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Abstract

To operate reliably in challenging real-world en-
vironments, a robot should consider that it has an
incomplete model of its environment and plan to
take measurements to improve this. However, un-
modelled disturbances, sensor noise and the lim-
itation of measurements to the robot’s current lo-
cation make this difficult. We propose a Bayesian
reinforcement learning-based modelling and plan-
ning framework which uses Gaussian processes to
model environmental uncertainty in a principled
manner. We exploit the Bayesian RL formulation
to plan more efficiently in these types of uncertain
environments than previous methods are able to.

1 Introduction
When acting in uncertain environments, a priori unknown en-
vironmental dynamics may affect a robot by imposing unex-
pected costs or changing the robot’s action outcome proba-
bilities. Examples of such scenarios include unknown water
currents acting on an autonomous underwater vehicle, or an
unknown distribution of radiation that may harm the robot if
cumulative exposure exceeds a given level. Enabling robots
to operate in areas where they have incomplete information
requires them to be able to take measurements (or observa-
tions) of unknown environment features and incorporate these
into their plans.

A robot is often only able to take noisy, local measure-
ments of unknown environment features at its current state
– for example by measuring the radiation level at its cur-
rent position. We follow previous works [Budd et al., 2020;
Turchetta et al., 2016] and make use of a Gaussian process
(GP) model [Rasmussen and Williams, 2006] to predict the
unknown environment dynamics away from its local position.
This modelling framework is commonly used to provide re-
gression with confidence intervals to fit noisy spatio-temporal
data distributions.

When it is not feasible to pre-plan for every possible en-
vironment, online planning and modelling (where observa-
tions, planning and execution are interleaved) is a suitable
approach. We would like to enable the robot to plan ac-
tion/observation sequences in a principled manner, which re-

quires the robot to maintain a belief over the real underlying
dynamics of the environment.

Previous literature [Morere et al., 2017; Flaspohler et al.,
2019] often approaches the problem using a partially observ-
able MDP (POMDP) formulation, where the entirety of the
environment dynamics are incorporated into the partially ob-
servable state. However, this is not the most intuitive way to
represent the problem – a POMDP model generally implies
that the true underlying state (visible via probabilistic obser-
vations) can change, whereas in our case the environment
is understood to be fixed but a priori unknown. Instead we
discuss how exploration of a GP-modelled environment can
conveniently be framed as a Bayesian reinforcement learn-
ing problem with a GP belief over the transition function.
This allows us to plan more efficiently using techniques de-
veloped in that context, such as BAMCP [Guez et al., 2013]
– a Monte Carlo tree search (MCTS)-based algorithm. Such
sampling-based methods are able to plan effectively in very
large, continuous state spaces by only searching the reachable
state space from the current state.

In summary, our contribution is to pose the online plan-
ning problem as a Bayes-adaptive MDP (BAMDP) and make
use of the root sampling method originally proposed in
POMCP [Silver and Veness, 2010] to improve search scal-
ability in this model by allowing us to avoid expensive GP
belief updates inside the MCTS search tree. For each MCTS
trial, a possible environment distribution is drawn as a sample
from the belief at the tree root node and used to generate the
necessary samples during the MCTS trial. We argue that the
BAMDP formulation better illustrates that the robot has local
observability of the state of the environment at its current lo-
cation and allows us to pose the robot transition function over
unknown environment features in a clearer way, compared to
the common POMDP problem formulation. We also show
that both formulations lead to MCTS planning in similarly
structured search trees.

2 Related Work
Online planning in environments modelled with GPs has
been approached in previous literature using Markov deci-
sion process (MDP) models and partially observable MDP
(POMDP) [Kaelbling et al., 1998] models.

Turchetta et al. [2016] use GPs to model a safety function
over an environment with a deterministic transition MDP, but



only use this model to restrict the robot to some parts of the
state space where the GP confidence intervals do not cross
a safety bound value. Wachi et al. [2018] also combine de-
terministic transition MDPs with GPs, using separate GPs to
model both a safety function and reward function. They also
define an information gain criterion to encourage the robot to
visit and observe areas of high uncertainty.

