
Agent Influence as a Predictor of Difficulty for Decentralized Problem-Solving

Martin Allen and Shlomo Zilberstein
Computer Science Department
University of Massachusetts

Amherst, MA 01003
{mwallen, shlomo}@cs.umass.edu

Abstract

We study the effect of problem structure on the practical per-
formance of optimal dynamic programming for decentralized
decision problems. It is shown that restricting agent influence
over problem dynamics can make the problem easier to solve.
Experimental results establish that agent influence correlates
with problem difficulty: as the gap between the influence of
different agents grows, problems tend to become much easier
to solve. The measure thus provides a general-purpose, auto-
matic characterization of decentralized problems, identifying
those for which optimal methods are more or less likely to
work. Such a measure is also of possible use as a heuristic in
the design of algorithms that create task decompositions and
control hierarchies in order to simplify multiagent problems.

Introduction
Decentralized partially observable Markov decision pro-
cesses(Dec-POMDPs) extend the well-known POMDP
framework to multiple cooperating agents, each basing its
actions upon local information, without full knowledge of
what others observe or plan. Widely applicable and formally
precise, Dec-POMDPs are popular models of multiagent de-
cision making. Unfortunately, theoretical and experimental
work shows that solving them optimally can be very diffi-
cult. As a step toward alleviating this problem, we provide
a precise measure of the degree to which agents in a Dec-
POMDP interact, and show experimentally that this measure
correlates with the performance of a well-established solu-
tion algorithm: as the gap between agent influences grows,
problems tend to become much easier to solve. Thus, the
identified measure provides an exact general property of
Dec-POMDPs, straightforward to calculate for any given
problem, and a strong predictor of the difficulty of that prob-
lem. As such, it can be used to identify problems for which
optimal solutions are likely to be practical. Further, such
a measure can be employed in simplification methods for
complex multiagent problems.

General Dec-POMDPs are NEXP-complete (Bernstein
et al. 2002). Optimal solution algorithms face doubly-
exponential growth in necessary space and time, rendering
even simple problems intractable. The first-known opti-
mal method uses dynamic programming to generate finite-

Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

horizon policies, applying iterated pruning techniques to
reduce the number considered (Hansen, Bernstein, & Zil-
berstein 2004). However, such basic pruning still only
solves the smallest problems. Similar results have been re-
ported with respect to top-down methods employing heuris-
tic search (Szer, Charpillet, & Zilberstein 2005). A good
overview can be found in Seuken and Zilberstein (2005, §3).
There are limitations to this previous work, as only a small
number of problems have been used to test algorithm perfor-
mance. We extend these results for dynamic programming
in particular, examining performance over a wide range of
systematically varied problem instances.

Even ε-approximation for Dec-POMDPs is NEXP-
hard (Rabinovich, Goldman, & Rosenschein 2003). While
locally optimal methods can deal with problem complex-
ity (Nair et al. 2003), no sharp guarantees can be given about
quality. Attempts to simplify the general problem isolate
special sub-classes. Decentralized MDPs for which transi-
tions and observations are independent have reduced com-
plexity (Beckeret al. 2004). While such problems are still
NP-complete, specialized methods solve many reasonably-
sized problems. Rather than focus on such special cases, we
investigate general application of optimal methods, quanti-
fying problem difficulty in a non-domain-specific manner.

We combine ideas from a number of areas. In game
theory, bounding the influence agents have on overall re-
ward can simplify the equilibria calculation (Kearns & Man-
sour 2002). In decentralized MDPs, it has been suggested
that complexity increases with the “degree of interaction”
between agents (Shen, Becker, & Lesser 2006). Further,
performance of learning methods for single-agent MDPs
is inversely proportional to information-theoretic measures
of system dynamics (Ratitch & Precup 2002). Combin-
ing these ideas, we show how restricting agent effects on
system dynamics, measured information-theoretically, cor-
relates with improved solution performance.

Dynamic Programming for Dec-POMDPs

We study the algorithm presented by Hansen, et al. (2004),
the first optimal dynamic programming (DP) method for
Dec-POMDPs. The algorithm combines DP for single-
agent POMDPs, using incremental policy search and prun-
ing, with iterated elimination of dominated strategies.

