
Learning Policies for Sequential Time and Cost Sensitive
Classification

Andrew Arnt
arnt@cs.umass.edu

Shlomo Zilberstein
shlomo@cs.umass.edu

Department of Computer Science
University of Massachusetts, Amherst

Amherst, MA 01003

ABSTRACT
In time and cost sensitive classification, the utility of la-
beling an instance depends not only on the correctness of
the labeling, but also the amount of time taken to label
the instance. Instance attributes are initially unknown, and
may take significant time to measure. This results in a dif-
ficult problem, trying to manage the tradeoff between time
and accuracy. The problem is further complicated when we
consider a sequence of time-sensitive classification instances,
where time spent measuring attributes in one instance can
adversely affect the costs of future instances. We solve these
problems using a decision theoretic approach. The problem
is modeled as an MDP with a potentially very large state
space. We discuss how to intelligently discretize time and
approximate the effects of measurement actions in the cur-
rent instance given all waiting instances. The results offer
an effective approach to attribute measurement and classi-
fication for a variety of time sensitive applications.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning - Induction; I.2.8
[Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search - Graph and tree search strategies; H.2.8
[Database Management]: Applications - Data Mining

General Terms
Algorithms

Keywords
cost-sensitive learning, data mining, AO* search

1. INTRODUCTION
Cost sensitive classification (CSC) has been the subject of

a growing body of research. In CSC, the goal is to train a
classifier that minimizes the expected cost incurred on future

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UBDM ’05 August 21, 2005, Chicago, Illinois, USA
Copyright 2005 ACM 1-59593-208-9/05/0008 ...$5.00.

test instances, rather than trying to maximize the predictive
accuracy. Penalties for misclassifying instances vary based
on the actual label of the instance. For example, in medical
diagnosis domains classifying a sick patient as well is often
far more costly than labeling a healthy patient as sick. In
a spam filtering system, legitimate email flagged as spam is
significantly more costly than spam judged as legitimate.

Additionally, in some CSC problems, attributes of an in-
stance are not initially known. Instead, the CSC classifier
must explicitly decide which attributes to measure. Some of
these attributes may have a fixed cost to measure; an exam-
ple from the medical diagnosis domain are those that require
an expensive test to be performed. In this problem, an at-
tribute measurement and classification policy that specifies
what attributes to measure and in what order is designed to
minimize not only misclassification penalties, but also the
sum of attribute measurement costs.

In this work, we examine a previously unexplored dimen-
sion of CSC. In many domains, the value of a classification
result depends not only on the correctness of the labeling,
but also the timeliness with which it is computed. Fur-
thermore, measuring some of these attributes may be either
computationally intensive or rely on slow external sources
of information. For example, in medical diagnosis, tests are
often sent away for processing while the patients condition
may be deteriorating. In the spam filtering case, retriev-
ing or verifying hyperlinked information can take significant
time and delay the arrival of email to a user’s inbox. It is im-
practical to measure all possible attributes for each instance
when the final result has time-dependent utility. We call
this problem time and cost sensitive classification (TCSC).

Managing the tradeoff between classifier accuracy and time
costs incurred is a challenging problem. Myopic methods
such as those used in [12] will not perform well due to in-
teractions between attributes: when not all attributes can
be measured, the ordering of measurements becomes very
important. There have been several methods designed by
researchers for handling the CSC problem, but very little
attention has been paid to the TCSC case. We develop a
model that allows the system to quickly decide which at-
tributes to measure, what order to measure them in, and
when to cease any further measurement and classify the cur-
rent instance.

We take a decision theoretic approach, where we try to
minimize the expected value of a cost function reflecting
the quality of service of the system. In the cost sensitive
classifier developed in [17, 16], the attribute measurement
problem was framed as a Markov Decision Process (MDP)

39

where the state was the current attribute vector. We build
upon that work by adding the current time to that state.
Due to the potentially large size of this state space, AO*
heuristic search is used to compute the policy. It is not
necessary in AO* to compute values for all possible states
as would be required in a dynamic programming approach.
The addition of time to that state space requires that time
be intelligently discretized to provide a balance between the
quality of the computed policy and the memory required to
compute it.