In previous work [Budd et al., 2020] we built on top of the
approach of Turchetta et al. to pose the unknown environ-
ment as an MDP with unknown feature values (U-MDP). In
this formalism, the dynamics of known value state features
are known a priori and the dynamics of unknown value state
features are determined by the predictions of the environment
model. This MDP model is then solved online to plan cost-
optimal paths to goal locations to observe, with the overall
aim of improving the environment model accuracy. The ap-
proach is able to handle transition structures with probabilis-
tic outcomes that may depend on environment feature values.
However, all of these MDP-based approaches are myopic as
they greedily select the next state to explore in a “next-best-
view” fashion rather than planning informative sequences of
observations.

Other recent literature [Morere et al., 2017; Flaspohler et
al., 2019] carries out “informative path planning” across un-
known environments, also using a GP model. The goal for
both is to carry out Bayesian optimisation to find the max-
imum of an unknown function, modelled as a GP, which
is combined with the robot pose to form the state of a
partially observable MDP (POMDP). In general, solving
POMDPs exactly is infeasible for all but the smallest prob-
lems, due to planning taking place in a continuous belief
space and the exponential growth of the number of possi-
ble action/observation histories as the planning horizon in-
creases. Both of the solution methods used in these papers
are therefore based on MCTS. However, these approaches as-
sume robot actions have deterministic outcomes, and do not
consider the case where the unknown environment features
can affect robot transition dynamics. The MCTS algorithms
proposed in these papers also carry out expensive belief up-
dates within the MCTS search tree.

Our BAMDP model could also be considered to be equiv-
alent to a POMDP-lite [Chen et al., 2016], with the true en-
vironment represented as a constant state variable. However,
the solution method of Chen et al. encourages exploration by
including an exploration bonus in the reward function, which
can be difficult to tune [Guez et al., 2013].

MCTS planning in time-varying unknown environments
using GPs has also been carried out by Duckworth et
al. [2021], for the case where the environment features af-
fect only transition durations in a semi-MDP. This planning
method makes use of the GP mean and variance predictions
directly, rather than sampling from the GP posterior as we do
here. Although the approach avoids some of the computa-
tional expense of in-tree GP belief updates, they do not carry
out MCTS root sampling to improve search efficiency as we
do.

3 Preliminaries
3.1 Markov Decision Process
A Markov decision process (MDP) is defined as a tupleM =
〈S, s,A, T, C〉, where S is a finite set of states; s ∈ S is the
initial state;A is a finite set of actions; T : S×A×S → [0, 1]
is a probabilistic transition function; and C : S × A → R≥0
is a cost function. A (stationary) policy is a mapping π :
S × A → [0, 1] that defines the probability of choosing a
given action in a given state.

A stochastic shortest path (SSP) MDP also includes a set
of absorbing, zero-cost goal states G ⊂ S. In an SSP MDP
there must exist a policy that is proper in all states. A policy
is proper in a state s if it reaches a state sg ∈ G when starting
from s with probability 1, and an improper policy at a state
will always incur infinite cost. Although our definition of a
policy is stochastic, it is known that there exists a cost-optimal
deterministic policy for an SSP.

3.2 Bayesian Reinforcement Learning:
Bayes-Adaptive MDP

In a Bayes-adaptive MDP (BAMDP) [Duff, 2003] the tran-
sition function T and (optionally) the cost function C are
unknown – the agent only has access to a prior probability
distribution over their dynamics. To minimise its expected
cumulative cost, the agent must maintain a belief about the
actual dynamics, in the form of probability distributions over
T and C.