Decentralized POMDPs
A Dec-POMDP is specified formally in terms of a tuple:

M = 〈{αi}, S, {Ai}, P, {Ωi}, O, R, T 〉

with individual components:

• Eachαi is an agent.

• S is a finite set of world states.

• Ai is a finite set of actions available toαi.

• P is a Markovian state-transition probability function.

• Ωi is a finite set of observations forαi.

• O is the observation function for state-action transitions.

• R is the global reward function.

• T is the finite time-horizon of the problem.

Existing research has primarily focussed upon the basic fea-
sibility of running exact and approximate algorithms, and
success has been measured in terms of the sizes of the sets
{αi}, S, {Ai}, and{Ωi} for the largest problems solved.
Nothing systematic has been determined about the relation-
ships between problem solutions and these values, but all
existing optimal methods solve only very small problem in-
stances (Seuken & Zilberstein 2005).

The Optimal Dynamic Programming Algorithm
Dec-POMDPs involve multiple agentsαi, taking actionsai

based on their local observationsoi, resulting in a joint re-
ward. With finite time horizont and n agents, we can
represent a solution as a sequence of depth-t policy trees,
δt = 〈qt

1, . . . , q
t
n〉. Each treeqt

i consists of nodes, labeled
with actions, and edges, labeled with observations. To im-
plement policy-treeqt

i , agentαi begins at the root, takes the
corresponding action, then follows the branch labeled with
the ensuing observation, repeating the process fort steps.

Unfortunately, the process of arriving at some value-
maximizing δt is made difficult by doubly exponential
growth in the set of all depth-t trees,Qt. Even for a very
simple problem, this number quickly grows so large that ex-
haustive enumeration becomes infeasible.

Since we cannot simply search the entire space of pos-
sible depth-t policies, the DP algorithm instead selectively
prunes away policies as it goes. (In effect, at each iteration,
an agent keeps only those policies that arebest responses
to some possible policy of the other agent.) We generate
depth-t + 1 policy-trees inQt+1 by considering all possi-
ble action/observation-transitions into depth-t trees inQt.
Thus, the elimination of treeq? at one time-step in the solu-
tion method means that all later trees featuringq? as a sub-
tree are never considered, implicitly eliminating them allin
advance. Early pruning of trees promises exponential elimi-
nation of possibilities later on.

Backup and Value Calculation The DP program is given
a setQt

i of depth-t policy-trees for each agentαi. Each
agent also possesses a setVt

i of value vectors, one for each
tree qt

i ∈ Qt
i. For a Dec-POMDP problem with a state-

setS, and lettingQt
−i = {Qt

j | j 6= i}, each value vec-
tor vk ∈ Vt

i is of dimension
∣

∣S × Qt
−i

∣

∣, and gives the

value of following policy-treeqk ∈ Qt
i, for each possible

start-states ∈ S and sequence of policy-trees for other
agents〈q1, . . . , qi−1, qi+1, . . . , qn〉 ∈ Qt

−i. Based on the
action-transition, observation, and reward model of the Dec-
POMDP, the algorithm then exhaustively generates the next
set of treesQt+1

i for each agent. OnceQt+1

i has been gen-
erated for eachi, the next-stage value vectorsVt+1

i are also
calculated. Note that each such vector will now be of higher
dimension than before, rising to size

∣

∣S × Qt+1

−i

∣

∣.

Iterated Pruning To determine the value of a policy-tree
for agentαi, we consider that agent’sbelief about the start-
state of the environment and the policies of other agents.
This belief is represented as a set of possible probability-
distributions,∆(S × Qt

−i). We then want to prune policy-
trees which aredominatedrelative to any possible belief, in
the sense that some other policy-tree does just as well or bet-
ter against any of the other agents’ current possible policy-
trees. That is, we trim out any policy that is less valuable
than any other given any possible belief, eliminating it from
the policy-set, and eliminating the associated value vector
along with it. The first step in this process uses linear pro-
gramming to efficiently find a dominated policy-tree. This is
carried on iteratively for each agentαi in turn, looping until
no more policies are eliminated.

