
Knowledge-based Sequential Decision Making under Uncertainty: A Survey

Shiqi Zhang1 , Mohan Sridharan2 ∗

1SUNY Binghamton, USA
2University of Birmingham, UK

zhangs@binghamton.edu; m.sridharan@bham.ac.uk

Abstract
Reasoning with declarative knowledge (RDK) and
probabilistic sequential decision-making (SDM)
are important for reliable and robust autonomy
in complex domains. In this paper, RDK refers
to methods that reason with declarative domain
knowledge, including commonsense knowledge,
that is either provided a priori or acquired over
time. SDM refers to probabilistic planning and re-
inforcement learning methods, which compute ac-
tion policies that maximize the expected cumula-
tive utility over a time horizon towards achieving a
goal. Despite the rich literature in these areas, re-
searchers have not fully explored their complemen-
tary strengths. In this paper, we survey algorithms
that leverage RDK methods while making sequen-
tial decisions under uncertainty. We discuss signif-
icant developments, open problems, and directions
for future work. (A longer version of this paper
will appear in the AI Magazine)

1 Introduction
Agents operating in complex domains often have to execute
a sequence of actions to complete tasks with minimal human
supervision. These domains are characterized by incomplete
knowledge, non-deterministic action outcomes, and partial
observability, with sensing, reasoning, and actuation associ-
ated with varying levels of uncertainty. Many methods devel-
oped for reliable and robust autonomy in such domains sup-
port probabilistic sequential decision making (SDM) and/or
reasoning with declarative knowledge (RDK). Any mention
of SDM in this paper is a reference to algorithms that en-
able an agent to compute action policies that map the cur-
rent state (or the agent’s estimate of it) to an action. More
specifically, we consider probabilistic planning and rein-
forcement learning methods that model uncertainty proba-
bilistically and enable the agent to choose actions that maxi-
mize long-term utilities towards achieving a desired goal.

SDM methods, by themselves, find it difficult to make best
use of commonsense knowledge that is often available in any

∗This survey is based on a tutorial, titled “Knowledge-based Se-
quential Decision-Making under Uncertainty”, presented by the au-
thors at the AAAI Conference in 2019.

given domain. This knowledge includes default statements
that hold in all but a few exceptional circumstances, e.g.,
“books are usually in the library but cookbooks are in the
kitchen”, but may not necessarily be natural or easy to rep-
resent quantitatively (e.g., probabilistically). It also includes
information about domain objects and their attributes, agent
attributes and actions, and rules governing domain dynam-
ics. In this paper, we use declarative knowledge to refer to
such knowledge represented as relational statements. Many
methods have been developed for RDK, often using logics.
These methods, by themselves, do not support or use prob-
abilistic models of uncertainty while computing a sequence
of actions to achieve any given goal, whereas a lot of infor-
mation available to agents in dynamic domains is represented
quantitatively to model the associated uncertainty.

For many years, the development of RDK and SDM meth-
ods occurred in different communities that did not have a
close interaction with each other. Sophisticated algorithms
have been developed, more so in the last couple of decades,
to combine the principles of RDK and SDM. However, even
these developments have occurred in different communities,
e.g., statistical relational AI, logic programming, reinforce-
ment learning, and robotics. Also, these algorithms have not
always considered the needs of agents in dynamic domains,
e.g., reliability and computational efficiency while reasoning
with incomplete knowledge. As a result, the complementary
strengths of RDK and SDM methods have not been fully ex-
ploited, and figuring out how best to combine the principles of
RDK and SDM remains an open grand challenge in AI, with
connections to deep philosophical questions about the repre-
sentation, manipulation/use, and acquisition of knowledge in
humans and machines. This survey paper seeks to stimulate
cross-pollination of ideas between the communities working
on different aspects of this grand challenge, by highlighting
the key achievements and open problems. To achieve this ob-
jective while keeping the list of related papers manageable,
we limit our scope to algorithms that use RDK to facilitate
SDM, and focus on the following question:

How best to reason with declarative knowledge for
sequential decision making under uncertainty?

We also limit our attention to algorithms developed for an
agent making sequential decisions under uncertainty in dy-
namic domains. Furthermore, to explain the key concepts, we
often draw on our expertise in developing such methods for

Sequential Decision Making (SDM) under Uncertainty

Probabilistic Planning
(MDPs, POMDPs, etc)

Reinforcement Learning
(Model-free, Model-based, etc)

Reasoning with Declarative
Knowledge (RDK)

How best to facilitate
SDM via RDK?

ActionState, reward

Figure 1: An overview of this survey: reasoning with declarative
knowledge (RDK) for sequential decision making (SDM).

robots. Figure 1 provides an overview of the survey’s theme.
For more details, please see the extended version of this pa-
per [Zhang and Sridharan, 2020].

2 Background
We begin by briefly introducing key concepts related to the
RDK and SDM methods that we consider in this paper.

2.1 Reasoning with Declarative Knowledge
We consider a representation of commonsense knowledge in
the form of statements describing relations between domain
objects, domain attributes, actions, and axioms (i.e., rules).
Historically, declarative paradigms based on logics have been
used to represent and reason with such knowledge. This
knowledge can also be represented quantitatively, e.g., using
probabilities, but this is not always meaningful, especially in
the context of statements of default knowledge such as “peo-
ple typically drink a hot beverage in the morning” and “of-
fice doors usually closed over weekends”. In this survey, any
mention of RDK refers to the use of logics for representing
and using such domain knowledge for inference, planning,
and diagnostics. Planning and diagnostics in the context of
RDK refer to classical planning, i.e., computing a sequence
of actions to achieve any given goal, monitoring the execu-
tion of actions, and replanning if needed. This is different
from probabilistic planning that computes and uses policies to
choose actions in any given state or belief state (Section 2.2).

Prolog was one of the first logic programming lan-
guages [Colmerauer and Roussel, 1996], encoding domain
knowledge using statements describing relations and axioms.
Inferences are drawn by running a query over the knowledge.
An axiom/rule in Prolog is of the form:

Head :- Body

and is read as “Head is true if Body is true”. For instance, the
following rule states that all birds can fly.

fly(B) :- bird(B)

Rules with empty bodies are called facts. For instance, we
can use “bird(tweety)” to state that tweety is a bird. Rea-
soning with this fact and the rule given above, we can in-
fer that “fly(tweety)”, i.e., tweety can fly. Research in

RDK using logics dates back at least to the 1950s; it has
produced many knowledge representation paradigms and lan-
guages, e.g., First Order Logic, Lambda Calculus [Barendregt
and others, 1984], Web Ontology Language [McGuinness et
al., 2004], and LISP [McCarthy, 1978].

Incomplete Knowledge In most practical domains, it is in-
feasible to provide comprehensive domain knowledge. Rea-
soning with the incomplete knowledge can result in incor-
rect or sub-optimal outcomes. Many logics have been de-
veloped for reasoning with incomplete declarative knowl-
edge. One representative example is Answer set program-
ming (ASP), a declarative paradigm [Gebser et al., 2012;
Gelfond and Kahl, 2014]. ASP supports default negation
and epistemic disjunction to provide non-monotonic logical
reasoning, i.e., unlike classical first order logic, it allows an
agent to revise previously held conclusions. An ASP program
consists of a set of rules of the form:

a :- b, ..., c, not d, ..., not e.

where a...e are literals, and not represents default nega-
tion; not d implies that d is not believed to be true, which is
different from saying that d is false. Each literal can be true,
false or unknown. An agent with a program comprising such
rules only believes that which it is forced to believe.

