPs with conditional lexicographic reward preferences,” in AAAI
Conference on Artificial Intelligence (AAAI), 2015.

[32] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey
of multi-objective sequential decision-making,” Journal of Artificial
Intelligence Research, vol. 48, 2013.

[33] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng,
A. M. Kruspe, R. Triebel, P. Jung, R. Roscher, M. Shahzad, W. Yang,
R. Bamler, and X. X. Zhu, “A survey of uncertainty in deep neu-
ral networks,” Computing Research Repository, vol. abs/2107.03342,
2021.

[34] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8,
no. 4, 2018.

[35] A. S. Manne, “Linear programming and sequential decisions,” Man-
agement Science, vol. 6, no. 3, 1960.

