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Abstract

Recent efforts in AI and robotics towards deploying intelli-
gent robotic systems in the real world offer the possibility
of transformational impacts on society. For such systems to
be successful while reliably maintaining safe operation, they
must be cognizant of their limitations, and when uncertain
about their autonomous capabilities, solicit human assistance.
However, system designers cannot fully enumerate the space
of all situations that a robot deployed in the real world might
face, prompting the challenge of endowing robots with ac-
tionable awareness of their capabilities and limitations in un-
seen settings. We propose competence-aware autonomy as a
means of addressing this challenge in a well-defined manner
motivated by real world examples. We discuss recent prior
work in this area and suggest several research challenges and
opportunities for future work.

1 Introduction
The recent growth in artificial intelligence and robotics
has spurred new, increasingly ambitious efforts towards de-
ploying intelligent robotic systems in complex real world
environments. These systems can assist humans across a
wide spectrum of tasks, offering the possibility of trans-
formative changes that have the potential to alter our so-
ciety and our everyday lives. Examples of such efforts in-
clude unmanned underwater vehicles (Kunz et al. 2009),
extraterrestrial space rovers (Gao and Chien 2017), service
robots (Biswas and Veloso 2016; Hawes et al. 2017), and
self-driving cars (Badue et al. 2021).

However, the open world poses new challenges such as
unconstrained and non-stationary environments, multiple
heterogeneous actors, partial observability, and unexpected
scenarios. Individually, each challenge may influence the
way in which we frame the problem, but the combination
of multiple such challenges calls into question many of the
traditional assumptions used in AI and robotics. This is com-
pounded by the fact that many of these systems are expected
to operate safely and reliably on the order of months or even
years. Consequently, in order to execute their tasks safely
and reliably, such robots are often deployed with some ca-
pacity to rely on various forms of human assistance that can
support the robot in completing its task. However, even with
the support of expert humans, robotic systems deployed for
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long periods in challenging open-world domains are likely
to encounter unanticipated situations that were not explic-
itly accounted for a priori by the robot developers.

How can a robot predict that its perceptual estimates are
in error, if it is not pre-programmed with models of such er-
rors? How can it identify the root causes of such failures, so
that when encountering another error it could reason about
whether the two are instances of the same type of scenario?
Furthermore, if it is not programmed to even detect such er-
rors, how could it ask for help from humans to overcome
them? And finally, how can it determine the best type of help
to ask for, if the situations were not considered a priori?

To handle these challenges, we propose competence-
aware autonomy, enabling intelligent robots to learn and
reason about (1) their limitations in executing a task au-
tonomously, (2) the environmental or situational factors that
influence these limitations, and (3) the proper form and ex-
tent of human assistance to request to optimally compensate
for their limitations. We argue that an intelligent robot de-
ployed into the real world should be able to reason, at any
point, about whether it has the requisite competence to act
autonomously, and, if not, reason about the appropriate level
of human assistance needed to compensate for its limited
competence. In particular, the robot should aim to not be
over-reliant on human assistance, placing unnecessary bur-
den on the human that may lead to a higher cost, an over-
burdened human, and potentially lower trust in the system
and less willingness to use the system. At the same time, the
robot should also aim to not be under-reliant on human assis-
tance, taking excessive time and energy to perform what may
be a simple, low-cost operation for the human, or worse, at-
tempting what may be an unsafe operation for the robot.

The rest of this paper is structured as follows: in Section 2
we define competence-aware autonomy; in Section 3 we de-
fine competence-aware perception and discuss relevant work
in the area; in Section 4 we define competence-aware plan-
ning and discuss relevant work in the area; in Section 5 we
introduce future challenges in the area and some ideas on
how they may be approached; finally, in Section 6 we offer
concluding thoughts on the content introduced in the paper.

2 Competence-Aware Autonomy
Motivated by earlier studies of competence in the context
of human workers (Further Education Unit 1984; Sternberg
and Kolligian Jr. 1990; Hager and Gonczi 1996; Gilbert



Figure 1: Competence-Aware Autonomy extends the traditional Sense, Plan, Act framework.