Action Language Action languages are formal models of
part of natural language used for describing transition dia-
grams, and many action languages have been developed and
used in robotics and AI. This includes STRIPS [Fikes and
Nilsson, 1971], PDDL [McDermott et al., 1998], and those
with a distributed representation such as ALd [Gelfond and
Inclezan, 2013]. The following shows an example of using
STRIPS to model an action stack whose preconditions re-
quire that the robot be holding object X and that object Y be
clear. After executing this action, object Y is no longer clear
and the robot is no longer holding X.

operator(stack(X,Y),
Precond [holding(X),clear(Y)],
Add [on(X,Y),clear(X)],
Delete [holding(X),clear(Y)])

Given a goal, e.g., on(b1,b2), which requires block b1 to be
on b2, the action language description, along with a descrip-
tion of the initial/current state, can be used for planning a
sequence of actions that achieve this goal.

Hybrid Representations Logic-based knowledge repre-
sentation paradigms typically support Prolog-style statements
that are either true or false. By themselves, they do not
support reasoning about quantitative measures of uncer-
tainty, which is often necessary for the interactions with
SDM paradigms. As a result, many RDK-for-SDM meth-
ods utilize hybrid knowledge representation paradigms that
jointly support both logic-based and probabilistic represen-
tations of knowledge; they do so by associating probabili-
ties with specific facts and/or rules. Over the years, many
such paradigms have been developed; these include Markov
Logic Network (MLN) [Richardson and Domingos, 2006],
Bayesian Logic [Milch et al., 2006], probabilistic first-order
logic [Halpern, 2003], PRISM [Gorlin et al., 2012], inde-
pendent choice logic [Poole, 2000], ProbLog [Fierens et al.,

2015; Raedt and Kimmig, 2015], KBANN [Towell and Shav-
lik, 1994], and P-log, an extension of ASP [Baral et al.,
2009]. We will discuss some of these later in this paper.

2.2 Sequential Decision Making
We consider two classes of SDM methods: probabilistic
planning (PP) [Puterman, 2014] and reinforcement learning
(RL) [Sutton and Barto, 2018]. A common assumption in
these methods is the first-order Markov property, i.e., the as-
sumption that the next state is conditionally independent of
all previous states given the current state. Also, actions are
assumed to be non-deterministic, i.e., they do not always pro-
vide the expected outcomes, and the state is assumed to be
fully or partially observable. Unlike classical planning (Sec-
tion 2.1), these methods compute and use a policy that maps
each possible (belief) state to an action to be executed in that
(belief) state towards achieving a goal.
Probabilistic Planning If the state is fully observable, PP
problems are often formulated as a Markov decision process
(MDP) described by a four-tuple 〈S,A, T,R〉 whose ele-
ments are the set of states, set of actions, the probabilistic
state transition function T : S ×A× S ′ → [0, 1], and the re-
ward specification R : S ×A×S ′ → <. The MDP is solved
to maximize the expected cumulative reward, resulting in a
policy π : s 7→ a that maps states to actions. The agent then
repeatedly invokes the policy and executes the corresponding
action until the goal is reached.

If the current world state is not fully observable, PP
problems can be modeled as a partially observable MDP
(POMDP) [Kaelbling et al., 1998] that is described by a six-
tuple 〈S,A, Z, T,O,R〉, whereZ is a set of observations, and
O : S × A × Z → [0, 1] is the observation function; other
elements of the tuple are defined as in the case of MDPs. The
agent maintains a belief state, a probability distribution over
the underlying states. The POMDP is solved to maximize
the expected cumulative reward over a time horizon, with the
output being a policy π : b 7→ a that maps beliefs to actions.
To achieve the desired goal, the agent then repeatedly invokes
the policy, executes the corresponding actions, obtains obser-
vations, and revises the belief state through Bayesian updates:

b′(s′) =
O(s′, a, o)

∑
s∈S T (s, a, s

′)b(s)

pr(o|a, b)

where b, s, a, and o represent belief state, state, action, and
observation respectively; and pr(o|a, b) is a normalizer.
Reinforcement Learning Agents frequently have to make
sequential decisions with an incomplete model of domain dy-
namics (e.g., without R, T , or both), making it infeasible to
use classical PP methods. Under such circumstances, RL al-
gorithms can be used by the agent to explore the effects of
executing different actions, learning a policy mapping states
to actions to be executed to achieve a goal [Sutton and Barto,
2018]. The underlying formulation is (or can be reduced un-
der certain constraints to) that of an MDP.

There are at least two broad classes of RL methods: model-
based and model-free. Model-based RL methods enable
an agent to learn a model of the domain, e.g., R(s, a) and
T (s, a, s′) in an MDP, from the experiences obtained by the

agent by trying out different actions in different states. Once
a model of the domain is learned, the agent can use PP meth-
ods to compute an action policy. Model-free RL methods, on
the other hand, do not learn an explicit model of the domain;
the policy is instead directly computed from the experiences
gathered by the agent. The standard approach to incremen-
tally update the value of each state is the Bellman equation:

vk+1(s) =
∑
a

π(a|s)
∑
s′,r

pr(s′, r|s, a)[r+ γvk(s
′)],∀s ∈ S

where v(s) is the value of state s, and γ is a discount factor.
It is also possible to compute the values of state-action pairs,
i.e., Q(s, a), from which a policy can be computed.

3 RDK-for-SDM Methods
In this section, we review some representative RDK-for-SDM
systems by grouping them based on their primary contribu-
tions. First, Section 3.1 discusses some systems that primarily
focus on the knowledge representation challenges in RDK-
for-SDM. Sections 3.2- 3.3 then describe RDK-for-SDM sys-
tems in which the key focus is on the underlying reasoning
and knowledge acquisition challenges respectively. Note that
this grouping is based on our understanding of the key contri-
butions of each system; many of these systems include con-
tributions across the three groups as summarized in Table 1.

3.1 Representation-focused Systems
As stated in Section 2.1, many generic hybrid representations
have been developed to support both logic-based and proba-
bilistic reasoning with knowledge and uncertainty.

3.1.1 Unified RDK-for-SDM Representations
Developing a unified representation for RDK and SDM maps
to developing a unified representation for logical and proba-
bilistic reasoning, which continues to be a fundamental prob-
lem in robotics and AI. Frameworks and methods based on
unified representations provide significant expressive power,
but they impose a significant computational burden despite
ongoing work on developing more efficient (approximate)
reasoning methods for such paradigms.
Statistical Relational AI Some of the foundational work in
this area has built on work in statistical relational learning/AI.
These RDK-for-SDM methods typically use unified represen-
tations and differ based on the underlying design choices. For
instance, Markov Logic Networks (MLNs) combine prob-
abilistic graphical models and first order logic, assigning
weights to logic formulas [Richardson and Domingos, 2006];
these have been extended to Markov logic decision networks
by associating logic formulas with utilities in addition to
weights [Nath and Domingos, 2009]. In a similar manner,
Probabilistic Logic (ProbLog) programming annotates facts
in logic programs with probabilities and supports efficient in-
ference and learning using weighted Boolean formulas [Raedt
and Kimmig, 2015]. This includes an extension of the basic
ProbLog system, called Decision-Theoretic (DT)ProbLog, in
which the utility of a particular choice of actions is defined
as the expected reward for its execution in the presence of

probabilistic effects [den Broeck et al., 2010]. Another exam-
ple of an elegant (unified) formalism for dealing with degrees
of belief and their evolution in the presence of noisy sensing
and acting, extends situation calculus by assigning weights to
possible worlds and embedding a theory of action and sens-
ing [Bacchus et al., 1999]. This formalism has been extended
to deal with decision making in the continuous domains seen
in many robotics applications [Belle and Levesque, 2018].
Others have developed frameworks based on unified repre-
sentations specifically for decision theoretic reasoning, e.g.,
first-order relational POMDPs that leverage symbolic pro-
gramming for the specification of POMDPs with first-order
abstractions [Juba, 2016; Sanner and Kersting, 2010].