We then examine the case where a sequence of time de-
pendent instances must be classified over time. In this se-
quential TCSC problem, classification instances arrive at the
classifier over time and are processed in a first-in first-out
manner. Time spent measuring attributes in the instance
at the head of the queue can increase the costs incurred on
waiting instances by delaying the start of their processing.
Clear examples of this type of problem are spam filtering
on an overloaded mail server or estimating the value of mes-
sages posted to a newsgroup or online forum [1]. This model
can also apply to diagnosis tasks. We show how to extend
the MDP model to find policies that minimize cost over all
instances processed and discuss the approximations used to
solve this even larger MDP.

2. TYPES OF COST IN TCSC

2.1 Misclassification costs
In many applications, not all misclassifications have the

same value. There may be a significant difference between
the problems caused by a false negative versus those caused
by a false positive. We denote this portion of the cost func-
tion which handles misclassification penalties as CL(lp|la),
which is the cost incurred by classifying an instance with
actual label la with the predicted label lp.

The misclassification (MC) cost component depends on
the actual label la of an instance, which is unknown, ex-
cept in training data. Thus, in practice we need to use the
expected MC cost, given that the classifier predicts label lp:

ECL(cl(lp)|f) =
X

la∈L

p(la|f)CL(lp|la)

where L is the complete set of labels that an instance may
have. The probability that an instance with the current
measured attribute vector f has the actual label of la is
estimated, when necessary, from training data: p(la|f) =
|train(la,f)|
|train(f)|

, where train(f) is the set of all training instances

such that for every measured attribute in f , the training in-
stance has the same value, and train(la, f) is the subset of
instances in train(f) that have label la. In practice this es-
timate is smoothed to reduce overfitting and avoid divisions
by zero:

p(la|f) =
|train(la, f)| + 1

|train(f)| + |L|

When classifying a partially measured instance f , the al-
gorithm will choose the label that incurs the minimum ex-
pected MC cost on the given set of training data:

lp = arg min
l∈L

ECL(cl(l)|f) (1)

There has been a significant volume of work on the prob-
lem of minimizing MC costs: some general methods are the

weighted boosting algorithm of [8], and the MetaCost algo-
rithm of [7].

2.2 Attribute measurement costs
The action of measuring an attribute fi is indicated as

m(fi). This action may incur a deterministic cost: CM (m(fi)).
We assume the value of a measured attribute is constant and
will not change upon repeated measurements.

Research that handles both attribute measurement costs
and misclassification costs includes the genetic algorithm
based decision tree inducer of [15], the POMDP (Partially
Observable MDP)-based decision tree learner of [5], a dy-
namic programming algorithm described in [10], a POMDP
for computing attribute measurement policies with respect
to a given naive Bayes classifier in [11], the test-cost sensitive
naive Bayes classifer of [6], and finally an MDP framework
with heuristic search to find good attribute measurement
and classification policies [17, 16]. Note that none of these
can handle any kind of time-dependent costs.

2.3 Response time costs
The cost function should reflect the timeliness with which

we wish the classifier to act. In many systems (especially
those that interact with humans), a labeling decision made
quickly will be worth more than one that takes a very long
time. In general, any system that has a component of human
interaction should be fairly responsive and not spend unrea-
sonable amounts of time measuring all instance attributes
so as to minimize the expected MC cost.

Therefore the cost function has a final component CT (t),
which will typically have a super-linear form: the cost of
a quick result is small and fairly constant, but as the wait-
ing time increases, the time cost grows at an increasing rate.
This function provides a good approximation of a user’s per-
ceived utility of a system when they are forced to wait for
a result. In general, the time cost function can take on any
form that is nondecreasing over time.

Note that if the time cost function is linear and the mea-
surement times for each attribute are deterministic, the time
cost function can be simply folded into the attribute mea-
surement costs.