Output Policy At the end of one step of the algorithm,
we have generated the set of possibly valuable depth-t + 1
policy-trees for each agent. We repeat this process until we
reach the time-horizon of the problem. The result is then
a collection of policy-trees, each of which is provably op-
timal for some initial belief-distribution over possible start-
ing states of the Dec-POMDP. For any problem instance in
which we are given each agent’s starting belief about what
that state may be, we can calculate the value of each policy-
tree relative to that particular belief, by simple normaliza-
tion. The final output is then simply a sequence of depth-t
policy-trees,δt = 〈qt

1, . . . , q
t
n〉, each of which maximizes

the value for the given agent, which can be shown to com-
prise an optimal policy for the overall Dec-POMDP.

Hypotheses and Experimental Methods

Our work investigates how the structure of Dec-POMDPs
affects the performance of optimal dynamic programming.
While we study DP in particular, the work is of more gen-
eral interest, since it may well be that the intrinsic difficulty
of various problem sub-classes translates over different solu-
tion techniques. Of course, if this turns out not to be so, that
is also interesting, since it provides insight into the ability of
various algorithms to deal with specific problems; establish-
ing problem classes that are easier for dynamic program-
ming is then a necessary first step in seeing whether these
classes are the same across methods.

The complexity of solving a Dec-POMDP is reduced
when agent actions affect their own local portion of the state-
space independently (Beckeret al. 2004). That work then
applies a specialized algorithm to such problems, showing
that it could perform quite well on some cases, although
it is not applicable to Dec-POMDPs in general. An open

question is then how existinggeneral algorithms fare on
transition-independent problems. One hypothesis is that
such problems, since they essentially allow agents to ignore
some of the others’ actions, would cause performance to im-
prove in the policy-comparison and pruning stages of DP. A
contrary hypothesis was that independent transitions would
make little difference in terms of practical solution ability,
since the overall effect would be too small.

Interestingly enough, neither seems to be correct. Our
initial tests compared two classes of sample problems, some
with transition-independence and some without. All other
features of the problem remain the same. Over the few hun-
dred test instances we examined, we were surprised to ob-
serve that in fact the performance is on average markedly
better for problems in which the transitions are not indepen-
dent. This result is not definitive, in that we would need
to vary other factors controlling the structure of the prob-
lems (rewards and observation functions in particular) to de-
termine the exact combinations of features that produce the
observed effects. However, it does in fact falsify the prelim-
inary hypothesis, as it shows that making a fixed problem
instance transition-independent can actually negativelyim-
pact the capacity to solve it using DP. Based on this initial
data exploration, our work thus replaces the initial hypothe-
ses with a more general claim: if the transition and reward
modelsbound influence between agents, the resulting Dec-
POMDP is more often easier to solve optimally.

Problem Domain

Our experimental work utilizes variations on a simplenoisy
broadcast channelproblem. In the original version of the
problem, two agents access a single channel, attempting to
send packets without collision. Packets arrive stochastically,
and agents can choose whether or not to send a waiting
packet at each time-step, receiving a positive reward only
when the packet is sent without collision. Any packets not
sent when another arrives are lost; agents observe only their
own packet-state, and whether or not there was a collision
after a packet is sent. While this problem is extremely sim-
ple, it demonstrates the sheer complexity of Dec-POMDPs;
as outlined by Seuken and Zilberstein (2005), existing opti-
mal solution algorithms can only solve such problems over
a very limited time-horizon (3–4 steps) before the computa-
tional burden grows too large. As described below, we sys-
tematically vary the reward function, and the sorts of state-
action transitions seen, producing a wide range of possible
distinct instances of the basic broadcast domain.

Performance Measures

Our primary independent variable measures performance of
the DP algorithm in terms ofPolicy-Depth, the number of fi-
nite time steps in the policy that the algorithm can produce.
As described, this performance is limited by the potential
for exponential explosions in problem size as policies ex-
tend to longer time-horizons. We measure how many such
steps the algorithm can generate before it runs into such un-
reasonably large policy-sets, cutting things off at a pre-set
depth if it appears the problem is trivial. (In such cases, the

iterative algorithm can produce policies of effectively arbi-
trary length, since the problem is so simple.) This provides
the primary measure of the algorithm’s success.