A history in a BAMDP is a sequence of actions and states
ht = h0a1s2a2...at−1st observed during execution. A
BAMDP manages uncertainty in T and C by planning in an
augmented state space S+ = S ×H where H is the set of
possible histories. The history is a sufficient statistic for the
belief, as it is possible to transform any history starting from
h0 and its equivalent belief b0 using successive applications
of Bayes’ rule: p({T,C} | ht) ∝ p(ht | {T,C})p({T,C}).
We only consider the case where the transition dynamics of
the BAMDP are unknown.

A BAMDP is a tupleM+ = 〈S+, s+, A, T+, C+〉, where
C+((s, h), a) = C(s, a), s+ = (s, h0) and

T+((s, h), a, (s′, has′)) =
∫
T

T (s, a, s′)p(T | h)dT. (1)

A policy in a BAMDP is a history dependent probabilistic
mapping from histories to actions: π : H × A → [0, 1]. The
optimal policy π∗ is that which minimises expected cumu-
lative cost (or equivalently maximises cumulative expected
reward) given the prior over T , up to some finite or indefinite
horizon.

3.3 Gaussian Process
A Gaussian process is a collection of random variables,
any finite number of which have a joint Gaussian distribu-
tion [Rasmussen and Williams, 2006]. A GP regression is
of the form f(s) ∼ GP(m(s), k(s, s′)). This represents a
probability distribution over functions, fully specified by the
mean function m(s) and kernel function k(s, s′). We can let
m(s) = 0 without loss of generality.



Given a dataset of n noisy observations o = {(o(si) +
εi), i = 1, . . . , n} at states sn, GP regression can be used
to predict values of the unknown environment features at all
states s∗, where εi ∼ N (0, σ2

n) is Gaussian observation noise.
The resulting Gaussian posterior, conditioning on the obser-
vations, is a multivariate normal N (µ∗,Σ∗):

µ∗ = KT
∗ (Kn + σ2

nI)−1o, (2)

Σ∗ = K∗∗ −KT
∗ (Kn + σ2

nI)−1K∗, (3)

where the positive semi-definite kernel matrix Kn =
[k(s, s′)]s,s′∈sn , K∗ = [k(s, s′)]s∈sn,s′∈s∗ , K∗∗ =
[k(s, s′)]s,s′∈s∗ , and I ∈ Rn×n is the identity matrix.

The kernel function k may include hyperparameters in-
cluding variance and lengthscale, which we optimise using
maximum likelihood estimation (MLE) to fit the dataset.
Regularity and Lipschitz continuity modelling assumptions
must be made to make predictions of unknown environment
features with the GP [Rasmussen and Williams, 2006].

We can sample functions from the posterior of a GP, at a
finite set of points s∗, by transformation of a standard normal
distribution φ ∼ N (0, I):

o∗ = µ∗ + Σ1/2
∗ φ. (4)

The matrix inverse and square root operations above, required
for carrying out the GP regression and generating samples
from the GP posterior, can be carried out with Cholesky de-
composition giving ∼ O(n3) complexity.

4 Approach
4.1 Problem Formulation
In order to clearly separate robot transition dynamics from
the unknown environment dynamics, we represent the un-
known environment and its effect on the robot as an MDP
with Unknown Feature Values (U-MDP). As originally de-
scribed in [Budd et al., 2020], a U-MDP is a tuple Mo =
〈So, s, A,C, T o〉, where:

• The state space is factored, So = Sk × Se where Sk =
S1
k × . . . × S

nk

k is a set of state features with discrete,
known values (e.g. the pose of the robot), and Se =
S1
e × . . . × Sne

e is a set of state features with unknown
values (e.g. the environment state at a pose);

• An a priori unknown mapping o : Sk → Se defines
which values o(sk) ∈ Se are observed at sk ∈ Sk;

• s is the initial state s =
(
sk, o(sk)

)
;

• A is a finite set of actions;
• C : S ×A→ R is the cost function; and
• T o is the U-MDP transition structure T o : (Sk × Se) ×
A×Sk → [0, 1]. As the state of the U-MDP is uniquely
defined by the value of the known state feature sk ∈ Sk,
the transition structure of the U-MDP only represents the
change in the known state feature.