2.4 Combining cost function components
To combine the three components of the cost function, it

suffices to perform a simple weighted addition. The expected
cost of assigning predicted label lp to an instance f with
measured attributes meas(f) in t time units is:

C(f , t)=wLECL(cl(lp)|f) + wT CT (t) + wM

X

fi∈meas(f)

CM (m(fi))

The variables wL, wT , wM are system parameters that are
manually tuned to provide a good balance between the con-
flicting goals of low MC costs, attribute measurement costs,
and timely responses.

3. SINGLE INSTANCE TCSC
Given a set of training data, we want to find the attribute

measurement and classification policy that minimizes the
expected cost of classification of future instances where cost
is made up of the three components discussed in Section 2.

Our strategy for time and cost sensitive policy learning
builds on the work of [17]. We frame the attribute mea-
surement and classification problem as a Markov Decision

40

Process (MDP). The “optimal” policy (quoted because it is
optimal only with respect to a set of labeled training data)
can then be found using AO* search, a classical heuristic
search technique. We extend this model to handle time-
sensitive utility costs.

3.1 TCSC as an MDP
MDPs are a popular framework for sequential decision

making problems. An agent in an MDP takes actions which
cause stochastic transitions between states. A typical for-
mulation (and the one used here) has an agent with the
goal of minimizing the costs incurred while transitioning to
some terminal state. Each state in the MDP satisfies the
Markov property: the current state effectively summarizes
all previous activity of the agent in the environment. The
mapping from states to actions that minimizes cost is called
the optimal policy.

The states s ∈ S in the model presented in [17] are sim-
ply the set of all possible attribute vectors f . This includes
those with unmeasured attributes. An additional absorbing
terminal state E is transitioned to when an instance is clas-
sified. We augment that state space to include the current
waiting time of the instance: s = 〈f , t〉. The starting state
of the MDP is the state with no measured attributes and
zero waiting time: 〈f?, 0〉.

The actions in this model are to either measure an unmea-
sured attribute fi, denoted ‘m(fi)’, or to classify the current
instance using the label lp, denoted ‘cl(lp)’.

There are two types of cost related to taking a measure-
ment action. CM (m(fi)) is the deterministic cost to measure
attribute fi. There is also the incremental time cost C∆(δ|t)
which indicates the portion of the end cost CT (t) incurred
by waiting δ additional time units to classify an instance
that has already been waiting t time units. Given a time
cost function CT (t), it is straightforward to compute the
incremental time cost function:

C∆(δ|t) = CT (t + δ) − CT (t)

The expected immediate cost of taking the action m(fi) is
then

CM (m(fi)) +
X

δ∈Ti

p(Ti = δ)C∆(δ|t)

where Ti is the set of all possible durations that the mea-
surement action can take.

The probability of transitioning from state s = 〈f , t〉 to
state s′ = 〈f ∪ fi = x, t + δ〉 (where f ∪ fi = x refers to f
with attribute fi set to x) is

p(s′|s, m(fi)) = p(fi = x|f)p(Ti = δ)

The probability that attribute fi will take on value x given
the incomplete attribute vector f is estimated from training
data:

p(fi = x|f) =
|train(f ∪ fi = x)|

|train(f)|

In practice this value is smoothed to:

p(fi = x|f) =
|train(f ∪ fi = x)|+ 1

|train(f)| + |fi|

where |fi| indicates the total number of distinct values the
ith attribute can have.

The probability that attribute fi takes δ time units to
measure is denoted as p(Ti = δ), and is estimated from

training data or from some other source of prior experience.
Note that these transition probabilities are computed only
when necessary during the AO* search.

Taking the classification action incurs the MC cost CL(lp|la)
and transitions to the terminal state with probability

p(E|s, cl(lp)) = 1

Recall that lp is chosen to minimize expected cost as in
Equation 1.

3.2 AO* search
AO* search is an heuristic search algorithm for searching

AND/OR graphs [13]. It is akin to A* search for standard
directed graphs. MDP policies can be represented as an
AND/OR graph: at an OR node, the agent must choose a
single action to take so as to minimize future cost. How-
ever, since the environment is stochastic, taking an action
causes the agent to transition probabilistically to one of a
number of states. Therefore all these states are successors of
the original state and their costs must be AND-ed together
(computing the expected cost) to find the best expected ac-
tion.