Dec-POMDP Structure: Influence Gap
Initial data exploration considered many possible depen-
dent variables, attempting to find structural features corre-
lated with problem difficulty, and focussing especially on the
degree of influence and interaction between agents. After
much investigation, we devised a means for grading the dif-
ference between agent effects upon system dynamics, called
the influence gap. This gap is given by first determining
the effect each agent has on either the state transitions or
one-step joint rewards, measured in an information-theoretic
manner. These measures are defined below for the two agent
case; each is easily extended ton-agent problems.

Definition 1 (State-influence). For agentαi in a 2-agent
Dec-POMDP,D, thestate-influenceof αi, SIi, is given by
the mutual information between that agent’s actions (taken
as a random variable), and the outcome state variable:

SIi = I(S;Ai) =
∑

s∈S

∑

ai∈Ai

p(s | ai)p(ai) log
p(s | ai)

p(s)

where we marginalize to get:

p(s | ai) =
∑

s′∈S

∑

aj∈Aj

P (s | s′, ai, aj)p(s′)p(ai)p(aj)

p(s) =
∑

ai∈Ai

p(s | ai)p(ai).

Definition 2 (Reward-influence). For any agentαi in a 2-
agent Dec-POMDP,D, the reward-influenceof αi, RIi, is
given by the mutual information between that agent’s actions
(taken as a random variable), and the single-step reward:

RIi = I(R;Ai) =
∑

r∈R

∑

ai∈Ai

p(r | ai)p(ai) log
p(r | ai)

p(r)

where we marginalize to get:

p(r | ai) =
∑

s∈S

∑

aj∈Aj

p(r | s, ai, aj)p(s)p(ai)p(aj)

p(r) =
∑

ai∈Ai

p(s | ai)p(ai)

and use the definition:

p(r | s, ai, aj) =

{

1 if R(s, ai, aj) = r [R(·) ∈ D];

0 otherwise.

(Note that in both definitions, we treat starting states and
actions as occurring uniformly; for instance,p(s) = 1

|S| .)
These two values thus give an information-theoretic mea-

sure of how much an agent’s actions tell about the values of
the state-transition and reward functions. Note that mutual
information is always non-negative, and so bothSIi ≥ 0
andRIi ≥ 0. WhenSIi = 0, agentαi has no effect upon

state-transitions; given that agent’s action, the outcomestate
is either purely random (ifSj = 0), or is influenced only by
agentαj . A similar point holds for the caseRi = 0. We
take the sum,(SIi + RIi), to measure thecombined influ-
encethat agentαi can have on the system dynamics. The
absolute difference between these quantities measures the
difference between how much each agent affects the system.
Definition 3 (Influence Gap). For any 2-agent Dec-
POMDP,D, the influence gap, IG(D), is the difference be-
tween the total influence exerted over the system by each
agent:

IG(D) = |(RI1 + SI1) − (RI2 + SI2)| [α1, α2 ∈ D].

To test how this measure correlates with algorithm per-
formance, we generate a wide range of problem instances,
covering the full range of possible influence gaps. Further,
we have set up an automated system for problem-generation
and dynamic programming. For a basic Dec-POMDP frame-
work determined by a fixed number of agents, actions, lo-
cal states and reward combinations, the maximum possible
value of an individual agent’s influence (RIi + SIi) can be
calculated straightforwardly; furthermore, all such values
are bounded below by 0. This provides a range of possi-
ble values for each measure, and also a range for the gap
between them. Such a range can then be divided into a set of
intervals, and the automated system can be set to randomly
generate problem instances while also making sure that we
consider a sufficiently large number that fall inside each of
these intervals. We can then employ statistical model-fitting
methods to explore whether or not there is in fact a connec-
tion between dependent and independent variables.

The main hypothesis is that as the difference between the
maximum and minimum effects of individual agent actions
grows, the problems will become easier to solve, and the
algorithm will be able to generate policies for longer and
longer time horizons. Intuitively, a large influence gap cor-
responds to a case in which some agent has increasing con-
trol of the outcomes in the system, and the resulting problem
can be considerably easier to solve.

Experimental Results
We ran a large set of experiments over Dec-POMDPs of
varying basic types, to see how influence gap corresponded
with algorithm performance. Results suggest a strong corre-
lation between widening influence gap and ease of solution.
Our test-bed consisted of 900 distinct two-agent broadcast
problems, divided into three main groups (of 300 instances
each) based on their transition matrices:
Random non-independent instances:Transitions gener-

ated at random (must be valid probability distributions).