Classical Planning RDK-for-SDM systems based on unified
representations have also built on tools and methods in clas-
sical planning. Examples include PPDDL, a probabilistic ex-
tension of the action language PDDL, which retains the capa-
bilities of PDDL and provides a semantics for planning prob-
lems as MDPs [Younes and Littman, 2004], and Relational
Dynamic Influence Diagram Language (RDDL) that was de-
veloped to formulate factored MDPs and POMDPs [Sanner,
2010]. In comparison with PPDDL, RDDL provides better
support for modeling concurrent actions and for representing
rewards and uncertainty quantitatively.

Logic Programming RDK-for-SDM systems with a unified
representation have also been built based on logic program-
ming frameworks. One example is P-log, a probabilistic ex-
tension of ASP that encodes probabilistic facts and rules to
compute probabilities of different worlds represented as an-
swer sets [Baral et al., 2009]. P-log has been used to specify
MDPs for SDM tasks, e.g., for robot grasping [Zhu, 2012].
More recent work introduced a coherence condition that fa-
cilitates the construction of P-log programs and proofs of cor-
rectness [Balai et al., 2019]. One limitation of P-log, from the
SDM perspective, is that it requires the horizon to be provided
as part of the input; its use for probabilistic planning with in-
finite horizons requires a significant engineering effort.

3.1.2 Linked RDK-for-SDM Representations
RDK-for-SDM systems with linked (hybrid) representations
trade expressivity or correctness guarantees for computa-
tional speed, an important consideration if an agent has to re-
spond to dynamic changes in complex domains. These meth-
ods often use different levels of abstraction and link rather
than unify the descriptions of knowledge and uncertainty,
posing interesting questions about the choice of domain vari-
ables in each representation, and the transfer of knowledge
and control between the different reasoning mechanisms. For
instance, a robot delivering objects in an office building may
plan at an abstract level, reasoning logically with rich com-
monsense domain knowledge (e.g., about rooms, objects, and
exogenous agents) and cognitive theories. The abstract ac-
tions can be implemented by reasoning probabilistically at a
finer resolution about relevant domain variables (e.g., regions
in specific rooms, parts of objects, agent actions).

Switching Systems The simplest option for methods based
on linked representations is to switch between reasoning
mechanisms based on different representations for different

tasks. One example is the switching planner that uses ei-
ther a classical first-order logic planner or a probabilistic
(decision-theoretic) planner for action selection [Göbelbecker
et al., 2011]. This method used a combination of the
Fast-Downward [Helmert, 2006] and PPDDL [Younes and
Littman, 2004] representations. Another approach uses ASP
for planning and diagnostics at a coarser level of abstraction,
switches to using probabilistic algorithms for executing each
abstract action, and adds statements to the ASP program’s
history to denote success or failure of action execution; this
approach has been used for multiple robots in scenarios that
mimic manufacturing in toy factories [Saribatur et al., 2019].

Tightly-Coupled Systems There has been some work on
generic RDK-for-SDM frameworks that represent and rea-
son with knowledge and beliefs at different abstractions, and
“tightly couple” the different representations and reasoning
mechanisms by formally establishing the links between and
the attributes of the different representations. These methods
are often based on the principle of refinement. This princi-
ple has also been explored in fields such as software engi-
neering and programming languages, but without any theo-
ries of actions and change that are important in robotics and
AI. One recent approach examined the refinement of agent
action theories represented using situation calculus at two
different levels. This approach makes a strong assumption
of the existence of a bisimulation relation between the ac-
tion theories for a given refinement mapping between these
theories at the high-level and the low-level [Banihashemi
et al., 2018]. Recent work on a refinement-based archi-
tecture (REBA) in robotics considers transition diagrams of
any given domain at two different resolutions, with the fine-
resolution diagrams defined formally as a refinement of the
coarse-resolution diagram [Sridharan et al., 2019]. Non-
monotonic logical reasoning at the coarse-resolution with in-
complete commonsense domain knowledge provides a se-
quence of abstract actions to achieve any given goal. Each
abstract action is implemented as a sequence of concrete ac-
tions by automatically zooming to and reasoning probabilisti-
cally with automatically-constructed models (e.g., POMDPs)
of the relevant part of the fine-resolution diagram, adding rel-
evant observations and outcomes to the coarse-resolution his-
tory [Gomez et al., 2020]. The formal definition of refine-
ment, zooming, and the connections between the transition
diagrams enables smooth transfer of relevant information and
control, improving scalability to complex domains.

Cognitive Architectures Systems such as ACT-R [Anderson
and Lebiere, 2014], SOAR [Laird, 2012], ICARUS [Lang-
ley and Choi, 2006] and DIRAC [Scheutz et al., 2007] can
represent and draw inferences based on declarative knowl-
edge, often using first-order logic. These architectures typi-
cally support SDM through a linked representation, but some
architectures have pursued a unified representation for use in
robotics by attaching a quantitative measure of uncertainty to
logic statements [Sarathy and Scheutz, 2018].

There are many other RDK-for-SDM systems based on hy-
brid representations. In these systems, the focus is not on
developing new representations; they instead adapt or com-
bine existing representations to support interesting reasoning

and learning capabilities, as described below.

3.2 Reasoning-focused Systems
Next, we discuss some other representative RDK-for-SDM
systems in which the primary focus is on addressing related
reasoning challenges.

RDK Guiding SDM Many RDK-for-SDM systems use RDK
for planning a sequence of tasks to be completed, and imple-
ment each task by performing SDM based on the (encoded)
relevant information to execute a sequence of primitive ac-
tions. This includes many of the systems described in the
previous section and especially those developed for robotics
domains. For instance, an extension of the switching plan-
ner uses a three-layered organization of knowledge (instance,
default and diagnostic), with knowledge at the higher level
modifying that at the lower levels, and reasons with first-
order logic to guide probabilistic planning [Hanheide et al.,
2017]. Another example is the CORPP system that uses P-log
to generate informative priors for POMDP planning [Zhang
and Stone, 2015]. Other researchers have exploited factored
state spaces to develop algorithms that use manually-encoded
probabilistic declarative knowledge to efficiently compute in-
formative priors for POMDPs [Chitnis et al., 2018]. These
methods separate the variables modeled at different levels and
(manually) link relevant variables across the levels, improv-
ing scalability and dynamic response. All these systems rea-
son about actions and change in the RDK component, and
reason with state/belief states and world models for SDM.
They link the flow of information between the different rea-
soning mechanisms, often at different abstractions, but they
typically do not focus on developing (or extending) the under-
lying representations or on formally establishing properties of
the connections between the representations.

Dynamics Models for SDM In some RDK-for-SDM sys-
tems, the focus is on RDK guiding the construction or adap-
tation of the world models used for SDM. One example is
the extension of [Chitnis et al., 2018] that seeks to automat-
ically determine the variables to be modeled in the different
representations [Chitnis and Lozano-Pérez, 2020]. Another
example is the use of logical smoothing to refine past beliefs
in light of new observations; the refined beliefs can then be
used for diagnostics and to reduce the state space for plan-
ning [Mombourquette et al., 2017]. There is also recent work
on an action language called pBC+, which supports the def-
inition of MDPs and POMDPs over finite and infinite hori-
zons [Wang et al., 2019].

In some RDK-for-SDM systems, RDK and prior experi-
ences of executing actions in the domain are used to con-
struct domain models and guide SDM. For instance, symbolic
planning has been combined with hierarchical RL to guide
the agent’s interactions with the world, resulting in reliable
world models and SDM [Illanes et al., 2020]. In other work,
each symbolic transition is mapped (manually) to options,
i.e., temporally-extended MDP actions; RDK helps compute
the MDP models and policies, and the outcomes of execut-
ing the corresponding primitive actions help revise the values
of state action combinations in the symbolic reasoner [Yang
et al., 2018]. These systems use a linked representation, and

reason about dynamics in RDK and states and world models
in SDM. Other systems reason without explicit world mod-
els in SDM, e.g., the use of deep RL methods to compute the
policies in the options corresponding to each symbolic tran-
sition in the context of game domains [Lyu et al., 2019].