AO* works by iteratively improving upon the current best
partial solution policy until an optimal policy is found. Each
iteration of AO* search is composed of two parts. First, the
current best partial solution is expanded (its successors are
added to the search graph) by picking an unexpanded search
state within the current policy. Next, state values and best
action choices are updated in a bottom-up manner, starting
from the newly expanded state. The estimated value of a
state s during the search is F (s): an optimistic estimate of
the cost to get from s to a terminal state.

A heuristic is necessary to guide AO*. The heuristic value
of a state is the optimistic estimate of how much cost will
be incurred before reaching a terminal state. For an optimal
policy to be found, the heuristic must be admissible: it must
never overestimate the cost from a state to the terminal
state. An optimistic one-step lookahead heuristic derived
by [17] for the case where there is no time dependent utility
was extended to include incremental time costs in [2].

Given an unexpanded state s, the heuristic value F (s) is
the cost of the action (classifying or measuring an attribute)
giving the smallest immediate cost:

F (s) = min
fi 6∈meas(f)

8

<

:

ECL(cl(lp)|f)

CM (m(fi)) +
X

δ∈Ti

p(Ti = δ)C∆(δ|t)

(2)
This heuristic is admissible because it gives the smallest pos-
sible immediate cost incurred when taking any action from
the current state.

3.3 AO* as an anytime algorithm
For classification problems where instances have a large

number of measurable attributes, each of which can take on
many values, pruning the search space is essential for effi-
cient search. A pruning strategy that preserves the optimal-
ity of the policy hinges on the fact that the terminal state
E can be reached from any state of this MDP by taking a
single classification action [17]. This property, which is not
applicable for general MDP models, allows for significant
pruning of the search space. An upper bound F̂ (s) value is
computed at each node; this value represents the expected

41

p(Ti=τ)p(Ti=0) p(Ti=2τ) p(Ti=3τ)

p
(T

i
<

t)

t

Figure 1: An attribute time distribution discretized
in a ‘round-down’ manner. The curve shows the cu-
mulative density function, the length of the black
bars represents the probability of each discrete
value.

cost of following the current best known policy from search
state s. Therefore, any unexpanded search node s′ with
parent node s where F̂ (s) < F (s′) can be pruned, as the
expansion of s′ cannot lead to an improved policy since we
will always choose the action at s that provides the minimal
F̂ (s).

Furthermore, maintaining the best known action at each
search node gives the AO* search the properties of an any-
time algorithm. At any time during the search, the process
can be halted and the current best policy returned. For large
classification problems where there are many attributes tak-
ing on many possible values in each instance, this must be
done when memory is exhausted.

3.4 Discretization of time
While continuous attributes can be discretized using met-

rics such as information gain relative to the class attribute
(for example [9]), finding an appropriate discretization of
time for a instance is a more difficult problem. A very fine
grained discretization of time results in the best policies, ex-
cept when search terminates early due to available memory
being exhausted by the larger state spaces. Furthermore,
in some cases, using a coarser time representation may still
find a policy of approximately equal value.

In this work we take an iterative approach to finding a
suitable time unit size. Starting from an initial coarse time
unit τ , we iteratively solve the MDP using a unit of τ ′ = τ/2.
This process repeats until the cost incurred on training data
by the policy πτ ′ is greater than or approximately equal to
the cost incurred by following πτ ; the πτ policy is retained
for actual use. Note that the cost of πτ ′ can be greater than
that of πτ when the memory limit is reached and search is
forced to terminate with the current best known policy.

To compute the policy for time unit τ , we use ‘rounded-
down’ versions of the continuous attribute measurement time
distributions p(Ti). That is: pτ (Ti = kτ) =

R (k+1)τ

kτ
p(Ti =

x)dx. See Figure 1 for an example distribution. This round-
ing down combined with the nondecreasing nature of the
time cost function CT (t) means that the F value of a state
s in πτ always underestimates of the actual cost of state s.

ts0
t

ta1

ta2

Task 0

Task 1

Task 2

ta0
=0

Figure 2: instances arriving over time. Dotted lines
represent waiting time, solid lines active processing
of an instance. Time cost curves are shown for each
instance. Instance 0 arrived at ta0

, but processing
did not begin until ts0

due to delay from measuring
attributes in previous instances.