Independent instances:Transition probabilities were gen-
erated randomly, but constrained so that they could be fac-
tored into independent components for each agent.

Single-agent instances:Transition probabilities were gen-
erated randomly, but constrained so only the first agent
had any influence (i.e., state-influenceSI2 = 0).

In each class of 300 instances, there were three subclasses,
of 100 instances each, divided based on the reward matrices:

Random non-equal instances:The reward matrix for joint
actions was selected uniformly from the set{1, 0}.

Fixed equal instances:The reward matrix of the original
broadcast problem was utilized; each agent had an equal
influence upon reward (RI1 = RI2 = 0.0338).

Fixed single-agent instances:Only the first agent had any
influence over rewards (RI1 = 0.2158, RI2 = 0).

Given this range of cases, we calculated state- and reward-
influence for each agent, and the influence gap between
them. For each problem instance, DP was run as usual.
Performance was measured by running until the number of
policy-trees for any agent exceeded 1200, at which point fur-
ther progress was infeasible, given time and memory con-
straints. If a problem was solved to 100 iterations, the pro-
gram terminated; such performance indicates a trivial (or
nearly trivial) instance, for which continued explorationis
no longer interesting, since it is effectively possible to iter-
ate indefinitely. The number of iterations before the limit
was hit therefore ranged between 3 and 100.

Initially, we analyzed our results to see whether the num-
ber of iterations possible correlated in some direct fashion
with the influence gap measure. No such immediate rela-
tionship was found, but influence gap does in fact correlate
with theproportionof problems that are solvable to various
degrees. Solutions fell into three main classes:

Hard: Only 3–4 step solutions possible; interestingly, 4
steps is the prior best limit of optimal methods, suggesting
that prior research concentrates on the hardest instances.

Medium: More than 4 steps are possible, but the problem is
not trivial. 93% of such problems fell in the range[5, 9];
(nearly all the remainder fall in the range[10, 19], with
just 2 outliers solved to 32 iterations); while not much
greater than the hard problems, it does mark a two-fold
increase over best prior results.

Easy: A full 100 steps (or more) are possible.

Additionally, the influence gap measure fell into four natu-
ral classes, each of which comprised relatively equal propor-
tions of the space of all problem instances:

Zero: Agents exercised the same amount of influence.

Small: A difference in the range(0, 0.05).

Medium: A difference in the range[0.05, 0.2).

Large: A difference up to the maximum, in[0.2, 0.394].

We measure how problems in each class of influence gap fall
into the various difficulty classes; results indicate that prob-
lems with large influence gaps will be proportionately eas-
ier, whereas problems where the difference between agent
influences approaches 0 are proportionately harder. Before
presenting those results, however, we exclude a certain sub-
class of problems that otherwise threaten to unfairly skew
the numbers in our favor.

In some cases, one agentαi has no influence at all
(SIi + RIi = 0). In such instances, analysis shows that the
Dec-POMDP is equivalent to a single-agent problem; prac-
tically, this has the effect that all such broadcast problemin-
stances are easily solved. At the same time, it tends to make

Variable Unit Classes Range Prop. (%)
Gap nats Zero 0 0.282

Small (0, 0.05) 0.27
Medium [0.05, 0.2) 0.22
Large [0.2, 0.394] 0.228

Steps Iterations Hard 3–4 0.407
Medium 5–32 0.216

Easy 100+ 0.377

Table 1: Classes of the main variables, and their proportions.

0

20

40

60

80

100

120

140

160

N
um

be
r

of
 in

st
an

ce
s

Categories of instances for each range of information gap (non-0 cases)

EH M H M E H M E H M E
0 Gap Small Gap Large GapMed. Gap

Figure 1: Instances in each range of difficulty, for each gap.

influence gaplarger, sinceIG(D) is then equal to the entire
influence of the other agent. As we discovered after the fact,
if such cases are not excluded, the effect of influence gap on
difficulty seems even more pronounced. Such single-agent
problems are a special, degenerate case, however, and do
not reflect a truly multiagent problem. So as not to favor-
ably bias our results, the final numbers exclude such cases,
and are based on 755 remaining instances; Table 1 outlines
the categories into which we divided our variables, and their
proportion among total cases.