Credit Assignment and Reward Shaping When MDPs or
POMDPs are used for SDM in complex domains, rewards are
sparse and typically obtained only on task completion, e.g.,
after executing a plan or at the end of a board game. As a
special case of learning and using world models in SDM, re-
searchers have leveraged RDK methods to model and shape
the rewards to improve the agent’s decision-making. For in-
stance, declarative action knowledge has been used to com-
pute action sequences, using the action sequences to com-
pute a potential function and for reward shaping in game do-
mains [Grounds and Kudenko, 2005; Grzes and Kudenko,
2008; Efthymiadis and Kudenko, 2013]. In this work, RL
methods such as Q-learning, SARSA, and Dyna-Q were com-
bined with a STRIPS planner, with the planner shaping the
reward function used by the agents to compute the optimal
policy. These systems perform RDK with domain dynamics,
and reason about states but no explicit world models in SDM.

In some cases, the reward specification is obtained from
statistics and/or contextual knowledge provided by humans.
For example, the iCORPP algorithm enables a robot to reason
with manually-encoded contextual knowledge using P-log to
automatically determine the reward and transition functions
of a POMDP for planning [Zhang et al., 2017]. Another sys-
tem, LPPGI, enables robots to leverage human expertise for
POMDP-based planning under uncertainty for task specifica-
tion and execution [Hoelscher et al., 2018]. In this system,
RDK does not consider domain dynamics; the focus is on
maximizing the expected probability of satisfying logic ob-
jectives for a robot arm stacking boxes. There has also been
work on “reward machines” that uses Linear Temporal Logic
to represent and reason with declarative knowledge, espe-
cially temporal constraints implied by phrases such as “until”
and “eventually,” to automatically generate reward specifica-
tion for RL in a simulated game domain [Toro Icarte et al.,
2018; Camacho et al., 2019].

Guiding SDM-based Exploration When the main objective
of SDM is exploration or discovery of particular aspects of
the domain, RDK can inform and guide the trade-off between
exploration and exploitation, and avoid poor-quality explo-
ration behaviors in SDM. For instance, the DARLING algo-
rithm uses RL to compute action sequences that lead to long-
term goals under uncertainty, with RDK used to remove un-
reasonable actions from exploration [Leonetti et al., 2016];
this approach has been evaluated on real robots navigating
offices to locate people of interest.

An algorithm called GDQ uses action knowledge to gen-
erate artificial, “optimistic” experience to give RL agents
a warm-up learning experience before letting them interact
with the real world [Hayamizu et al., 2021]. Another similar
approach uses RDK to guide an agent’s exploration behavior
(formulated as SDM) in non-stationary environments [Fer-
reira et al., 2017], and to learn constraints that prevent risky
behaviors in video games [Zhang et al., 2019]. There is also

Table 1: A subset of the surveyed RDK-for-SDM algorithms from the literature. Each column corresponds to one characteristic factor (except
for the last one); if a factor’s range includes multiple values, this table shows the most typical value. Uni. Rep.: unified representation for
both RDK and SDM (Factor 1). Abs. Rep.: abstract representations for RDK and SDM that are linked together (Factor 2). Dyn. RDK:
declarative knowledge includes action knowledge and can be used for task planning (Factor 3). RL SDM: world models are not provided to
SDM, rendering RL necessary (Factor 4). Par. Obs.: current world states are partially observable (Factor 5). On. Acq.: online knowledge
acquisition is enabled (Factor 6). ML RDK: at least part of the knowledge base is learned by the agents, where the opposite is human
developing the entire knowledge base (Factor 7). Rew. RDK: RDK is used for reward shaping. For a discussion of these factors, please
see [Zhang and Sridharan, 2020].

Uni. Rep. Abs. Rep. Dyn. RDK RL SDM Par. Obs. On. Acq. ML RDK Rew. RDK

R
ep

re
se

nt
at

io
n [Younes and Littman, 2004] # / # # # # #

[Sanner, 2010] # / # G# # #
[Baral et al., 2009] # / # G# # # #
[Wang et al., 2019] # / # G#
[Zhang et al., 2017] # # # G# #

R
ea

so
ni

ng

[Sridharan et al., 2019] # # #
[Illanes et al., 2020] # # # # #
[Yang et al., 2018; Lyu et al., 2019] # # # #
[Furelos-Blanco et al., 2020] # #
[Göbelbecker et al., 2011] # # # # # #
[Garnelo et al., 2016] # # # # #
[Chitnis et al., 2018] # # # # # #
[Zhang et al., 2015; Zhang and Stone, 2015] # # # # # # #
[Amiri et al., 2020] # # # # #
[Grounds and Kudenko, 2005] # # # #
[Hoelscher et al., 2018] # # # # #
[Toro Icarte et al., 2018; Camacho et al., 2019] # # # # #
[Zhang et al., 2019] # # # # # # #
[Leonetti et al., 2016] # # # # #
[Eysenbach et al., 2019] # # #

A
cq

ui
si

tio
n

[Konidaris et al., 2018; Gopalan et al., 2020] # # # #
[Thomason et al., 2015; Amiri et al., 2019] # # # # # #
[Camacho and McIlraith, 2019] # # # # #
[She and Chai, 2017] # # # #
[Mericli et al., 2014] # # # # # #
[Samadi et al., 2012] # # # # # #

work on non-monotonic logical reasoning with commonsense
knowledge to automatically determine the state space for re-
lational RL-based exploration of previously unknown action
capabilities [Sridharan et al., 2017].

3.3 Knowledge Acquisition-focused Systems
Next, we discuss some RDK-for-SDM systems whose main
contribution is the acquisition (and revision) of domain
knowledge used for RDK. This knowledge can be obtained
through manual encoding and/or automated acquisition from
different sources (Web, corpora, sensor inputs).
Knowledge Acquisition while Acting Some RDK-for-SDM
systems allow the agent to acquire knowledge while also si-
multaneously reasoning and executing actions in dynamic do-
mains. Such systems can often support online and offline
knowledge acquisition, with active and reactive aspects. For
example, ASP-based non-monotonic logical reasoning has
been used to guide relational RL (i.e., SDM) and decision-
tree induction in order to learn previously unknown actions
and domain axioms; this knowledge is subsequently used for
RDK [Sridharan and Meadows, 2018]. In this system, some
constraints are acquired only when unexpected outcomes are

observed (i.e, reactive knowledge acquisition) while the ac-
quisition of some previously known causal laws is based on
an explicit exploration of the effects of new actions (i.e., ac-
tive, online knowledge acquisition).
Knowledge Acquisition from Experience There is a well
established literature of RDK-for-SDM systems, including
many described above, acquiring or revising knowledge of
domain dynamics in a supervised or semi-supervised train-
ing phase. The robot could, for instance, be asked to execute
different actions and observe the corresponding outcomes
in scenarios with known ground truth information [Sridha-
ran et al., 2019; Zhang et al., 2017]. More recently, some
RDK-for-SDM systems have built on recent developments
in data-driven methods (e.g., deep learning and RL) to ac-
quire knowledge. For instance, the symbols needed for task
planning have been extracted from the replay buffers of mul-
tiple trials of deep RL, with similar states (in the replay
buffers) being grouped to form the search space for symbolic
planning [Eysenbach et al., 2019]. In robotics domains, a
small number of real-world trials have been used to enable
a robot to learn the symbolic representations of the precon-
ditions and effects of a door-opening action [Konidaris et