2013), we propose that competence-aware autonomy (Fig-
ure 1) is, intuitively, the ability of an agent to know, reason
about, and, ultimately, act on the extent of its own capabil-
ities in any situation in the context of different sources of
external assistance. This is an ability that we as humans fre-
quently utilize. In the course of our everyday lives we are
constantly reasoning over what we know and what we can
do when attempting to complete a task, and when those abil-
ities fall short of ensuring that the task can be done in a safe
and successful manner, we must then reason about what as-
sistance we can seek. However, even for humans this knowl-
edge is imperfect and must be learned over time through ex-
perience and feedback from others, and updated as our own
abilities change. Similarly a robot must have the ability to
learn and reason about its own competence. For a robot to
achieve competence-aware autonomy, it must have the ca-
pability to reason about both its perceptual competence and
planning competence.

Perceptual competence is the ability of a system to in-
fer both the states of the world accurately, as well as pro-
vide well-calibrated estimates of uncertainty as a function
of sensed data. A system that has the capacity to introspec-
tively reason about its perceptual competence to both deter-
mine and predict whether it has perceptual competence in
some task is said to have competence-aware perception.

Planning competence is the ability of a system to
determine—and proactively account for—whether au-
tonomous operation is likely to succeed (in a safe and re-
liable manner) when executing an action, and when not, to
reason over what form of human assistance may be needed,
and how to obtain that human assistance in a timely man-
ner. A system that has the capacity to introspectively reason
about its planning competence when planning in the context
of different forms of human assistance is similarly said to
exhibit competence-aware planning.

Failure to account for one or both of these sources of com-
petence can reduce the applicability of these robot’s to real-
world domains where the robots a priori models are imper-
fect but the system must reliably exhibit safe behavior.

For example, consider the scenario depicted in Figure 2 of
an autonomous vehicle (AV) approaching a stop sign at an
intersection (a). The AV believes that there is no oncoming
traffic (as it detects none), but recognizes that its view to the
right is partially obstructed (b). Competence-aware percep-
tion should reason about the existence of the foliage, and,

more importantly, that the foliage may call into question the
validity of its object sensing results. The first time that this
scenario is encountered, the AV should solicit help from a
human operator (either in the vehicle, or remote) (c) who can
instruct the AV with a different action (edge forward) to re-
solve the potential error source (d). Finally, after encounter-
ing the scenario several times, the AV should recognize both
the situation and how to resolve it, and competence-aware
planning should proactively propose the potential resolution
to the human instead of the potential error (e) to acquire a
swift approval/disapproval response (f).

3 Competence-Aware Perception
Robots deployed in uncontrolled real-world settings such
as commercial establishments and urban environments will
inevitably encounter scenarios that violate the assumptions
of their deployers, leading to execution failures. A com-
mon source of such failures is perceptual errors—where
a perception algorithm provides estimates that are inac-
curate, or inconsistent with the real world. While there
exist previous works on uncertainty quantification, they
rely on model-based uncertainty such as the Cramer-Rao
Lower Bound for simultaneous localization and mapping
(SLAM) (Pandey et al. 2015), hand-crafted measures of un-
certainty (Sadat et al. 2014; Mostegel, Wendel, and Bischof
2014), or computationally expensive estimates for neural-
network based perception such as Bayesian Neural Net-
works (BNNs) (Ghahramani 1997; Dusenberry et al. 2020)
and Monte-Carlo Dropouts (Gal and Ghahramani 2016).

Figure 2: Competence-aware prediction of failures and inte-
gration of learned model into planning and execution.



To tackle the problem of identifying and overcoming
causes of perceptual errors in novel environments, we lever-
age introspective perception (Daftry et al. 2016; Rabiee and
Biswas 2019; Rabiee and Biswas 2020; Rabiee et al. 2022)
as a general formulation for robots to autonomously iden-
tify causes of failures using either consistency across sensing
modalities, or spatio-temporal consistency. We present three
specific ways in which introspective perception may be used
to overcome errors in obstacle avoidance, localization and
mapping, and navigation.

Introspective Vision for Obstacle Avoidance
Vision-based obstacle detection algorithms rely on algo-
rithmic assumptions and simplifications for computational
tractability—for example that surfaces are lambertian and
texture-rich, or that there are no aliasing features or refrac-
tive surfaces. When such assumptions are violated, the per-
ception algorithms produce erroneous estimates, either hal-
lucinating obstacles that do not exist (false positives), or
missing obstacles that do exist (false negatives).