Figure 1 compares the four categories of influence gap,
showing the proportion of each set of problems falling into
each difficulty class. Evidently, there is a trend towards a
higher number of easier problems as the gap between agent
influences increases. When the influence gap is 0, the ma-
jority (68.5%) of the problems are of the hardest type, solv-
able only up to at most 4 iterations; the remainder divide al-
most evenly between medium and easy problems, with 15%
falling into the latter class. As the gap increases, the propor-
tions reverse themselves. When the influence gap falls into
the large range, most of the problems (69.8%) fall into the
easy difficulty class, whereas only a few (4.1%) are hard.

These results confirm that there is a correlation be-
tween influence gap and problem difficulty for general Dec-
POMDPs. Some research in multiagent systems has sug-
gested that increasing the centralization of control can lead
to simplified planning (Georgeff 1984). This intuitive idea,
often observed in practice, is given support by our results.In
a precise sense, an increasing influence gap reflects a con-
centration of control more and more in the hands of one
agent; as we have shown, this tends to lead to problems that

0

20

40

60

80

100

120

140

160

N
um

be
r

of
 in

st
an

ce
s

Information gaps for random- and independent-transition instances

M0 S L 0 S M L
Random Independent

Figure 2: Instances in each range of influence gap for the
two types of transitions.

are easier to solve in an optimal fashion.
Furthermore, our results also help account for other ob-

served phenomena that are otherwise somewhat surpris-
ing. As already discussed, it had originally been hypoth-
esized that the special subclass of transition-independent
Dec-POMDPs, to which specialized algorithms had previ-
ously been applied, would turn out to be somewhat easier
to solve using the general DP method (especially since they
were of a lower complexity class). Contrary to this hypothe-
sis, however, it was found that in fact more problems featur-
ing independent transition matrices were difficult than were
those featuring dependencies in the matrices.

We are now in a position to explain this result. If influ-
ence gap and proportionate difficulty are indeed correlated,
we would expect that the larger proportion of hard problems
means that more of the independent problems have small
influence gaps. Indeed, this is confirmed, as shown in Fig-
ure 2, which compares problems based on type of transition-
matrix (excluding the single-agent transition problems, so
we compare just 600 instances here). More independent
problems (49.7%) feature a 0-level influence gap than do
non-independent problems (18%). More of the indepen-
dent problems (34.1%) also exhibit large gaps than do the
non-independent cases (25.2%), but that difference is less
pronounced. While transition-independent problems do fall
into a lower worst-case complexity class, a large proportion
of them still fall into the hardest class. The fact that this pro-
portion accords with prediction is further evidence for the
correlation between influence gap and difficulty.

Applicability and Limitations
Two main questions remain with this work. First, we need to
consider other aspects of problem dynamics and agent inter-
action that might influence problem difficulty. In particular,
we need to examine how theobservation modelaffects the
performance of solution algorithms. In this work, we con-
centrated solely upon transitions and reward, in order to try
to isolate their effect on problem difficulty. We plan to con-
tinue our work in this area, varying the other main dimen-
sion of problem dynamics. It is hoped that we can gain even

greater predictive power when agent influence over observa-
tions is added into our measure.

We also need to extend our tests to larger, more compli-
cated problem instances. While the several hundred versions
of the basic broadcast domain, with distinct transition and
reward models, assures us that our results are not tied to a
single test-problem, there is still the issue of size. On this
point, we can only say that we expect difficulty will con-
tinue to correlate with influence gap: it may just be that more
problems lie in the strictly infeasible range. Extending our
work to problems with more than two agents is somewhat
more complicated, as there are a number of possibilities as
to how influence gap should be defined. Preliminary results
suggest that this is best handled as thepairwise minimumof
influence gaps, but more work is needed.

Conclusions and Future Work
Our experimental work demonstrates a connection between
the information-theoretic influence gap measure and the ease
with which a Dec-POMDP can be solved using dynamic
programming. As the gap between agent influences widens,
more problems become easier to solve, although some still
remain of the hardest difficulty. As the gap tightens, so that
agents exert the same (non-zero) amount of influence, more
problems become difficult, although some are still easily
solved. This suggests some further factor in the dynamics
of system performance that interacts with algorithm perfor-
mance. Ongoing work pursues such further factors, and ex-
tends current results to problems with more interesting struc-
ture than the relatively simple instances considered here.