al., 2018]. Knowledge acquisition in these systems is often
offline (i.e., batch of data collected from the robot is pro-
cessed offline to extract knowledge); this acquisition can be
achieved by targeted exploration (i.e., active) or reactive. Re-
searchers have also enabled robots to simultaneously acquire
latent space symbols and language groundings based on prior
demonstration trajectories paired with natural language in-
structions [Gopalan et al., 2020]; in this case, knowledge ac-
quisition is active and offline, and requires significantly fewer
training samples compared to end-to-end systems. There
is also recent work on enabling RL agents to learn a re-
ward machine from experience [Toro Icarte et al., 2020;
2019], and to learn linear temporal logic from traces [Cama-
cho and McIlraith, 2019]. In another RDK-for-SDM system,
non-monotonic logical reasoning is used to guide deep net-
work learning and active acquisition of previously unknown
axioms describing the behavior of these networks [Mota et
al., 2021; Riley and Sridharan, 2019].
Knowledge Acquisition from Humans, Web, and other
sources For some RDK-for-SDM systems, researchers have
developed a dialog-based interactive approach for situated
task specification, with the robot learning new actions and
their preconditions through verbal instructions [Mericli et al.,
2014]. In a related approach, SDM has been used to man-
age human-robot dialog, which helps a robot acquire knowl-
edge of synonyms (e.g., ”java” and ”coffee”) that are used
for RDK [Thomason et al., 2015]. Building on this work,
other researchers have developed methods to add new ob-
ject entities to the declarative knowledge in RDK-for-SDM
systems [Amiri et al., 2019]. In other work, human (ver-
bal) descriptions of observed robot behavior have been used
to extract knowledge of previously unknown actions and ac-
tion effects, which is merged with existing knowledge in the
RDK component [Sridharan and Meadows, 2018]. More re-
cent work in the context of a system enabling an agent to
respond to a human’s questions about its decisions and evolu-
tion of beliefs, has also enabled the agent to interactively con-
struct questions to resolve ambiguities in the human’s ques-
tions [Mota and Sridharan, 2021].

Some researchers have equipped their RDK-for-SDM sys-
tems with the ability to acquire domain knowledge using data
available on the Web [Samadi et al., 2012]. Information (to
be encoded in first-order logic) about the likely location of
paper would, for instance, be found by analyzing the results
of a web search for ”kitchen” and ”office”.

4 Challenges and Opportunities
As discussed above, significant progress has been made in
developing sophisticated methods for RDK and SDM. In re-
cent years, improved understanding of the complementary
strengths of the methods in these two areas has also led to the
development of systems that seek to further explore and ex-
ploit these strengths. These integrated systems have provided
promising results, renewing interest in the grand challenge of
combining the principles of RDK and SDM, and in the related
deep questions in AI and related fields (e.g., philosophy, so-
cial sciences) about the representation, use, and acquisition of
knowledge and about the broader impacts of these methods.

At the same time, true progress towards addressing the grand
challenge requires further research on some open problems
that we discuss below.

Representational Choices: As discussed in Section 3.1,
existing methods integrating RDK and SDM methods are
predominantly based on unified or linked representations.
General-purpose methods often use a unified representation
and associated reasoning methods for different descriptions
of domain knowledge, e.g., a unified representation for logic-
based and probabilistic descriptions of knowledge. On the
other hand, integrated systems developed specifically for
robotics and other dynamic domains link rather than unify
the different representations, including those at different ab-
stractions, trading correctness for computational efficiency.
A wide range of representations and reasoning methods are
possible within each of these two classes; these need to be
explored further to better understand the choice (of represen-
tation and reasoning methods) best suited to any particular
application domain. During this exploration, it will be im-
portant to carefully study any trade-offs made in terms of the
expressiveness of the representation, the ability to support dif-
ferent abstractions, the computational complexity of the rea-
soning methods, and the ability to establish that the behavior
of the robot (or agent) equipped with the resulting system sat-
isfies certain desirable properties.

Interactive Learning: Irrespective of the representation
and reasoning methods used for RDK, SDM, or a combina-
tion of the two, the knowledge encoded will be incomplete
and/or cease to be relevant over a period of time in any prac-
tical, dynamic domain. In the age of ”big data”, certain do-
mains provide ready availability of a lot of labeled data from
which the previously unknown information can be learned,
whereas such labeled training data is scarce in other domains;
in either case, the knowledge acquired from the data may not
be comprehensive. Also, it is computationally expensive to
learn information from large amounts of data. Incremental
and interactive learning thus continues to be an open prob-
lem in systems that integrate RDK and SDM. Promising re-
sults have been obtained by methods that promote efficient
learning by using reasoning to trigger learning only when
it is needed and limit (or guide) learning to those concepts
that are relevant to the tasks at hand; such methods need to
be developed and analyzed further. Another interesting re-
search thrust is to learn cumulatively from the available data
and merge the learned information with the existing knowl-
edge such that reasoning continues to be efficient as addi-
tional knowledge is acquired over time.

Human “in the loop”: Many methods for RDK, SDM, or
RDK-for-SDM, assume that any prior knowledge about the
domain and the associated tasks is provided by the human in
the initial stages, or that humans are available during task ex-
ecution for reliable feedback and supervision. These assump-
tions do not always hold true in practice. Research indicates
that humans can be a rich source of information but there is
often a non-trivial cost associated with acquiring and encod-
ing such knowledge from people. Since it is challenging for
humans to accurately specify or encode domain knowledge in
complex domains, there is a need for methods that consider

humans as collaborators to be consulted by a robot based on
necessity and availability. Such methods will need to address
key challenges related to the protocols for communication
between a robot and a human, considering factors such as
the expertise of the human participants and the availability of
humans in social contexts. Another related problem that is
increasingly getting a lot of attention is to enable a reason-
ing and learning system to explain its decisions and beliefs in
human-understandable terms.

Combining Reasoning, Learning, and Control: As dis-
cussed in this paper, many methods than integrate RDK and
SDM focus on decision making (or reasoning) tasks. There
also some methods that include a learning component and
some that focus on robot control and manipulation tasks.
However, robots that sense and interact with the real world
often require a system that combines reasoning, learning, and
control capabilities. Similar to the combination of reason-
ing and learning (as mentioned above), tightly coupling rea-
soning, learning, and control presents unique advantages and
unique open problems in the context of integrated RDK and
SDM. For instance, reasoning and learning can be used to
identify (on demand) the relevant variables that need to be in-
cluded in the control laws for the tasks at hand. At the same
time, real world control tasks often require a very different
representation of domain attributes, e.g., reasoning to move
a manipulator arm may be performed in a discrete, coarser-
granularity space of states and actions whereas the actual ma-
nipulation tasks being reasoned about need to be performed
in a continuous, finer-granularity space. There is thus a need
for systems that integrate RDK and SDM, and suitably com-
bine reasoning, learning, and control by carefully exploring
the effect of different representational choices and the meth-
ods being used for reasoning and learning.

Scalability and Teamwork: Despite considerable re-
search, algorithms for RDK, SDM, or a combination of the
two, find it difficult to scale to more complex domains. This
is usually due to the space of possible options to be consid-
ered, e.g., the size of the data to be reasoned with by the RDK
methods, and the size of the state-action space to be consid-
ered by the SDM methods. All of these challenges are com-
plicated further when applications require a team of robots
and humans to collaborate with each other. For instance,
representational choices and reasoning algorithms may now
need to carefully consider the capabilities of the teammates
before making a decision. As described earlier, there are
some promising avenues to be explored further. These in-
clude the computational modeling and use of principles such
as relevance, persistence, and non-procrastination, which are
well-known in cognitive systems, in the design of the desired
integrated system. Such a system could then automatically
determine the best use of available resources and algorithms
depending on the domain attributes and tasks at hand.