Therefore, we can use the F values computed in the τ itera-
tion as part of a new admissible heuristic function F ′ in the
τ ′ iteration; The new heuristic value at a state is the smaller
of the heuristic value computed as before in Equation 2 and
the final F value computed in the previous iteration (round-
ing down time from kτ ′ to jτ , such that jτ ≤ kτ ′ < (j+1)τ):

F ′(〈f , kτ ′〉) = min(F (〈f , kτ ′〉), Fτ (〈f , jτ 〉))

4. SEQUENTIAL TCSC
The above procedures do not account for other instances

that need to be classified. Suppose that instead of a single
classification instance to process, the system has to handle a
stream of classification instances arriving over time. There-
fore, when deciding which attributes to measure in the cur-
rent instance, we must also consider the potential for utility
loss due to delay in processing of all other instances waiting
to be classified. [3] refer to this as the opportunity cost, the
loss of expected value due to delay in the starting of work
on the remaining instances. They show that for a similar
problem, the opportunity cost function can be quickly and
effectively approximated by examining simple attributes of
the queue of waiting instances.

There are no known existing methods for classifying se-
quences of time sensitive instances. [14] study a sequential
CSC problem where the cost of each instance is dependent
on the labels assigned to prior instances. Reinforcement
learning is used to minimize costs over a sequence of in-
teracting instances; however, there is no time-sensitive cost
component.

4.1 MDP model for sequential classification
We call the instance that is currently having attributes

measured the ‘active’ instance. Time t is measured relative
to the arrival time of the active instance ta0

≡ 0. As at-
tributes are measured in the active instance, new instances
arrive at tai

. Figure 2 shows a possible configuration.
Sequential classification instances can be introduced to

the MDP model by expanding the state space to s = 〈f , t,q〉,
where q = {ta1

, . . . , ta|q|
} describes the queue of instances

waiting to be classified.
The MDP transition model must also be augmented to

42

include q. The probability of transitioning from state s =
〈f , t,q〉 to state s′ = 〈f ∪ fi = x, t + δ,q′〉is

p(s′|s, m(fi)) = p(fi = x|f)p(Ti = δ)p(q′|q, δ)

where p(q′|q, δ) is the probability of the queue going from
state q to q′during a time interval of δ time units. This
quantity can be estimated from past experience.

We could then change the transition model so that classi-
fication actions transfer to terminal state E only when the
queue is empty. In all other cases, the next state would be

s′ = 〈f?, t − ta1
, {∀1<i<|q|t

′
ai−1

= (tai
− ta1

)}〉

and processing begins on the new active instance. Solv-
ing this MDP would give an optimal solution to the TCSC
problem. The size (possibly infinite) of this MDP makes it
intractable to solve exactly.

An alternative approach is to estimate the opportunity
cost of investing δ time units on the active instance given
that q instances are waiting. Once estimated, this cost aug-
ments the incremental time cost component C∆(δ|t):

C∆′(δ|t,q) = C∆(δ|t) + COC(δ|q, t)

The MDP can be solved with the updated incremental time
cost function using the techniques discussed in Section 3.

Note that instances under the model may now have start
time t 6= 0. Therefore, when solving the MDP, a new start
state is introduced where t is unknown. The only action
available at this state is a ‘fan-out’ action which transitions
to ‘sub start’ states with t = 0 to t = T with uniform prob-
ability. T is chosen to be large enough so that no time con-
suming attributes are measured from that state. After the
policy has been computed and instances are being classified
online, we start the measurement policy at the appropriate
sub start state. If the instance has been waiting longer than
T , the policy starting at sub start state T is followed.

4.2 Estimating opportunity costs
We will examine three methods for estimating the oppor-

tunity cost incurred by delaying processing on the instances
in the queue.