Introspective Vision for Obstacle Avoidance (IVOA) (Ra-
biee and Biswas 2019) overcomes such limitations by lever-
aging a supervisory sensor that is occasionally available. By
comparing plans generated using the supervisory sensor and
the plans generated using the vision algorithm under test,
IVOA is able to identify scenarios where the vision algo-
rithm produces erroneous results. IVOA projects the 3D co-
ordinates where the plans agree and disagree onto the images
used for vision-based perception to generate a training set of
reliable and unreliable image patches for perception. IVOA
then uses this training dataset to learn a model of which im-
age patches are likely to cause failures of the vision-based
obstacle detection. Using this model, IVOA is able to predict
whether the relevant image patches in the observed images
are likely to cause failures.

Introspective Vision for Simultaneous Localization
and Mapping
Visual simultaneous localization and mapping (V-SLAM)
algorithms most commonly assume that errors in feature ex-
traction and matching are independent and identically dis-
tributed (i.i.d), but this assumption is often violated (Triggs
et al. 1999)—for example, features extracted from low-
contrast regions of images exhibit wider error distributions
than features from sharp corners. Furthermore, V-SLAM al-
gorithms are prone to catastrophic tracking failures when
sensed images include challenging conditions such as spec-
ular reflections, lens flare, or shadows of dynamic objects.
Previous work to address these failures has focused on build-
ing more robust visual frontends.

Introspective Vision for SLAM (IV-SLAM) is a fundamen-
tally different approach to these challenges. IV-SLAM ex-
plicitly models the noise process of re-projection errors from
visual features to be context-dependent, and hence non-i.i.d.
IV-SLAM leverages spatio-temporal consistency as an au-
tonomously supervised approach to collect training data to
learn such a context-aware noise model. Using this learned
noise model, IV-SLAM guides feature extraction to select

more features from parts of the image that are likely to re-
sult in lower noise, and further incorporate the learned noise
model into the joint maximum likelihood estimation, thus
making it robust to the aforementioned types of errors.

Competence-Aware Planning via Introspective
Perception
While introspective vision of obstacle avoidance is effective
at reasoning about failures of perception for obstacle detec-
tion, it does not necessarily directly translate to reasoning
about failures of task execution. For example, while a robot
may have errors in accurately estimating whether a lane has
a parked car or not, if the navigation task does not require
the robot to enter the lane, the perceptual uncertainty would
not impact the navigation task success. Competence-Aware
Planning via Introspective Perception (CPIP) (Rabiee et al.
2022) instead explicitly reasons about the relation between
perceptual failures and task-level competence by factorizing
the competence-aware planning problem into two compo-
nents. First, perception errors are learned in a model-free and
location-agnostic setting via introspective perception prior
to deployment in novel environments. Second, during actual
deployments, the prediction of task-level failures is learned
in a context-aware setting as the transition function in a
stochastic shortest path problem that captures the probability
of different classes of failures for each action.

4 Competence-Aware Planning
Intuitively, competence-aware planning is the introspective
ability to optimally manage the reliance on human assis-
tance. Reliance on human assistance in AI has been thor-
oughly studied over the years, and has often been predicated
on the notion of levels of autonomy which is a paradigm for
modeling a discretized representation of different limitations
on autonomous operation, and their commensurate level of
human assistance within a human-agent team (Parasuraman,
Sheridan, and Wickens 2000; SAE On-Road Automated Ve-
hicle Standards Committee 2014; Beal and Rogers 2020).

Mixed-initiative control (Allen, Guinn, and Horvtz 1999;
Ghalamzan et al. 2017) considers human-agent systems in
which each actor may take the initiative to act at differ-
ent stages of control to best utilize their respective abili-
ties, and has recently been applied in the context of vari-
able autonomy in which the level of autonomy can change
dynamically (Chiou, Hawes, and Stolkin 2021). Symbiotic
autonomy (Rosenthal, Biswas, and Veloso 2010; Veloso
et al. 2015) aims to design human-agent systems in which
the human and agent act asynchronously to achieve their
own goals but may perform tasks for each other to com-
plete their tasks more efficiently overall. Adjustable auton-
omy (or, sometimes, variable autonomy) is a closely related
area of research that has been extensively studied over the
years (Mostafa, Ahmad, and Mustapha 2019) and generally
considers human-agent teams that are specifically character-
ized by the ability to dynamically change between different
levels, or modes, of autonomy each of which corresponds to
different constraints on the system that affect the actions that
the human-agent team can perform.