Explainability and Trust: With the increasing use of AI
and machine learning methods in different applications, there
is renewed focus within the research community on enabling
humans to understand the operation of these methods [An-
jomshoae et al., 2019; Miller, 2019]. Issues such as explain-
ability or trust remain open problems for RDK-for-SDM sys-

tems, especially those that integrate reasoning and learning
in complex domains. At the same time, the design of these
systems provides promising research threads to be explored
further. For instance, the use of logics for representing and
reasoning with commonsense knowledge in the RDK com-
ponent of such systems provides a foundation for making the
associated reasoning and learning more transparent. Research
also indicates that the underlying representation and estab-
lished knowledge representation tools can be exploited to re-
liably and efficiently trace evolution of beliefs and provide
on-demand explanations at the desired level of abstraction,
before, during, or after task execution [Sridharan and Mead-
ows, 2019; Mota et al., 2021]; it is also possible for the agent
to interactively address ambiguity in the human instructions
by constructing and posing clarification questions [Mota and
Sridharan, 2021]. A key challenge would be rigorously study
trust and explainability from the viewpoint of a non-expert
human interacting with these systems.

Evaluation, Benchmarks, and Challenges: The complex-
ity and connectedness of the components of the architectures
and algorithms developed for RDK-for-SDM make it rather
challenging to evaluate the representation, reasoning, and
learning capabilities. A key direction for further research is
the definition of common measures and benchmark tasks for
the evaluation of such architectures; doing so would provide
deeper insights into the development and use of such archi-
tectures. The evaluation measures will need to go beyond the
basic measures such as accuracy (e.g., of task completion)
and time (e.g., for planning, execution etc) to examine the
connectedness of the components. These measures could, for
instance, explore scalability to more complex domains and
explanations while minimizing the amount of knowledge that
needs to be encoded or used for reasoning. The benchmark
tasks, in a similar manner, will need to challenge the robot
to jointly perform multiple operations, e.g., use reasoning to
guide knowledge acquisition, and use the learned knowledge
to inform reasoning.

Acknowledgments
Related work in the Autonomous Intelligent Robotics (AIR) group at SUNY Bingham-

ton was supported in part by grants from NSF (NRI-1925044), Ford Motor Company

(URP Awards 2019-2021), OPPO (Faculty Research Award 2020), and SUNY RF. Re-

lated work in the Intelligent Robotics Lab (IRLab) at the University of Birmingham was

supported in part by the U.S. Office of Naval Research Science of Autonomy Awards

N00014-17-1-2434 and N00014-20-1-2390, the Asian Office of Aerospace Research

and Development award FA2386-16-1-4071, and the UK Engineering and Physical Sci-

ences Research Council award EP/S032487/1. The authors thank collaborators on re-

lated research projects that led to the development of the ideas described in this paper.

References
[Amiri et al., 2019] Saeid Amiri, Sujay Bajracharya, Ci-

hangir Goktolgal, Jesse Thomason, and Shiqi Zhang.
Augmenting knowledge through statistical, goal-oriented
human-robot dialog. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2019.

[Amiri et al., 2020] Saeid Amiri, Mohammad Shokrolah
Shirazi, and Shiqi Zhang. Learning and reasoning for

robot sequential decision making under uncertainty. In
Proceedings of the Thirty-Fourth AAAI Conference on Ar-
tificial Intelligence (AAAI), 2020.

[Anderson and Lebiere, 2014] John R Anderson and Chris-
tian J Lebiere. The atomic components of thought. Psy-
chology Press, 2014.

[Anjomshoae et al., 2019] Sule Anjomshoae, Amro Najjar,
Davide Calvaresi, and Kary Framling. Explainable agents
and robots: Results from a systematic literature review. In
International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS), Montreal, Canada, 2019.

[Bacchus et al., 1999] Fahiem Bacchus, Joseph Y. Halpern,
and Hector J. Levesque. Reasoning about Noisy Sensors
and Effectors in the Situation Calculus. Artificial Intelli-
gence, 111(1-2):171–208, 1999.

[Balai et al., 2019] Evgenii Balai, Michael Gelfond, and
Yuanlin Zhang. P-log: refinement and a new coherency
condition. Annals of Mathematics and Artificial Intelli-
gence, 86(1-3):149–192, 2019.

[Banihashemi et al., 2018] Bita Banihashemi, Giuseppe De
Giacomo, and Yves Lesperance. Abstraction of Agents
Executing Online and their Abilities in Situation Calcu-
lus. In International Joint Conference on Artificial Intelli-
gence, Stockholm, Sweden, July 13-19, 2018.

[Baral et al., 2009] Chitta Baral, Michael Gelfond, and Nel-
son Rushton. Probabilistic Reasoning with Answer Sets.
Theory and Practice of Logic Programming, 9(1):57–144,
January 2009.

[Barendregt and others, 1984] Hendrik P Barendregt et al.
The lambda calculus, volume 3. North-Holland Amster-
dam, 1984.

[Belle and Levesque, 2018] Vaishak Belle and Hector J.
Levesque. Reasoning about discrete and continuous noisy
sensors and effectors in dynamical systems. Artificial In-
telligence, 262:189–221, 2018.

[Camacho and McIlraith, 2019] Alberto Camacho and
Sheila A McIlraith. Learning interpretable models
expressed in linear temporal logic. In Proceedings of the
International Conference on Automated Planning and
Scheduling, volume 29, pages 621–630, 2019.

[Camacho et al., 2019] Alberto Camacho, Rodrigo
Toro Icarte, Toryn Q Klassen, Richard Anthony Valen-
zano, and Sheila A McIlraith. LTL and beyond: Formal
languages for reward function specification in reinforce-
ment learning. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence
(IJCAI), 2019.

[Chitnis and Lozano-Pérez, 2020] Rohan Chitnis and Tomás
Lozano-Pérez. Learning compact models for planning
with exogenous processes. In Conference on Robot Learn-
ing, pages 813–822, 2020.

[Chitnis et al., 2018] Rohan Chitnis, Leslie Pack Kaelbling,
and Tomás Lozano-Pérez. Integrating human-provided in-
formation into belief state representation using dynamic

factorization. In Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), 2018.

[Colmerauer and Roussel, 1996] Alain Colmerauer and
Philippe Roussel. The birth of Prolog. In History of
programming languages—II, pages 331–367. ACM, 1996.

[den Broeck et al., 2010] Guy Van den Broeck, Ingo Thon,
Martijn van Otterlo, and Luc De Raedt. DTProbLog: A
Decision-Theoretic Probabilistic Prolog. In AAAI Confer-
ence on Artificial Intelligence (AAAI), 2010.

[Efthymiadis and Kudenko, 2013] Kyriakos Efthymiadis
and Daniel Kudenko. Using plan-based reward shaping to
learn strategies in starcraft: Broodwar. In Proceedings of
the 2013 IEEE Conference on Computational Inteligence
in Games, 2013.

[Eysenbach et al., 2019] Ben Eysenbach, Russ R Salakhut-
dinov, and Sergey Levine. Search on the replay buffer:
Bridging planning and reinforcement learning. In Ad-
vances in Neural Information Processing Systems, pages
15246–15257, 2019.

[Ferreira et al., 2017] Leonardo A Ferreira, Reinaldo AC
Bianchi, Paulo E Santos, and Ramon Lopez de Mantaras.
Answer set programming for non-stationary markov de-
cision processes. Applied Intelligence, 47(4):993–1007,
2017.