A very conservative estimate of opportunity cost simply
sums the incremental time cost incurred on each instance in
the queue, assuming that processing will begin on every one
of these instances, simultaneously, after δ time units have
elapsed:

COC(δ|q, t) =
X

i∈q

C∆(δ|t − tai
) (3)

A second estimate takes into account that before processing
can begin on instance i+1, instance i must first be classified.
Given a classification/measurement policy π computed on
the single instance problem, the estimated time to complete
the active instance given the current state can be computed
in a bottom up manner. The time remaining distribution
from state s given the time remaining distributions of all
child states s′ reached by following the action π(s) is

p(td|s) =
X

s′

p(s′|s, π(s))p(td − t(s, s′)|s′)

where t(s, s′) is the time difference between states s and s′.
With this probability, the starting times of all instances in
the queue can be estimated:

p(tsi+1
= tdi

+ tsi
) = p(tsi

)p(tdi
|〈f?, tsi

− tai
〉) (4)

The start time of instance 1 is set to be the current time t
of the active instance.

Once the start time distributions of all instances in the
queue are computed, the opportunity cost can be estimated
as the total estimated time cost incurred by delaying the
estimated start times of all instances in the queue by δ:

COC(δ|q, t) =
X

i∈q

X

tsi

p(tsi
)C∆(δ|tsi

− tai
) (5)

The above methods assume that the only costs incurred by
delaying instances will be time costs. In reality, the pol-
icy for an instance that begins processing with substan-
tial waiting time already elapsed will generally measure less
time consuming attributes to avoid the continually increas-
ing time penalties. We can then expect smaller attribute
measurement costs at the expense of higher MC costs.

A third opportunity cost estimation looks at the difference
in expected costs incurred for all queued instances before
and after an action taking δ time units is taken in the active
instance. Given the single instance policy π, the expected
total cost incurred C from state s can be computed in a
similar manner as the time remaining distributions:

p(C|s) =
X

s′

p(s′|s, π(s))p(C − c(s, s′)|s′)

where c(s, s′) is the cost incurred between states s and s′.
With this expected cost distribution, the expected cost in-
curred on all queue instances can be computed, given the
current time of the active instance.

C〈f,t〉 =
X

i∈q

X

C

X

tsi

p(tsi
)p(C|〈f?, tsi

− tai
〉)C

where the start time distributions p(tsi
) are computed using

equation 4 starting from time t.
The final opportunity cost estimate is the difference in

expected costs when making a transition from state 〈f , t〉 to
〈f ′, t′〉 is:

COC(δ|q, t) = C〈f ′,t′〉 − C〈f,t〉 (6)

4.3 Queue approximations
An exact representation of the state of the instance queue

would contain the arrival times (relative to the arrival time
of the active instance) for every waiting instance. Clearly
this representation would cause an exponential blowup in
the total size of the state space. Instead we choose to repre-
sent the queue using simple features describing the state of
the queue. In this work, we use two features: the total num-
ber of instances in the queue and the average arrival time
of those instances. A manually tuned parameter for each
feature controls the resolution: as the resolution increases
there are less total queue states, which results in smaller
searches but lower quality opportunity cost estimates.

5. EXPERIMENTAL

5.1 Setup
We use three data sets in the following experiments: ‘breast,’

‘pima,’ and ‘bupa’ from the UCI repository [4]. All at-
tributes are discretized into three bins so as to maximize
the information gain of the class labels for the entire data
set. The class labels for all data sets are binary. The breast

43

� � � � � � � � � � � � � � � � 	

� �
� �� ��� ��

�

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � � � � � � � � � � � �

 ! "
#

$
%

Figure 3: Average total costs for bupa with τ = 4

data set has nine attributes in 683 instances (444 negative,
239 positive). The pima data has eight attributes in 768 in-
stances (500 negative, 268 positive). The bupa data set has
five attributes in 345 instances (169 negative. 176 positive).