We define a set of goal states G which are absorbing and
incur zero cost, making this a stochastic shortest path prob-
lem and making the U-MDP a variant of an SSP MDP. As

the value of the mapping o is not known at a goal state, and
the goal state should be reachable irrespective of the mapping
o, goal states are defined only across the known value state
features: G ⊂ Sk.

Our problem statement is therefore to generate a policy π∗
that minimises the expected cumulative cost incurred to reach
a goal state, given that the robot takes an observation of the
mapping function o at each new combination of known value
state features that it transitions to.

The SSP MDP formulation can be generalised to objectives
other than the undiscounted cost, indefinite horizon problem
we describe here [Mausam and Kolobov, 2012].

4.2 U-MDP Environment as a BAMDP
Our first contribution is to pose the task of planning in a U-
MDP environment in a Bayesian RL manner by defining it
as a BAMDP. The BAMDP root node belief representation is
the GP GPot which maintains the robot’s current belief about
the unknown mapping o in the U-MDP, given a dataset of
observations ot up to timestep t. This BAMDP is defined as:

• The state space S+ is So ×H , where So = Sk × Se is
the full U-MDP state space and H is the set of possible
histories;

• The start state s+ is (so, h0) where so is the initial state
of the U-MDP and h0 is the empty initial history;

• The set of actions A and cost structure C are the same
as in the U-MDP; and

• T+ is defined as in (1), where the term inside the integral
considers the transition function of the U-MDP and the
current GP estimate:

T
(
(sk, se), a, (s

′
k, s
′
e)
)
p
(
T | h

)
= T o

(
(sk, se), a, s

′
k

)
· p
(
o(s′k) = s′e | GPot

)
. (5)

As the integral in (1) then only has value for a single
case of the transition dynamics:

T+((s, h), a, (s′, has′))

= T o
(
(sk, se), a, s

′
k

)
· f
(
s′e | s′k,GPot

)
. (6)

where f is the CDF of the Gaussian distribution.
This transition function represents the combination of i)
the known state dynamics from the U-MDP, providing
the transition mapping in the discrete known value state
space, and ii) the current GP estimate of the dynamics of
the unknown value state features in the U-MDP.
When the state includes multiple unknown value state
features (i.e. ne > 1), GPot

is a multi-output GP. The
multi-output GP could also be factorised into multiple
single-output GPs if the unknown value state features
are assumed to have independent dynamics.

4.3 BAMCP on the U-MDP
As the GP belief over the environment dynamics is con-
tinuous and the space of possible BAMDP histories grows



exponentially with the horizon, attempting to exactly solve
this BAMDP does not scale. Having posed the prob-
lem as a BAMDP we can make use of MCTS planning
frameworks that were developed in this context, specifically
BAMCP [Guez et al., 2013]. We also carry out online plan-
ning, which is common with MCTS algorithms.

MCTS planners of this type build a search tree consisting
of alternating state and action nodes. The search tree is con-
structed over the course of many Monte Carlo trials starting
from the root node and sampling action outcomes. While in-
side the search tree, actions are chosen using a tree policy,
most commonly UCT to provide an exploration-exploitation
trade-off based on the average cost or reward returns and
action counts of child action nodes. Heuristic estimates of
leaf nodes’ values are provided by continuing the trial trajec-
tory from the leaf node using a rollout policy, up to a defi-
nite or indefinite horizon. MCTS’s performance results from
quickly focusing search on promising sections of the state
space, without expanding states that are unreachable from the
tree root state.

To avoid the notational and algorithmic complexity of con-
tinuous variables such as the mapping o, we focus here on
a solution approach that discretises continuous environment
feature values into a set of ranges to give a BAMDP with
discrete state and action spaces. Methods suggested by Sun-
berg and Kochenderfer [2018] could be used to extend the
algorithm to handle continuous state and action spaces – we
discuss this further in Section 6.