[Fierens et al., 2015] Dann Fierens, Guy Van Den Broeck,
Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo
Thon, Gerda Janssens, and Luc De Raedt. Inference and
Learning in Probabilistic Logic Programs using Weighted
Boolean Formulas. Theory and Practice of Logic Pro-
gramming, 15(3):358–401, 2015.

[Fikes and Nilsson, 1971] Richard E Fikes and Nils J Nils-
son. Strips: A new approach to the application of theorem
proving to problem solving. Artificial intelligence, 2(3-
4):189–208, 1971.

[Furelos-Blanco et al., 2020] Daniel Furelos-Blanco, Mark
Law, Alessandra Russo, Krysia Broda, and Anders Jon-
sson. Induction of subgoal automata for reinforcement
learning. In Proceedings of the Thirty-Fourth AAAI Con-
ference on Artificial Intelligence (AAAI), 2020.

[Garnelo et al., 2016] Marta Garnelo, Kai Arulkumaran, and
Murray Shanahan. Towards deep symbolic reinforcement
learning. In Deep Reinforcement Learning Workshop at
the 30th Conference on Neural Information Processing
Systems, 2016.

[Gebser et al., 2012] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Answer Set Solv-
ing in Practice, Synthesis Lectures on Artificial Intelli-
gence and Machine Learning. Morgan Claypool Publish-
ers, 2012.

[Gelfond and Inclezan, 2013] Michael Gelfond and Daniela
Inclezan. Some Properties of System Descriptions ofALd.
Journal of Applied Non-Classical Logics, Special Issue on
Equilibrium Logic and Answer Set Programming, 23(1-
2):105–120, 2013.

[Gelfond and Kahl, 2014] Michael Gelfond and Yulia Kahl.
Knowledge representation, reasoning, and the design
of intelligent agents: The answer-set programming ap-
proach. Cambridge University Press, 2014.

[Göbelbecker et al., 2011] Moritz Göbelbecker, Charles
Gretton, and Richard Dearden. A switching planner for
combined task and observation planning. In Proceed-
ings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence, pages 964–970, 2011.

[Gomez et al., 2020] Rocio Gomez, Mohan Sridharan, and
Heather Riley. What do you really want to do? Towards a
Theory of Intentions for Human-Robot Collaboration. An-
nals of Mathematics and Artificial Intelligence, special is-
sue on commonsense reasoning, 2020.

[Gopalan et al., 2020] Nakul Gopalan, Eric Rosen, George
Konidaris, and Stefanie Tellex. Simultaneously learning
transferable symbols and language groundings from per-
ceptual data for instruction following. In Robotics: Sci-
ence and System XVI, 2020.

[Gorlin et al., 2012] Andrey Gorlin, C. R. Ramakrishnan,
and Scott A. Smolka. Model Checking with Probabilis-
tic Tabled Logic Programming. Theory and Practice of
Logic Programming, 12(4-5):681–700, 2012.

[Grounds and Kudenko, 2005] Matthew Grounds and Daniel
Kudenko. Combining reinforcement learning with sym-
bolic planning. In Adaptive Agents and Multi-Agent Sys-
tems III. Adaptation and Multi-Agent Learning, pages 75–
86. Springer, 2005.

[Grzes and Kudenko, 2008] Marek Grzes and Daniel Ku-
denko. Plan-based reward shaping for reinforcement learn-
ing. In 2008 4th International IEEE Conference Intelligent
Systems, volume 2, pages 10–22. IEEE, 2008.

[Halpern, 2003] Joseph Halpern. Reasoning about Uncer-
tainty. MIT Press, 2003.

[Hanheide et al., 2017] Marc Hanheide, Moritz
Göbelbecker, Graham S Horn, Andrzej Pronobis,
Kristoffer Sjöö, et al. Robot task planning and explanation
in open and uncertain worlds. Artificial Intelligence,
247:119–150, 2017.

[Hayamizu et al., 2021] Yohei Hayamizu, Saeid Amiri, Kis-
han Chandan, Keiki Takadama, and Shiqi Zhang. Guiding
robot exploration in reinforcement learning via automated
planning. In International Conference on Automated Plan-
ning and Scheduling (ICAPS), 2021.

[Helmert, 2006] Malte Helmert. The fast downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Hoelscher et al., 2018] Janine Hoelscher, Dorothea Koert,
Jan Peters, and Joni Pajarinen. Utilizing human feedback
in pomdp execution and specification. In IEEE-RAS Inter-
national Conference on Humanoid Robots, 2018.

[Illanes et al., 2020] León Illanes, Xi Yan, Rodrigo
Toro Icarte, and Sheila A McIlraith. Symbolic plans
as high-level instructions for reinforcement learning.

In Proceedings of the International Conference on Au-
tomated Planning and Scheduling, volume 30, pages
540–550, 2020.

[Juba, 2016] Brendan Juba. Integrated Common Sense
Learning and Planning in POMDPs. Journal of Machine
Learning Research, 17(96):1–37, 2016.

[Kaelbling et al., 1998] Leslie Pack Kaelbling, Michael L
Littman, and Anthony R Cassandra. Planning and acting
in partially observable stochastic domains. Artificial intel-
ligence, 101(1-2):99–134, 1998.

[Konidaris et al., 2018] George Konidaris, Leslie Pack Kael-
bling, and Tomas Lozano-Perez. From skills to sym-
bols: Learning symbolic representations for abstract high-
level planning. Journal of Artificial Intelligence Research,
61:215–289, 2018.

[Laird, 2012] John E Laird. The Soar Cognitive Architecture.
The MIT Press, 2012.

[Langley and Choi, 2006] Patrick Langley and Dongkyu
Choi. An Unified Cognitive Architecture for Physical
Agents. In The Twenty-first National Conference on Ar-
tificial Intelligence (AAAI), 2006.

[Leonetti et al., 2016] Matteo Leonetti, Luca Iocchi, and Pe-
ter Stone. A synthesis of automated planning and rein-
forcement learning for efficient, robust decision-making.
Artificial Intelligence, 241:103–130, 2016.

[Lyu et al., 2019] Daoming Lyu, Fangkai Yang, Bo Liu, and
Steven Gustafson. SDRL: interpretable and data-efficient
deep reinforcement learning leveraging symbolic plan-
ning. In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence (AAAI), 2019.

[McCarthy, 1978] John McCarthy. History of lisp. In History
of programming languages, pages 173–185. 1978.

[McDermott et al., 1998] Drew McDermott, Malik Ghallab,
Adele Howe, Craig Knoblock, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. Pddl-the plan-
ning domain definition language, 1998.

[McGuinness et al., 2004] Deborah L McGuinness, Frank
Van Harmelen, et al. Owl web ontology language
overview. 2004.

[Mericli et al., 2014] Cetin Mericli, Steven D Klee, Jack Pa-
parian, and Manuela Veloso. An interactive approach for
situated task specification through verbal instructions. In
Proceedings of the 2014 international conference on Au-
tonomous agents and multi-agent systems (AAMAS), 2014.

[Milch et al., 2006] Brian Milch, Bhaskara Marthi, Stuart
Russell, David Sontag, Daniel L. Ong, and Andrey
Kolobov. BLOG: Probabilistic Models with Unknown Ob-
jects. In Statistical Relational Learning. MIT Press, 2006.

[Miller, 2019] Tim Miller. Explanations in Artificial Intelli-
gence: Insights from the Social Sciences. Artificial Intel-
ligence, 267:1–38, 2019.

[Mombourquette et al., 2017] Brent Mombourquette, Chris-
tian Muise, and Sheila A McIlraith. Logical filtering and

smoothing: state estimation in partially observable do-
mains. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, pages 3613–3621, 2017.

[Mota and Sridharan, 2021] Tiago Mota and Mohan Srid-
haran. Answer me this: Constructing Disambiguation
Queries for Explanation Generation in Robotics. In IEEE
International Conference on Development and Learning
(ICDL), August 23-26, 2021.