These data sets all have associated attribute measurement
costs, but in these experiments we set wM to zero so as to
ignore attribute measurement costs, as time and MC costs
are the primary focus of this study. For each data set the
attributes with highest information gain (seven in breast,
six in pima, four in bupa) are given time measurement dis-
tributions that are normal with mean 6 and standard devia-
tion 2. The remaining attributes can be measured instantly.
This assignment of time does not reflect the actual time to
measure for these attributes, which for these data sets are
unknown. In lieu of that knowledge, we can most effectively
study the tradeoff between misclassification and time costs
by imposing measurement times on the most predictive at-
tributes. The time cost weight wT is set to 1. The time cost
function CT (t) = t2. Time is discretized using the method
discussed in Section 3.4 on the single instance problem. We
use τ = 8 for pima and breast, and τ = 4 for bupa.

MC costs are set up for each instance so that correct pre-
dictions have penalty zero, the more frequent class A has
penalty 1, and the less frequent class B has misclassifica-
tion cost penalty (|A|/|B|)2. This reflects the fact that in
most CSC problems, the rarer class is more costly to label
incorrectly. Misclassification cost weights are set to 1000.

Arrival of new instances in the queue at each time unit
is sampled from a Bernoulli distribution where a single in-
stance arrives at each time unit with probability a. This
parameter is varied to simulate a variety of loads on the se-
quential classifier: a = 0.05, 0.1, 0.2, 0.4. When solving the
MDP using τ > 1, the probability of n instances arriving
during the unit of τ is computed from the binomial distri-
bution Pa(n|τ). The resolution of the queue average waiting
time parameter was set to τ , and the number of instances
parameter to τ/2.

Five fold stratified cross validation was performed on each
data set/arrival rate pair, with a 2/3 vs. 1/3 split between
training and testing data.

5.2 Results
Figures 3, 4, and 5 show the average total cost per instance

incurred in each of the three data sets for each of the four

& ' ' () * + , ' - . * . (+ (/ 0

1 2
34 56 789 5:

6

; < =

> < =

< < =

? < =

@ < =

A < =

= = B C = B D = B ; = B >

E F E G
H

I
J

Figure 4: Average total costs for pima with τ = 8]

instance arrival rates. Figure 5 shows a typical breakdown
between time and MC costs. The labels ‘a’, ‘b’, and ‘c’ rep-
resent the OC estimation methods presented in equations 3,
5, and 6 respectively, while ‘none’ indicates the performance
of the single instance policy that is ignorant of waiting in-
stances. We see that estimating the opportunity cost results
in lower cost policies in all data sets and all arrival rates than
following the single instance policy. There is no clear winner
among the three OC approximation schemes.

One obvious question is why didn’t method ‘c’ perform
better? This stems from the fact that the estimated cost
distributions in method ’c’ are computed using a single in-
stance policy. The distribution of costs in the single instance
policy is likely to be significantly different from the distri-
bution that would be seen given the current state of the
queue. Costs in the current instance are likely to be larger
(due to MC costs) when many instances are waiting. The
costs from the single policy distribution are thus often too
small, resulting in substantial underestimates of the actual
OC. Further research will address this shortcoming by iter-
atively re-estimating the cost distribution: the policy πc is
first computed using cost and time distributions from the
single instance policy, as usual. We can then solve for a new
policy using cost and time distributions estimated from πc.
This process can iterate until the policy no longer changes
from iteration to iteration.

Additionally, we can observe evidence of overfitting in the
bupa and pima cases. For example, the single instance pol-
icy on pima incurs lower costs as the arrival rate increases.
Because queued instances are ignored, start times for indi-
vidual instances increase with arrival rate. The policies for
higher start times measure less instances, which results in
smaller MC costs on test data versus policies that measured
many attributes and overfit the training data. Overfitting
must be given careful consideration in further research.

6. CONCLUSIONS
Existing cost-sensitive classification algorithms have fo-

cused solely on misclassification and attribute measurement
costs. Yet for many applications, good responsiveness is
a desirable and often necessary property. In this research
we have shown novel methods for dealing with time sensi-
tive classification problems in both the single instance and

44

K L L M N O P Q L R S O S M P M T U

V W
XY Z[\]^ Z_

[

V W
X

`̂
^ Z_

[

V W
XYa b
c^ Z_

[

d e f

d g f

h i f

h j f

i d f

f f k d f k h f k i f k l

m n m o
p

q
r

s

t s

u s

v s

w s

x s s

x t s

s s y x s y t s y z s y u

{ |

} } |

} ~ |

} � |

} � |

} { |

� } |

| | � } | � � | � ~ | � �

Figure 5: Costs for breast with τ = 8

sequential cases. By intelligently discretizing time and ef-
fectively approximating opportunity costs, policies can be
computed for a wide range of classification problems.