At the same time, our measure is of real interest. Prior re-
search on exact algorithms for Dec-POMDPs has tended to
generate largely negative results, as even simple problems
are found to be difficult to solve optimally. The usual re-
sponse has been to turn to approximate methods, for which
exact performance guarantees are not readily available, or
to special algorithms only applicable to particular restricted
subcases. Influence gap can be easily and automatically cal-
culated in advance, for any Dec-POMDP whatsoever. Since
a large gap correlates with problems that tend to be easier to
solve, it can be used as a means of sorting out instances to
which optimal methods are more likely to be applicable.

In addition, such a measure could serve as a heuristic
in algorithms that seek to simplify Dec-POMDP problems.
Work in multiagent systems has explored various organiza-
tional structures, including hierarchical control or taskde-
composition, investigating how well they produce good so-
lutions. In practice, however, finding the best such structures
and decompositions is often as difficult as solving the orig-
inal problem—if not more so—given the sheer number of
ways in which a problem can be decomposed, or the profu-
sion of possible distinct control hierarchies. A measure like
influence gap suggests itself here. When considering differ-
ent control hierarchies, for instance, one might first examine
the solutions generated by task distributions that maximize
influence gap, since it will tend to be easier to determine the
actual value of the associated policy.

Finally, while some preliminary work has sought to as-
sociate the general structure of agent interactions with the

complexity of multiagent tasks (Shen, Becker, & Lesser
2006), there has not yet been much precise analysis of these
interactions. This work is a first step in just that direction.

Acknowledgments
Work contained here was supported in part by National Sci-
ence Foundation under grant number IIS-0535061 and by
the Air Force Office of Scientific Research under grant num-
ber FA9550-05-1-0254. Any opinions, findings, and conclu-
sions or recommendations expressed are those of the authors
and do not reflect the views of the granting agencies.

References
Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman, C. V.
2004. Solving transition independent decentralized MDPs.
Journal of Artificial Intelligence Research22:423–455.
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilber-
stein, S. 2002. The complexity of decentralized control
of Markov decision processes.Mathematics of Operations
Research27(4):819–840.
Georgeff, M. 1984. A theory of action for multi-agent plan-
ning. InProceedings of the Fourth National Conference on
Artificial Intelligence, 121–125.
Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004.
Dynamic programming for partially observable stochastic
games. InProceedings of the Nineteenth National Confer-
ence on Artificial Intelligence, 709–715.
Kearns, M., and Mansour, Y. 2002. Efficient Nash compu-
tation in large population games with bounded influence. In
Proceedings of the Eighteenth Conference on Uncertainty
in Artificial Intelligence, 259–266.
Nair, R.; Tambe, M.; Yokoo, M.; Pynadath, D.; and
Marsella, S. 2003. Taming decentralized POMDPs: To-
wards efficient policy computation for multiagent settings.
In Proceedings of the Eighteenth International Joint Con-
ference on Artificial Intelligence, 705–711.
Rabinovich, Z.; Goldman, C. V.; and Rosenschein, J. S.
2003. The complexity of multiagent systems: The price of
silence. InProceedings of the Second International Joint
Conference on Autonomous Agents and Multi-Agent Sys-
tems, 1102–1103.
Ratitch, B., and Precup, D. 2002. Characterizing Markov
decision processes. InProceedings of the Thirteenth Euro-
pean Conference on Machine Learning, 391–404.
Seuken, S., and Zilberstein, S. 2005. Formal models
and algorithms for decentralized control of multiple agents.
Technical Report UM-CS-2005-68, University of Mas-
sachusetts, Amherst, Department of Computer Science.
Shen, J.; Becker, R.; and Lesser, V. 2006. Agent Interaction
in Distributed MDPs and its Implications on Complexity.
In Proceedings of the Fifth International Joint Conference
on Autonomous Agents and Multi-Agent Systems, 529–536.
Szer, D.; Charpillet, F.; and Zilberstein, S. 2005. MAA*:
A heuristic search algorithm for solving decentralized
POMDPs. InProceedings of the Twenty-First Conference
on Uncertainty in Artificial Intelligence, 576–583.