To plan in BAMDPs, the BAMCP search tree belief nodes
contain BAMDP histories. As discussed in Section 3.2, his-
tories from a root belief node in a BAMDP are equivalent to
beliefs over the environment dynamics. BAMCP adapts from
POMCP [Silver and Veness, 2010] the concept of root sam-
pling, where for each MCTS trial an MDP transition func-
tion is sampled from the root belief node and used throughout
the trial. The equivalent root sampling in POMCP samples a
POMDP state from the root belief node.

The validity of root sampling for BAMDPs is demonstrated
in Lemma 1 of [Guez et al., 2014], which shows that the roll-
out distribution function resulting from root sampling is the
same as the rollout distribution when maintaining and updat-
ing full belief representations at each step. We also provide a
proof for the rollout equivalence between our root sampling-
based method and previous full belief representation methods
in Section 4.4.

In our case, sampling an MDP from the root belief node
corresponds to sampling a possible environment that is con-
sistent with our current GP environment model. An environ-
ment is sampled from the GP posterior using (4). Specifically,
we sample ô ∼ GPot where ô is a function ô : Sk → Se that
maps each known state to a possible value of the unknown
state features. Figure 1a shows an example of a BAMCP
search tree constructed from histories, where each history has
been generated from interacting with a root-sampled environ-
ment model. A new leaf node can be added by appending the
parent node history with a new state sampled using the MDP
transition function sampled from the root for this MCTS trial.
By comparison, in the POMDP belief search tree (Figure 1b)
the belief in a new leaf node is generated from a belief update

of its parent node using the observation that created the new
leaf node.

Due to the high cost of belief updates, discussed below, the
BAMDP search tree can therefore add a new leaf node with
much less computational effort than a POMDP belief search
tree. The usage of root sampling therefore makes our MCTS
planning approach significantly more efficient than the previ-
ous methods discussed in the following section.

4.4 Connections to POMDP Formulation
We will now discuss how our approach builds the same
MCTS search tree structure as similar literature, but in a more
efficient way.

Previous approaches [Morere et al., 2017; Flaspohler et al.,
2019] pose the unknown environment as a POMDP, with a
GP belief over the environment dynamics. The POMDP for-
mulation assumes a known transition and cost structure, but
has the current state only partially observable via some ob-
servation function. POMCP solves POMDPs with MCTS in
a similar way as described above for BAMCP, by sampling
from the state transition function and observation function to
build a belief MDP on the fly. Figure 1b shows an example
POMDP MCTS search tree being constructed.

For these previous approaches, the POMDP observation
function is the GP prediction at a robot pose, and in our nota-
tion their root belief state is {sk,GPot

} as they also assume
that the robot pose (sk in our notation) is fully observable.

A BAMDP can be interpreted as a special case of a
POMDP belief MDP, where the dynamics T is included in the
partially observable state. The BAMDP search tree is there-
fore equivalent to a POMDP belief search tree where POMDP
observations are BAMDP state transition outcomes. In other
words, a POMDP action-observation history h0a1o1a2o2 is
equivalent to a BAMCP history h0a1s1a2s2. Our approach
therefore produces the same structure of search tree as the
POMDP belief MCTS tree approaches. The two search trees
in Figure 1 are the result of identical sequences of actions and
observations and show the equivalence between the POMDP
belief and BAMDP search trees.

The previous POMDP belief MCTS search meth-
ods [Morere et al., 2017; Flaspohler et al., 2019] maintain
a full belief, in the form of a GP, at each search tree node.
Given a sampled observation resulting from an action at a
parent node, a belief update must be performed to produce
the new belief at the child node. Carrying out GP belief up-
dates in the search tree requires drawing a hypothesised data
point ŷ ∼ GPok

from the parent node GP belief posterior
and adding this to the GP dataset at the new child belief node
GPok∪{ŷ}. This is shown in Figure 1b and can incur a large
computational cost depending on the dataset size of the GP
belief. More GP predictions may also need to be made in the
rollout phase – for example, Flaspohler et al. use a random
rollout policy with reward based on the GP belief at the leaf
node.