[Mota et al., 2021] Tiago Mota, Mohan Sridharan, and Ales
Leonardis. Integrated Commonsense Reasoning and Deep
Learning for Transparent Decision Making in Robotics.
Springer Nature Computer Science, 2(242):1–18, 2021.

[Nath and Domingos, 2009] Aniruddh Nath and Pedro
Domingos. A Language for Relational Decision Theory.
In International Workshop on Statistical Relational
Learning, Leuven, Belgium, July 2-4, 2009.

[Poole, 2000] David Poole. Abducing through Negation as
Failure: Stable Models within the Independent Choice
Logic. Journal of Logic Programming, 44(1-3):5–35,
2000.

[Puterman, 2014] Martin L Puterman. Markov Decision Pro-
cesses.: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, 2014.

[Raedt and Kimmig, 2015] Luc De Raedt and Angelika
Kimmig. Probabilistic Logic Programming Concepts. Ma-
chine Learning, 100(1):5–47, 2015.

[Richardson and Domingos, 2006] Matthew Richardson and
Pedro Domingos. Markov Logic Networks. Machine
learning, 62(1), 2006.

[Riley and Sridharan, 2019] Heather Riley and Mohan Srid-
haran. Integrating Non-monotonic Logical Reasoning and
Inductive Learning With Deep Learning for Explainable
Visual Question Answering. Frontiers in Robotics and
AI, special issue on Combining Symbolic Reasoning and
Data-Driven Learning for Decision-Making, 6:20, 2019.

[Samadi et al., 2012] Mehdi Samadi, Thomas Kollar, and
Manuela Veloso. Using the web to interactively learn to
find objects. In Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence (AAAI), 2012.

[Sanner and Kersting, 2010] Scott Sanner and Kristian Ker-
sting. Symbolic dynamic programming for first-order
pomdps. In Twenty-Fourth AAAI Conference on Artificial
Intelligence (AAAI), 2010.

[Sanner, 2010] Scott Sanner. Relational dynamic influence
diagram language (RDDL): Language description. 2010.

[Sarathy and Scheutz, 2018] Vasanth Sarathy and Matthias
Scheutz. A Logic-based Computational Framework for
Inferring Cognitive Affordances. IEEE Transactions
on Cognitive and Developmental Systems, 10(1):26–43,
March 2018.

[Saribatur et al., 2019] Zeynep Saribatur, Volkan Patoglu,
and Esra Erdem. Finding Optimal Feasible Global Plans
for Multiple Teams of Heterogeneous Robots using Hy-
brid Reasoning: An Application to Cognitive Factories.
Autonomous Robots, 43(1):213–238, 2019.

[Scheutz et al., 2007] Matthias Scheutz, Paul Schermerhorn,
James Kramer, and David Anderson. First Steps To-
wards Natural Human-Like HRI. Autonomous Robots,
22(4):411–423, 2007.

[She and Chai, 2017] Lanbo She and Joyce Chai. Interactive
learning of grounded verb semantics towards human-robot
communication. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1634–1644, 2017.

[Sridharan and Meadows, 2018] Mohan Sridharan and Ben
Meadows. Knowledge Representation and Interactive
Learning of Domain Knowledge for Human-Robot Col-
laboration. Advances in Cognitive Systems, 7:77–96, De-
cember 2018.

[Sridharan and Meadows, 2019] Mohan Sridharan and Ben-
jamin Meadows. Towards a Theory of Explanations
for Human-Robot Collaboration. Kunstliche Intelligenz,
33(4):331–342, December 2019.

[Sridharan et al., 2017] Mohan Sridharan, Ben Meadows,
and Rocio Gomez. What can I not do? Towards an Ar-
chitecture for Reasoning about and Learning Affordances.
In International Conference on Automated Planning and
Scheduling, Pittsburgh, USA, June 18-23, 2017.

[Sridharan et al., 2019] Mohan Sridharan, Michael Gelfond,
Shiqi Zhang, and Jeremy Wyatt. Reba: A refinement-
based architecture for knowledge representation and rea-
soning in robotics. Journal of Artificial Intelligence Re-
search, 65:87–180, 2019.

[Sutton and Barto, 2018] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[Thomason et al., 2015] Jesse Thomason, Shiqi Zhang, Ray-
mond Mooney, and Peter Stone. Learning to interpret nat-
ural language commands through human-robot dialog. In
Proceedings of the 24th International Conference on Arti-
ficial Intelligence, pages 1923–1929, 2015.

[Toro Icarte et al., 2018] Rodrigo Toro Icarte, Toryn
Klassen, Richard Valenzano, and Sheila McIlraith. Using
reward machines for high-level task specification and
decomposition in reinforcement learning. In Interna-
tional Conference on Machine Learning (ICML), pages
2112–2121, 2018.

[Toro Icarte et al., 2019] Rodrigo Toro Icarte, Ethan Waldie,
Toryn Klassen, Rick Valenzano, Margarita Castro, and
Sheila McIlraith. Learning reward machines for partially
observable reinforcement learning. In Advances in Neu-
ral Information Processing Systems, pages 15523–15534,
2019.

[Toro Icarte et al., 2020] Rodrigo Toro Icarte, Toryn Q
Klassen, Richard Valenzano, and Sheila A McIlraith. Re-
ward machines: Exploiting reward function structure in
reinforcement learning. arXiv preprint arXiv:2010.03950,
2020.

[Towell and Shavlik, 1994] Geoffrey G Towell and Jude W
Shavlik. Knowledge-based artificial neural networks. Ar-
tificial intelligence, 70(1-2):119–165, 1994.

[Wang et al., 2019] Yi Wang, Shiqi Zhang, and Joohyung
Lee. Bridging commonsense reasoning and probabilistic
planning via a probabilistic action language. Theory and
Practice of Logic Programming (TPLP), 19(5-6):1090–
1106, 2019.

[Yang et al., 2018] Fangkai Yang, Daoming Lyu, Bo Liu,
and Steven Gustafson. PEORL: integrating symbolic plan-
ning and hierarchical reinforcement learning for robust
decision-making. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI), 2018.

[Younes and Littman, 2004] Håkan LS Younes and
Michael L Littman. PPDDL1.0: The language for
the probabilistic part of IPC-4. In Proceedings of the 2004
International Planning Competition, 2004.

[Zhang and Sridharan, 2020] Shiqi Zhang and Mohan Srid-
haran. A Survey of Knowledge-based Sequential Decision
Making under Uncertainty. Technical report, Available at:
http://arxiv.org/abs/2008.08548, September 2020.

[Zhang and Stone, 2015] Shiqi Zhang and Peter Stone.

CORPP: commonsense reasoning and probabilistic plan-
ning, as applied to dialog with a mobile robot. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial In-
telligence (AAAI), 2015.

[Zhang et al., 2015] Shiqi Zhang, Mohan Sridharan, and
Jeremy L Wyatt. Mixed logical inference and probabilistic
planning for robots in unreliable worlds. IEEE Transac-
tions on Robotics, 31(3):699–713, 2015.

[Zhang et al., 2017] Shiqi Zhang, Piyush Khandelwal, and
Peter Stone. Dynamically constructed (PO)MDPs for
adaptive robot planning. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI), 2017.

[Zhang et al., 2019] Haodi Zhang, Zihang Gao, Yi Zhou,
Hao Zhang, Kaishun Wu, and Fangzhen Lin. Faster
and safer training by embedding high-level knowl-
edge into deep reinforcement learning. arXiv preprint
arXiv:1910.09986, 2019.

[Zhu, 2012] Weijun Zhu. Plog: Its algorithms and applica-
tions. PhD thesis, Texas Tech University, 2012.