Competence-Aware Systems
A competence-aware system (Basich et al. 2020) is a
competence-aware planning framework predicated on the
ability of an agent to operate in different levels of auton-
omy in which the agent can proactively reason about the
true, optimal extent of autonomy that the agent can and
should utilize in any given situation. The competence of a
CAS is specifically defined to be the optimal (i.e. reward-
maximizing or cost-minimizing) level of autonomy to per-
form a given action in a given state, were the CAS to have
a perfect model of the human’s feedback and assistance. A
competence-aware system learns its planning competence
through interactions with a human which provide feedback
in the form of discretized signals. By incorporating a pre-
dictive model of these feedback signals, a CAS can make an
informed decision during planning about which level to em-
ploy in each situation, given its current constraints on which
levels of autonomy it is allowed to use.

Given sufficient feedback from the human, a competence-
aware system can be show to converge to its competence,
meaning that it has learned to optimize its reliance on hu-
man assistance, resulting in the most efficient and cost-
effective performance when completing its tasks. However,
the learned competence itself, a function of the true pre-
dictive model of human feedback and assistance, may be
poor when the system’s model does not align well with the
model of the human operator who provides the feedback
from which the CAS learns. This phenomenon can arise in
practice as it is unlikely that the human’s model will per-
fectly align with the system’s, and particularly when the hu-
man agent in the system is not a designer of the system. The
result is that the feedback can appear random or inconsistent,
leading to low competence and inefficient operation.

To address this, recent work introduced a method called
iterative state space refinement (Basich et al. 2021) that en-
ables the competence-aware system to refine the granularity
of its state representation through online model updates by
identifying cases where the system’s model may be missing
important features and integrating them into its model. This
method leads to more fine-grained partitioning of the in-
put space that can learn a more nuanced competence model,
leading to improved performance and a better trade-off be-
tween autonomy and human assistance.

5 Future Challenges
Thus far, we have treated competence-aware perception and
competence-aware planning as isolated components of an
overall system’s competence-aware autonomy. However, it
is clear to see that a system’s perceptual competence is a
fundamental component of its planning competence, as it
drives the system’s capacity to autonomously operate safely
and reliably in different situations in the context of potential
perception-driven errors. Similarly, competence-aware plan-
ning should reason about how to effectively manage lim-
ited perceptual competence, providing corrective signals in
the form of actions, options, or full contingency plans, to
help either refine the competence-aware perception model,
or identify new causal factors.

We propose that an important challenge moving forward
is to endow such systems with an effective means of “clos-
ing the loop” between competence-aware perception and
competence-aware planning, such that the system can rely
on them to work synergistically to overcome errors in new
environments. To this end, we identify two directions of in-
teraction between the two competence-aware components.

Perception Abstractions for Planning We consider a
hierarchical planning framework that performs planning at
multiple levels of abstraction in parallel: mission-level, task-
level, and situation-level. Competence-aware perception
provides abstracted state information used at the situation-
level (of which there may be multiple) which should be
masked out for the specific action being considered by the
given situation-level planner. However, higher levels of plan-
ning abstraction (i.e. task and mission) should incorporate
perceptual competence into their planning models to ensure
that global planning is robust to situations with low percep-
tual competence, and optimizes the policies generated with
respect to the known perceptual competence model.

Repair-Policies Once competence-aware planning has
learned to identify common scenarios of low competence,
as presented in the example from Figure 2, the Repair-Policy
pattern proceeds in five phases: (1) the situation-level plan-
ner encounters a situation where perception provides ab-
stracted observations with low reliability predicted by the
competence model; (2) competence-aware perception fur-
ther identifies a causal factor (or factors) for the low relia-
bility; (3) the situation-level planner solicits assistance from
the human operator; (4) over repeated instances where the
same causal factor is identified as responsible given the same
abstracted observation in the same or similar part of the
state space, and when the resultant human feedback is the
same, competence-aware planning should hypothesize a re-
pair policy; and (5) the repair policy should be presented to
the human operator and, if approved, be used by the robot in
the future when encountering the same scenario.

6 Conclusion
In this position paper, we outline some key challenges faced
by robotic systems deployed in complex open-world envi-
ronments, particularly challenges arising from being pre-
sented by a novel and unanticipated scenario. To address
these challenges, we propose competence-aware autonomy,
the ability of an autonomous agent to introspectively learn,
model, and reason about its own capabilities in the context
of different sources of external assistance. We present recent
work on competence-aware autonomy, specifically in the ar-
eas of competence-aware perception and competence-aware
planning, and discuss some of the key challenges moving
forward in making competence-aware autonomy more ro-
bust to real-world challenges by closing the loop on both
elements of competence-awareness.
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