Limiting the dataset update to adding a single new data
point can be shown to reduce the Cholesky decomposition
complexity from O(N3) to O(N2) [Osborne et al., 2008]
where N is the number of data and sample points. Even so,
this belief update is still highly computationally expensive as
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(a) MCTS search tree for a BAMDP, with root sampling
from the current“real-observations” GP at the root node,
and action-observation histories at search nodes. Initialis-
ing the 5 search nodes has required 5 samples from the root
GP belief GPot at the root node.

(b) MCTS search tree in POMDP belief space using a sep-
arate GP to maintain belief at each node. Initialising the
5 search nodes has required 5 instances of single-datapoint
GP updates. o{1,...,5} are observations sampled from their
parent node GPs.

Figure 1: Example equivalent MCTS search trees. The robot’s current belief state is at the root of the tree, and 5 MCTS trajectories have been
simulated. The process followed to add new leaf nodes to either tree is described in Section 4.3

the dataset of real and hypothesised observations grows and
must take place once during each MCTS trial when a new leaf
node is added to the tree. For our root-sampled environment
models, once the original Cholesky decomposition in (4) has
been carried out to incorporate any new real observations, this
can be used to draw an arbitrary number of samples at little
extra computational cost. The lower computational cost of
sampling transition functions from the root belief node means
that we can build a larger MCTS search tree within the com-
putational budget than previous approaches.

4.5 Theoretical Analysis

We wish to show the equivalence of rollout distributions be-
tween our root sampling BAMDP approach and the previous
POMDP belief MCTS search methods, by showing that the
probability of generating a history from the BAMDP with in-
dividual belief updates at each node is the same as the prob-
ability of generating the history when performing root sam-
pling. Let Pht

π (ht+τ ) be the probability of a history ht+τ in
the BAMDP, starting at history ht under policy π, when car-
rying out individual belief updates at every stage. Similarly,
let P̃ht

π (ht+τ ) be the history probability when carrying out
root sampling.

Proposition 1. Pht
π (ht+τ ) = P̃ht

π (ht+τ ) for all policies π
and all histories ht+τ of length τ .

Proof. This proof is based on Lemma 1 of [Guez et al., 2014].
With individual belief updates at every stage, the history den-

sity is (shortening Pht
π (ht+τ ) to Pht

π and P̃ht
π (ht+τ ) to P̃ht

π ):

Pht
π = p(atst+1at+1...st+τ | ht, π)

= p(at | ht, π)p(st+1 | ht, π, at)p(at+1 | ht+1, π)...

p(st+τ | ht+τ−1, at+τ , π) (7)

=
∏

t≤t′<t+τ
π(ht′ , at′)

∏
t<t′≤t+τ

p(st′ | ht′−1, at′−1)

(8)

=
∏

t≤t′<t+τ
π(ht′ , at′) ·

∏
t<t′≤t+τ

∫
T

T (st′−1, at′−1, st′)p(T | ht′−1)dT. (9)

where s+t = (st, ht) and st = (sk, se).
Given the definition of T+ in (6), and the fact that a history

ht uniquely specifies a GP GPot
of observations up to time t:

Pht
π =

∏
t≤t′<t+τ

π(ht′ , at′) ·

∏
t<t′≤t+τ

[
T o
(
st′−1, a, sk,t′

)
f
(
se,t′ | sk,t′ ,GPot′−1

)]
.