Avenues for further research involve relaxing the attribute
measurement model. These include allowing for stochas-
tic attribute values and repeated measurement of said at-
tributes. A differentiation should also be made between
‘blocking’ and ‘nonblocking’ measurement actions. During a
blocking measurement, the processor is busy performing the
measurement computations. However, during a nonblocking
measurement, such as retrieving a document over the In-
ternet, other measurements (including those in subsequent
instances) can simultaneously be performed.

7. ACKNOWLEDGMENTS
Support for this work was provided in part by the National

Science Foundation under Grant No. 0328601.

8. REFERENCES
[1] A. Arnt and S. Zilberstein. Learning to perform

moderation in online forums. In Proc. IEEE/WIC
Intl. Conf. on Web Intelligence, 2003.

[2] A. Arnt and S. Zilberstein. Attribute measurement
policies for time and cost sensitive classification. In
Proc. 4th IEEE International Conference on Data
Mining (ICDM’04), pages 323–326, 2004.

[3] A. Arnt, S. Zilberstein, J. Allan, and A. I. Mouaddib.
Dynamic composition of information retrieval
techniques. Journal of Intelligent Info. Systems, 2004.

[4] C. Blake and C. Merz. UCI repository of machine
learning databases, 1998.

[5] B. Bonet and H. Geffner. Learning sorting and
decision trees with POMDPs. In Proc. 15th Intl. Conf.
on Machine Learning, pages 73–81, 1998.

[6] X. Chai, L. Deng, Q. Yang, and C. X. Ling. Test-cost
sensitive naive bayes classification. In Proc. 4th IEEE
International Conference on Data Mining (ICDM’04),
pages 51–58, 2004.

[7] P. Domingos. Metacost: A general method for making
classifiers cost-sensitive. In Proc. 5th Intl. Conf. on
Knowledge Discovery and Data Mining, pages
155–164, 1999.

[8] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan.
AdaCost: misclassification cost-sensitive boosting. In
Proc. 16th Intl. Conf. on Machine Learning, pages
97–105, 1999.

[9] U. M. Fayyad and K. B. Irani. Multi-interval
discretization of continuous-valued attributes for
classification learning. In Proc. 13th Intl. Joint Conf.
on Articial Intelligence, pages 1022–1027, 1993.

[10] R. Greiner, A. J. Grove, and D. Roth. Learning
cost-sensitive active classifiers. Artificial Intelligence,
139(2):137–174, 2002.

[11] A. Guo. Decision-theoretic active sensing for
autonomous agents. In Proc. 2nd Intl. Conf. on
Computational Intelligence, Robotics, and
Autonomous Systems, 2003.

[12] E. Horvitz and G. Rutledge. Time-dependent utility
and action under uncertainty. In Proc. 7th Conf. on
Uncertainty in Artificial Intelligence, pages 151–158,
1991.

[13] N. J. Nilsson. Principles of artificial intelligence.
Tioga Publishing Company, 1980.

[14] E. Pednault, N. Abe, and B. Zadrozny. Sequential
cost-sensitive decision making with reinforcement
learning. In Proc. 8th Intl. Conf. on Knowledge
Discovery and Data Mining, pages 259–268, 2002.

[15] P. D. Turney. Cost-sensitive classification: Empirical
evaluation of a hybrid genetic decision tree induction
algorithm. Journal of Artificial Intelligence Research,
2:369–409, 1995.

[16] V. B. Zubek. Learning diagnostic policies from
examples by systematic search. In Proc. 20th Conf. on
Uncertainty in Artificial Intelligence, pages 27–34,
2004.

[17] V. B. Zubek and T. Dietterich. Pruning improves
heuristic search for cost-sensitive learning. In Proc.
19th Intl. Conf. on Machine Learning, pages 19–26,
2002.

45