(10)

The GP posterior of GPot−1 is a multivariate normal distri-
bution (MVN). A GP belief update with a noise-free sampled
observation (e.g. without adding the noise value to the ob-
servation variance in the new Kn+1 matrix) is performed by



conditioning the posterior MVN on the sampled value (for
ease of notation we remove sk from the MVN probability
density function f ):

Pht
π =

∏
t≤t′<t+τ

π(ht′ , at′) ·
∏

t<t′≤t+τ
T o
(
st′−1, a, sk,t′

)
·

[
f
(
se,t+1 | GPot

)
·

∏
t+1<t′≤t+τ

f
(
se,t′ | se,t′−1, ..., se,t+1

)]
.

(11)

The repeated belief update product in the square brackets in
(11) can be recognised as being equivalent (via the chain rule
for probability) as being equivalent to the joint distribution
across all values of se,t′ :[

· · ·
]
= f

(
se,t+1, ..., se,t+τ | GPot

)
(12)

Therefore the rollout distribution is identical between indi-
vidual belief updates and root sampling:

Pht
π =

∏
t≤t′<t+τ

π(ht′ , at′) ·
∏

t<t′≤t+τ
T o
(
st′−1, a, sk,t′

)
·

f
(
se,t+1, ..., se,t+τ | GPot

)
= P̃ht

π . (13)

4.6 Online Planning and Execution Loop
The robot starts in the U-MDP with a set of initial observa-
tions o0. At each discrete timestep t, it makes an observation
of the mapping o at its current known state sk, and updates its
GP model GPot−1 to incorporate the new dataset ot.

Throughout execution the robot maintains its BAMDP
planning model and associated MCTS search tree. When the
GP is updated, this forms the new root node ht of the BAMCP
search tree, and any search tree nodes which are incompatible
with the new, actual history are removed from the tree.

The robot then selects a single new action by running
MCTS on its current model, executing the action in the real
world once sufficient MCTS trials have been run (up to a
computational budget, i.e. an anytime algorithm). The action
with the lowest expected cumulative cost to goal is selected.

5 Experiments
We focus on a stochastic shortest path problem in an envi-
ronment with an unknown distribution of radiation in order to
demonstrate the performance benefits of our approach.

In a 5m × 5m simulated world, a robot equipped with a
radiation sensor must navigate to a physical goal location
(which is at least 4m away from the initial location) while
minimising its cumulative radiation exposure. In this setting
the robot pose comprises the known value U-MDP state fea-
tures: Sk is a finite set of (x, y) locations {x, y} ⊆ Sk, and
the radiation exposure level is the only unknown value state
feature Se = R where rad exp ∈ Se is the radiation exposure
level at a location. The solution approach discretises rad exp
into 8 discrete ranges [0, 5), [5, 10), ... etc. The physical map
is discretised into a grid of states with side length 0.3m, with
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Figure 2: Achieved incurred cost to goal over 3 maps, with 5 runs
per algorithm on each map.

an action defined for each of the 4 cardinal directions that
has a success probability of 0.9, where success implies tran-
sitioning to the state in that direction and failure implies re-
maining in the same state. To demonstrate a scenario where
unknown environment features affect transition probabilities,
we state that when the robot’s local radiation exposure level
exceeds a set limit of 30 its localisation sensor performance
worsens and its navigation success probability decreases to
0.5. Simulated radiation level distribution data is generated
as described in [Budd et al., 2020].

Figure 2 summarises the the achieved cumulative cost to
reach the goal for three “agents”, each demonstrating an al-
gorithm. One agent uses the BAMDP approach described
above, one carries out the same MCTS planning but with full
knowledge of the actual underlying radiation distribution, and
one is a shortest path baseline. For the MCTS-based algo-
rithms, the chosen rollout policy is to choose the action that
minimises the L2 distance between the next state (if the action
is successful) and the goal state. The baseline agent always
uses this rollout policy and so attempts to take the shortest
physical path to the goal, ignoring radiation cost.

For consistency across the test environments, total cost in
Figure 2 is normalised relative to the ground-truth stochas-
tic shortest path cost calculated using an exact method and
the actual underlying radiation distribution. MCTS agents
were given a budget of 1000 trials, and the UCT exploration
constant is dynamically set to equal the value of the decision
node.

In general the fully observable MCTS algorithm (which
has access to the true radiation distribution) achieves close
to the optimal expected score – it can achieve less than the
optimal expected score in some runs due to the probabilistic
transition function. The BAMDP agent’s performance largely
depends on how well it can predict with its GP – in com-
plex environments such as the multi radiation source map
the BAMCP agent could not predict values accurately many
states away from its current location. Conversely, the saddle
point map (formed by two large radiation sources at corners
of the map) has relatively smooth dynamics and is well mod-
elled online by the BAMCP agent.

For the same experimental setup, Figure 3 compares our
root sampling approach with one that maintains a GP belief in
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Figure 3: Root state cost estimate vs time for both MCTS belief tree
variants.

each search node as in Figure 1b. When both algorithms are
given the same root belief state at a single planning epoch, the
figure illustrates that the root sampling approach converges
to the same value at the root node as the full belief node ap-
proach, as expected. The root sampling approach converges
significantly faster than the GP belief node approach.

In the experiment scenario, BAMCP with root sampling
approach carried out 1000 MCTS trials in 3.66 seconds, com-
pared to 1000 MCTS trials in 49.78 seconds for the GP belief
node approach – a relative speed factor of 13.6. The root GP
belief node contained only 6 observations – in the case where
there were more observations this would further decrease the
speed of carrying out GP belief node MCTS relative to carry-
ing out BAMCP with root sampling.

6 Conclusion
We have proposed a framework for planning in uncertain
worlds, and demonstrated its ability to plan in environments
with unknown features that may affect both robot costs and
transitions. We have also demonstrated that we are able
to plan more efficiently in these models than previous ap-
proaches which plan in unknown environments modelled by
GPs.

Our current solution method relies on discretising the val-
ues of continuous state features. An obvious extension to
this work would be to plan directly with continuous unknown
value state features Se, as several previous methods are able
to. Combining root sampling concepts with techniques to
manage search tree branching factors in continuous observa-
tion MCTS (e.g. progressive widening as in [Flaspohler et al.,
2019]) requires some thought as the probability of two sam-
pled environment feature values se at location sk being equal
is 0 when the state space Se is continuous in the search tree.
Techniques presented in POMCPOW [Sunberg and Kochen-
derfer, 2018] may make this feasible while still maintaining
some of the benefits of root sampling.

Extending to continuous state spaces in the known value
state space Sk is complicated by the need to sample from
the GP at a finite set of sample points – which would not
be known before the trials if the outcomes of actions could
lead to any continuous x and y robot pose, and would not be

consistent between trials to enable the same sampling points
to be used. Other than simply linearly interpolating between
sampled points, one promising avenue is to make use of more
complex GP sampling techniques such as described in [Wil-
son et al., 2020] to freely evaluate GP predictions at continu-
ous values of sk.

In the future we would also like to use the framework de-
scribed to tackle safety-constrained problems where the robot
has hard limits on environmental feature values that it can
safely withstand. Our Bayesian RL formalisation gives us
the opportunity to tackle problems that have previously been
investigated in other contexts. An example would be the
extension of safe exploration for MDPs [Budd et al., 2020;
Turchetta et al., 2016] to non-myopically plan where a robot
should safely observe.

Extending the BAMDP representation to consider par-
tial observability separately from the unknown environ-
ment could be handled in future work by planning with a
BAPOMDP rather than a BAMDP, and by adding sampling
noise from the GP’s observation function to BAMDP root
samples. This would allow a robot to plan multiple obser-
vations at the same physical location in order to improve the
accuracy of its predictions, which is not possible with the
BAMDP model where the mapping o is fixed during a sin-
gle trial. The safety-constrained aspect of the problem would
then likely be tackled using methods from cost constrained
POMDP literature [Lee et al., 2018].
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